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HOCTH BU3YaJbHO MOXO0XH, HO IPU 9TOM 3HAYUTENBHO OTJIMYAIOTCS B IUIAHE pa-
00Tbl 1oJ Harpy3koil. Maible apXUTEKTypHbIE (OPMBI ABIAIOTCA NOAXOAAIIEH
0071aCThIO MPUMEHEHHS [T HeIOCTATOYHO U3YYEHHBIX W anpoOHPOBAHHBIX KOH-
CTPYKLHMH, B OTJIMYME OT KPYINHBIX OTBETCTBEHHBIX coopy:xeHul. IIpuBonntcs
IIpUMep BapUAHTHOIO IPOEKTUPOBAHUS HEOOJIBLIOTO CaJ0BO-IAPKOBOIO COOPY-
JKEHHS B BUJIE 0OOJIOUKM 30HTUYHOTO THIIA, B X0OJIe KOTOPOTO OBLIN MPOaHAIH3HPO-
BaHbI pa3HbIC BUJIbI 30HTHYHBIX IIOBEPXHOCTEH U BBIOpaHBI TpU BapuaHTa. B uncne
uccneayeMblx (opM Takue IMOBEPXHOCTH, KaK NapaboIon L BpallleHus, IOBEPXHOCTb
30HTHYHOTO THIIA C CHHYCOHMIAIBHON 00pa3yroIel, TOBEPXHOCTh 30HTHYHOTO THTIA
C pajaJIbHBIMU BOJHAMM, 00pa30BaHHas KyOM4YecKUMH IapabosnaMu (C LEeHTpalb-
HOI IIIOCKOCTHOM Toukoif). IIpou3BeneHbl pacueT Ha IPOYHOCTh U UCCIEN0BaA-

JLAst UM THPOBAHMST HHUE paclpeleneHus Hflnp;{)xGHHgI UL TpeX 00O0JIOYeK, IAPHUPHO 3aKpeIuICH-
Tupikova E.M., Ershov M.E. Trial design HBIX 110 KPasiM, MU JIEHCTBUH COOCTBEHHOrO BECA MPHU MOMOIIH METO/IA KOHEUHBIX
3JIEMEHTOB U BBISBJIEHBI OCOOCHHOCTH pa0OThI MO HArpy3KOW KaXJI0ro BHa KOH-

of umbrella type shell structures // Ctpou- M >
CTPYKLH1, JaHBI PEKOMCH/IALMH [IPH IPOCKTUPOBAHKE aHAIOTHYHBIX COOPYIKCHHIA.

TCIbHAasA MEXaHUWKa MHKCHECPHBIX KOHCTPYK-
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Introduction

These days parametric and mathematical architecture has won recognition from architects and structural
engineers all over the world. The masterpieces of Felix Candela and Eduardo Torroja, Santiago Kalatrava and
other architects are familiar to everyone interested in the subject.

Fabrication of such structures becomes more and more easy, using numerical program control equipment,
3D printers and other innovative technologies [1; 2].

Academy of Engineering of RUDN University pays attention to shell structure form finding in architecture
and has its’ own traditions, which tend to analytical surfaces and mathematical architecture [3; 4]. The numerous
students’ and researchers’ jobs are devoted to shell structures [5]. Most jobs consider geometrical modeling of
such objects, like [6; 7]. New equations of umbrella type surfaces are arised in [8; 9].

Numerous up-to-date investigations are devoted to calculation of strength and stability of various shapes on
the base of analytical surfaces, like rotation surfaces and umbrella-like surfaces [10—14], and especially domes [15-17].

The detailed overview of research and application of umbrella type shells is given in [18]. Considering di-
rectly strength analysis of umbrella type shells of building structures, the papers [19; 20] should be noted.

Meanwhile, one of the top challenges in shell architecture actually is shape optimization in all aspects [21-26]. Mo-
dern form finding is governed by efficient stress and strain distribution, mass minimization and other optimization criteria.

So, in this paper, an example is given with comparison of different shell shapes to choose the more rea-
sonable and efficient. The umbrella type surfaces were chosen for trial design studies of dome-like structures.

Materials and methods

Umbrella dome is a cyclic spatial structure, composed of several identical elements, which crossing lines
are the generatrixes of some rotational surface, which is called contour surface. Umbrella domes have increased
stiffness, stability and aesthetical properties.

Umbrella-type shells are cyclical structures, composed of several identical elements, every of them is described
by the same analytical equations that the whole surface is described. The equations can be explicit, implicit or parametric.

The main method for calculation umbrella-type shells is the finite element method, which is implemented
in ANSYS APDL. The finite element method is a method for approximate numerical solutions of physical prob-
lems. It is based on two main ideas: the discretization of the object under study into a finite set of elements and
the piecewise-element approximation of the function under study.

The reinforced concrete shell roofs of umbrella type were introduced earlier than parametric architecture
appeared. Umbrella domes are well-known architectural elements, they are used in traditional church domes,
long-span public buildings and some special structures for civil and military purposes.

The form finding of such structures usually is defined only by architect’s arbitrary considerations, or, for mili-
tary or industrial assistant engineering structures, only by practical considerations, based on ease of fabrication.
The purpose of this article is to concentrate on more reasonable form-finding, its optimization, and diversification of
variants. The way for optimization of design and calculation is introduced as mathematical approach to form-finding.
Each new shape should have definite mathematical equation. Such an approach fits into actual trend of parametrical
and ‘digital’ architecture. Some design proposals, recommended for implementation, are given in a present job.
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Types of umbrella surfaces

1. Paraboloid of rotation with radial waves. Paraboloid of rotation with radial waves is formed by para-
bolic 2D curves, which have common central point of vertexes. Lines, tangent to parabolic curves, appertain in
one plane. Parabolas lie at any section, are parallel to Oz axis.

Parametric equations are [9]

x(u,v) =ucos(v),
y(u,v) =usin(v), (1)
z(u,v) = (Asin(nv) + b)u?,

where A4 is magnitude of the wave; n is number of wave vertexes; v is angular coordinate (Figures 1, 2).

Figure 1. Paraboloid of rotation with radial waves Figure 2. Paraboloid of rotation with radial waves
with parameters A =1,n=6,b=1,uu=0...30,v=0... 2n with parameters a =0.8,n=10,b=1,uu=0... 1,v=0 ... 2n

2. Sphere with external cycloidal crimps [18]:
a) type with epicycloid at base section (Figure 3):

x(u,0)=((R+r)cos(p)—rcos((n+1)p))cos(u),
y(u,0) = ((R+r)sin(e) —rsin((n +1)p)) cos(u), (2)
z(u,9) = Rsin(u),

where R is radius of large circle; 7 is radius of small circle, small circle is rolling along the large one, arising epi-
cycloid curve; n is number of outer vertexes of epicycloid; » = R/n; u, ¢ are coordinates;
b) type with hypocycloid at base section (Figure 4):

x(u, ) = (R —r)cos(@) —rcos((n —1)@)) cos(u),
y(u, @) = ((R—r)sin(e) —rsin((n —1)@)) cos(u), G)

z(u,9) = Rsin(u).
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Figure 3. Sphere with external epicycloidal crimps Figure 4. Sphere with external hypocycloidal crimps
with parameters R=10,n=6,u=0... 12, ¢=0... 21 with parameters R=10,n=6,u=0... W2, @=0... 21

3. Corrugated surface of cubic parabolas (Figure 5):

x(u,0) = u 3 ((R+7) cos(9) —  cos((n + 1)),

y(u, @) =u> (R +r)sin(e) — rsin((n +1)9)), (4)

z2(u,0) = h(l-u),

where R and 7 — radii of large and small circles, which help to arise epicycloid, respectively; » — number of ver-
texes; h — height of the surface; u, ¢ are coordinates.
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Figure 5. Corrugated surface of cubic parabolas Figure 6. Corrugated surface of semi-cubic parabolas
R=1,n=8,h=2,r=R/n R=1,n=3,h=2,r=R/n

4. Corrugated surface of semi-cubic parabolas (Figure 6) [18]:

32
(

x(u,@)=u""((R+r)cos(p)+rcos((n+1)p)),
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(@) =1 ((R+7)sin(g) - rsin((n+1)9)), (5)
Z(ua (P) = h(l - M),
5. Umbrella type surface with sinusoid generatrix (Figure 7) [18]:
x(u,v) =ucos(v),
(6)

y(u, @) =usin(v),
z(u,) = asin(nv),

where a is the maximum magnitude of sinusoid generatrix; u, v are coordinates.
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Figure 8. Umbrella type surface with flat central point

Figure 7. Umbrella type surface with sinusoid generatrix
with parameters n=5,a=1,u=-15... 1.5,v=0... 21

with parameters n=5,a=3,u=0... w/2,v=0... 21

6. Umbrella surface with radial waves, generated by cubic parabolas (Figure 8) [18]. This surface has
central flat point, the radial waves are decaying in this point.

x(u,v) =ucos(v),

y(u,v) =usin(v), @)
z(u,v) = au’ sin(nv),

where a is constant; #n is waves number; u, v — coordinates.

Example of structure designing

While designing aesthetically attractive structures and buildings, several variants can be taken into consi-
deration, the same span can be ceiled by shells of very close visually, but quite different mathematically shapes.

For example, let us sketch the roof for small exhibition hall or recreation facility like garden house, with
circular plan and five sections. The diameter of this structure is 6 m, height is approximately 6 m. Three different
umbrella surfaces are suitable for this purpose (see Figure 8): 1) paraboloid of rotation with radial waves, para-
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meters n=5, b=0, a=0.35, u=0..3, v=0 ... 2mw; 2) umbrella type surface with sinusoid generatrix, parame-
ters n=5,b=0,a=3, u=0..7n/2, v=0..2xn; 3) umbrella surface with radial waves, generated by cubic
parabolas, parameters n=5, a=0.115, u=-3..3, v=0 ... .

Figure 9. Three variants, visually similar in shape:
a — a paraboloid of rotation; b — an umbrella-type surface with a sinusoidal generator;
¢ — an umbrella-type surface with radial waves based on cubic parabolas (with central flat point)

It presents to be of interest to calculate stress-strain state of these shells to find more optimal one, which
has the lowest values of bending moments, when material is mostly subjected to axial forces and particularly
compression. The structure behavior can be predicted by analogy to corresponding arcs, but such an analysis
doesn’t take into account tridimensional behaviour of the shell. So, the aim of this job is a finite element analysis
of the whole special structure. The three variants from Figure 9 were compared.

The aims of comparison were to reveal the features of each variant and give the recommendations for their
application. Such recommendations should be taken into account while architectural sketching and desing, while
creating finite element models.

Various software has special tools for creating surfaces by equations, but the results are sometimes not ap-
propriate, so in this job it was decided to use Ansys APDL which needs directly writing special macros to con-
struct geometry and finite element model.

1. Paraboloid of rotation. For creating this model the special macro was written to construct main nodes,
which were defined as keypoints. The model consists of 72 splines, each spline has 20 basic keypoints, obtained
by the surface equation. The problem occurred in the central point, which has singularity, so the central part was
approximated by triangles. The very shell surface is got by skinning (special function for area creation) and
meshed by size of 5 cm. The model is presented at the Figure 10.

Figure 10. Finite element model of paraboloid of rotation
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The boundary conditions were set as a hinged support along the edges, like this dome is supported freely
on some supporting contour of load-bearing walls. The loading of dead weight is applied by density and gravity
acceleration definition and their taking into account.

The thickness of the shell was defined as 8 cm, the material characteristics are: Young modulus is
325 MPa, Poisson’s ratio is 0,17. The deflections of the model are presented at the Figure 11.

The equivalent stresses (von Mises) are presented at the Figure 12.

The maximum stresses occured at the edges, the maximum is 27 835 N/m?. It can be concluded that it is
necessary to strengthen the supporting contour on the edges.

2. Umbrella type surface with sinusoid generatrix. The model is analogous to the paraboloid of rotation
model, but this one needed some refinement at the vawes tops. Finally, the appropriate results were obtained
with meshing size of 2 cm. The central point, like that in paraboloid of rotation, has singularity, so it was filled
by triangles like in the first example (Figures 13, 14).

For the preliminary analysis the model was considered sufficient and the calculation of deflection and
equivalent stresses was conducted under dead weight loading.

The maximum deflection is 0.69-10° m (Figure 15), the maximum stress is 99 764 N/m? (Figure 16).
The maximum stresses occurred in the waves tops. Due to the stresses distribution, it will be rational to streng-
then the structure with ribs.

3. Umbrella surface with radial waves, generated by cubic parabolas. The model has small difference
from the first two models, specifically, the surface does not have singularity in the central point.

For the preliminary analysis the model was considered sufficient and the calculation of deflection and
equivalent stresses was conducted under dead weight loading.

The results are presented at Figures 17—19. The maximum deflection occurred in the central point, it is
0.723-10°m. The maximum stresses are 36 785 N/m?. The most dangerous sections are located closer to the middle,
the maximum stresses are small compared to the maximum stresses, for example, in the second example. It can be re-
commended to arrange a support ring in the center, especially since the central point is flat. Comparison is given in Table.
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Figure 11. Vertical deflections u: (isofields) Figure 12. Equivalent stresses (isofields)
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Figure 13. Creation of geometrical primitives
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Surface type Max equivalent stress ~ Max deflection, m  Max bending moment My, Max axial force Fz,
(von Mises), N/m? N-m/m N/m
1. Paraboloid of rotation 27 835 0.281-1073 0.27 —5.41
2. Umbrella type surface 99 764 0.69-10°3 0.96 526
with sinusoid generatrix
3. Umbrella surface with
radial waves, generated 36 785 0.723-10°3 —-0.087 -0.98

by cubic parabolas

The equivalent stress is chosen as a main parameter of comparison, because it is most clear in physical
meaning, the bending moment and axial force enlisted in the table are calculated in cylindrical coordinate system
(which does not fully corresponds to surface inner geometry), so it can be used only for approximate estimation
of forces and moments. Compared to concrete compression and even tension strength, all these stresses are not
significant, which means that in case of loadings of the same order as a dead weight, the reinforcement needed is
minimal. The investigation of stability is necessary in prospects, the strengths evaluation is only the first stage of
analysis. As the latest publications on the topic [18] show, the interest in umbrella shells and umbrella-type
shells does not fade. Researchers are looking for new areas of application of the shells under consideration and
not only in architecture and construction [12].

Conclusion

As results, the vertical deflection and equivalent stresses and their distribution were compared.

If consider the architect choosing from three different sketches, taking the revealed peculiarities into ac-
count present to be quite useful to conduct a technical and economic comparison of options.

Such an investigation is also be useful for classification and systematization of knowledge about shells
in shape of analytical surfaces.

These results illustrate the idea [27] that visually similar shapes can have rather different strength charac-
teristics and work under loading. The analytical shapes can be investigated to reveal some patterns and rules,
in contrast to the free shapes, created only by architect’s inspiration.
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