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YKEHHO-ZIe()OPMUPOBAHHOE COCTOSIHUE THIIEPOOIHUYECKON MapaboIouaHol 000-
nouku (runap). [lens — ONpeneNuTh MCXOAHBIE KOHCTPYKTHBHBIE ITapaMeTphbl,
TaKue KaK PeKOMEHyeMasi IPOYHOCTh OETOHA U THI OMOPHI, 00ECIICUNBAIOIINE
HaujIydiliee CTPYKTYpHOE MOBEACHHUE, JUIS IOCIEIYIOIIEr0 BBITOIHEHUS pacyeTa
KOHCTPYKLMH OOOJIOUKHM JJIs MEHIeXOAHOro Mocta. Memoodsi. CtaTndeckuil Ko-
HEYHO-3JIEMEHTHBIH aHaIN3 ObUI MPOBEACH JUIs YEThIPEX MPECSIOB MPOYHOCTH
Ha cxatue Oerona (28, 40, 80, 120 MIIa), KoTOpble COOTBETCTBYIOT HOPMaJb-
HOMY, BBICOKOMY U CBEPXBBICOKOMY COITPOTHBIICHHIO OETOHA, MATH PA3TUUHBIM

JUIsl THTHPOBAHUSA CXeMaM PACIOJIOKECHHS HArpy3KH OT TOJIBI U TPEM Pa3IHYHBIM YCIOBHSAM OIHU-
panust. Pesyromamei. JIByXumapHUpHBIE ¥ OeCIIapHUPHBIE MOJICTH ITOKa3bIBAIOT
OIIMHAKOBBIC BEPTUKAIBHBIE epeMereHus. 1 ucenexyeMon TONIIHEL 0005109-
KU C TOYKH 3PSHHS BHYTPEHHHX YCHIIMI JBYXIIAPHUPHAS MOJEIb SBISETCS Oomee
s¢dexkruBHON. KOMOMHALINS IAPHUPHBIX HEMOJABH)KHBIX OMOP C MPOYHOCTHIO
6etona 80 MIla noxkasana nydiee CTpyKTypHOE OBEICHHUE.

Cajamarca-Zuniga D., Luna S. Influence of
the concrete strength and the type of sup-
ports on the stress-strain state of a hyper-
bolic paraboloid shell footbridge structure //
CrpounTenpHas MeXaHHKa HH)KEHEPHBIX KOH-

CTpyKumii 1 coopyskenmid. 2021. T. 17. Ne 4. Kito4eBble CJI0Ba: KOHEYHO-DIEMEHTHBIH aHAIU3, MEMEXOAHbIH MOCT, TUIep-
C. 379-390. http://dx.doi.org/10.22363/1815- Gonnueckuil mapaboaou, oO0NOUKa, HANPSHKEHHO-A1ehOPMUPOBAHHOE COCTOS-
5235-2021-17-4-379-390 HUE, BBICOKOMPOYHBII GETOH, YIbTPABLICOKOIPOUHBIH OETOH

Introduction

Thin shells, as well as long-span structures, spatial grids, tensegrity systems, tall buildings, among other
systems, are related to “special structures” [1]. Shells are form-resisting structures, as they mainly resist loads
because of their form rather than the amount of their material (cross-section). Because of their special qualities,
shells are used wherever high efficiency is required, such as to cover long spans with high resistance and mini-
mum material [2]. Felix Candela fomented the surge of popularity of shell structures in the 1950s, and his works
launched the modern shell era by attracting the attention of architects and structural engineers [1]. In 1951 Can-
dela built a 11 m span and 15 mm thickness hyperbolic paraboloid shell in Mexico [3—5], what was an innova-
tive project at these time. The Candela’s built hyperbolic paraboloid shells show that was possible to minimise
workforce and material resources [6]. Despite this, the widespread building of thin reinforced concrete shells
ended abruptly at the end of the 1960s [7] and for many time the use of large span shell structures has lost its
popularity compared to the peak of their construction in the 1950-1960s [8].

The 21st century brought a new era for architectural design [9] and improvement of 3D finite element analy-
sis software. Nowadays, more architects and engineers are becoming interested in the design of long-span shell
structures. Thus, the authors of this article set out to study the possibilities of using different analytical surfaces for
the construction of a thin shell footbridge, where the shell is both the supporting structure and the walking surface.

The hyperbolic paraboloid (hypar) has been known in mathematics since the 17th century and first ap-
peared in architecture at the end of the 19th century [3]. Mathematically synclastic surfaces have positive Gauss-
ian curvature K, while the anticlastic (hyperbolic) surfaces have negative curvature K. Both synclastic and anti-
clastic surfaces are of double curvature. Double curvature surfaces, if properly restrained, can work only as
membranes, irrespective of the applied loads. This singularity can be seen by comparing the failure of a cylindri-
cal and spherical vaults under vertical loads; the first will fail in bending, the second in tension.

The hyperbolic paraboloid is a twice ruled surface of negative Gaussian curvature [10], and is categorized
as an anticlastic surface [11]. This anticlastic ruled surface could be generated by straight lines. Therefore, this
shell shaped structure is simpler to build [12; 13]. It is important to consider that the hyperbolic paraboloid shell
may be stable in the postcritical range due to negative Gaussian curvature since there are also fibres in tension
that stabilise the shell [14].

At present, there are few projects in which shells are used as supporting structures for bridges. Among the most
notable projects are the Musmeci Bridge over the Basento river in Italy (Figure 1, @), the Matadero Bridge over
the Manzaneros river in Spain (Figure 1, ») and the TRUMPF Bridge over Gerlinger Strasse in Germany (Figure 1, ¢).

The Musmeci Bridge is about 300 m long and is composed of a RC box-section deck supported by a RC
continuous double-curvature shell. The shell forms 4 equal spans of 69.20 m each, has a thickness of 0.30 m and
is characterised by deeper ribs at both sides [15]. The Matadero footbridge is a RC (40 MPa) sinclastic shell that
supports a suspended metallic deck [16; 17], were the bearing structure is a shell with 43.50 m span, 8.40 m
width, 7.70 m of rise and variable thickness from 0.15 m in the centre to 0.57 m in the supports [18]. The foot-
bridge at TRUMPF headquarters is a double curved steel shell with 28 m span, 2.20 m width, and only 20 mm
thickness [19]. It should be noted that only the last of the mentioned projects (Figure 1, ¢) uses the shell structure
both as a load-bearing element and as a walking surface.
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Figure 1. Musmeci’s bridge, Potenza, Italy (a); Matadero footbridge, Madrid, Spain (b); TRUMPF footbridge, Ditzingen, Germany (c)

This research is the first stage of a project that performs a comparison of the static and dynamic structural
behaviour, architectural influence and environmental impacts between a conventional-structured footbridge built in
the city of Cuenca (Ecuador) and a proposed shell-shaped footbridge, where the shell is both the load-bearing ele-
ment and the walking surface. The whole project will study the structural behaviour of different analytical surfaces
(hyperbolic paraboloid, conoid, torse) to define the most suitable geometric shape for a pedestrian bridge. This arti-
cle shows the results of the first stage of the cited research. In this stage, the stress-strain state of the proposed hy-
perbolic paraboloid bridge was determined. The results will allow us to establish the optimal type of supports and
concrete strength for this type of structure in order to perform the subsequent structural design in the next stage.
The issues of local stability of the shell on the upper edges, as well as the reinforcement of the shell as a whole and
in different zones depending on the stress-strain state, are not considered in the present article.

Methodology

In the present work, we defined the overall dimensions of the studied shell according to the dimensions of
an existing bridge built with a conventional structural system in the city of Cuenca (Ecuador). The Juana de Oro foot-
bridge (Figure 2) is a three-hinged arch with L =24 m of span, B = 5 m of width and /= 1.2 m of rise [20].
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Figure 2. “Juana de Oro” footbridge [20]
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Based on the overall dimensions of Juana de Oro bridge, we defined the geometry of the studied hyperbo-
lic paraboloid shell. The defined structure is a shell with L = 24 m span, B = 5 m width, /= 1.2 of rise and
¢t = 0.1 m thickness (Figure 3).

Figure 3. Overall dimensions of the studied hyperbolic paraboloid shell structure

For the defined hyperbolic paraboloid shell structure, 60 finite element models were analysed, which include
the different combinations of parameters: 5 concrete strengths (28, 40, 80, 120 MPa), 3 support conditions (simple
supports, fixed ends or two-hinged model, embedded ends or hingeless model), and 5 crowd load positions.

The present stress-strain study involves: 1) determination of most unfavourable loading condition for the
proposed shell; 2) determination of the least efficient support conditions in terms of stresses and strains; 3) defi-
nition under which loading conditions and with which support types we will continue the research; 4) investiga-
tion of influence of the concrete strength on the stress-strain state for the selected loading condition and support
type; 5) analysis of results and drawing the conclusions.

Geometry definition of the hyperbolic paraboloid (hypar) shell. A hyperbolic paraboloid is a surface
whose general equation in Cartesian coordinates (x, y, z) satisfies the equation: z = (x/a)* — (¥/b)*. According to
Krivoshapko & Ivanov’s Encyclopedia of Analytical Surfaces [10], the explicit (canonical) equation of a hyper-
bolic paraboloid has the following form:

x2 2

X _Y
z=2 2q,p>0,q>0. (D

The formula (1) shows that hyperbolic paraboloids can be generated by the translation of a mobile parabola
y? = —2qz along a fixed parabola x? = 2pz or vice versa [10]. The computer model of the studied shell (Figure 3)
was generated by the computational integrated system for finite element structural analysis and design SCAD++,
and the system of equations (2) was obtained by the built-in SCAD++ application. In this program we have:
ho = height of the angle point, m; /#; = height of the inflection point along the X-axis, m; 4, = height of the in-
flection point along the Y-axis, m; W = length of the plane in the X direction, m; B = length of the plane in Y direc-
tion, m (Figure 4). It should be noted that the edges of hyperbolic paraboloid can be curved or straight [21],
and in our case we have defined a rectangular shape (24x5 m) on the horizontal plane projection.

x=(s—0.5W,
y = (t —0.5)B, )

2= hy + 4(hg — hy)(s — 0.5)% + 4(hg — hy) (¢ — 0.5)2.

Live (crowd) load arrangement. In order to consider the most unfavourable position of the live load in
the structure and its combination with the self-weight, we assumed the following 5 live load arrangements (Fi-
gure 5) for a pedestrian load of 4.1x107° MPa [22]:

— CV1: the crowd load occupying the entire width and half of the bridge span;

— CV2: the crowd occupying the entire width and full bridge span;

— CV3: the crowd occupying the full width and the middle third of the bridge span;

— CV4: the crowd in one lateral side (half of the width) and the entire length of the bridge;

— CVS5: the crowd occupying the initial lateral side (half of the width and half of the bridge span).

382 SEISMIC RESISTANCE
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Figure 4. Geometric parameters for defining a hyperbolic paraboloid in SCAD software
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CV1: The crowd load oceupying the entire width and half of the bridge spam C€V2: The crowd occupying the entire width and full bridge span CV3: The crowd oceupying the full width and the middle third of the bridge span
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CV4: the crowd in one lateral side (half of the width) and the entire length of the CV5: The crowd occupying the initial lateral side (half of the width and half of
bridge span the bridge span).

Figure 5. Live load arrangement. Live load acting on the blue areas

Compressive strength of the concrete. The investigation of the stress-strain state of the shell includes
the study of the influence of different concrete strengths (28, 40, 80 and 120 MP). Since, the common practice
in bridge construction in the city of Cuenca and the recommendation given in [22] suggest a concrete strength
of 28 MPa, the American Concrete Institute specifies 41 MPa as the lower limit for high-resistance concre-
te (HRC) [23-25], and the Portland Cement Association points 120 MPa as the minimum compressive strength
for ultra-high performance concrete (UHPC) [26-29], however, some authors suggest a value of 150 MPa as
the minimum compressive strength limit of UHPC [30-33]. Thus, we analysed the shell for strengths of 28 and
40 MPa that correspond to a concrete of standard compressive strength, 80 MPa matches an HRC and 120 MPa
corresponds to lower referred limit of UHPC.

Finite element analysis. The finite element structural analysis was performed in SAP2000 (CSI Compu-
ters & Structures, Inc.). We analysed 60 finite element models that include the following combinations of pa-
rameters: for each compressive strength (28, 40, 80, 120 MPa) were analysed 15 models that include 5 live load
arrangements for the simply supported system, the same 5 load arrangements for the system with pinned ends,
and the same for the model with fixed ends.

For the finite element analysis, it is necessary to define the physical and mechanical properties of analysed
concrete (specific weight, modulus of elasticity and Poisson coefficient). Some recommendations about the spe-
cific weight for concretes with compressive strength less than 35 MPa suggest a value of 2320 kg/m’, instead
for concretes between 35 and 105 MPa the following formula should be used [22]:

Yo = 2240 + 2.29f. 3)

Here y, = specific weight, kg/m’; f/ = compressive strength of concrete, MPa.

In this way the concrete of 40 MPa would have a specific weight of 2332 kg/m’, and the concrete
of 80 MPa a value of 2432 kg/m’. For the concrete of 120 MPa not being within the range given by
the AASHTO [22] a value of 2515 kg/m® was taken [22; 34].

The modulus of elasticity for models with compressive resistance of 28, 40 and 80 MPa was calculated based
on the formula (4) which is applicable only for concretes with specific weights between 1440 and 2500 kg/m’ [22].
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E, = 0.043y:5,/f). @)

Here E. = modulus of elasticity, kg/cm’; y, = density of concrete, kg/m®; f; = compressive strength of
concrete, MPa.

For the concrete of 120 MPa a value of 459 000 kg/cm?® (~45 900 MPa) was taken [35]. The assumed
Poisson coefficient is 0.2 since no physical tests of the materials were performed [22; 36].

For the analysis of the stress-strain state, we calculated 5 load combinations in the SAP2000 software. These
combinations consider the structure dead load (CM) whit each pedestrian live load in its different arrangements on
the deck (CV). We replicate these load combinations for the proposed supports types and concrete strengths.

Results and discussion

The Figure 6 shows some graphical views of the stress-strain state of the models based on the finite ele-
ment analysis. The Figure 7 shows the character of the normal forces in the shell.
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Figure 6. Comparison of deformations between different types of supports for the same concrete strength (a);
comparison of deformations between different concrete strength but with the same type of support (b);
internal reactions for a concrete strength of 40 MPa with fixed supports (¢)
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Figure 7. Character of the normal (longitudinal and transverse) forces in the shell

Tonf, m

The results of the finite element analysis of the proposed models show that the combination named R2 and

R4 (corresponding to CV2 and CV4 respectively) are the most unfavourable live load arrangement for all models
regardless of the type of supports (Figure 8).
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For the defined unfavourable live load arrangement, we have studied the influence of the support condi-
tions on the vertical displacements, the results are shown in Figure 9.

Here we can see that the simply supported condition is not viable for this type of structure, due to large
displacements under the same load condition (Figure 9, ). Figure 9, b shows that vertical displacements for
the pinned (hinged) ends and the fixed (embedded) ends models are the same. At the same time, it displays that
the 80 MPa concrete, shows a better performance in terms of rigidity among the studied strengths.

The effect of compressive strength of the concrete was analysed for the five proposed live load arrange-
ments. The results are shown in the Figure 10. Here we can note that the HRC (80 MPa) presents a deformational
behaviour slightly better than the UHPC (120 MPa), under the same geometric parameters of the shell and live
load arrangements.

In order to understand the influence of the concrete strength, we performed a stress state comparison be-
tween the pinned ends and fixed ends models under the R2 load arrangement for the 4 proposed compressive
strengths of concrete. Below, in the Figures 11-13, we show the graphs that summarise the results of the stress
state investigation.

In these graphs we can see that the maximum internal reactions in the shell with pinned supports are lower
than in the ones with fixed supports regardless of the analysed concrete strength.

Further, the structural performance of the “hypar” shell was analysed as a function of the compressive
strength of the concrete. In this research a point of balance between stresses and strains was determined accor-
ding to the strength of the concrete. The graph below shows that, as the concrete strength increases, the internal
reactions also increase, while the deformations decrease. However, the deformations stabilise at strengths close
to or above 80 MPa. This analysis shows that the better relation between strains and stresses is for a concrete
next to 80 MPa of compressive strength (Figure 14).
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Figure 15. Distribution of normal forces F11 and F22
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Figure 17. Distribution of shear forces V13 and V23

The Figures 15—-17 show the character of the stress state of the shell studied with 80 MPa concrete, both
for the case of hinged supports (right pictures) and for the case of embedded supports (left pictures).

Conclusion

The purely geometrical shape of the hyperbolic paraboloid is relatively easy to work with, both from struc-
tural analysis and design viewpoint. However, the effects of the bending stresses that are generated for the given
geometry must be considered. These bending stresses should be dealt with rationally by adjusting the curvatures
of the shell instead of increasing the cross-section [37].

In this investigation, the assessment of the static structural behaviour of a hyperbolic paraboloid shell was
performed in order to evaluate the possibilities of application of this analytical surface as a shell-shaped foot-
bridge where the shell is both the load-bearing element and the walking surface. In terms of rigidity was deter-
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mined that the pinned (hinged) supports and fixed (embedded) supports give almost equal displacement magni-
tudes (Figure 9, b). The FEA analysis shows a vertical displacement of 8.2 mm for the 80 MPa model and 8.3 mm
for the 120 MPa model. However, in terms of stresses, the pinned supports shown better behaviour than fixed
ones. The normal tensile forces F// along the longitudinal axis for the pinned supports are 11.61% less than
the fixed supports. The normal compressive forces /11 along the longitudinal axis for the pinned supports are
0.39% less than the fixed supports. The normal tensile forces 22 along the transversal axis for the pinned sup-
ports are 33.71% less than the fixed supports. The normal compressive forces /22 along the transverse axis for
the pinned supports are 0.79% greater than the fixed supports. The maximum magnitude of bending moment
M11 along the longitudinal axis for the pinned supports is 65.54% less than the fixed supports. The maximum
magnitude of bending moment M22 along the longitudinal axis for the pinned supports is 61.95% less than
the fixed supports. The maximum shear forces V13 for the pinned supports are 85.45% less than the fixed sup-
ports. The maximum shear forces /23 for the pinned supports are 59.26% less than the fixed supports.

The study of the influence of the compressive strength of the concrete on the one hand shows that
the HRC (80 MPa) shell has 43.49% less displacement than the normal resistance concrete (28 MPa), 32.16%
less than the 40 MPa, and even 1.37% less than the UHPC (120 MPa). But on the other hand, it shows an in-
crease of internal reactions as follows: for the 40 MPa concrete the internal reactions increase 0.18% compared
to the 28 MPa; for the 80 MPa concrete the internal reactions increase 1.41% compared to the 40 MPa;
and for the 120 MPa the internal reactions are 1.36% greater than for the 80 MPa concrete.

These results show that, in terms of maximum stresses, the hyperbolic paraboloid with pinned (two-hinged)
supports is the more adequate static scheme for the proposed anticlastic shell, while a concrete with compressive
strength between 40 and 80 MPa provides the best structural performance. However, it could be observed that
the model with fixed (hingeless) supports shows a most uniform stress distribution. Later the research will con-
tinue on the 40 and 80 MPa pinned-support (two-hinged) and fixed-support (hingeless) shell. In future articles
we will determine the structural behaviour under static and dynamic actions, including seismic loads. We will
revise the shell curvatures to optimise the structural behaviour, study the influence of the shell thickness on
the UHPC alternative. Also, we will review the issues about the local stiffness as well as the need for the addi-
tion of edge beams and study its effects, about the reinforcement of the shell (type of reinforcement, steel
strength, diameter, spacing) and the intensity of the reinforcement in the different zones depending on the stress-
strain state.
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