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 Abstract. The building structure with infill wall shows higher global stiffness along 
with the uncertain behaviour during 2015 Gorkha earthquake. It significantly increased 
the collapse rate of structures during earthquakes. The response of buildings with dif-
ferent infills during seismic excitations is not completely accounted by current seismic 
codes in the region. On the other hand, due to the different geological region, availa-
bility of infill materials for reinforced concrete building also differs on region to re-
gion. In most of the situations the burnt clay brick, concrete blocks and stone block 
are used as infill materials during building construction. In this scenario, this study 
explores the importance of selection of right infill material for better seismic perfor-
mance during earthquakes. For this, building constructed at Pokhara Metropolitan 
City is considered for case study. The structural model is prepared with and without 
considering infills. The solid, hollow concrete block and clay brick masonry are taken 
as infill material during analysis. The structural behaviour during earthquakes is studied 
with non-linear static pushover. The result shows that the hollow concrete block ma-
sonry infill (INHB) shows better structural performance compared to other infill types. 

Keywords: non-linear analysis, infill masonry, pushover curve, inter-storey drift, 
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 Аннотация. Конструкция здания с заполняющей стеной продемонстрировала 
более высокую общую жесткость наряду с ненадежным поведением во время 
землетрясения 2015 года в Горкхе. Это значительно увеличило скорость обру-
шения конструкций во время землетрясений. Реакция зданий с различным за-
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 полнением во время сейсмических волнений не полностью учитывается дей-
ствующими сейсмическими нормами в регионе, а наличие заполнителей для 
железобетонного строительства различается от региона к региону. В большин-
стве случаев обожженный глиняный кирпич, бетонные блоки и каменные бло-
ки используются в качестве заполнителей при строительстве зданий. В этом 
контексте исследуется важность выбора правильного заполняющего материала 
для улучшения сейсмических характеристик во время землетрясений. Рассмат-
ривается здание, построенное в столичном городе Покхара. Структурная мо-
дель составляется с учетом и без учета заполнения. Полнотелый, пустотелый 
бетонные блоки и кладка из глиняного кирпича при анализе принимаются в 
качестве заполнителя. Поведение конструкций во время землетрясений 
изучается с помощью нелинейного статического толчка. Результат показы-
вает, что заполнители INHB демонстрируют лучшие структурные характе-
ристики по сравнению с другими типами заполнителей. 

Ключевые слова: нелинейный анализ, заполнение кирпичной кладки, 
кривая вытеснения, межэтажный дрейф, коэффициент пластичности 
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Introduction 
The territory of Nepal has geographically diversity in nature. It has higher probability of occurring earth-

quakes. The Himalayans and mountains are produced by the movement of large Indian and Eurasian tectonic 
plates [1]. Since 1255 AD, nineteenth earthquakes of large intensities were recorded. The intensities of 7.7, 7.3, 
6.5, 6.5 and 7.8 recorded in 1833, 1934, 1980, 1988 and 2015 respectively were quite detrimental causing hun-
dreds of deaths and loss of properties [2]. The post disaster needs assessment identified 32 districts were affected 
by Gorkha earthquake 2015 in Nepal. The details building damage status is presented in Table 1. 

Researchers highlighted that the selection of structure types built on seismically active region like Nepal is chal-
lenging task. The structures constructed in the region seems vulnerable due to lack of proper design, improper construc-
tion technologies and dilemma on selection of proper construction material types. In these days, the trends of RC buil- 
ding construction is rapidly increased in urban areas of Nepal replacing adobe, stone, clay brick, concrete block masonry 
building construction. RC framed building are constructing with different infill materials based on the availability in lo-
cality. Field study indicates that the existing RC buildings have highly structural deficiencies like insufficient structural 
strength, lack of ductile detailing, poor construction technologies, soft storey at ground floor due to replacing masonry 
infills by rolling shutters and weak column strong beam [3; 4]. Most of codes consider infills as a non-structural element. 
The study finds that the infills increases the robustness index of building which prevents the building from collapse by 
providing the alternative load path [5]. H. Chaulagain et al. (2014) upon their parametric studies determined the lower 
value of inter-storey drift favoring the performance of building. The infills casted on site has best responses which has 
similar behavior as of the monolithically constructed infills and frames [6]. The presence of infills on RC buildings upon 
the case studies of previously build buildings upon their seismic vulnerability infills creates the soft storey failure as well 
as torsion if the vertical irregularities are present on buildings which has no or some infills at some levels [7]. The main 
factor governs the infilled RC building depends on frame and infill panel interface, strength of concrete and reinforce-
ment on frames, interaction between masonry units and mortar, strength of masonry panel and presence of opening,  
etc. [8]. As indicated in Figure 1, the test result of different techniques subjecting in-plane horizontal loading also shows 
the status of different infill panels and surrounding frames greatly effect on structural performance [9]. 

In the context of Nepal, clay brick masonry infills are used in terai region. In hilly regions, clay brick or 
concrete blocks are popular. At mountain area stone masonry infills is used on RC frames. In these references, 
this study compares the bare frame models with different infill walls. Three infills viz solid concrete block, hol-
low concrete block and clay brick masonry are selected and numerical analysis of selected four storey RC buil- 
ding is done to achieve objective. 

 
Table 1 

Building damage status in 2015 Gorkha earthquake [10] 

Building types Fully damaged Partially damaged
Low strength masonry buildings 474.025 173.867 
Cement mortared masonry buildings 18.214 65.859 
RC buildings 6.613 16.971 
Total 498.852 256.697 
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Figure 1. Typical shear force-story drift diagrams from test results on reinforced concrete (RC) frames [9] 

Masonry infills used in Nepalese building structures 
Solid concrete masonry infills. Solid block units have the net concrete cross-sectional area greater than 

75% of the gross cross-sectional area. Concrete blocks are made of Portland cement, aggregate and with sand, 
fine aggregate for blocks with high density. Concrete blocks having lower densities could be made up of the 
wastage from industries which could have better durability, strength, sound as well as thermal resistance and 
economic too. Size of solid block found in Nepal lies around 300×150×200 mm. The solid concrete blocks shall 
conform standards as mentioned on [11]. For grade C, the block density of solid concrete shall not less than  
1800 kg/m3 and must have minimum 28 days average compressive strength of 4.0 and 5.0 N/mm2 respectively. 
Figure 2 shows: a – the sample of solid concrete block; b – the RC framed school building with solid concrete 
block infill constructed at Pokhara metropolis. 

Hollow concrete block masonry infills (INHB). Hollow concrete blocks are manufacturing in Nepal either 
by hand mound or mechanically which has net concrete cross-sectional area less than 75% of the gross cross-
sectional area. The dimensions range from 400×200×100, 400×200×150 and 400×200×200 with shell thickness 
of 35, 40 and 40 mm respectively [12]. Based on standard code IS code [11], the hollow concrete blocks shall 
confirm two grades:  

– grade A – block density of this types of concrete blocks is minimum 1500 kg/m3, which shall be produced  
for minimum 28 days average compressive strengths of 3.5, 4.5, 5.5, 7.0, 8.5, 10.0, 12.5 and 15.0 N/mm2 respectively; 

– grade B – block density of this types of concrete blocks lies in between 1100 and 1500 kg/m3, which 
shall be produced for minimum 28 days average compressive strengths of 3.5 and 5.0 N/mm2 respectively. 

Clay brick masonry infills. Clay brick is extensively using as infill material in Nepal. Clay brick is com-
posed up of silica (sand), alumina (clay), lime, iron oxide, magnesia with their respective proportions. As a con-
struction material they are strong, durable, weather resistance, resistance against fire and durable, if properly 
manufactured. There are various types of bricks based upon their strength, physical and chemical composition. 
Brick shall comply with the requirements mentioned on [13]. According to Nepal building code [14], the stan- 
dard brick size is 240×115×57 mm with tolerances along L, B, H as +/–10, +/–5, +/–3 mm respectively.  
The structure with clay brick masonry infills is presented in Figure 2. 

Stone masonry infills. Stone boulders are also using on Nepal mostly on areas where availability of clay 
brick and concrete blocks are lesser and somewhere at certain faces of RC frames which is directly in contact 
with earth so as to retain the soil pressure, and also to minimise water seepage. Relatively using stone masonry is 
costly as it consumes more labours for dressing stones and more mortar due to large voids hence not preferred by 
most house owners. Figure 2 shows sample of stone block units (a) and RC framed building constructed with 
stone masonry infills at Annapurna rural municipality – 3, Kaski, Nepal (b). 
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Solid concrete Hollow concrete Brick Stone 

a

Solid concrete masonry infill Hollow concrete masonry infill 

Brick masonry fill Stone masonry infill 

b
 

Figure 2. RC building construction trends:  
a – masonry unit; b – structures with masonry infills 

 
Description of building model. In recent years, the trends of RC building construction significantly in-

crease in Nepal. Most of the residential buildings have the plinth area in the range of 400–1100 sq. ft. In the con-
text of Pokhara Metropolitan City, buildings are built in the area 820–1800 sq. ft. 

Most of the old residential buildings in Pokhara metropolis has corridor at central areas with at least 2 bay 
spans with higher structural span and corridor with lower structural span ranging around 0.9–2 m. Considering archi-
tectural point of view, nowadays the trend of constructing modern residential buildings eliminate the need of corridor 
and constructed on medium plots has only two structural spans along the frontage. In economical point of view during 
construction phase if the structural span is less in such a condition, there is no need to provide extra row for corridor. 
This trend of construction is emerging to isolate each storey by providing the staircase from outer part of building  
so that the building owner could offer it on rent separately for personnel with single family. Considering this fact,  
the study building is chosen with parameters as indicated in Table 2, the plan of the building is presented in Figure 3. 
Similarly, the structural parameters such as reinforcement detailing of columns and beams used on the buildings are 
shown in Tables 3 and 4 respectively. Reinforcement on floor slab with thickness 125 mm is taken as 10 mm diameter 
TMT bars at spacing of 125 mm center – center. Grade of all concrete is taken as M20. As a masonry unit – solid con-
crete block, hollow concrete block and clay brick are taken here with uniform thickness of 101.6 mm. 



Chaulagain H., Giri R. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(4):366–378 
 

 

370   ANALYTICAL AND NUMERICAL METHODS OF ANALYSIS OF STRUCTURES 

Table 2 
Architectural parameters of selected building 

Properties Parameters
Location of building Pokhara-08, Chautari marga, Nepal
Propose of building Residential

Type of building Class ‘B’
Plinth area of Building 100.81 m2

Plot area 168 m2

Ground coverage 60% < 70% as per NBC
Floor area ratio 2.4 < 4 as per NBC

Building (L)  (B) 9.24 m  10.91 m
Floor height 3.048 m

Number of storey 4
Number of bays Two bays along x-direction and 3 bays along y-direction 

Structural spans on building Along x-direction 2  4.445 m and 2  4.148 m, 1  2.286 m along y-direction
Dimension of RC columns Two types are used 0.3 m  0.3 m and 0.45 m  0.45 m 

Size of beam 0.23 m  0.435 m
Size of plinth/tie-beam 0.23 m  0.350 m

Thickness of slab 0.125 m
Size of infills For uniformity on all types of infills, selected thickness is 0.1016 m. 

Type of masonry infills Solid concrete block basonry infill, clay brick masonry infill and hollow concrete block masonry infill
 
 

Table 3 
Reinforcement detailing of columns 

Floor Column C3 Column C2 

Ground floor level 

First floor level 

Second floor level to roof 

Floor Column C1 Column C0 

Ground floor level 

First floor level 

Second floor level to roof 
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Figure 3. Typical floor plan of study building structure (all dimensions are in mm) 
 

Table 4 
Reinforcement detailing of beams 

Floor beam sections at all storeys 

Tie-beam sections at all grids 
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Non-linear analysis 
In order to assess the seismic capacity of the four building structures defined, several non-linear analyses 

were performed; in a first study it was performed a pushover analysis, with three load distribution, namely uni-
form, triangular and first mode. Finally, these results are compared with an adaptive pushover analysis. To com-
plement this analysis series of dynamic time history analysis with different earthquake records were performed. 
In the following section the assumption considered for the analysis are briefly described. 

Static pushover analysis. The static pushover analysis is used to estimate the horizontal capacity of  
the structures. Due to simplicity in operation and minimum computational efforts, static pushover method has 
become more popular for nonlinear analysis of structures [15; 16]. It can be performed as either force-controlled 
or displacement controlled depending on the nature of the load and the behaviour expected from the structure. 
Force-controlled option is useful when the load is known and the structure is expected to be able to support  
the load [17]. Displacement-controlled procedure is used when specified drifts are sought, where the magnitude 
of the applied load is not known in advance, or when the structure can be expected to lose strength or become 
unstable [18]. Static pushover analysis is sufficiently accurate to assess the displacement capacity of regular low-
rise buildings [19]. Considering this, a pushover analysis with uniform, triangular distributed loading and first 
mode pushover analysis is performed in each direction (X and Y) to evaluate the performance of the structure. 
With the obtained results it is possible to verify the sensitivity of the buildings to lateral load patterns [20]. 

Non-linear modelling. The numerical analyses developed and described in the present paper with diffe- 
rent non-linear modelling strategies were performed using the computer program [21]. The program includes 
models for the representation of the behaviour of spatial frames under static and/or dynamic loading, considering 
both material and geometric non-linearities. Seven types of analyses can be performed, namely: static and dy-
namic time-history, conventional and adaptive pushover, incremental dynamic analysis, modal analysis, and sta- 
tic analysis (possibly non-linear) under quasi-permanent loading. 

In this work elements with lumped plasticity were considered. Different studies have proposed expressions 
to estimate the plastic hinge length (Lp) of RC elements to be adopted in lumped plasticity models. In the ana- 
lyses performed in this paper, half of the larger dimension of the cross-section was considered as the plastic 
hinge length with fibre discretization at the section level. The consideration of non-linear material behaviour  
in the prediction of the RC columns’ response requires accurate modelling of the uniaxial material stress-strain 
cyclic response. 

Concrete model is based on the Madas uniaxial model, which follows the constitutive law [22]. The cyclic 
rules included in the model for the confined and unconfined concrete [23; 24]. The confinement effects provided 
by the transverse reinforcement were considered. The uniaxial model coupled with the isotropic hardening rules 
was adopted for the steel reinforcement representation in these analyses [25; 26]. This steel model does not  
represent the yielding plateau characteristic of the mild steel virgin curve. The model takes into account  
the Bauschinger effect, which is relevant for the representation of the columns’ stiffness degradation under cy-
clic loading. The model adopted in the analyses performed in this study is represented in Figure 4. 

In this study, the computer program is used for modelling the infill panels of the structures [21]. It is based 
on a finite element package capable of predicting the large displacement behavior of frames under static or dy-
namic loading, considering both geometric non-linearities and material inelasticity. For numerical analyses  
of masonry panels, the finite element program of an advanced double-strut nonlinear cyclic model is used.  
The double-strut model is satisfactorily precise and less complicated than the single and triple strut models,  
and can represent more accurately the local effect between infill and frame [27]. The idealization of an infill 
panel is based on the assumption that there is no bond between frame and infill. The brick masonry infill is mo- 
delled as a diagonal strut member whose thickness is the same as that of the masonry and whose length is equal 
to the diagonal length between compression corners of the frame. The effective width of the diagonal strut de-
pends on various factors, including contact length, aspect ratio of the infill, and the relative stiffness of the frame 
and the infill. The infill panel openings are taken into account by reducing the value of strut area (i.e., the com-
pression/tension strut cross-section) by a value that ranged between 30 and 50% [28]. These percentages are 
comparable with the past study [29]. 

Selection/calculation of infill properties. Infill panel elements are represented by four axial struts and two shear 
struts, which could also be named as double strut nonlinear cyclic model to represent the hysteretic response [27]. 
The panel elements can be categorized into three groups. First one relates about the physical characteristics, second one re-
lates on compression & tension of struts curve parameters and third one is represented by shear curve parameters to define 
the shear strength characteristics of infills. Curvature Properties of Masonry infill strut as defined and adopted in [21; 27]. 
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a b 
 

Figure 4. Bare framed buildings BFSB, BFCB, BFHB, BF (a) and masonry infilled building INSB, INCB, INHB (b) 
 
Computation procedure. In this study, the following approach is considered for computation of ductility 

reduction factor, overstrength factor and response reduction factor. 
Ductility factor. The ductility factor measures the inelastic capacity of a structure as a whole. The choices 

of ductility factors depend on the expected response during earthquakes and on the design and detailing criteria. 
It allows the reduction of elastic force to inelastic force. For estimating Rµ, the relationship as indicated in equa-
tions (1)–(3) suggest by past study is used in this study [30]. 

Rµ = 1.0 for T < 0.2 sec.                                                                     (1) 

Rµ = ඥ2µ െ 1 for 0.2 sec < T <0.5 sec.                                                          (2) 

Rµ = µ for T > 0.5 sec.                                                                      (3) 

In the above expression µ is the displacement ductility. It is the maximum inelastic deformation ex- 
perienced by the structure, represented by the ratio of the ultimate displacement Δu to the yield Δy displace- 
ment (4). The presence of ductility allows a structure to undergo large deformation in an elastic-plastic manner 
before it collapses [31]. 

µ = Δu / Δy.                                                                                (4) 

Over strength factor. The structure could take the forces considerably larger than they were designed for. 
This is due to the presence of reserve strength in the structure which is not accounted for in the design. The pre- 
sence of overstrength helps the structure to stand safely during earthquakes with less elastic strength demands. 
The primary sources of the overstrength are sequential yielding of the critical region, material overstrength, partial 
safety factor used for load and material, concrete confinement, strain hardening, non-structural elements [32]. 
Mathematically, it is the ratio of strength at the first yield to the design strength. 

Rs = V1y / Vd.                                                                                                                         (5) 

In (5) V1y is the first yielding strength and Vd is the design strength. 
Redundancy factor. Redundancy factor Rρ of any structure is represented in terms of its capacity to resist 

lateral forces with the emergence of first plastic hinges at the most stressed section and ultimately in the overall 
structure. It is the ratio of global yield force to the first yield force. Generally, the redundancy factor depends  
on the number of the vertical members which are capable of resisting seismic forces. The standard guidelines 
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recognized redundancy as one of the three elements of the R factor and introduced redundancy effects into buil- 
ding design [33]. In their report, the number of vertical lines of moment frames was used to measure the redun-
dancy of a building. 

Response reduction factor 
The evaluation of the R factor is based on the formulation proposed by the standard guideline [33]  

defined as 

R = Rµ ൈ Rs ൈ Rρ.                                                                        (6) 

In (6) Rµ is the ductility factor, Rs is the strength factor, Rρ is the redundancy factor. As presented in Figu- 
re 5, in any structure its ductile capacity and assign overstrength values are evaluated from post-yield behavior 
which is obtained from the nonlinear static analysis. 

 

 
 

Figure 5. Concept of response reduction factor 
 

a b
 

Figure 6. Plot showing bilinear representation idealisation of capacity curve for BF (a) and INHB (b) respectively 
 
Formulation used in this study. In the present study, the relationship as presented in (2) is used by assu- 

ming over strength and redundancy factor as a single unit as described in section 3.3, which matches the struc-
ture designed with Indian Standard Code provision. The Indian Standard Code [34] provides an elastic shear 
force for structure and divides that force by 2R to account for the nonlinearity of the structure. To evaluate all 
these components from the force-displacement relationship, bilinear idealization of the curve is needed. 
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2R = (Elastic strength demand) / (Design strength) = Rµ × Rs = Vu / Vd = (Vu) / (Vy) × (Vy) / (Vd) = Rµ × Rs.    (7) 

Bilinear idealization of the capacity curve. For this purpose, a bilinear curve is fitted to the capacity 
curve. For bilinear idealization of the capacity curve, it is necessary to simplify the capacity curve for an elastic 
perfectly plastic regime. The initial stiffness of the idealized system is determined in such a way so that the areas 
under the actual and idealized force-deformation curves are equal [35]. In the present research, the calculation of 
the displacement ductility demand of the structure is based on the ATC-40 procedure. The bilinear idealization 
of capacity curve is presented in Figure 6. 

Results and discussion 

The results are obtained from the analysis are discussed in this section. In the first section, the obtained re-
sult is presented in terms of comparison of capacity/pushover curves. In second section, natural period of struc-
tures. The third section highlighted status of ductility reduction factor, overstrength factor and finally response 
reduction factor of the structures with different infills. 

Comparison of capacity/pushover curves. From Figure 7, it can be easily seen that infilled framed buil- 
ding has high base shear resisting capacity than bare framed. Among the infills, infill with high stiffness has 
higher resisting capacity but lower will be the ductile nature. Infills with high stiffness could create sudden brit-
tle failure if the columns have insufficient reinforcement and inadequate structural sections, since here the con-
sidered building has adequate structural parameters so not much sudden changes on capacity curves seen. 

Plot for bare framed buildings (BFSB, BFCB and BFHB) shows that it behaves with overall high ductility 
having lower value of base shear than that of infilled building (INSB, INCB and INHB). For bare framed buildings 
the capacity curve seems somehow similar irrespective of different types of gravity loadings for (BFSB, BFCB,  
and BFHB). Also, the roof displacement of infilled building is quite lesser than that of bare framed building. 

 

a b
 

Figure 7. Comparison of capacity curve (a) and inter-storey drift ratio of RC buildings with different infills (b) 
 

 
 

Figure 8. Natural period of structures with different infill structures 
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Natural period of the structure. In the study, the period is calculated from structural flexibility and mass to ob-
tain the ductility reduction factor. The natural period of RC buildings with different infills are presented in Figure 8. 

Comparison of ductility factor, overstrength factor and ductility reduction factor. The results indicate that initial 
tangent stiffness of infilled building is higher (with ascending values for INHB < INCB < INSB) as compared to bare 
framed buildings which are ductile in nature with lower values of stiffness (see details in Table 5 and Figure 9). Ductility 
factor is calculated by considering the maximum displacement at CP performance level on the building. In this sense 
the ductility factor of INSB is 1.24 times greater than BF, INCB is 1.09 times greater than BF and INHB is 1.15 times 
greater than BF. For infilled the ductility factor goes on decreasing from INSB > INCB to > INHB. As defined in previ-
ous section, the ductility factor represents the ability of structure to be displaced beyond the elastic limit and ability to 
dissipate the energy, here we can conclude that the INSB has greater ability of energy dissipation/damping. Whereas  
the BF has higher energy dissipation capability. But the scenario seen more stiffer building too has higher ductility factor 
as compare to less stiff although it is compatible to but it requires further researches to verify. 

As defined in previous, overstrength factor generates from the sequential formation of plastic hinges generated 
by applied loads and is the ratio of yield strength to the designed strength, so here it is found that INHB has better 
overstrength factor greater than other infilled building and BF has better overstrength factor than other bare framed 
with infills gravity loading. BF has lesser value than infilled but higher than bare frames with infills gravity loading. 

The combined effect of effective period and energy dissipation capability results as well as denoting  
the inelastic behaviors of structures generate the ductility reduction. Here the ductility reduction for INSB seen 
greater as compare to other infilled buildings, which indicates that it is stiffer buildings which could have brittle 
nature of failure nature rather than the ductile nature on INHB. In case of bare framed building with infills gravi-
ty loading the ductility reduction factor for BF seen quite greater than other. 

 
Table 5 

Response reduction factor associated with associated parameters with different infills 

Building type μ  
(displacement ductility) 

Ω  
(overstrength factor) 

Rμ  
(ductility reduction factor) 

R  
(response reduction factor) 

INSB 5.75 3.57 3.24 5.78
INCB 4.25 3.90 2.74 5.33
INHB 3.79 4.02 2.57 5.15

BF 2.18 3.86 2.18 4.20
 

 
Figure 9. Comparison of ductility factor, overstrength factor and ductility reduction factor 

Conclusion 
Masonry infills has predominant effect on building performance so, its effect should be considered while 

designing a structure. The extent of structural response depends upon the type of infill masonry used. It mainly 
depends on modulus of elasticity, diagonal compressive strength, tensile strength, shear strength, type of mortar 
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used between infill units, interaction between frame and so on. In this study, the response of most popular infill 
material namely: solid concrete block masonry, hollow concrete block masonry and clay brick masonry in Nepal 
was studied through non-linear analysis. The main conclusions are summarised as: 

– infill wall in RC frame significantly reduces top story displacements (about 50% of bare frame); 
– the solid concrete block masonry (INSB), clay brick masonry (INCB) and hollow concrete block mason-

ry (INHB) increases the lateral stiffness of structures by 11.66, 8.29 and 6.53 times respectively as compared to 
bare frame structure. On the contrary, the base shear value is increase by 2.46, 2.37 and 2.20 times in INSB, 
INCB and INHB respectively compared to bare frame structure; 

– the presence of INSB, INCB and INHB reduces the fundamental time period by 45.24, 45.86 and 
56.14% respectively; 

– stiffer infill masonry unit results the lesser inter-storey drift (INSB, INCB); 
– infill masonry with stiffer masonry unit lowering the overstrength and ductility factor of the structure.  

In the study, INSB and INCB have lower ductility factor compared to INHB (INSB < INCB < INHB). 
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