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Abstract

Relevance. Architects and engineers, designing shells of revolution, use in
their projects, as a rule, spherical shells, paraboloids, hyperboloids, and ellipsoids
of revolution well proved themselves. But near hundreds of other surfaces of revolu-
tion, which can be applied with success in building and in machine-building,
are known. Methods. Optimization problem of design of axisymmetric shell
subjected to given external load is under consideration. As usual, the solution of
this problem consists in the finding of shape of the meridian and in the distribu-
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tion of the shell thickness along the meridian. In the paper, the narrower problem
is considered. That is a selection of the shell shape from several known types,
the middle surfaces of which can be given by parametrical equations. The results
of static strength analyses of the domes of different Gaussian curvature with the
same overall dimensions subjected to the uniformly distributed surface load are
presented. Variational-difference energy method of analysis is used. Results. Com-
parison of results of strength analyses of six selected domes showed that a para-
boloid of revolution and a dome with a middle surface in the form of the surface
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of rotation of the z = —acosh(x/b) curve around the Oz axis have the better indi-
ces of stress-strain state. These domes work almost in the momentless state and it
is very well for thin-walled shell structures. New criterion of optimality can be
called “minimum normal stresses in shells of revolution with the same overall
dimensions, boundary conditions, and external load”.
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Introduction rical, parabolic, half-elliptical, and the lesser part of
elliptical domes), he determined that a dome in the
form of the lesser part of ellipsoid of revolution was

the most advantageous one because it can work as

V.V. Novozhilov [1] was one of the first scien-
tists who began to seek for a shell of revolution with
the most advantageous indices of stress-strain state.

In particular, examining four different domes (sphe-
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momentless shell with comparatively slight rigidity
of the support contour. Membrane strength theory of
shells subjected to dead load was used.

Now, the protection of erections from the terrorist
attacks and, thus, search of effective structural shapes
to mitigate the blast energy is very important problem.
The influence of inside blast pressure was studied for
six shapes of domes of the same weight and thick-
ness in a paper [2]. The study shows that the parabolic
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and bowl shape of domes could withstand the blast
load with the least top displacement.

It is necessary to pay attention to the investiga-
tion [3], carried out with five types of shells that are
spherical, elliptical, parabolic, and hyperbolic shells
of revolution as well as combined shells consisting
of two shell fragments with middle hyperbolic and
parabolic surfaces of revolution. The combined dome,
put together from the lower hyperbolic dome and the
upper paraboloid of revolution, recommended itself
best of other four types of shells.

The determination of optimal geometrical parame-
ters of a reinforced concrete elliptical shell, used as
a covering of the round building with the diameter of
the base equal to 27 m, is a purpose of a paper [4].
In general, well known domes of revolution are studied
in great number of published works. Considerably less
number of researches is devoted to shells of revolu-
tion of untypical forms, for instance, to egg-shaped
shells [5] or to toroidal domes with elliptic cross sec-
tion [6]. In papers [7; 8], stress-strain state of the well-
known shells as well as the shells of negative Gauss-
ian curvature with the opening at the top, that did not
find application else, is examined with the help of finite
difference energy method. Several shells of revolu-
tion of untypical forms are offered for the application
in a manuscript [9] and a monography [10]. Thus,
choosing the geometry of dome covering, it is neces-
sary to take into account architectural, technological,
technical, and economic demands.

Diversity of opinion of famous architects and civil
engineers on the rank of shell structures in modern
architecture is very broad, beginning from enthusiastic
reviews and optimistic expectations in the 50—60" years
of the last century until negation of progressive role
of these structures at the end of the 20™ century [11].
The well-known Portuguese architect Eduardo Elisio
Machado Souto de Moura said: “I don’t think that any
global new forms will appear but new technologies
and materials will be arisen”. R. Buckminster Fuller
answered about his architectural creations in such style:
“Let architects tell about aesthetics... I shall prefer
dome where stresses and strains are going away”.

In a paper, the illustration of the simplified selec-
tion of optimal shell of revolution is carried out for
domes of untypical forms. It should be noted that 24
criteria of optimality are known now [12]. The inves-
tigation of several untypical domes of revolution of
positive and alternating Gaussian curvatures which
did not find else the wide-spread application in archi-
tecture, construction, and machine-building is an aim
of the presented paper too. Simplified selection of
optimal shell of revolution begins with geometrical
modelling of a necessary shell.
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1. Geometrical modelling of shells
with similar overall dimensions

In figure 1, six types of shells of revolution are
shown:

— a paraboloid of revolution (figure 1, a);

— a shell in the form of the fourth order parabo-
loid of revolution with a x* = ¢z meridian (figure 1, b);

— a shell with the middle surface called “Soucou-
poid” which can be traced by a curve z = (b/a’)(a* — x*)**
in the process of its rotation about an axis Oz (figure 1, ¢);

— a shell with a middle surface of rotation of
a curve z = be “? about an axis Oz (figure 1, d);

— a shell in the form of a surface of rotation of
a curve z = —acosh(x/b) (figure 1, e);

— a shell in the form of “fairing of cycloidal
type” (figure 1, f).

Let these shells with middle surfaces of revolu-
tion have three identical overall dimensions R, f, and
h, where R is the radius of a base, f is a shell rise
(figure 2), & is the constant shell thickness.

All surfaces taken for consideration can be given
by parametric equations

x =x(r,p) =rcosP, y = y(r,p) = rsinP, z = z(r), (1)

where the coordinate lines 7 and f (parallels and meri-
dians) are the lines of principal curvatures, 0 < 8 < 2,
0 <r < R. Hence, for paraboloid of revolution (figu-
re 2, a),

z=z(r)=f(1 - IR,

for the fourth order paraboloid of revolution (figure 2, b)
z =z(r) =f(1 —r*/RY),

for a surface of revolution “Soucoupoid” (figure 2, ¢)
z=z(r)=f(1- IR?*?,

for a surface of rotation of a curve z = be”
about an axis Oz (figure 2, d)

z=2z(r)= b/exp{(rz/Rz)ln[b/(b NI}, b>1,
for a surface of rotation of a curve

z = —acosh(v/b) 2)

(ax)2

about an axis Oz (figure 2, e)
z = z(r) = — acosh(r/b),

where b = R/Arcosh (1 + f/a), a is an arbitrary number.
A surface of revolution shown in figure 1, f can
be expressed by parametric equations as [13]

x =x(t,y) =a(t +sin f) cos v,
Yy =y(ty) = a(t +sin 7) siny,
z =2z(f) = c(1 + cos 1), 3)
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where vy is the angle taken from the coordinate axis Ox a given shell rise f, that is why it is necessary to take
into the direction of the Oy axis, 0<y <2m; 0<¢t<T. in formulas (3)
The surface “fairing of cycloidal type” (figure 1, f; c=f2 a=Rn

figure 2, f) must have a given R radius of a base and

Figure 1. Six types of surfaces of revolution:
a — paraboloid of revolution; b — the fourth order paraboloid of revolution; ¢ — a surface of revolution “Soucoupoid”;
d — a surface of rotation of a curve z = bexp(—a’x?) about an axis Oz; e — a surface of rotation of a curve z = —acosh(x/b) about an axis Oz;
f— “fairing of cycloidal type”

Figure 2. Meridians of six surfaces of revolution with the same overall dimensions R =2 m and f =3 m:
a — paraboloid of revolution; b — the fourth order paraboloid of revolution; ¢ — a surface of revolution “Soucoupoid”;
d — a surface of rotation of a curve z = bexp(—a’x*) about an axis Oz; e — a surface of rotation of a curve z = —acosh(x/b) about an axis Oz;
f— “fairing of cycloidal type”
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The determination of stress-strain state of cho-
sen shells of revolution is the next stage of simplified
selection of an optimal shell of revolution.

2. Stress-strain state of shells of revolution
with similar geometrical parameters

Find the parameters of stress-strain state of the
selected shells (figure 2) subjected to a constant uni-
form over the surface load ¢ = 1000 N/m?* directed
along the Oz axis. Let f=3m,R=2m, 0 < B < 2m,
0 <r <R (figure 3). The shells have a thickness
equal to 0.05 m and the radius of the top opening
equal to 0.25 m. Taking into account that the shells
have the top opening, we can determine that the
heights f of the shells will change slightly (figure 3).

If shells of revolution are subjected to axisym-
metric loading, then the surface uniform load Y = 0,
normal (membrane) forces N,, N, shearing forces Q,,
bending moments M,, Mj, strains €, €, «, kg, and
displacements W = u., u, are axisymmetric, i.e. they
do not depend on an angle of longitude 3 and

S:Qﬁ:MrBZO, upzsrgZKrgIO.

In figure 3 the results of calculation of the given
shells of revolution by a finite difference energy method
are presented. Let the shells have the hinged immovable
supports along the round lower edges » = R but the edges
of the upper openings are free. Assume the modulus
of elasticity of the shell material £ = 3.5-10* MPa,
Poisson’s ratio v = 0.17. The special computer program
was written by V.N. Ivanov for a finite difference
energy method of calculation.

A finite difference energy method and a finite
element method (FEM) are based on the Lagrange’s
principle. A principle of minimum of the total strain
energy was assumed by Lagrange as a basis. In FEM,
a shell is divided into the finite elements and dis-
placements are approximated by the shape functions.
In finite difference energy method, a difference lat-
tice is marked on a shell structure and the derivatives
in the total strain energy functional are substituted
for difference relations. The functional of total strain
energy becomes a function of node displacements. Having
minimized this functional, one can derive a system of
algebraic equations and after that the displacements in
the nodes of the difference lattice. For the determina-
tion of strains and internal forces in the lattice nodes,
difference derivatives are used again. In a program
complex of a finite difference energy method worked
out in the RUDN University, a library of curves and
surfaces is used for the determination of geometrical
characteristics of thin-walled shell. It gives the pos-
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sibility to take into account a real geometry of thin-
walled shells in a process of analysis of their stress-
strain state.

A finite difference energy method demands the
obligatory accurate satisfaction of kinematical bounda-
ry conditions only.

The total strain energy expression can be given by

F=U-T,
where U is internal work, 7T is external work,

U :%j [(Ng + Ny, +28e,)dQ+
Q

1
+EJ. J.(MIXI + My, +2HX12)dQ:
Q
T=[ [(Xu+Yv+Zw)dV +
4

+_|. .f(qlu +qu+ qzw)dQ,
Q

where Q is an area of the middle surface of a shell;
dQ = A1A»drdB; A, A is the coefficients of the first
fundamental form of the surface; X, Y, Z are volume
external forces; g1, q2, g- are external surface loads;
u, v, w are displacements in the direction of curvilin-
ear coordinate » and P, and in the direction of the
normal z; V' is a volume of the body.

Inourcase, X =Y=272=0.

The geometrical and physical equations of a shell
theory in the principal curvatures are well known and
can be taken in [1].

Compile a table (see table) of maximum values
of displacements u, = u, u. = w, bending moments
M,, Mg and normal stresses Gas, Oup coming into ex-
istence from these moments, and normal (membrane)
forces N,, Np and normal stresses o,, 6p coming into
existence from these forces.

It is obvious that almost all calculated parameters
of stress-strain state of shells in the form of parabo-
loid of revolution and in the form of surface of rota-
tion of a curve z = —acosh(x/b) about an axis Oz are
nearly equal and they assume minimal values in com-
parison with other shapes of the shells with the same
geometrical parameters. This can be by the final
stage of selection of an optimal shell of revolution.

After the determination of the stress-strain state
of chosen shells of revolution and selection of the shell
with minimal normal stresses in comparison with other
shapes of the shells with the same geometrical para-
meters, it would be useful to get to know about appli-
cation and researches of the selected domes described
in other published works. This can have an influence
on final decision.
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Figure 3. Orthographic representation of displacements and internal force factors of the shells of revolution
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Table

The comparison of maximum results obtained by the calculation with the help of a variational-difference energy method

Figure 3 ur =u, U =w, N, Gr, Ng, o8B, M, OMr, Ms, GMp,
mm mm KN/m KPa KN/m KPa KN-m/m KPa KN-m/m KPa

a 0.019 0.025 -2.37 —47.4 —0.66 -13.2 0.363 0.87 0.096 0.23

b 0.024 0.111 -2.77 -55.4 -3.43 —68.6 8.01 1.92 23.0 55.2

¢ 0.035 0.049 —4.92 -98.4 -3.64 -72.8 —54 -129.6 10.8 25.92

d 0.039 0.058 -2.64 -52.8 -3.90 -78 34.22 82.13 7.54 18.1

e 0.019 0.027 -2.41 —48.2 -0.77 -15.4 0.24 0.58 0.104 0.25

f 0.021 0.033 -2.6 -52 —-1.08 -21.6 20.76 49.8 32 7.68

3. Recommendations for the application of
six types of the selected domes of revolution
in construction and machine-building

In this paper, six types of the shells of revolution
are submitted for consideration and only paraboloids
of revolution obtained a widespread recognition [14].
A surface “fairing of cycloidal type” which found
application in machine-building, in particular, in air-
craft industry [13] is known much less. Z.V. Belya-
eva [15] offers to use catenary line z = —acosh(7/a) as
a generatrix curve of the surface of revolution (1) with
an Oz axis. She noted that it is not possible to connect
a rise and a diameter of the dome in explicit form and
that is why it is necessary to introduce the additional
parameter b into a formula (2). Firstly, Antonio Gaudi
used catenary line in his projects, in particular, for
the design of the form of the church dome [16].

The rest of the surfaces of revolution (figure 1,
b, ¢, d) are known to mathematicians only [17].
For example, geometrical modeling being one of direc-
tion of mathematical modeling is used for solution of
complex problems of design of different objects and
processes by the descriptive geometry methods.
In a work [18], the 4™ order paraboloid of revolution
is employed for these aims (figure 1, b).

4. Results and discussions

In this paper, parametrical equations of the middle
surfaces of shells of revolution containing two con-
stant geometrical parameters f and R are presented.
So, designers can realize six shapes for one object
and can choose the most attractive shape for their
object (figure 1).

The domes on round plan, shown in figure 1, ¢, d,
the upper part of the middle surface of which is the sur-
face of positive Gaussian curvature (K > 0) but the lower
part is the surface of negative Gaussian curvature (K < 0),
are studied in this paper for the first time.

The behavior of the shell in the shape of the fourth
order paraboloid of revolution (figure 3, b) under loading
can be explained by a low stiffness of its middle sur-
face [19]. The upper part of this shell is very similar to
a plate rested upon an elastic support of large rigidity
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and that is why we have significant bending moment
M, quite far from the upper edge of the shell.

The emergence of circular tensile normal forces
N near the lower support in the shell “fairing of cy-
cloidal type” compels to use designed reinforcement
in reinforced concrete shells.

If to change geometrical parameters f, R, 4 in pro-
portion to each other, then the character of the diagrams
shown in figure 3 will not change. Hence, conclusions
and recommendations remain valid.
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Figure 5. The shell in the shape of a surface of rotation of
a curve z = —ach(x/b) about an axis Oz
(the normal stresses o, and the normal forces N;)
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Designers can use the results of static strength
analysis of six types of the shells of revolution in
question, given in this paper, and can choose the
suitable shape for their objects with point of view of
a shell stress-state state. The normal stresses o, and
normal forces NV, for two types of the shells is shown
in figures 4 and 5.

It should be noted that comparison of results of
strength analyses of six domes showed that a parabo-
loid of revolution (figure 1, a) and a dome with a middle
surface in the form of the surface of revolution of the
z = —acosh(x/b) curve about the Oz axis (figure 1, )
have the better indices of the stress-strain state. These
domes work almost in the momentless state and it is
very well for thin-walled shell structures.

For control of the obtained results of calculation,
test analyses of the shells, presented in figure 1, q, e,
were fulfilled with the help of the standard computer
program SCAD that uses a FEM. Practically identical
results were derived. For instance, the orthographic re-
presentation of normal stresses o, and normal forces N
for two types of the shells is shown in figures 4 and 5.

The additional information on other twelve shapes
of domes of revolution is given in the papers [7; 8].
Influence of the geometrical researches of surfaces
of revolution on design of unique structures was stu-
died in a paper [20].

Conclusion

A great quantity of published works was devoted
to geometrical modeling of surfaces of revolution,
to determination of stress-strain state of shells of revo-
lution subjected to static and dynamic loads, to inves-
tigation of buckling problems but in spite of it, in re-
cent years, these shells attract attention of geometri-
cians [15], architects [21], civil engineers [22], and ma-
chine builder [23].

Designers continue to search for optimal forms of
meridians for given load using both the membrane theo-
ry [21] and the moment shell theory of the analysis [24].
They search for a meridian shape that secures the constant
meridional and circular normal forces in the shell [22].
Domes on round, elliptical, oval, and rectangular
plans are studied. In general, numerical methods are
used for the determination of stress-strain state of the
shells. For instance, in a paper [25], a finite element
analysis is applied for the examination of a shell in
the form of paraboloid of revolution.

The famous architect and engineer E. Torroja has
told that the best erection is such one the reliability
of which is ensured, mainly, by its shape but not at
the expense of strength of its material [12]. Agreeing
with this conclusion, the authors go on with the search
of the most optimal shape of a shell of revolution the
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middle surface of which should be given by analytical
formulae, because form finding and optimization pre-
sents contemporary design methods for shell and grid-
shell structures [26]. The simplified method of selec-
tion of optimal dome can be called “minimum normal
stresses in shells of revolution with the same overall
dimensions, boundary conditions, and external load”.

It should be repeated that under results of this new
research the shape of a paraboloid of revolution (figu-
re 1, a) and a dome with a middle surface in the form
of the surface of revolution of the z = —acosh(x/b)
curve about the Oz axis (figure 1, ¢) have the most
optimal shape from six selected domes with the given
geometrical parameters which subjected to axisymmet-
ric uniformly distributed constant surface load acting
in the direction of an axis of rotation of the meridians.
These two types of meridians have the rather like form.
Probably, these meridians are the most rational curves
with rational distribution of curvatures.

The obtained results of calculations show the con-
flicting properties of shells of alternating total curva-
ture (figure 1, ¢, d). Being geometrically invariable struc-
tures, they show features peculiar to geometrically varia-
ble shells [27], i.e. they have low rigidity (a small
flexible stiffness) and heightened part of factors of
bending (figure 3, ¢, d; the curves of M,). A moment-
less shell theory is unacceptable for such shells.

Another approach was used in a work [28] where
a dome is analyzed for different external loads and for
different supports. As a result, optimal type of load-
ing of a considered dome is chosen.
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Jnsa yumuposanus

Krivoshapko S.N., Ivanov V.N. Simplified
selection of optimal shell of revolution (Yripo-
LIEHHBINA BBIOOpP ONTUMAILHON 000JI0YKH Bpa-
meHust) // CtpouTenbHas MEXaHUKa HHKe-
HEPHBIX KOHCTPYKLUH U coopyskeHuid. 2019.
T. 15. Ne 6. C. 438—448. http://dx.doi.org/
10.22363/1815-5235-2019-15-6-438-448

Memoow. PaccmaTprBaeTcsi ONTUMHU3ALMOHHAS 337a4a B IPOEKTHPOBAHUU OCE-
CHMMETPUYHON 00O0IOUKH, TTOJIBEPKEHHOMN NEHCTBHIIO BHENIHEH HAarpy3ku. OOBIMHO
pelenue 3Toi NPoOIeMbl 3aKJII0YACTCSl B HAXOXKICHUH (OPMBI MEPUIMAHA U B
pacrpeieleHuy TONLIMHBL 000JI04YKY BIOIb MepHIUaHa. B crathe ucciengyercs
Oosee y3Kkas 3ajaya, KOTOpas 3aKIFUYaeTcs B BBIOOpEe POpMbI 000IOUKH Bpallle-
HUSI U3 HECKOJIBKUX U3BECTHBIX MOAKIACCOB, CPEIUHHBIE IIOBEPXHOCTU KOTOPBIX
MOTYT OBITh 3aJaHbl TAPAMETPUIECCKUMHU YpaBHEHUAMH. [IpuBoIsITCS pe3ynpTa-
TBHI CTATHYECKHUX PACUETOB KYIIOJOB Pa3IMYHOM raycCOBON KPHBHU3HBI C OJMHA-
KOBBIMH Ta0apUTHBIMU pa3MepaMH Ha OCECHMMETPUYHYIO IOBEPXHOCTHYIO pac-
IIPE/IeNICHHYI0 Harpy3Ky THUIa COOCTBEHHOIO Beca. Mcrnonb3yeTcs BapHaloOHHO-
paszHocTHEBIN MeTon. Pe3ynsmamel. CpaBHUTENBHBIM aHAIN3 Pe3yJbTaTOB pac-
yeTa LIECTH KyIOJIOB II0Ka3all, YTO ¢ TOUKU 3PEHUs HAPsHKEHHO-1e(pOopMUPOBaHHOTO
COCTOSIHUSI JIyYLINE Pe3yNbTaThl y mapadonona BpalleHHus U y 000J0YKH Bpa-
meHus kpuBoil z = —ach(x/b) Bokpyr ocu Oz. Otu 0605104k pabOTaIOT OYTH B
0€3MOMEHTHOM COCTOSIHUH, K Y€MY CTPEMSTCS IIPOSKTHPOBIIMKHA TOHKOCTEHHBIX
0001104euHBIX CTPYKTYp. [Ipe/uIokeHHbIH KPUTEpHil ONTHMAIBFHOCTH IIpeara-
€TCsl Ha3BaTh «MHHHMMAJbHBIE HOPMAJIBHBIC HAIIPSDKEHUS B 000JIOUKAX BPAIICHUS
C OJJMHAKOBBIMHU 6a3OBbIMI/I pasMepamMiu, rpaHUHIHbIMU YCIIOBUSIMU U BHCUIHUMH
Harpy3Kamm.

Knrouesvie cnosa: xynoi; 000104Ka BpaIleHHsT; TapadO0Ion T BPAILCHHS; TTapa-
00O BpallleHHs Y€TBEPTOro MOPS/IKA; LIeMHAasl JIMHUS;, BapHalMOHHO-PA3HOCTHBIN
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