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Abstract

Relevance. Ductility of basalt fiber reinforced concrete is an interesting pro-
perty of basalt fiber reinforced concrete. However, very few experiments on this
property is documented. The aim of the work. This paper provides a summarized
analysis and review of existing publications on the ductility of lightweight basalt
fiber reinforced concrete. Methods. This paper provides a comprehensive study on
ductility of basalt reinforced concrete and lays the framework for proper labora-
tory experiment on the ductility of basalt fiber reinforced concrete. Results. From
the findings of this review paper, ductility of dispersed basalt fiber reinforced con-
crete depends not only in the percentage of basalt fiber in the concrete but in the
length and diameter of the basalt fiber. Increase in the percentage of basalt fiber in
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the concrete yielded an increase in the concrete ductility.
Keywords: reinforcement; ductility of lightweight basalt fiber concrete; ex-

Introduction
General overview

Basalt fibers are made from basalt rocks which
are the most common rock type in the earth’s crust.
The basalt fibers are manufactured from melted rock
which are then extruded through small nozzles to pro-
duce continuous basalt fiber. Basalt fiber are produced
in various forms which are used for concrete reinforce-
ment. The varieties mostly used as concrete reinforce-
ment are: basalt rebar, basalt grids (mesh), chopped
basalt fiber [1-3]. Comparing the physico-chemical
properties of basalt rocks [4], basalt fibers which are
derived from natural rocks are superior to traditional
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thermal insulation/heat-resistant substances, such as
ordinary fiberglass and asbestos. Similarly, basalt fiber
has better operational properties, in terms of environ-
mental friendliness of production [5].

Ductility can be defined as the measure of a ma-
terial's ability to plastically deform without fractur-
ing when placed under a tensile stress that exceeds
its yield strength. Ductility highly depends on a ma-
terial's chemical composition, a material's crystalline
structure, and the temperature at which the ductility
is being measured.

The term ductility in seismic design can be un-
derstood as the ability of a structure to undergo large
amplitude cyclic deformations in elastic range with-
out substantial reduction in strength. Ductile struc-
tures are noteworthy of being able to dissipate signifi-
cant amount of energy during those cyclic deforma-
tions. Therefore, to understand the effectiveness of
basalt fibres under cyclic loading in beam-column
joint, determination of ductility is crucial [6].

Ductility can also be express in formula using
the load-deflection or moment-curvature diagrams.
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For reinforced concrete sections, ductility can be ex-
pressed in the form of curvature ductility pg, [3]:
Pu
Tug = —,
He by
where ¢,, — the curvature at ultimate when the con-
crete strain reaches a specified limiting value; ¢, —
the curvature when the tension reinforcement first
reaches the yield strength.
These are illustrated in figure 1. Curvature can
generally be determined by the expression
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where €; and €, are the strains at top and bottom of
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Figure 1. Definition of ductility [7]

Concrete structures are usually reinforced because
plain concrete has strong limitations to resist tension.
One of the foremost reinforcing materials is steel; it suits
well as reinforcement but has well known pros and
cons. Fiber reinforced polymers (FRP) have over the
past years became an interesting alternative as a rein-
forcement for concrete [8]. Concrete is one of the most
widely used construction material. Concrete has seve-
ral advantages some of which are durability, forma-
bility and desired mechanical strength which gives
concrete an edge over the other conventional build-
ing material but it has few disadvantages such as low
tensile strength and strain capacity [9-12].

Literature review

Ablesimov N.E. and Malova Yu.G., 2016. In the
article [13], the authors summarized research data on
the basalt rock fibres and wool, and composites rein-
forced. In their research, the authors covered some
areas where refined basalt rock materials are used.
These areas mentioned are in the field of chemical,
automotive and economic sciences.

Roy B. and Laskar A.1, 2017. In the authors’
experimental investigation, the yield displacement was
determined based on the theory of reduced stiffness
equivalent elasto-plastic yield [14]. The reduced stif-
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fness was calculated as secant stiffness at 75% of design
load [15]. The post-peak displacement when the load-
carrying capacity underwent 20% reduction was con-
sidered as the ultimate displacement [14]. Figure 2
shows the ductility of all the test basalt fibers. Duc-
tility of basalt fiber reinforced concrete (BFRC) speci-
mens having 1 and 2% fibers were found to be de-
creased by 19 and 38% than the corresponding steel
fiber reinforced concrete (SFRC) specimens. It is note-
worthy that the ultimate displacement of both types
of specimens at respective fiber percentages was found
to be same, but specimens containing basalt fibers
had higher yield displacement compared to speci-
mens containing steel fibers (SF1 & SF2). This in
turn reduced the ductility of BFRC specimens.
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Figure 2. Ductility factor of test specimen

A.E.A. Elshekh et al., 2014. In the research paper
evaluation, the effectiveness of chopped basalt fiber
on the properties of high strength concrete [16],
the authors stated that high amount of steel reinfor-
cement content, durability and ductility issues have
led the development of alternative types for rein-
forcement of high strength concrete (HSC) [17]. Fi-
ber reinforcement (FR) of concrete has been investi-
gated as strengthening materials with different tech-
niques such as external and bar reinforcement. This
is due to high contributions of the FR on the mecha-
nical properties of HSC such as high compressive
strength, toughness and ductility. Their main objec-
tive is to investigate the effect of chopped basalt fi-
ber stands (CBFS) on the fresh and harden properties
of HSC as a new internal strengthening material.
The experimental results showed that the workability
of HSC was affected negatively with increase of CBFS
content. It is also shown that the early and long terms
of compressive strength was not supported using the
CBFS. Whereas, split and flexural tensile strengths
were significantly improve. From the analysis it was
also observed that the brittleness was significantly
decreased and its toughness and ductility were stea-
dily improved. Therefore, it can be concluded that
the CBES is a suitable strengthening material to pro-

361



Galishnikova V.V., Chiadighikaobi P.C., Emiri D.A. Structural Mechanics of Engineering Constructions and Buildings, 2019, 15(5), 360-366

duce ductile HSC. The toughness and ductility of the
chopped basalt fiber stands (CBFS) concrete cubes
were observed through the test in stress-strain rela-
tionship curves for all specimens. Furthermore, due
to improvement of tensile and flexural strength, the
toughness and ductility of HSC was enhanced.

Ludovico et al., 2010. In the authors’ paper [18]
Structural upgrade using basalt fibers for concrete
confinement, the authors used basalt fiber laminates
for confinement of concrete cylinders. The result of their
experiment showed a better performance of basalt
fiber over glass fiber-reinforced polymer in terms of
compressive strength and ductility.

High et al., 2015, Kizilkanat et al., 2015, Lipator
et al., 2015, Hannawi et al., 2016. The authors [19]
in their research studied the use of basalt fibers as
additive in concrete and they went further to observe
that there was a significant increase in flexural strength
and slight improvement in compressive strength. Similar
studies were also carried out by [20-22], where it was
found that the addition of basalt fiber in concrete
improved ductility, elastic modulus, flexural strength,
splitting tensile strength and fracture energy.

Lightweight concrete is assumed not to be con-
sidered as a special material lately because it is now
been included in many codes of practice, such as the
American Concrete Institute (ACI) [23]. In contrast
with regular concrete lightweight concrete has lower
density and increased deformability. The material pro-
perties and mechanics of lightweight concrete have
long been identified and still continue to attract in-
terest as shown in [24-26]. Many structural and bridge
applications have been reported by authors such as
authors of [27; 28]. High strength has also been
achieved by [29; 30].

Abdelhamid et al., 2014. In the authors’ paper [31],
they presented analytical and experimental results on
ductility of reinforced lightweight concrete beams and
columns in the form of moment curvature relation-
ships, and compared the response with that of normal
reinforced concrete members. From the experimental
part of their research, it is limited to flexural tests on
beams made of lightweight concrete. The latter is
obtained with natural lightweight aggregates. Further
in the research, lightweight concrete beams and columns
showed a more ductile behavior than normal con-
crete members and the analytical model reproduced
the response with very good accuracy. The analysis
shows the lightweight ductility was more pronounced
in columns subjected to axial compression forces and
bending.

Buchkin A.V., 2011. The author in the project
work [32] explained that the construction of modern
buildings and structures requires the use of concrete
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with high performance properties, such as compressive
and tensile strength, crack resistance, impact strength,
wear resistance, corrosion resistance, frost resistance,
etc. To achieve these, the transition to new types of
concrete was facilitated by advances in the plastici-
zation of concrete and mortar mixtures, and the emer-
gence of new, more active mineral additives. Modifi-
ers of concrete of the MB type, developed and manu-
factured on an industrial scale, made it possible to
obtain fine-grained concrete of strength classes up to
B90 with low permeability and corrosion resistance.
At the same time, such concretes have insufficient
tensile strength during bending, as well as high tem-
perature and shrinkage deformations due to the in-
creased consumption of cement. The challenge of
improving the operational characteristics of fine-
grained concrete is solved by reinforcing it with vari-
ous types of metallic and non-metallic fibers of mi-
neral or organic origin.

Problem statement

This paper is a comparative review of earlier
publications on the ductility of basalt fiber reinforced
concrete, it analyzes and compares the ductility of
lightweight BFRC and gravel BFRC.

Method and analysis

This research paper is based on the review of re-
search and experimental papers of other authors from
which analysis will be drawn.

Ductility of lightweight
basalt fiber reinforced concrete (BFRC)

High strength of lightweight aggregate concrete
leads to increased brittleness, therefore fiber reinforce-
ment should be considered for improving strength
and ductility.

Analyzing from the reviews detailed in this paper,
lightweight aggregate concrete and the usual gravel
coarse aggregate has the capability to increase it duc-
tility when reinforced with basalt fiber. The volume
of the fiber in the concrete mix affects the ductility
growth. From 0.5% fiber increment in the concrete,
a significant increase in the ductility of the concrete
is seen. Adding lightweight aggregates to the con-
crete mix decreases the ductility of the concrete and
at the same time increases the brittleness of the mate-
rial. The shear and flexural definition of ductility
index p consist of the ratio of the area of the load-
deflection response. Shear ductility should only be
measured on shear deformation [33].

Fiber volume fraction of 1.5% or higher achieves
strain hardening faster than lower fiber volume frac-
tions. By the addition of 10-20% fly ash and silica-
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fume cement substitutes, the ductility and flexural
strength of lightweight fiber-reinforced concrete are
improved. This yields an increment of 50-150% fle-
xural displacement (ductility) at ultimate load [24].
For lightweight aggregate fiber-reinforced concrete,
ductility results from enforced crack resistance due
to the fiber bridging concrete layers [34]. It can be
concluded that adding fibers into the lightweight
concrete mixtures increases the compressive strength
of the concrete by 20%, tensile strength by 80% and
flexural strength by 90% [35]. In multi-story build-
ings, the dead load is decreased by using structural
lightweight concrete [19; 36; 37].

Conclusion

Review of the literatures reveal that till date,
significant research has been conducted regarding
the strength of lightweight concrete incorporating
basalt fibers. Most of these studies are limited to the
application of basalt fibers in enhancing mechanical
properties of concrete under monotonic loading. How-
ever, little attempt has been made so far to investi-
gate the effect of chopped basalt fiber on reinforced
cement concrete (RCC). The enlisted authors above
have been able to conduct some experiments on duc-
tility of basalt fiber reinforced concrete and light-
weight concrete. An attempt that therefore shows
the behavior, ductility and energy dissipation capaci-
ty of basalt fiber reinforced concrete.

The brittle nature of lightweight aggregate con-
crete leads to sudden and precipitated failure. There-
fore, adding fiber reinforcement improves ductility
of lightweight concrete or normal-weight high-strength
concrete. The addition of fibers to lightweight aggre-
gate concrete increases the peak and residual frictional
stresses. Fiber reinforcement may prevent congestion
when additional reinforcement is required to provide
ductility.

Lightweight concrete beams and columns were
seen to show more ductile behavior than normal con-
crete members and the analytical model reproduced
the response with very good accuracy. Lightweight
ductility was more pronounced in columns subjected
to axial compression forces and bending.

From the review, it can be stated that concrete
containing basalt fibers could depict less ductile be-
havior compared to concrete with other types of fi-
bers for all volume fraction of fibers. Basalt fiber rein-
forced concrete has higher energy absorption capaci-
ty and the increased ductility. Basalt fibers easily
disperse within the concrete mix without causing
segregation and that the fibers lose their shape due to
the flexible structure.

TEOPUA NMNACTVYHOCTK

Lightweight concrete offers undeniable isolation
advantages but the reduction in the overall cost gene-
rated by the lower dead loads is often overwhelmed
by the higher production cost, especially with factory
produced expanded clay lightweight aggregates. Light-
weight concrete becomes however more challenging
when using natural volcanic rocks reserves to pro-
duce lightweight aggregates. On the other hand, even
if the reduced stiffness of lightweight concrete re-
quires a tighter deflection control, its higher ultimate
strain confers a major advantage to lightweight con-
crete in the form of improved ductility and better
energy absorption capacity.
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