

STRUCTURAL MECHANICS OF ENGINEERING CONSTRUCTIONS AND BUILDINGS

HTTP://JOURNALS.RUDN.RU/ STRUCTURAL-MECHANICS

Экспериментальные исследования

УДК 6.62:6.691 HAУЧНАЯ СТАТЬЯ

DOI: 10.22363/1815-5235-2018-14-6-523-532

Математические модели многоствольных строительных артиллерийских орудий

О.Л. Фиговский 1* , О.Г. Пенский 2

¹Ассоциация изобретателей Израиля *POBox 73, Migdal HaEmek 10550, Israel*

²Пермский государственный национальный исследовательский университет *Российская Федерация, 614990, Пермь, ул. Букирева, 15*

*Автор, ответственный за переписку

(поступила в редакцию: 23 сентября 2018 г.; доработана: 14 ноября 2018 г.; принята к публикации: 19 ноября 2018 г.)

В статье приведены принципиальные схемы и математические модели многоствольных артиллерийских систем, предназначенных для застреливания и извлечения строительных элементов из грунта, описаны результаты численных экспериментов, выполненных на основе предложенных математических моделей и позволяющих изучать динамику многоствольных строительных артсистем во время выстрела. Даны математические прогнозы по заглублению свай в грунт, максимальному давлению в каналах стволов, величины и скорости отката пушек для различных условий заряжания стволов и их технических характеристик. В качестве верификации предлагаемых математических моделей описаны результаты экспериментов для одноствольных артиллерийских орудий, являющихся частным случаем многоствольных пушек.

Ключевые слова: артиллерийская система, математическая модель, строительство, строительные элементы, свая, извлечение свай

Введение

В настоящее время в РФ проводятся исследования по созданию многоствольных артиллерийских систем, предназначенных для решения задач строительства. Выбор артиллерийских орудий для решения этих задач обусловлен тем, что в качестве орудий можно выбрать пушки, снятые с вооружения и идущие на переплавку в металлолом, а в качестве порохов можно использовать устаревшие пороха, подлежащие утилизации. Эти факторы в числе прочих позволяют получить большую экономическую эффективность при создании и работе мирных пушек.

В современных строительных технологиях в настоящее время все возрастающее значение приобретает математическое моделирование [1]. При-

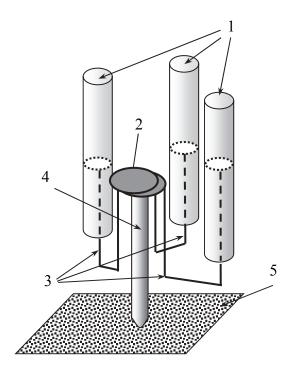
ведем математические модели многоствольных строительных артиллерийских систем.

Математические модели застреливания свай в грунт из многоствольных артиллерийских систем

На рис. 1 приведена принципиальная схема многоствольной артиллерийской установки.

Работает установка следующим образом. В стволы 1 вставляется фигурный поршень 3 с платформой 2, которая опирается на строительный элемент 4, упирающийся на поверхность грунта 5. Во время выстрела платформа 2 давит на сваю 4, в результате чего свая 4 проникает в грунт 5.

Для описания динамики импульсного вдавливания адаптирована термодинамическая теория выстрела для боевых орудий [2].



Puc. 1. Принципиальная схема многоствольной строительной артиллерийской установки [Figure 1. Schematic diagram of a multi-barreled construction artillery installation]

Пусть n — количество стволов в артсистеме, i — порядковый номер ствола, i = 1, n.

Предварительный период выстрела для каждого из стволов описывается известной формулой внутренней баллистики [2]:

$$\Psi_{0,i} = \frac{\frac{1}{\Delta_{i}} - \frac{1}{\delta_{i}}}{\frac{f_{i}}{p_{0,i}} + \alpha_{i} - \frac{1}{\delta_{i}}},$$
(1)

где
$$\Delta_i = \frac{\omega_i}{W_{0,i}}, \quad \omega_i, \quad W_{0,i}, \quad \delta_i, f_i, p_{0,i}, \alpha_i -$$
плот-

ность заряжания, масса заряда, объем каморы, плотность пороха, сила пороха, давление форсирования, коволюм пороховых газов в стволе i.

Пусть L_a — абсолютные скорость и путь сваи (строительного элемента) в грунте, m — масса строительного элемента, Q_i – вес откатных частей пушки с номером $i,\ L_{\scriptscriptstyle p,i}$ – путь отката откатных частей пушки с номером i, M_i – масса откатных частей пушки с порядковым номером і в многоствольной системе, q — вес строительного элемента, t – время, V_i – скорость отката ствола i, p_i и S_i – давление в канале и площадь поперечного сечения i-го ствола соответственно, θ_i – показатель адиабаты пороховых газов без единицы, ψ_i – относительная часть сгоревшего заряда в стволе i, W_{Ψ_i} – свободный объем каморы к моменту сгорания в ней части заряда ψ_i , j – порядковый номер импульсного вдавливания, X_i – суммарное заглубление строительного элемента в грунт в результате *j* вдавливаний, где $X_1 = 0$, $F(v_a, L_a + X_i)$ сила сопротивления грунта движению в нем строительного элемента, $G(V_i, L_{p,i})$ – сила сопротивления откату i-го ствола.

Во время первого периода выстрела давление в стволах описывается уравнениями

$$\begin{split} \frac{dp_{i}}{dt} &= \frac{f_{i}\omega_{i}}{dt} + p_{i} \left[-\omega_{i} \left(\alpha_{i} - \frac{1}{\delta_{i}} \right) \frac{d\Psi_{i}}{dt} + S_{i}V_{i} + S_{i}\upsilon_{a} \right] + \\ &+ \frac{-\theta_{i}F\left(\upsilon_{a}, L_{a} + X_{j} \right)\upsilon_{a} - \theta_{i}m\upsilon_{a} \frac{d\upsilon_{a}}{dt} - \theta_{i}M_{i}gV_{i} - \theta_{i}M_{i}V_{i} \frac{dV_{i}}{dt}}{S_{i}\left(L_{\Psi_{i}} + L_{p,i} + L_{a} \right)} + \\ &- \frac{-\theta_{i}G(V_{i}, L_{p,i})V_{i} + \theta_{i}mg\upsilon_{a} + \theta_{i}\upsilon_{a} \sum_{\substack{j=1 \ j \neq i}}^{n} S_{i}p_{i}}{S_{i}\left(L_{\Psi_{i}} + L_{p,i} + L_{a} \right)}, \end{split}$$

$$(2)$$

где
$$L_{\Psi_i} = \frac{W_{0,i}}{S_i} \left(1 - \frac{\Delta_i}{\delta_i} - \Delta_i \left(\alpha_i - \frac{1}{\delta_i} \right) \Psi_i \right).$$

$$m \frac{dv_a}{dt} = \sum_{i=1}^n S_i p_i + mg - F(v_a, L_a + X_j), \quad (3)$$

$$M_i \frac{dV_i}{dt} = p_i S_i - M_i g - G(V_i, L_{p,i}), \qquad (4)$$

где g – ускорение силы тяжести.

$$\frac{dL_a}{dt} = v_a, (5)$$

$$\frac{dL_{p,i}}{dt} = V_i. (6)$$

Согласно работе [2] для вычисления относительной части сгоревшего трубчатого зерненного пороха можно воспользоваться равенством

$$\frac{d\Psi_i}{dt} = \frac{1}{I_{p,i}} p_i = \Gamma_i p_i, \tag{7}$$

где $\Gamma_i = \frac{1}{I_{p,i}}$ — удельная интенсивность газообра-

зования; $I_{\scriptscriptstyle p,i}$ — импульс пороха в i-м стволе.

Таким образом, полученная система обыкновенных дифференциальных уравнений (2)–(7) описывает первый период выстрела в стволе i.

Начальные условия для решения этой системы уравнений имеют вид

$$\begin{cases} p_i(0) = p_{i,0}, & v_a(0) = 0, & V_i(0) = 0, \\ L_a(0) = 0, & L_{p,i}(0) = 0, & \Psi_i(0) = \Psi_{0,i}. \end{cases}$$
(8)

Так как второй период выстрела соответствует адиабатическому расширению пороховых газов, то уравнения моделирования для давления p_i примут вид

$$p_{i} = p_{i,k} \left(\frac{L_{\Psi_{i}=1,k} + L_{p,i,k} + L_{a,i,k}}{L_{\Psi_{i}=1,i} + L_{p,i} + L_{a}} \right)^{1+\theta_{i}}, \quad (9)$$

где
$$L_{\Psi_i=1,i}=rac{W_{0,i}}{S_i}ig(1-\Delta_ilpha_iig);$$
 $L_{a,i,k}$ — абсолютный

путь поршня в конце первого периода выстрела для i-м ствола, $L_{p,i,k}$ — величина отката i-го ствола в конце первого периода выстрела; $p_{i,k}$ — давление в i-м стволе в конце первого периода выстрела.

Очевидно, что второй период выстрела для ствола i описывается системой уравнений (3)–(6), (9). Начальные условия для этой системы уравнений имеют вид

$$\begin{cases}
\upsilon_{a}(0) = \upsilon_{a,k}, & V_{i}(0) = V_{i,k}, \\
L_{a}(0) = L_{a,k}, & L_{p,i}(0) = L_{p,i,k},
\end{cases} (10)$$

где $\upsilon_{a,k}$ — абсолютная скорость строительного элемента в конце первого периода в стволе $i;\ V_{i,k}$ — скорость отката i-го ствола в конце первого периода выстрела.

Во время выстрела многоствольной строительной артиллерийской системы первый и второй периоды выстрела могут заканчиваться и начинаться в разные моменты времени. Поэтому расчеты с помощью приведенных уравнений внутренней баллистики нужно выполнять согласно правилу: если для орудия i выполняется условие $\Psi_i(t) < 1$, то для описания внутрибаллистических процессов решается задача Коши (2)–(8). Если $\Psi_i(t) = 1$ и $L_{p,i} + L_a \le L_{d,i}$, то решается задача Коши (3)–(6), (9), (10), где $L_{d,i}$ — длина канала ствола i. Если $L_{p,i} + L_a > L_{d,i}$, то давление $L_{p,i} + L_{d,i} + L_{d,i}$

Очевидно, что после выхода поршня из всех каналов стволов движение сваи в грунте описывается задачей Коши:

$$\begin{cases} m\frac{dv_a}{dt} = -F(v_a, L_a + X_j) + mg, \\ \frac{dL_a}{dt} = v_a, \\ v_a(0) = v_{a,d}, \\ L_a(0) = L_{a,d}, \end{cases}$$

где $\upsilon_{a,d}$ — абсолютная скорость строительного элемента в момент выхода поршня из канала ствола, в котором дольше всего двигался поршень; $L_{a,d}$ — абсолютный путь поршня по каналу ствола, в котором дольше всего перемещался поршень в суммарное время первого и второго периодов выстрела.

Величина проникания строительного элемента в грунт в результате одного импульса соответствует значению L_a , при котором выполняется равенство $\upsilon_a=0$ и $X_{j+1}=X_j+L_a$.

В работе [3] предложены математические модели импульсного вдавливания строительных элементов в грунт из многоствольных орудий с одинаковыми техническими характеристиками и условиями заряжания. Отличительной особенностью уравнений (1)—(10) является то, что они описывают импульсное вдавливание, осуществляемое за счет использования многоствольных артсистем с разными техническими характеристиками и условиями заряжания каждого из орудий, входящих артсистему. Технические решения для устранения поворотных моментов для таких орудий приведены, например, в работе [4].

Расчеты будем проводить для глинистого грунта с консистенцией 0,5. Для этого грунта сила сопротивления F движению сваи удовлетворяет соотношению [3]

$$F = S_c \left(a v_a^2 + c \right) + r z L_a(t),$$

где S_c — площадь миделевого сечения; v_a — скорость движения строительного элемента в грунте; r — удельная сила трения боковой поверхности строительного элемента о грунт; z — периметр миделевого сечения; $L_a(t)$ — погружение строительного элемента в грунт; t — время; коэффициенты сопротивления глинистого грунта — $a=3422~{\rm H}^*{\rm c}^2/{\rm M}^4$, $c=2~000~000~\Pi{\rm a}$, $r=35~000~\Pi{\rm a}$.

Численные эксперименты, основанные на предложенных математических моделях, показывают возможность застреливания свай в глинистый грунт с консистенцией 0,5 на глубину более 30 м при технических параметрах сваи, орудий и условий заряжания, приведенных в табл. 1.

Расчетные характеристики каждого из импульсных вдавливаний приведены в табл. 2.

Анализ табл. 2 позволяет выдвинуть гипотезу о возможности применения многоимпульсного вдавливания при решении задач, связанных с необходимостью забивки свай на большую глубину в грунты средней плотности.

Таблица 1
Технические характеристики артсистемы и сваи
[Table 1. Technical characteristics of the artillery system and piles]

Количество стволов [Number of stems]	4
Калибр каждого ствола, м [The caliber of each stem, m]	0,170
Macca откатных частей каждого ствола, кг [Mass of sliding parts of each stem, kg]	3600
Длина каждого ствола, м [The length of each stem, m]	2,345
Macca сваи, кг [Pile weight, kg]	600
Диаметр сваи, м [Diameter of pile, m]	0,168
Допустимая скорость свободного отката, м/с [Admissible free kickback speed, m/s]	6,5
Допустимое максимальное давление в каждом стволе, кПа [Admissible maximum pressure in each stem, kPa]	250

На основании классической термодинамической теории выстрела боевых орудий для вычисления коэффициента полезного действия многоствольных артиллерийских систем предлагается следующая модифицированная формула [3]

КПД_j =
$$\frac{\frac{mv_{\text{ад}}^{2}}{2} + \int_{0}^{L_{\text{ад}}} F(v_{a}, L_{a} + X_{j}) dL_{a}}{\int \sum_{i=1}^{n} \overline{w}_{i}},$$

где $v_{\rm ag}$ — дульная скорость сваи; $L_{\rm ag}$ — абсолютный наибольший дульный путь сваи.

Таблица 2 Расчетные характеристики импульсных вдавливаний [Table 2. Impulse impact calculation characteristics]

Порядковый номер импульсного вдавливания [Pulse indentation sequence number]	Macca заряда, кг [Charge weight, kg]	Импульс пороха, кПа [Gun- powder impulse, kPa]	Объем каморы, м³ [Volume of chamber, m³]	Заглуб- ление, м [Deepen- ing, m]
1	1,000	800	0,0020	8,3
2	0,875		0,0016	13,3
3	0,850		0,0020	17,3
4	0,800		0,0020	20,7
5	0,725		0,0014	23,7
6	0,675		0,0011	26,4
7	0,650		0,0010	28,2
9	0,450		0,0006	30,8

Вычисления, проведенные для первого импульсного вдавливания для одноствольного орудия типа УЗАС-2 [3], показали, что коэффициент полезного действия равен 45 %.

Математические модели извлечения свай из грунта с помощью многоствольных артиллерийских систем

При градостроительстве зачастую возникают задачи ликвидации так называемых долгостроев. Одним из видов работ, выполняемых для этого, является извлечение свай из грунта. Многие из существующих методов, решающих эту задачу, трудно применимы при точечной застройке зданий.

На рис. 2 и 3 описана принципиальная схема многоствольной откатной артиллерийской системы, позволяющей извлекать сваи из грунта за счет энергии отката стволов при одновременном выстреле из стволов [5; 6].

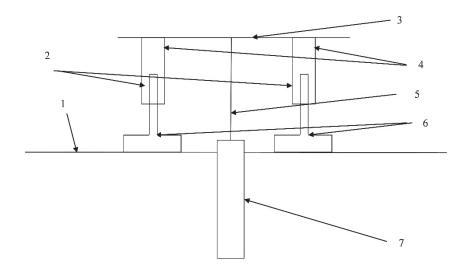


Рис. 2. Принципиальная схема извлечения свай из грунта с помощью многоствольных откатных артиллерийских орудий (вид сбоку) [Figure 2. Schematic diagram of the extraction of piles from the ground with the help of multi-barreled retractable artillery guns (side view)]

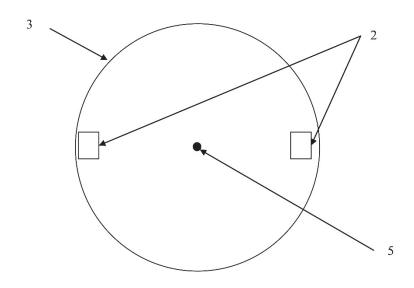


Рис. 3. Принципиальная схема извлечения свай из грунта с помощью многоствольных откатных артиллерийских орудий (вид сверху) [Figure 3. Schematic diagram of the extraction of piles from the ground with the help of multi-barreled retractable artillery guns (top view)]

Способ извлечения строительных элементов из грунта с помощью многоствольных артиллерийских орудий включает следующую последовательность операций:

- штампы 6 вставляют в стволы артиллерийских орудий 2;
- на казенные части артиллерийских орудий 4 устанавливают платформу в виде круга 3 с точками соприкосновения на концах диаметра круга, причем каждая пара откатных частей артиллерий-

ских орудий устанавливается на противоположных концах диаметров платформы 3;

- центр круга платформы 3 прикрепляется к голове извлекаемого строительного элемента 7 с помощью натянутого троса 5;
- производят синхронизированный выстрел из всех орудий;
- платформа 3, поднимаясь вверх за счет отката при выстреле, извлекает из грунта 1 строительный элемент 7.

Опишем математическую модель извлечения свай из грунта откатными частями многоствольных орудий с одинаковыми техническими характеристиками и условиями заряжания каждого из стволов, входящих в артсистему.

Для разработки математической модели будем основываться на термодинамической теории выстрела в рамках допущений этой теории [2; 7] при использовании трубчатого зерненого пороха.

Предварительный период выстрела для каждого из стволов описывается известной формулой

$$\Psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{p_0} + \alpha - \frac{1}{\delta}},\tag{11}$$

где Δ — плотность заряжания; δ — плотность пороха; f — сила пороха; p_0 — давление форсирования штампа; α — коволюм пороховых газов.

Будем предполагать, что перед выстрелом штампы упираются в грунт.

При анализе процесса выстрела во время застреливания штампов в грунт необходимо учитывать не только часть энергии пороховых газов, которая превращается в кинетическую энергию поступательного движения строительного элемента, но и энергию, затрачиваемую на совершение другого вида работ. Это позволит установить полный баланс энергии при выстреле [2; 7].

Пусть n — количество стволов в многоствольной системе.

Определим работу по преодолению силы сопротивления грунта движению в нем штампов, выполненную за счет энергии пороховых газов.

Пусть v_a – абсолютная скорость одного штампа, l_a – абсолютный путь штампа по каналу ствола. В этих обозначениях силу сопротивления грунта F можно записать в виде соотношения

$$F = F(v_a, L_a).$$

Тогда энергию, необходимую для вдавливания штампов, количество которых равно n, на глубину L_a , можно записать в виде

$$Z_1 = n \int_0^{L_a} F(v_a, x) dx,$$

где
$$\frac{dx}{dt} = v_a$$
.

Таким образом, величина Z_1 примет вид

$$Z_1 = n \int_{0}^{L_a} F(v_a, x) dx,$$

где
$$\frac{dx}{dt} = l_a$$
.

Очевидно, что кинетическая энергия, которую будут иметь штампы массой m в момент времени t, удовлетворяет соотношению

$$Z_2 = n \frac{m v_a^2}{2}.$$

Напомним, что стволы артиллерийской системы расположены вертикально и таким образом, что штампы во время выстрела движутся вниз. То есть энергия пороховых газов идет на перемещение стволов и сваи вверх. Совершается работа, которую можно выразить соотношением

$$Z_3 = (nQ + q_c)L_p,$$

где Q — вес откатных частей-стволов каждого артиллерийского орудия, входящего в многоствольную артсистему; q_c — вес извлекаемой сваи; L_p — перемещение откатных частей.

Кроме того, энергия пороховых газов сообщает откатным частям артиллерийского орудия и извлекаемой сваи скорость V. Следовательно, кинетическая энергия откатных частей удовлетворяет равенству

$$Z_4 = \frac{(nM + m_c)V^2}{2},$$

где M — масса откатных частей отдельной пушки; m_c — масса сваи.

Энергия, расходуемая на преодоление силы сопротивления отката, имеет вид

$$Z_5 = \int_0^{L_p} [nG(V, l_p) + F_{tr}] dl_p,$$

где L_p — путь отката; $G(V, l_p)$ — сила сопротивления отката; F_{tr} — сила трения боковой поверхности извлекаемой сваи о грунт.

Так как штампы движутся вертикально вниз, то сила тяжести сама выполняет работу

$$Z_6 = nqL_a$$

которая не входит в сумму работ, совершаемых за счет энергии пороховых газов.

Пусть E — энергия пороховых газов, за счет которой совершаются работы Z_1 , Z_2 , Z_3 , Z_4 , Z_5 . Тогда очевидно соотношение

$$E = \sum_{i=1}^{5} Z_i - Z_6.$$
 (12)

Величину E можно аппроксимировать в следующем виде [2; 3]

$$E = n \left[\frac{f}{\theta} \omega \Psi - \frac{p(W_{\Psi} + sL)}{\theta} \right], \tag{13}$$

где θ — коэффициент адиабаты пороховых газов без единицы; ω — масса заряда в каждом стволе; Ψ — относительная часть сгоревшего заряда в каждом стволе; P — давление в каналах стволов; W_{Ψ} — свободный объем каморы в каждом стволе к моменту сгорания в ней части заряда Ψ ; s — площадь поперечного сечения канала каждого ствола; L — путь штампа по каналу каждого ствола.

Заменяя в соотношении (12) значения Z_i их алгебраическими выражениями и учитывая формулу (13), получим равенство

$$n\left[\frac{f}{\theta}\omega\Psi - \frac{p(W_{\Psi} + sL)}{\theta}\right] =$$

$$= n\int_{0}^{L_{a}} F(v_{a}, x)dx + n\frac{mv_{a}^{2}}{2} + (nQ + q_{c})L_{p} + \frac{(nM + m_{c})V^{2}}{2} - nqL_{a} + \int_{0}^{L_{p}} [nG(V, l_{p}) + F_{tr}]dl_{p}.$$
(14)

Из уравнения (14) получаем, дифференцируя параметр давления в канале ствола p по времени t, соотношение

$$\frac{dp}{dt} = \frac{n\frac{J}{\theta}\omega\frac{d\Psi}{dt} - nv_aF(v_a, L_a) - nmv_a\frac{dv_a}{dt} - nQ\frac{dL_p}{dt} - q_c\frac{dL_p}{dt}}{n\frac{W_{\Psi} + sL}{\theta}} - \frac{(nM + m_c)V\frac{dV}{dt} + V[nG(V, L_p) + F_w] + \frac{np(\frac{dW_{\Psi}}{dt} + sv_a + sV)}{\theta}}{n\frac{W_{\Psi} + sL}{\theta}}.$$
(15)

Очевидны следующие уравнения, описывающие поступательное движение штампа, откатных частей пушки и извлекаемой сваи:

$$m\frac{dv_a}{dt} = ps - F(v_a, L_a) + q, \qquad (16)$$

$$\frac{dL_a}{dt} = v_a,\tag{17}$$

$$(nM + m_c)\frac{dV}{dt} =$$

$$= nps - nG(V, L_p) - F_{tr} - Q - q_c, \quad (18)$$

$$\frac{dL_p}{dt} = V. (19)$$

Согласно закону горения трубчатого зерненого пороха [2] справедливы соотношения:

$$\frac{d\Psi}{dt} = \Gamma p, \ \frac{dL_{\Psi}}{dt} = -a_1 \Gamma p, \tag{20}$$

$$a_1 = \frac{W_0}{s} (\alpha - \frac{1}{\delta}), \ \Gamma = \frac{1}{I_n},$$

где I_p — полный импульс давления пороховых газов за время сгорания пороха.

Начальные условия для решения системы дифференциальных уравнений (15)—(20) запишем в виде

$$\begin{split} p_{/t=0} &= p_0, v_{a/t=0} = 0, \\ V_{/t=0} &= 0, \Psi_{/t=0} = \Psi_0, \\ L_{a/t=0} &= 0, L_{n/t=0} = 0. \end{split}$$

Согласно термодинамической теории выстрела задача Коши [8] описывает первый период выстрела [2].

Уравнения (15)–(19) второго периода выстрела [3] эквиваленты уравнениям первого периода выстрела при условии $\Psi \equiv 1$. Уравнение

$$\frac{d\Psi}{dt} = \tilde{A}p$$

в систему уравнений не войдет. Начальные условия для решения системы обыкновенных дифференциальных уравнений для второго периода выстрела равны конечным значениям искомых функций задачи Коши, описывающей первый период выстрела.

На рис. 4 приведена одноствольная артиллерийская установка (n=1) для застреливания анкеров и свай в грунт и извлечения свай из грунта УЗАС-2 [3; 9], которая создана в Перми. При извлечении свай из грунта возможно использование установки следующим образом. В ствол помещается штамп с большой площадью миделевого сечения основания. К откатным частям пушки жестко прикрепляется голова извлекаемой из грунта сваи. Во время выстрела штамп на небольшую глубину проникает в грунт, а откатные части пушки поднимаются вверх, извлекая сваю из грунта. Проведем расчеты моделирования динамики извлечения сваи из грунта с помощью УЗАС-2.

Рис. 4. Установка УЗАС-2 с застреливаемым в грунт штампом [Figure 4. Installation of UZAS-2 with a stamp being shot into the ground]

Рассмотрим глинистый грунт с консистенцией 0,5.

Сила сопротивления этого грунта (*H*) прониканию штампа определяется соотношением [3]

$$F = F(v_a, L_a) =$$
= 3422 $v_a^2 s_s + 2\ 000\ 000s_s + 35\ 000\pi d_s L_a$,

где s_s , d_s — площадь миделевого сечения и диаметр каждого штампа, м.

Силы $G(V, L_p)$ и F_{tr} удовлетворяет равенствам (H):

$$G(V, L_p) = 0$$
, $F_{tr} = 35\ 000\pi d_c (H_c - L_p)$,

где H_c — первоначальное заглубление извлекаемой сваи.

Для численного решения задачи динамики выстрела примем следующие характеристики орудия, условия заряжания, параметры штампа и извлекаемой сваи [9]: длина канала ствола — 1,8 м, вес заряда — 3 н, калибр ствола — 0,170 м, объем каморы — 0,001026 м³, сила пороха — 950 000 дж/кг, плотность пороха — 1600 кг/м³, показатель адиабаты пороховых газов — 1,2, коволюм пороховых газов — 0,98· 10^{-3} м³/кг, полный импульс давления газов во время сгорания пороха (импульс пороха) — 376 500 Па/с, вес откатных частей орудия — 36 000 н, диаметр головной части штампа — 0,5 м, масса штампа — 800 кг, диаметр извлекаемой сваи — 0,168 м, масса сваи — 240 кг, первоначальное проникание сваи — 4 м.

Для расчета динамики орудия была разработана специальная программа [10]. Для решения задач Коши использовался метод Рунге — Кутты 2-го порядка с шагом интегрировании 10^{-6} с [2; 3].

Вычисления позволили получить следующие динамические показатели к концу выстрела: максимальное давление в канале ствола — 654 МПа, дульное давление пороховых газов — 4,2 МПа, величина проникания штампа в грунт — 1,13 м, величина извлечения сваи из грунта — 3,46 м. Относительная погрешность результатов вычислений от экспериментальных данных не превышает 6 %.

Заключение

Численные эксперименты, основанные на описанных в статье математических моделях, теоретически показали эффективность применения многоствольных артиллерийских систем для застреливания свай в грунт и извлечения свай из грунта. Эксперименты, проведенные на одноствольных системах, являющихся частным случаем многоствольных пушек, доказали практикой теоретические выводы.

© Фиговский О.Л., Пенский О.Г., 2018

This work is licensed under a Creative Commons Attribution 4.0 International License

Список литературы

- 1. Φ иговский O., Γ умаров B. Инновационные системы: достижения и проблемы: монография. Изд-во Lambert, 2018. 657 с.
- 2. *Русяк И.Г., Ушаков В.М.* Внутрикамерные гетерогенные процессы в ствольных системах. Екатеринбург: Изд-во УрО РАН, 2001. 259 с.
- 3. Маланин В.В., Остапенко Е.Н., Пенский О.Г., Черников А.В. Принципиальные схемы и математические модели строительных артиллерийских орудий. Пермь: Изд-во ПермГУ, 2016. 495 с.
- 4. *Маланин В.В., Остапенко Е.Н., Пенский О.Г.* Способ размещения артиллерийских орудий в многоствольной строительной артиллерийской системе. Патент РФ на изобретение RU 2 551 042 C1. 20.05.2015. Бюл. № 14.
- 5. Пенский О.Г., Мазеина Н.Н., Шестаков Е.С. Способ извлечения строительных элементов из грунта с помощью многоствольных артиллерийских орудий. Патент РФ на изобретение RU 2 653 198 C1. Опубл. 07.05.2018. Бюл. № 13.
- 6. *Pensky O., Kuznetsov A.* Mathematical models for extracting pile from the soil with the help of multibarreled artillery systems // Journal of computational and engineering mathematics. 2018. Vol. 5. No. 1. Pp. 14–22.
- 7. Хоменко Ю.П., Ищенко А.Н., Касимов В.З. Математическое моделирование внутрибаллистических процессов в ствольных системах: монография. Новосибирск: Изд-во СО РАН, 1999. 255 с.
- 8. *Тихонов А.Н., Васильева А.Б., Свешников А.Г.* Дифференциальные уравнения. М.: Наука, 1980. 231 с.
- 9. *Бартоломей А.А.*, *Григорьев В.Н.*, *Омельчак И.М.*, *Пенский О.Г.* Основы импульсной технологии устройства фундаментов. Пермь: Изд-во ПГТУ, 2002. 189 с.

10. Пенский О.Г. Программа расчета динамики извлечения свай из грунта с помощью многоствольных артиллерийских систем. Свидетельство о государственной регистрации программы для ЭВМ № 2017660043. Дата выдачи 13.09.2017.

Сведения об авторах

Фиговский Олег Львович — доктор технических наук, профессор, президент Ассоциации изобретателей Израиля (Хайфа, Израиль). Область научных интересов: разработка композиционных материалов, которые основаны на полимерных, силикатных и других матрицах, их передовых технологиях и повышении их эксплуатационных свойств в экстремальных условиях. Контактная информация: e-mail — figovsky@gmail.com

Пенский Олег Геннадьевич — доктор технических наук, профессор, профессор кафедры механики и математического моделирования, Пермский государственный национальный исследовательский университет (Пермь, Россия). eLIBRARY SPIN-код: 2183-1560. Область научных интересов: разработка принципиальных схем и математическое моделирование артиллерийских орудий, предназначенных для решения задач строительства. Контактная информация: e-mail — ogpensky@mail.ru

Для цитирования

Фиговский О.Л., Пенский О.Г. Математические модели многоствольных строительных артиллерийских орудий // Строительная механика инженерных конструкций и сооружений. 2018. Т. 14. № 6. С. 523—532. DOI: 10.22363/1815-5235-2018-14-6-523-532

RESEARCH PAPER

Mathematical models of multi-barreled construction artillery systems

Oleg L. Figovsky^{1*}, Oleg G. Pensky²

¹Israel Research Center POBox 73, Migdal HaEmek 10550, Israel

²Perm State University
15 Bukireva St., Perm, 614990, Russian Federation

*Corresponding author

(received: Septemder 23, 2018; revised: November 14, 2018; accepted: November 19, 2018)

Abstract. The article presents the schematic diagrams and mathematical models of multi-barrel artillery systems designed for shooting and extraction of building elements from the ground, describes the results of numerical experiments carried out on the basis of the proposed mathematical models and allow to study the dynamics of multi-barrel building artillery systems during the shot. Mathematical forecasts on the depth of piles in the soil, the maximum pressure in the channels of the stems, the magnitude and speed of the guns rollback for different conditions of loading the stems and their technical characteristics are described. As a verification of the proposed mathematical models, the results of experiments for single-barrel artillery guns, which are a special case of multi-barrel guns, are described.

Keywords: artillery system, mathematical model, construction, building elements, pile, extraction of piles

References

- 1. Figovskij O., Gumarov V. (2018). *Innovacionnye* sistemy: dostizheniya i problemy [Innovative systems: achievements and challenges]. Lambert Publ., 657. (In Russ.)
- 2. Rusyak I.G., Ushakov V.M. (2001). Vnutrikamernye geterogennye processy v stvol'nyh sistemah [Intracamera heterogeneous processes in receiver systems]. Ekaterinburg, UrO RAN Publ., 259. (In Russ.)
- 3. Malanin V.V., Ostapenko E.N., Penskij O.G., Chernikov A.V. (2016). *Principial'nye skhemy i matematicheskie modeli stroitel'nyh artillerijskih orudij [Schematic diagrams and mathematical models of building artillery guns]*. Perm', PermGU Publ., 495. (In Russ.)
- 4. Malanin V.V., Ostapenko E.N., Penskij O.G. (2015, May 20). Sposob razmeshcheniya artillerijskih orudij v mnogostvol'noj stroitel'noj artillerijskoj sisteme [The method of placement of artillery guns in a multi-barreled building artillery system]. R.F. Patent 2 551 042 C1. Byul. No. 14. (In Russ.)
- 5. Penskij O.G., Mazeina N.N., Shestakov E.S. (2018, May 07). Sposob izvlecheniya stroitel'nyh ehlementov iz grunta s pomoshch'yu mnogostvol'nyh artillerijskih orudij [The method of extraction of building elements from the ground using multi-barreled artillery]. R.F. Patent 2 653 198 C1. Byul. No. 13. (In Russ.)
- 6. Pensky O., Kuznetsov A. (2018). Mathematical models for extracting pile from the soil with the help of multibarreled artillery systems. *Journal of computational and engineering mathematics*, 5(1), 14–22.
- 7. Homenko Yu.P., Ishchenko A.N., Kasimov V.Z. (1999). Matematicheskoe modelirovanie vnutriballisticheskih processov v stvol'nyh sistemah [Mathematical modeling of intraballistic processes in stem systems]. Novosibirsk, SO RAN Publ., 255. (In Russ.)
- 8. Tihonov A.N., Vasil'eva A.B., Sveshnikov A.G. (1980). *Differencial'nye uravneniya [Differential equations]*. Moscow, Nauka Publ., 231. (In Russ.)

- 9. Bartolomej A.A., Grigor'ev V.N., Omel'chak I.M., Penskij O.G. (2002). Osnovy impul'snoj tekhnologii ustrojstva fundamentov [Fundamentals of pulse technology foundations]. Perm', PGTU Publ., 189. (In Russ.)
- 10. Penskij O.G. (2017, September 13). Programma rascheta dinamiki izvlecheniya svaj iz grunta s pomoshch'yu mnogostvol'nyh artillerijskih sistem [The program for calculating the dynamics of the extraction of piles from the ground with the help of multi-barreled artillery systems]. Svidetel'stvo o gosudarstvennoj registracii programmy dlya EHVM No. 2017660043 [Certificate of state registration of computer programs No. 2017660043]. (In Russ.)

About the authors

- **Oleg L. Figovsky** Dr Sci. (Eng.), Professor, President of the Association of Inventors of Israel (Nayfa, Israel). *Research interests:* development of composite materials that are based on polymer, silicate and other matrixes, their advanced technology and increasing their service properties under extreme conditions. *Contacts:* e-mail figovsky@gmail.com
- Oleg G. Pensky Dr Sci. (Eng.), Professor, Professor of the Department of Mechanics and Mathematical Modeling, Perm State University (Perm, Russia). eLIBRARY SPIN-code: 2183-1560. Research interests: development of schematic diagrams and mathematical modeling of artillery guns intended for solving construction problems. Contacts: e-mail ogpensky@mail.ru

For citation

Figovsky O.L., Pensky O.G. (2018). Mathematical models of multi-barreled construction artillery systems. *Structural Mechanics of Engineering Constructions and Buildings*, *14*(6), 523–532. DOI: 10.22363/1815-5235-2018-14-6-523-532 (In Russ.)