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Abstract. Introduction. 1t is instructive to assemble a list of applications from a historical point of view, and to take as
a connecting theme the way in which the introduction of the thin shell as a structural form made an important contribution
to the development of several branches of engineering. The following is a brief list, which is by no means complete and
complicated features and their solutions for analysis of such structures.

Solution technique, methods. The linear theory of thin elastic shells with arbitrary shape of the middle surface is de-
rived on the basis of Kirchhoff’s assumptions that were used in the development of the plate bending theory introduced in
Part I. These assumptions are formulated for the linear theory of thin shells of an arbitrary shape. The problem of the study
of this article is to identify simple way of solution to analyze complicated features of thin shell structure by introducing
modern and new programmable theories and aspects. Especially the intersecting line of connecting thin shell structures.

Results. 1t is possible to successfully model explicitly a panel profile that can be used for optimization studies for use
as possible future test studies. It has also been shown, that if test data exists, a numerical solution can be very accurately
modeled to match the test data by modifying the material properties of the model.

Discussion. The article should encourage structural engineers to solve complicated features in thin shell structures
and design for construction of such structure which are rarely constructing in country like Nepal due to lack of skilled

manpower.

Keywords: spatial structure, thin shells, surfaces, Monge surfaces, methods of analyses

Introduction

From the perspective of structural engineering,
thin shells due to their spatial and complicated curva-
ture, possess a structurally efficient way of carrying
loads acting perpendicular to their surfaces. However,
the nature and geometry of thin shells makes them
complicated to understand or predict their structural
behavior and analyze them [2—4].

It has been widely recognized by structural engi-
neers and designers that shell structures are often
the best option for the weight efficiency or the genuine
use of materials. This is the reason why various types
of shells keep being used despite their high-skilled
workmanship demand. Real life shells such as large-
span coverings of buildings, cooling towers, structural
elements of nuclear power stations or offshore plat-
forms are usually complex in geometry, complicated to
analyze them and very expensive structures. The highest
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level of reliability that is required for these structures
is heavily depended on the accuracy of measurements
and the reliability and confidence of their structural
analysis for structural engineers. The most popular and
often the only tool available for this analysis is
the finite element method [5-9] or global (super)
element method [10—17]. But unfortunately, the re-
sults obtained using some FEM packages or software
are not so reliable. The second way to test software
for numerical analysis is to compare its results against
a known analytical or programmed solution written with
variation differential methods. But analytical solutions
exist or cannot be obtained for complex geometrical
structures. At the beginning of the FEM introduced,
the finite difference method served as an alternative
method for numerical analysis of thin-shell structures.
But it did not gain much popularity because there are
several disadvantages inherent in the conventional
finite difference method: problems with convergence
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of numerical results, pick stresses, intersecting line
of connecting shells and difficulty in approximating
differences of rigidities of such shell structures, dif-
ficulty in incorporation of the boundary conditions at
types of boundaries, and limitations of generating fine
meshes complicated features of such shell structures
should be faced by structural engineers and who must
tackle to get results in accuracy for proper design.
In this paper a non-traditional and very new proce-
dure for the elastic analysis of thin-walled structures
is presented. This procedure is based on a new nu-
merical method — solution of various existing unknown
forces and stresses, which is similar to the finite dif-
ference method, but in simple way to understand their
features by students. Moreover, such types of struc-
tures can be used to resist earthquake forces which is
more important for our country Nepal.

The linear theory of thin elastic shells with arbitrary
shape of the middle surface is derived on the basis of
Kirchhoff’s assumptions that were used in the develop-
ment of the plate bending theory introduced in Part 1.
These assumptions are formulated for the linear the-
ory of thin shells of an arbitrary shape, as follows:

1. Normal to the undeformed middle surface
remain straight and normal to the deformed middle
surface and undergo no extension. This assumption
implies that all the strain components (normal and
shear) in the direction of the normal to the middle
surface vanish.

2. The transverse normal stress is small compared
with other normal stress components and may be ne-
glected. Novozhilov showed that the error introduced
by the Kirchhoff hypotheses in the theory of thin shells
is of the order A4/R in comparison with unity, in which
h and R are the shell thickness and radius of curva-
ture of the middle surface, respectively. It is assumed
that the thickness of the shell is small compared with
other dimensions, for example, the smallest radius of
the middle surface of the shell (see the inequality.
We also assume that the displacements of an arbi-
trary point of a shell are small in comparison to its
thickness. As a consequence of this assumption,
the products of the displacements and their partial de-
rivatives will be neglected as second-order quantities
of smallness. Furthermore, we can refer all calcula-
tions to the original configuration of the shell and ensure
the differential equations will be linear. From here
on we assume that the material of the shells is homo-
geneous, isotropic and that it obeys Hooke’s Law.

Envelopes of thin shell designs is used in differ-
rent areas of mechanical engineering, shipbuilding,
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construction, the aviation and space industry. In this
report work linear theory of envelopes based on hy-
potheses Kirchhoff — Love is used. Thus, restriction
by frameworks of the technical theory can be proved
the general complexity of a problem and enough greater
class of designs for which hypotheses of the classical
theory of envelopes are corrected

Apparently, from a brief review at analysis or cal-
culation of thin shells of complex geometry, the varia-
tion difference method and the finite element method
are the used numerical methods. It is connected with
complexity of the initial equations of the theory of shells
of complex geometry. By consideration of new types
of shells, it is necessary to study, first of all, the geo-
metry of the middle surface to receive necessary geo-
metrical characteristics: coefficients of square-law forms,
the main radiuses of curvature necessary for prepara-
tion of the basic equations of shells. It speaks that in
the special literature, the devoted geometry of the cer-
tain types of surfaces, in the majority of cases analy-
tical expressions of these characteristics are not con-
sidered. In this report, shells in the form of carved
surfaces of Monge are considered [2—4; 15; 16; 18].
It is studied surfaces of Monge (figure 1) [15] and their
geometry is stated, formulas of factors of square-law
forms. The algorithm variation-differential method [4;
9; 19-21] is developed and realized on the structural
analysis program too.

Description and solution at intersecting line of shells;
creation of complexity

The problem of the study of this report is to
identify simple way of solution to analyze compli-
cated features of thin shell structure by introducing
modern and new programmable theories and aspects.
Especially the intersecting line of connecting thin shell
structures and having different rigidities has to be
identified and enormous nodes selecting along those
intersecting lines to be analyzed with various simple
methods like force and displacement or matrix methods
which is known by students and using those they can
analyze even more complex structures in geometry and
types of loadings.

Nepalese skilled manpower who wants construct
structure in healthy, complex in geometry and econo-
mic sense will be involved in field survey, lab work.
Appropriately qualified and well motivated students
for field exposure are identified, will be given orien-
tation and employed for research work in this re-
search topic.
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Figure 1. Thin shell with complexity in intersecting line

Results and Discussion

The conclusions based on this paper are as follows.
It is possible to successfully model explicitly a panel
profile that can be used for optimization studies for
use as possible future test studies. It has also been
shown, that if test data exists, a numerical solution
can be very accurately modeled to match the test data
by modifying the material properties of the model.
This modification will take into account any stiffe-
ning effects, as well as the influence of geometric
parameters that cannot be readily accounted for, such
as panel corrugation. In addition, upon verification
of a modified material stiffness curve which accu-
rately matches recorded test data, the stiffness curves
can be used to model full scale buildings by applying
the characteristics of the stiffness curves to various
portions of the full scale model. The claims made by
other researchers stating that a linear elastic solution
cannot be used to solve problems involving thin shell
arch panels has been confirmed by the research in
this paper. Rather, a nonlinear solution (figure 3) is
the most precise method for obtaining accurate solu-
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tions to the panel in question. For future tests, it is
suggested to evaluate multiple material thickness
panels to establish any existing relationship between
material thickness and panel radius concerning with
finite element method. It is surmised and theorized
that the trend of ultimate failure load decreasing as
radius is decreased will hold true for various material
thickness. The theory stating that the loads will be
lower if the material thickness is decreased, and
the loads going higher if the material thickness is
increased.

Figure 2. Complexity after deformation of shell structure
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Figure 3. Deflection contour created in SAP2000
Figure 4. Shell model created near School of Engineering, Pokhara University
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Other Results

1. Examples of thin-walled designs from crossed
sectors of shells are lead.

2. Conditions of the teamwork, crossed sectors of
shells are received.

3. The algorithm of calculation of crossed sectors
of shells is developed by a method of global elements.

4. The module of a program complex of calcula-
tion thin-walled spatial designs variation-differential
method by a method, realizing calculation of crossed
sectors of shells is developed.

5. Calculations of crossed sectors of shells with
application variation-differential method and a method
of global elements on various kinds of loadings are lead.

6. Are constructed graphics internal efforts and
pressure, the analysis of the is intense-deformed condi-
tion of crossed sectors of shells on the basis of the re-
ceived numerical results is lead and created model
(figure 4).

Conclusion

The research paper is devoted to the specific re-
search for analyses of crossing sectors of shells or
plates, design and construction and also development
and realization on the calculation of a method of global
elements of crossed sectors of shells with complex
geometry.

The various examples of crossing sectors of shells
are briefly shown in dissertations and are considered
various constructive forms, for example crossing plate
designs, plate-shell crossing designs and shell to shell
crossing designs.

For calculation of crossing sectors of shells of
complex geometry the program of the variation dif-
ference method and global element method is used.
The module of the program complex realizing calcu-
lation of crossed sectors of shells will be developed.
The given algorithm is universal enough and allows
calculating various designs on uniform algorithm.
Under the realized program test calculations of tradi-
tional designs which were compared to known deci-
sions are lead. Calculations have shown good con-
currence of results. Calculation of a thin-walled de-
sign of shells is executed. Calculations are lead on
action of a self-weight and wind load. The received
numerical results have no analogues will be in the
literature. Finally it will be worth evaluation for Pokha-
ra and Mid-Western University leading support to
development of country in modernization in structu-
ral engineering.
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Recommendations

The report should encourage structural engineers
to solve complicated features in thin shell structures
and design for construction of such structure which
are rarely constructing in country like Nepal due to
lack of skilled manpower.

© Govind Prasad Lamichhane, 2018

This work is licensed under a Creative Commons
&Y Attribution 4.0 International License
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HAVUYHASA CTATbBA

KoHCTpyKTHBHBIE 0CO0CHHOCTH U UX peleHne
NPHU pacyeTe TOHKUX 000104Y€eK U MJIACTHH

I'osunpa Ilpaccax Jlamuuxane

Mid-Western University
Post Box 21700, Kuhine Pani, Birendranagar, Surkhet, Nepal

(nocmynuna ¢ peoaxyuro: 02 aBrycra 2018 r.; dopabomana: 08 oxtsi6ps 2018 r; npunsma k nybruxayuu: 10 Hosiops 2018 1.)

[ToyuuTenbHO ¢ UCTOPUYIECKONH TOYKH 3pPEHUSI pacCMOTPETh, KAaKMM 00pa3oM BHEIAPEHHE TOHKOI 00O0JIOYKH KaK KOH-
CTPYKTHBHOH (DOPMBI BHECIIO BaKHBINA BKJIAJl B Pa3BUTHE HECKOIBKHUX OTpaciieil MalIMHOCTpOeHH. B craTthe maH KpaTKuit
0030p, HE MPETEHAYIONNHA Ha BCEOOBEMHOCTb, PEILICHNH ISl pacyeTa TaKUX KOHCTPYKIIHH.

Tonkast 000J104Ka — 3TO TPEXMEpPHasi IPOCTPAHCTBEHHAs] KOHCTPYKLUS, COCTOSILAs U3 OJHOM MIIM HECKOJIBKUX M30THY-
TBIX IUTMT WM CJIOKEHHBIX IUIACTHH, TOJIIIMHA KOTOPBIX MaJa 10 CPaBHEHHIO C APYTHMMH HX pazMepaMu. TOHKHE 000JI0UKH
XapaKTepU3yI0Tcs TPEXMEPHBIM HECYLIMM MOBEIEHHEM, KOTOpOe OmpeenseTcs reoMerpueil ux ¢popm. ToHKHE IUIACTHHBI
W3HAYaIIbHO TPEICTABIAIOT CO00I MIOCKNE KOHCTPYKIMHU, OTPaHUYEHHBIE ABYMSI MTapajuIeIbHBIMU IUNIOCKOCTSIMH, Ha3bIBae-
MBIMH TPaHSAMH, ¥ IWIMHAPHYECKON TTOBEPXHOCTHIO, Ha3plBaeMoW pedpoM (wimm rpanuieir). OOpa3yromue InHApHYIe-
CKOW ITOBEPXHOCTH NEPHEHANKYJISPHBI IUIOCKAM TpaHsAM. ['eoMeTpu4ecKy IUIacCTHHBI OrpaHUYEeHbl MO0 NPSMBIMH, JTHO0
HU30THYTBIMU T'paHUIAMM. CraThuecKkue HIu JAUHAMHUYCCKUC HaArpys3ku, NEPEHOCHUMBIC INIACTUHAMH, MPEUMYIICCTBECHHO
NEepHEeHANKYJISIPHBI X TOBEpXHOCTsIM. Hecyiiee neiicTBUe MIacTHHBI B HEKOTOPOIl CTENEHU aHAJOTMYHO JEHCTBUIO OaloK
i Kabeneil; Takum 00pa3oM, B 3aBUCUMOCTH OT M3THOHOM KECTKOCTH KOHCTPYKIUI MIACTHHBI MOTYT OBITh allIPOKCUMHU-
POBaHBI CETKOHN M3 OECKOHEYHOTO YMCIIa OAIOK HMIIM CEThI0 M3 OECKOHEYHOTO KoimdecTBa Kabenel. B pesympraTe aBymep-
HOTO KOHCTPYKTHBHOTO AEHCTBUS IUIACTUH KOHCTPYKIMH MOY9atoTCst 00Jiee JIETKUMHM, YTO 1AeT MHOTOYHCIICHHBIE 9KOHO-
MHUYECKHe NpenMyecTa. [lnactuna, Oy yun n3HadaubHO INIOCKOW, Pa3BUBAET IONEPEUHbIE CHIIBI, H3THOAIONINE U KPYTsI-
M€ MOMEHTBI, YTOOBI MPOTUBOCTOATH MOINEpPeUHbIM Harpy3kam. [Ipu pacuerax WH)KEHEP-CTPOUTENb JOJIKEH YYHUTHIBATb,
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YTO TOHKHE 00O0JIOYKH, CBSI3aHHBIE APYT C APYIOM, MOTYT UMETh Pa3jIMUHYIO JKECTKOCTh. YHCIEHHbIE PEIIeHHs TT0I00HbBIX
CIIOKHBIX 3a]1a4 OCYILECTBIIIOTCS C TIOMOIIBIO CHCTEM aBTOMAaTH3HMPOBAaHHOTO TMpoekTupoBanus, Harpumep SAP2000 (CAII2000),

Staad Pro (Craax I[Ipo) u T.1.

KiroueBble c10Ba: IpOCTPaHCTBEHHAs KOHCTPYKIMS, TOHKHE 000JIOUKH, TTOBEPXHOCTH, ITIOBEPXHOCTH MOHXKa,

METOABI pacucTa

Cnucok 1uTepaTypsl

1. Yepnvix K.@. Jluneitnas teopust o0oyiouek: B 2 4.
Y. 2. JI.: U3n-Bo Jlenunrp. yH-Ta, 1964. 395 c.

2. Krivoshapko S.N., Ivanov V.N. Encyclopedia of
Analytical Surfaces. Switzerland: Springer International
Publishing, 2015. 752 p.

3. Heanos B.H., Pomanosa B.A. KoHCTpyKIIMOHHBIE
(hOpMBI IPOCTPAHCTBEHHBIX KOHCTPYKIMI. Busyanuzanust
nmosepxHocTelt B cucremMax MathCad m AUTOCad: moHo-
rpadus. M.: ACB, 2016. 412 c.

4. Heanoe B.H., Kpusowanko C.H. AHamuTH4yeckue
METOJIbI pacuera 000J0YeK HEKAHOHUYECKOW (HOPMBI: MO-
Horpadwus. M.: PYJIH, 2010. 542 c.

5. Graves Smith T.R., Gierlinski 1.T., Walker B. A com-
bined finite strip. Finite element method for analysing thin
walled structures // Thin Walled Struct. 1995. No. 3.
Pp. 163-180.

6. Cowper G.R., Lindberg G.M., Olson M.D. A shal-
low shell finite element of triangular shape // Int. J. Solids
Struct. 1970. No. 6. Pp. 1133-1156.

7. Clough R.W., Johnson R.L. A finite element ap-
proximation for the analyses of thin shells // Int. J. Solids
Struct. 1968. No. 4. Pp. 43-60.

8. Strickland G.E., Loden W.A. A doubly-curved tri-
angular shell element // Proceedings of the 2nd Confe-
rence on Matrix Methods in Structural Mechanics, Wright-
Patterson AFB, Ohio, 1968.

9. Hsanoe B.H. OCHOBBI MeTOJ]a KOHEUHBIX 3JIEMEH-
TOB U BapHallMOHHO-Pa3HOCTHOTO MeTona: yueOHOe MOCOo-
oue. M.: U3n-Bo PY/IH, 2008. 168 c.

10. Furnike T. Computerized multiple level substructu-
ring analysis // J. Comput. Struct. 1972. No. 2. Pp. 1063-1073.

11. Noor A.K., Kamel H.A., Fulton R.E. Substructu-
ring techniques status and projections // J. Comput. Struct.
1978. Vol. 8. No. 5. Pp. 621-632.

12. Tomoes FO.3. HanpsokeHHO-1e()OPMUPOBAHHOE CO-
CTOSIHME KOMOWHHPOBAHHBIX IUIACTHHYATO-000JIOYEHHBIX
KOHCTPYKIMI: JHC. ... KaH[. TexH. Hayk. Kues, 1988. 155 c.

13. Totoev Y.Z., Gotsulyak E.A. The use of the curvili-
near mesh method in a super-element procedure for analysis
of complex thin-walled structures // Proceedings of the
14 Australian Conference on the Mechanics of Structures and
Materials, Hobart, Tasmania. 1995. Vol. 1. Pp. 124-129.

14. I'oeuno JI. K pacdery conpsokeHHI OTCEKOB 000-
Joyex cioxkHoit reomerpun // COopHUK MaTepuanoB Bcee-
POCCUICKON BBICTABKM HAy4YHO-TEXHUYECKOIO TBOPYECTBA
momnoaexu (HTTM-2004), Mocksa, BBII, 7-10 anpens
2004 r. C. 14-15.

TEOPUA TOHKUX YMPYTX OBONOYEK

15. Hsanoe B.H., ['06uno JI. CBA3b MOBEPXHOCTHOM H
100aNbHOM CHCTEM KOOPIWHAT ISl PE3HBIX MTOBEPXHOCTEH
Momxka // CtpoutesibHasi MeXaHUKa MHYKEHEPHBIX KOHCTPYK-
it u coopyskeruit. 2005. Ne 1. C. 43-48.

16. I'osuno JI. Vccrnenosanue HampsbkeHHO-aehop-
MHPOBAHHOTO COCTOSIHUSI NEPECEKAIOIINXCSl OTCEKOB TOH-
KHX 000JIOUEK METO/IOM TJI00aNbHBIX 3JIEMEHTOB: JHC. ...
KaHJ. TexH. Hayk. M.: U3n-Bo PYJIH, 2007. 143 c.

17. Hsanos B.H. Ilpobnemsl pacuera KOMOWHHPO-
BaHHBIX TOHKOCTEHHBIX MPOCTPAHCTBEHHBIX KOHCTPYKIIHH //
Co6opauK TpymoB Beepoccuiickoil HayIHO-IIPaKTHYECKON
koHpepenin «mkeHepHble cucteMsr — 2008», Mocksa,
7—10 arpenst 2008 r. M.: M3a-Bo PYIH, 2008. C. 195-201.

18. Usanos B.H., Puzéan M. I'eoMeTpusi pe3HBIX I1O-
BepxHocTeil MoOHXa M KOHCTpyHpOBaHHE 000soueK //
CrpoutenbpHasi MEXaHUKA MH)KEHEPHBIX KOHCTPYKIUN U
COOPYKEHHH: MEXBY30BCKUI COOPHUK HAy4HBIX TPYZIOB.
Beim. 11. M.: ACB, 2002. C. 27-36.

19. Heanos B.H. BapualluoHHO-pa3HOCTHBIN METOJT pac-
4yeTa ImiacTHH U oOosouek // Pacuer m mpoexTHpoBaHue
CTpoUTeNbHBIX KOHCTpyKImit. M.: Y/IH, 1982. C. 131-141.

20. Hsanos B.H., Hacp FO.A. VccnenoBanue cxou-
MOCTH MPU pacyere IUIACTHH BapUalMOHHO-PA3HOCTHBIM
MeTooM. [IpoGnieMbl TEOPUH M MPAKTHKH HHKEHEPHBIX
uccnegosanuii. M.: ACB, 2000. C. 53-56.

21. Ivanov V.N., Kushnarenko 1.V. The Variational-
Difference Method for the Analysis of the Shells with
Complex Geometry // International Association for Shell
and Spatial Structures Proceedings of the TASS 2013
Symposium “Beyond the Limits of Man”, Wraclaw, Po-
land, 23-27 September 2013. Full Papers. Paper ID 1410.
Oficyna Wydawnica Politechniki Wroclawskiej, Wroclaw,
2013. 6 p.

006 asmope

Toeuno Ilpaccao Jlamuuxane — KanauaT TEXHUIE-
CKUX Hayk, nekan Mid-Western University (bupenapana-
rap, Henan). O6nacmo nayunvix unmepecos: ToHkue 000-
JIOYKH, OOJIBIICIIPOJICTHBIC MOKPBITHA. KOHmaxkmuas uH-
gopmayua: e-mail — govindkhec@gmail.com

/na yumupoeanusn

Tosuno Ilpaccao Jlamuuxane. KOHCTPYKTHBHBIE OCO-
OCHHOCTH 1 WX pEIIeHHE MPH pacueTe TOHKUX 000II0YeK U
wiactiH // CTpouTenbHass MEXaHHKAa WHXEHEPHBIX KOH-
cTpykmid u coopykenmid. 2018. T. 14. Ne 6. C. 509-515.
DOI: 10.22363/1815-5235-2018-14-6-509-515

515





