
 

СТРОИТЕЛЬНАЯ МЕХАНИКА ИНЖЕНЕРНЫХ КОНСТРУКЦИЙ И СООРУЖЕНИЙ 2018. 14 (3). 192–197 

STRUCTURAL MECHANICS OF ENGINEERING CONSTRUCTIONS AND BUILDINGS HTTP://JOURNALS.RUDN.RU/
STRUCTURAL-MECHANICS 

 

192   ANALYSIS AND DESIGN OF BUILDING STRUCTURES 

 
УДК 692.4 
DOI: 10.22363/1815-5235-2018-14-3-192-197 
 

SECOND ORDER STRUCTURAL THEORY FOR THE STABILITY ANALYSIS OF COLUMNS 
 

V.V. GALISHNIKOVA, T.H. GEBRE, S.A.M. AL-SABRI, О. SAFFIA-DOE 
 

Peoples' Friendship University of Russia (RUDN University) 
6 Mikluho-Maklaya St., Moscow, 117198, Russia 

 
(received: January 04, 2018; accepted: April 05, 2018) 

 
 

Stability analysis in civil engineering is traditionally centred on the stability of individual components of a structure, 
rather than on the stability of the assemblage of structural components. This may be explained by the lack of adequate tools 
for the stability analysis of complete structures in the past. Recently, the necessity of the development of general rational 
methods of stability analysis with a model of the complex structure is widely recognized. These methods should reliably 
predict the overall stability of the structure, the interaction between the components of the structure in providing restraint 
against instability of individual members, and the local stability of each individual member. Development of such theories 
and corresponding algorithms require a thorough investigation. The aim of this paper is to investigate the instability of 
single columns without large deflections by means of the second order structural theory and to study the influence of 
imperfections on the behaviour of such structural elements.  
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Анализ устойчивости в строительстве традиционно ориентирован на устойчивость отдельных компонентов 
конструкции, а не на устойчивость конструктивной системы в целом. Это может быть объяснено отсутствием аде- 
кватных инструментов для анализа устойчивости сложных структур в прошлом. В последнее время широко признана 
необходимость разработки общих рациональных методов анализа устойчивости при помощи моделирования кон- 
структивной системы. Эти методы должны надежно прогнозировать общую устойчивость структуры, взаимодей- 
ствие между ее элементами при обеспечении устойчивости отдельных элементов и устойчивость каждого отдель- 
ного элемента. Разработка таких теорий и соответствующих алгоритмов требует тщательного исследования. Целью 
настоящей работы является исследование потери устойчивости отдельно стоящих колонн в отсутствии больших 
перемещений с помощью конструктивной теории второго порядка, а также изучение влияния несовершенств на 
поведение таких конструктивных элементов.  
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Introduction 
 

The behaviour of structures in compression dif-
fers significantly from their behaviour in tension. 
The load bearing capacity of a structure in tension is 
limited by the strength of its material. The load bea- 

ring capacity of a structure in compression can be li- 
mited either by the strength of its material or by in-
stability.  

An equilibrium configuration of a structure is 
singular if the structure can be displaced to a neigh-
bouring equilibrium configuration without change in 
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the applied loading. The displacement is assumed to 
be infinitesimally small. If the load on a structure that 
is in a singular configuration can be reduced by dis-
placing the structure by a finite increment to a neigh-
bouring equilibrium configuration, this structure is 
called unstable. If no neighbouring equilibrium con-
figuration with reduced load exists, the structure is 
called stable even though the configuration is singular.  

The order of a theory specifies the approximation 
that is made in the formulation of the equilibrium 
equations of a structure. If the equilibrium equations 
are derived for the reference configuration, the formu-
lation is called a first order theory. If the equilibrium 
equations are derived for the instant configuration,  
the formulation is called a second order theory. The go- 
verning equations of both first order and second order 
theory can be either linear or nonlinear, depending on 
additional assumptions made in the formulations. 

First order theories are usually formulated with 
assumptions that make the theory linear. The soluti- 
on of the linear governing equations of first order 
theory for given loads and supports leads to a unique 
displacement vector. This is illustrated in this paper 
for a straight bar subjected to an axial load. Because 
the displacement for given loads and supports is 
unique, a neighbouring equilibrium configuration with 
different displacements but equal loads and supports 
cannot exist. The necessary condition for instability 
of the structure thus cannot be fulfilled. It is not pos-
sible to study the stability of structures with a linear 
first order theory. 

Second order theories can be linear or nonlinear. 
Nonlinear second order theories are sometimes called 
third order theories. If the displacements of a struc-
ture prior to instability are small relative to the di-
mensions of the structure, it is sufficient to analyse 
their stability with a linear second order theory. Such 
cases are treated in this paper. If the displacements 
prior to instability are large, the structure must be 
analysed with a nonlinear second order theory.  

The following three cases can be distinguished in 
second order theory if the governing equations are linear: 

(a) The equations are homogeneous: they have 
nontrivial solutions (solutions that are not null) only 
if the determinant of their coefficient matrix is null. 
It is illustrated herein that this approach leads to the 
Euler buckling load for columns. 

(b) The equations are inhomogeneous and the de-
terminant of their coefficient matrix is not equal to 
null. The structure does not become unstable but un-
dergoes large displacements that limit its serviceabi- 
lity. This is illustrated for columns with imperfections. 

(c) The equations are inhomogeneous and the de- 
terminant of their coefficient matrix is null. The struc- 

ture is not in equilibrium for general loadings, but can 
be in equilibrium for specific loadings. Small geometric 
imperfections or load perturbations trigger instability 
under these specific loadings. 

Second order theory with nonlinear governing 
equations is not treated in this paper. 

 
First Order Theory  

for an Axially Loaded Bar 
 

Figure 1 shows a straight prismatic bar with 
modulus of elasticity E, whose cross-section has area 
A. The bar is subjected to an axial load P at node A. 
It is supported by a roller in the axial direction at A 
and by a pin at B. The displacements and stresses of 
the bar under the axial load are to be determined.  

 
Fig. 1. Reference bar configurations for first order theory 

The equilibrium equation is formulated for the 
bar in its reference configuration: the axis of the bar 
is considered to be a straight line segment of length a 
as in the reference configuration on the left of figu- 
re 1. Let the axial force in the bar be N (tension posi-
tive). The forces applied to node A are in equilibri-
um: N = –P. 

Let the displacement of point x on the axis of  
the column in the direction of the x-axis be u(x).  
The axial strain ε on the cross-section of the column 
is assumed to be constant over the cross-section and 
equal to the derivative of the displacement u with 
respect to x. The nonlinear terms in the strain-
displacement relationship are thus neglected. The axial 
force in the bar is given by: 

                       (1) 

The axial force N is replaced by –P and the resul- 
ting differential equation is solved for the displace- 
ment: u = – (P/AE) x + c. 

The integration constant c follows from the boun- 
dary condition that u = 0 for x = a: 

u = (P/AE) (a – x).                         (2) 

.
du

N AE AE
dx
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The bar fails when the stress reaches the yield 
strength of its material. The example shows that linear 
first order theory does not predict singular configura-
tions of a bar. 

 
Second Order Theory  

for Euler Columns 
 

Figure 2 shows a straight prismatic bar with 
modulus of elasticity E, whose cross-section has an 
area A and a moment of inertia I. The bar is subjec- 
ted to an axial load P at node B. It is supported by  
a pin at B and by a roller in the axial direction at A. 
The displacements and stresses of the bar under 
the axial load are to be determined.  

 
Fig. 2. Reference and instant bar configurations  

for second order theory 

The origin of the Cartesian coordinate system is 
chosen at node A of the bar. The x-axis is directed from 
node A to node B. The y-axis is rotated anti-clock- 
wise through an angle of 90 degrees from the x-axis. 
The z-axis is orthogonal to the x- and y-axes so that  
the three axes form a right-hand system. This coordi-
nate system will also be used in the following sections. 

The equilibrium equation is formulated for the bar 
in its instant configuration. The axis of the bar in  
the instant configuration on the right hand side of 
figure 2 is a curve: the points on the axis of the bar 
have displaced from their reference location by u(x) 
in the direction of the x-axis and by v(x) in the direc-
tion of the y-axis. 

In the general nonlinear theory, the governing 
equations for the displacements u and v are coupled 
because the nonlinear strains are functions of u  
and v. The analysis is simplified by assuming that  
the displacements are small compared to the dimen-
sions of the column and its cross-section. Separate 
governing equations can then be formulated for 
the two displacements. 

Additional assumptions are made in the formula-
tion of the governing equation for the axial direction. 

The area of the cross-section changes under load due 
to the Poisson effect. This change is not taken into 
account. The axial strain is a nonlinear function of 
the derivatives of displacements u and v: 

               
(3)

 

The quadratic terms on the right-hand side of (3) 
are neglected so that the strain is a linear function of 
the displacement. Due to these assumptions, solution (2) 
for the axial displacement u remains valid for second 
order theory. 

Due to the transverse displacement v of the bar, 
the axial load P causes a bending moment M in  
the bar. The bending moment acting on a cross-
section, whose normal points in the direction of  
the positive x-axis, is considered positive if its vec- 
tor points in the positive direction of the z-axis.  

M = – Pv.                                  (4) 

The general relationship between the bending 
moment M and the displacements u and v is highly 
nonlinear. It is approximated by the relationship be-
tween M and v that is formulated in first order beam 
theory: M = EI (d2v/dx2). 

Substituting the moment M into equation (4) yields: 

EI (d2v/dx2) + Pv = 0.                    (5) 

The differential equation (5) is solved with the trigo- 
nometric sine function. The integration constants are 
chosen so that the boundary conditions v = 0 at x = 0 
and x = a are satisfied: 

                      
(6)

 

Substitution of v from (6) into (5) yields a linear 
homogeneous equation: 

           (7) 

Equation (7) is solved by setting either the displace- 
ment or the coefficient of the displacement to null: 

solution 1:  

v0 = 0;                                  (8) 

solution 2: 

                         
(9)

 

It follows from solutions (8) and (9) that the load 
path of the bar contains bifurcations. The trivial solu-
tion v = 0 is valid for all values of the load P.  
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The specific values of Pn in (9) permit additional 
equilibrium configurations in which the lateral dis-
placement v is not null. There is a bifurcation in 
the load path for each value of n. 

Due to geometric imperfections of the column 
and perturbations of its loading, the load path in na-
ture will consist of a principal branch with v = 0 for 
P < P1, and a secondary branch with displacement v 
given by (6) with n = 1. The displacement amplitude 
v0 is indeterminate. The load P1 is called the Euler 
buckling load PE for simply supported columns: 

                           
(10) 

The example shows that the approach of Euler 
leads to a linear homogeneous equation for the late- 
ral displacement v that predicts several singular 
points (9). The point with the smallest absolute value 
of the load controls the buckling of the column.  

 
Fig. 3. Bifurcation of the load path of the bar in figure 2 

Figure 3 shows the load path of the bar in figure 2. 
Point a corresponds to the reference configuration. 

 
Behaviour of  

Geometrically Imperfect Columns 
 

Assume that the axis of bar AB in figure 2 is not 
straight in its reference configuration, but has a geo-
metric imperfection given by the following curve: 

                       
(11)

 

where g0 – specified amplitude of the imperfection. 
The equilibrium equation (4) and the governing 

equation (5) are replaced by: 

M = –P (g + v),                          (12) 

                     (13) 

 

Fig. 4. Column with geometric imperfection 

Substitution of the displacement (6) and the im-
perfection (11) into (13) yields: 

             (14) 

The governing equation remains linear, but is no 
longer homogeneous. Consider the special case n = 1 
and define the sum t(x) of the imperfection g(x) and 
the displacement v(x). Equation (14) leads to: 

  
with

           
(15)

 

 

Fig. 5. Load ratio as a function of  

the displacement ratio  

Solution (15) shows that the load path of the co- 
lumn in figure 4 does not contain a singular point. 
The axis of the column displaces laterally at all load 
levels. The displacement tends towards infinity as 
the load on the column tends towards the Euler buck-
ling load PE. Figure 5 shows the variation of the dis-
placement ratio t/g0 in (15) with the load ratio s.  
The displacement ratio reaches the value 2 for a load 
ratio of 0.50, the value of 5 for a load ratio of 0.80 
and the value 10 for a load ratio of 0.90. 
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Behaviour of Columns  
with Load Perturbation 

 
Assume that the column in figure 6 is subjected 

to a sinusoidal transverse load q in addition to  
the axial load P: 

 
where q0 – amplitude of the perturbation load.  

 
Fig. 6. Column with perturbation load 

The equilibrium equation (4) and the governing 
equation (5) are replaced by: 

                     (16) 

              (17) 

Substitution of the displacement (6) into (17) 
yields the displacement amplitude: 

  
with

  
         (18) 

The amplitude vt of the displacement due to 
the transverse load without axial load is: 

                       (19) 

The amplitude vt is substituted from (19) into (18): 

                            (20) 

Solution (20) shows that the load path of the co- 
lumn in figure 6 does not contain a singular point. 
The axis of the column displaces laterally at all load 
levels. The lateral displacement tends towards infini-
ty as the load on the column tends towards the Euler 
buckling load PE. The ratio of the displacement am-

plitude v0 with axial load to the displacement ampli-
tude vt without the axial load in (20) varies with 
the load ratio s like the ratio of the lateral displace-
ment vt to the amplitude g0 of the geometric imper-
fection in (15). The displacement tends towards in-
finity as the load ratio s goes to 1. 

 
Conclusions 

 
The study of Euler columns shows that their sta-

bility can be studied with two significantly different 
approaches. 

(a) A singular configuration is determined for 
the column without geometric imperfection and 
without load perturbation. The load for which this 
configuration occurs is the buckling load of the co- 
lumn. The column does not displace laterally until 
the buckling load is reached.  

(b) The column is subjected to a geometric im-
perfection or to a perturbation load in addition to  
the axial load. The column displaces laterally at all 
load levels. The displacements cause moments in 
the column. As the load tends towards the buckling 
load determined in (a) above, the lateral displacement 
tends to infinity.  

Most of the building codes permit modified forms 
of both of these approaches to stability theory. In ad- 
dition, the codes account for the initial stresses in steel 
members, yielding of the material of the column be-
fore it buckles and large displacements that limit ser-
viceability. 
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