Расчеты на устойчивость

УСТОЙЧИВОСТЬ РЕБРИСТЫХ ПОЛОГИХ ОБОЛОЧЕК С УЧЕТОМ ГЕОМЕТРИЧЕСКОЙ И ФИЗИЧЕСКОЙ НЕЛИНЕЙНОСТЕЙ

В.М. ЖГУТОВ, канд. техн. наук

ООО «Архитектурно-строительная компания «Китеж», Санкт-Петербург

Известно, что при решении задач устойчивости оболочек в физически линейной постановке анализ наступления пластических деформаций производится с помощью критерия Мизеса, исходя из определенного коэффициента запаса прочности. Известно также, что для получения истинной картины деформирования оболочки наряду с геометрической нелинейностью (проявляющейся при достаточно больших перемещениях) важно учитывать и физическую нелинейность, что связано с серьезными математическими трудностями.

Исследование устойчивости оболочек с учетом физической нелинейности проводилось В.А. Крысько [1], рассматривавшим пологие оболочки без ребер жесткости при шарнирно-подвижном закреплении их контура. При этом использовались уравнения равновесия в смешанной форме (т.е. упрощенная математическая модель технической теории оболочек) и решались задачи устойчивости в геометрически линейной постановке. В работе [1] на примере оболочек, выполненных из металла, показано, что учет физической нелинейности приводит к снижению критической нагрузки (в сравнении с критической нагрузкой, найденной при учете только геометрической нелинейности) на 60-70 %.

В настоящей работе устанавливается, что при совместном учете геометрической и физической нелинейностей процент снижения критической нагрузки еще более возрастает. Будем рассматривать пологие оболочки толщиной h, закрепленные по контуру определенным способом и находящиеся под действием поперечной нагрузки q. Срединную поверхность оболочки принимаем за отсчетную поверхность z = 0. Оси x и y криволинейной ортогональной системы координат направляем по линиям кривизны отсчетной поверхности, а ось z – по нормали к поверхности z = 0 в сторону ее вогнутости. Оболочка может быть подкреплена ребрами, расставленными (со стороны ее вогнутости) перекрестно вдоль координатных линий. Ребра задаем дискретно с помощью функции H(x, y), характеризующей распределение ребер по оболочке и их высоту [2]. Будем учитывать геометрическую и физическую нелинейности, дискретное расположение ребер, их сдвиговую и крутильную жесткости, поперечные сдвиги.

С учетом геометрической нелинейности деформации в отсчетной поверхности оболочки принимают вид

$$\begin{split} \varepsilon_{x} &= \frac{\partial U}{\partial x} - K_{x}W + \frac{1}{2} \left(\frac{\partial W}{\partial x}\right)^{2}, \ \varepsilon_{y} &= \frac{\partial V}{\partial y} - K_{y}W + \frac{1}{2} \left(\frac{\partial W}{\partial y}\right)^{2}, \\ \gamma_{xy} &= \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} + \frac{\partial W}{\partial x} \cdot \frac{\partial W}{\partial y}, \end{split}$$

где U, V и W – перемещения точек координатной поверхности вдоль осей x, y и zсоответственно; $K_x = 1/R_1$ и $K_y = 1/R_2$ – главные кривизны (R_1 , R_2 – главные радиусы кривизны) отсчетной поверхности в направлении осей х и у.

Деформации поперечных сдвигов определяем по формулам

$$\gamma_{xz} = k f(z) \left(\psi_x + \frac{\partial W}{\partial x} \right), \ \gamma_{yz} = k f(z) \left(\psi_y + \frac{\partial W}{\partial y} \right)$$

где ψ_x и ψ_y – углы поворота отрезка нормали к отсчетной поверхности оболочки 65 в плоскостях $x \wedge z$ и $y \wedge z$ соответственно; f(z) - функция, характеризующая закон распределения напряжений τ_{xz} , τ_{yz} вдоль оси z (z изменяется в пределах от -h/2 до h/2 + H); k – константа.

Будем полагать, что f(z) имеет вид [2]:

$$f(z) = -\frac{6}{(h+H)^2} \left(z + \frac{h}{2}\right) \left(z - \frac{h}{2} - H\right).$$

Эта функция при z = -h/2 и z = h/2 + H обращается в нуль и удовлетворяет условиям

$$\frac{1}{h+H}\int_{-h/2}^{h/2+H} f(z)dz = 1; \frac{1}{h+H}\int_{-h/2}^{h/2+H} f^2(z)dz = \frac{1}{k}, \quad \text{где } k = 5/6.$$

Перемещения в слое, отстоящем на расстоянии z от отсчетной поверхности, имеют вид $U^z = U + z\psi_x$, $V^z = V + z\psi_y$, $W^z = W$, откуда для деформаций в слое $z \neq 0 \ \varepsilon_x^z$, ε_y^z и γ_{xy}^z имеем $\varepsilon_x^z = \varepsilon_x + z\chi_1$, $\varepsilon_y^z = \varepsilon_y + z\chi_2$, $\gamma_{xy}^z = \gamma_{xy} + 2z\chi_{12}$, где χ_1 , χ_2 и χ_{12} – функции изменения кривизн и кручения, определяемые с помощью соотношений

$$\chi_1 = \frac{\partial \psi_x}{\partial x}, \ \chi_2 = \frac{\partial \psi_y}{\partial y}, \ 2\chi_{12} = \frac{\partial \psi_x}{\partial y} + \frac{\partial \psi_y}{\partial x}$$

В случае физически линейных задач модуль упругости данного материала E = const, что и обуславливает линейную зависимость между напряжениями и деформациями. Как показывает опыт, зависимости «напряжение σ – деформация ε » для многих материалов оболочек имеют ярко выраженный нелинейный характер, а модуль упругости материала следует считать, вообще говоря, переменной величиной. В этом случае на основании экспериментальной (для данного материала) кривой « σ – ε » находится аппроксимирующая её кривая $\sigma = \sigma(\varepsilon)$, которая при сложном напряженном состоянии заменяется зависимостью $\sigma_i = f(\varepsilon_i)$, где σ_i и ε_i – интенсивности напряжений и деформаций.

Представим эту зависимость в виде [3] $\sigma_i = \varepsilon_i E[1 - \omega(\varepsilon_i)]$, где $\omega(\varepsilon_i) - \phi$ ункция А.А.Ильюшина; E – начальный модуль упругости.

Для металлов функцию $\omega(\varepsilon_i)$ удобно принять в виде

 $\omega(\varepsilon_i) = m(\varepsilon_i)^2$, где *m* – константа (в частности, *m* = 10⁵).

В качестве модуля упругости принимаем величину σ_i / ε_i («секущий» модуль упругости):

$$E_c = E[1 - \omega(\varepsilon_i)]$$

Интенсивность деформации є_і определяем с помощью выражения [4]

$$\varepsilon_{i} = \frac{2}{\sqrt{3}} \sqrt{\left(\varepsilon_{x}^{z}\right)^{2} + \varepsilon_{x}^{z}\varepsilon_{y}^{z} + \left(\varepsilon_{y}^{z}\right)^{2} + \frac{1}{4}\left[\left(\gamma_{xy}^{z}\right)^{2} + \gamma_{xz}^{2} + \gamma_{yz}^{2}\right]}.$$

Функционал полной энергии деформации оболочки запишем в виде $\Im = \Im_v - \Im_n$,

(1)

где функционал

$$\Im_{y} = \frac{E}{2(1-\mu^{2})} \times \int_{0}^{b} \int_{0}^{b} \left[(h+\overline{F})L_{1} + 2\overline{S}L_{2} + \left(\frac{h^{3}}{12} + \overline{J}\right)L_{3} - \frac{2(1-\mu^{2})}{E}qW \right] dxdy \quad (2)$$

соответствует линейно упругой постановке задачи, а функционал 66

$$\Im_{\pi} = \frac{E}{2(1-\mu^2)} \int_{0}^{a} \int_{0}^{b} \left[I_1 L_1 + 2I_2 L_2 + I_3 L_3 \right] dx dy$$
(3)

описывает нелинейную упругость. В соотношениях (2) и (3):

$$L_{1} = \varepsilon_{x}^{2} + 2\mu\varepsilon_{x}\varepsilon_{y} + \varepsilon_{y}^{2} + \mu_{1}\gamma_{xy}^{2} + \mu_{1}k\left(\psi_{x} + \frac{\partial W}{\partial x}\right)^{2} + \mu_{1}k\left(\psi_{y} + \frac{\partial W}{\partial y}\right)^{2};$$

$$L_{2} = \varepsilon_{x}\chi_{1} + \mu\varepsilon_{x}\chi_{2} + \varepsilon_{y}\chi_{2} + \mu\varepsilon_{y}\chi_{1} + 2\mu_{1}\gamma_{xy}\chi_{12};$$

$$L_{3} = \chi_{1}^{2} + 2\mu\chi_{1}\chi_{2} + \chi_{2}^{2} + 4\mu_{1}\chi_{12}^{2}; \quad I_{m} = \int_{-h/2}^{(h/2)+H} \omega(\varepsilon_{i})z^{m-1}dz \quad (m = 1, 2, 3);$$

 \overline{F} , \overline{S} и \overline{J} – жесткостные характеристики ребер (площадь поперечного или продольного сечения ребра, приходящаяся на единицу длины сечения, статический момент и, соответственно, момент инерции этого сечения); $\mu_1 = 0.5(1 - \mu)$, где μ – коэффициент Пуассона; *а* и *b* – размеры оболочки в плане. Перейдем к безразмерным параметрам (более удобным для представления и анализа решения), введенным в [2], в частности:

- безразмерным координатам $\xi = x/a$, $\eta = y/b$;
- безразмерным кривизнам $k_{\xi} = a^2 K_x / h$, $k_{\eta} = b^2 K_y / h$;
- безразмерным перемещениям $\overline{U} = aU/h^2$, $\overline{V} = bV/h^2$, $\overline{W} = W/h$;
- безразмерной нагрузке $\overline{P} = a^4 q / Eh^4$.
- Получим функционал (1) в виде

$$\overline{\Theta} = \overline{\Theta}_{y} - \overline{\Theta}_{n}.$$
⁽⁴⁾

Для отыскания стационарного значения функционала (4) применяем метод Ритца при разложении искомых функций $\overline{U}(\xi, \eta)$, $\overline{V}(\xi, \eta)$, $\overline{W}(\xi, \eta)$, $\overline{\Psi}_{x}(\xi, \eta)$, $\overline{\Psi}_{y}(\xi, \eta)$, $\overline{W}(\xi, \eta)$, $\overline{\Psi}_{y}(\xi, \eta)$, $\overline{W}(\xi, \eta)$, $\overline{W}(\xi,$

$$\overline{U} = \sum_{I=1}^{N} U(I) X I(I) Y I(I); \quad \overline{V} = \sum_{I=1}^{N} V(I) X 2(I) Y 2(I); \quad \overline{W} = \sum_{I=1}^{N} W(I) X 3(I) Y 3(I); \quad (5)$$
$$\overline{\Psi}_{x} = \sum_{I=1}^{N} PS(I) X 4(I) Y 4(I); \quad \overline{\Psi}_{y} = \sum_{I=1}^{N} PN(I) X 5(I) Y 5(I).$$

Здесь U(I), V(I), W(I), PS(I), PN(I) – неизвестные числовые параметры; X1(I) - X5(I) – известные (аппроксимирующие) функции безразмерной координаты ξ , удовлетворяющие заданным краевым условиям при $\xi = 0$, $\xi = 1$; Y1(I) - Y5(I) – известные (аппроксимирующие) функции безразмерной координаты η , отвечающие заданным краевым условиям при $\eta = 0$, $\eta = 1$.

В результате применения метода Ритца к функционалу (4) при разложении (5) получим систему нелинейных алгебраических уравнений, которую кратко запишем в виде [5 – 8]

$$F_{\pi}(X) - cp \cdot \overline{P} = -F_{\mu}(X) + F_{\pi}(X), \qquad (6)$$

где $X = [U(I), V(I), W(I), PS(I), PN(I)]^{T}$ – вектор неизвестных параметров; $cp \cdot \overline{P}$ – нагрузочный член (cp – коэффициент); $F_{\pi}(X), F_{\mu}(X)$ – линейная и нелинейная (геометрически) части системы, соответствующие вместе с нагрузочным членом функционалу $\overline{\Im}_{y}$; $F_{\pi}(X)$ – часть системы, описывающая физическую нелинейность (отвечающая функционалу $\overline{\Im}_{\pi}$). Для решения уравнений (6) применяем метод итераций [5 – 8].

При рассмотрении физически линейной задачи система уравнений (6) будет иметь вид

$$F_{\pi}(X) - cp \cdot \overline{P} = -F_{\mu}(X).$$
⁽⁷⁾

Последовательно увеличивая нагрузку \overline{P} методом итераций находим решение системы (7) при $\overline{P_1}$, $\overline{P_2}$, ..., $\overline{P_k}$:

$$F_{\pi}(X_i) - cp \cdot \overline{P} = -F_{\pi}(X_{i-1}).$$

После этого строим кривую «нагрузка \overline{P} – прогиб \overline{W} » в какой-либо характерной точке оболочки (например, в центре оболочки). Нагрузку, соответствующую максимальному значению \overline{P} на кривой « $\overline{P} - \overline{W}$ », принимаем за критическую нагрузку $\overline{P}_{\rm kp}$. Указанным способом исследуем устойчивость оболочки в физически линейной постановке (при учете геометрической нелинейности).

Исследуя устойчивость оболочки при совместном учете геометрической и физической нелинейностей, методом итераций находим решение нелинейной системы (6)

$$F_{\pi}(X_{i}) - cp \cdot \overline{P} = -F_{\mu}(X_{i-1}) + F_{\pi}(X_{i-1}).$$

За начальное приближение (при каждом значении нагрузки \overline{P}) в этом случае берем решение физически линейной задачи (при том же значении нагрузки).

Поскольку по мере роста напряжений модуль упругости материала уменьшается, деформации растут; стало быть, критические нагрузки, найденные в линейно упругой постановке задачи, будут уменьшаться.

Вычислительный эксперимент выполнен для некоторых вариантов пологих оболочек положительной гауссовой кривизны, представленных в табл.1.

Вариант оболочки	Параметры оболочки			Возможные реальные размеры, м		
	a = b	$R_1 = R_2$	$k_{\xi} = k_{\eta}$	a = b	$R_1 = R_2$	h
Ι	60 <i>h</i>	225h	16	18	67,5	0,3
II	100 <i>h</i>	251 <i>h</i>	40	18	45,3	0,18
III	200 <i>h</i>	503 <i>h</i>	79,5	18	45,3	0,09
IV	600 <i>h</i>	1510h	238	18	45,3	0,03

Таблица 1. Параметры проанализированных оболочек

Для каждого варианта были рассмотрены гладкие оболочки (не имеющие ребер) и ребристые оболочки, подкрепленные регулярным набором из 6-ти либо 18-ти ребер.

Считалось, что ребра расставлены вдоль координатных линий x и y соответственно по 3 ребра либо по 9 ребер в каждом из указанных направлений. Высота ребер принималась 3h. Ширина ребер полагалась равной 2h, 3,3h, 6,6h и 20h соответственно для вариантов оболочек I, II, III и IV.

Кроме того, при проведении расчетов предполагалось, что:

– поперечная нагрузка q равномерно распределена, q = const (q > 0);

- контур оболочки закреплен шарнирно-неподвижно;

-число членов разложения (5) N = 9.

В табл. 2 приведены для рассматриваемых вариантов гладких и ребристых оболочек расчетные значения безразмерных критических нагрузок $\overline{P}_{\rm kp}$, найденные при решении физически линейной задачи (при учете только геометрической нелинейности).

,			тт кр		
	Значения безразмерной критической нагрузки $\overline{P}_{ m kp}$				
Вариант оболочки	при числе ребер				
	0	6 (3 + 3)	18 (9 + 9)		
Ι	190	_	_		
II	1140	2800	3610		
III	5130	13770	20220		
IV	71380	141480	212420		

Таблица 2. Расчетные значения безразмерной критической нагрузки \overline{P}_{uv}

При совместном учете геометрической и физической нелинейностей критические нагрузки $\overline{P}_{\text{кр}}^{\,n}$ весьма значительно уменьшаются (в сравнении с $\overline{P}_{\text{кр}}$).

В табл.3 для различных вариантов гладких оболочек представлены расчетные значения безразмерных критических нагрузок $\overline{P}_{\rm kp}$ и $\overline{P}_{\rm kp}^{\rm n}$, а также снижений (безразмерных) критических нагрузок, вычисляемых по формуле

$$\frac{\overline{P}_{\rm kp}-\overline{P}_{\rm kp}^{\rm m}}{\overline{P}_{\rm kp}}100\%.$$

Таблица 3. Расчетные значения безразмерных критических нагрузок $P_{ m kp}$	и	$P_{\kappa p}^{ \pi}$,
а также снижений критических нагрузок		

	1	17		
Вариант гладкой оболочки	$\overline{P}_{\kappa p}$	$\overline{P}^{\mathrm{n}}_{\mathrm{kp}}$	Снижение критической на- грузки %	
			- F J = - H	
Ι	190	32	83	
II	1140	250	78	
III	5130	1800	65	
IV	71380	40430	43	

Для ребристых оболочек варианта III процент снижения критической нагрузки составляет 67 % при 6-ти ребрах подкрепления и 70 % при 18-ти ребрах. Таким образом, учет физической нелинейности (совместно с учетом геометрической нелинейности) приводит к весьма значительному снижению критической нагрузки. Мы видим, что процент снижения критической нагрузки растет с увеличением толщины оболочки, а также числа ребер, подкрепляющих оболочку. Полученные результаты дают возможность аргументировано задавать коэффициенты запаса прочности при решении задач устойчивости оболочек в физически линейной постановке.

Литература

1. *Крысько В.А.* Нелинейная статика и динамика неоднородных оболочек. – Саратов: Изд-во Сарат. ун-та, 1976. – 216 с.

2. Карпов В.В., Игнатьев О.В., Сальников А.Ю. Нелинейные математические модели деформирования оболочек переменной толщины и алгоритмы их исследования. – М.: ACB; СПб: СПбГАСУ, 2002.– 420 с.

3. Безруков Н.И. Основы теории упругости, пластичности и ползучести. М.: Высшая школа, 1968. – 448 с.

4. Вольмир А.С. Гибкие пластины и оболочки. М.: Гостехиздат, 1956. – 419 с.

5. Жгутов В.М. Исследование прочности и устойчивости ребристых оболочек с помощью вычислительного эксперимента// Проблемы прочности материалов и сооружений на транспорте: Сб. докладов VII Межд. конф. по проблемам прочности материалов и сооружений на транспорте 23-24 апреля 2008 года. – СПб.: Петербургский государственный университет путей сообщения, 2008. – С.110-131.

6. Жгутов В.М. Математические модели и алгоритмы исследования устойчивости пологих ребристых оболочек при учете различных свойств материала // Изв. Орловского гос. техн. ун-та. Сер. «Строительство, транспорт». – 2007. – № 4. – С.20-23.

7. Жгутов В.М. Математическая модель и алгоритм исследования прочности и устойчивости ребристых оболочек с учетом различных свойств материала// «Инженерные системы – 2008»: Всероссийская научно-практическая конференция: Тр. конференции. Москва, 7-11 апреля 2008 года, РУДН. – М.: Изд-во РУДН, 2008. – 380 с. – С. 341-346.

8. Жгутов В.М., Мухин Д.Е., Панин А.Н. Прочность и устойчивость пологих ребристых оболочек с учетом геометрической и физической нелинейности// Сейсмостойкое строительство. Безопасность сооружений. – 2008.– № 2.– С. 41–44.

STEADINESS OF DEPRESSED RIBBED SHELLS TAKING INTO ACCOUNT THE GEOMETRICAL AND PHYSICAL NONLINEARITIES

Zhgoutov V.M.

