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THE FINITE ELEMENTS OF A QUADRILATED SHAPE FOR ANALYSIS 
OF SHELLS TAKING INTO CONSIDERATION A DISPLACEMENT OF A 

BODY WITH RIGID BODY MODES 
Yu.V. KLOCHKOV,  
A.P. NIKOLAEV,  
A.P. KISELYEV. 
Volgograd State Agricultural Academy, Russia 

On the basis of a curvilinear quadrilated finite element the new mode of approximation of 
fields of displacements is realized, which essence consists that at a stage of approximation of inte-
rior magnitudes through nodal unknown of a finite element accept not separate components of a 
vector of displacement and their derivative, and immediately vector of displacement of nodal 
points of a finite element and its derivative. 

On an example of account of an equalizer loaded by interior pressure with presence of con-
structional displacement as rigid body is shown. That use of the developed algorithm solves a 
well-known problem FEM – account of displacement of finite element as rigid body. 

Key words: finite element, approximation, vector displacement, displacement as rigid body. 

Introduction 
The method of approximation of displacement fields for the method of the finite 

elements is proposed, allowing to take automatically into account a displacement of the 
finite element with rigid body modes. Its essence consists of a choice of a column of  
nodal unknown quantities, containing the self vectors of the nodal points and their de-
rivatives. Through the chooses column of nodal unknown quantities is approximated 
the displacement vector of the internal point of the finite element, that allows to express 
components of the displacement vector and its derivatives through all displacements 
and derivatives of the displacement of the nodal points of the finite element. 

Numeral examples are shown. This approach, natural to approximation of the dis-
placement, allows solving a problem of the displacement of the finite element with ri-
gid body modes. 

1. Basic geometrical relations of any nonshallow shell. The middle surface of any 
nonshallow shell in the Cartesian system of coordinates can be described by a position 
vector 
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where  k
k ix


, are coordinates and unit vectors of the Cartesian system of coordinates, 

a  are the curvilinear coordinates of the shell middle surface. Here and below, the Lat-
in indexes accept the meanings 1, 2, 3 and the Greek ones meaning 1, 2. 

The tangent vectors of the local basis of the point of the middle surface in the 
initial condition can be received by the differential (1) on curvilinear coordinates   [1] 

k
k
a ixRa

 )(,
0
,

0 
  .                                                              (2) 

The unit normal vector of the local basis is determined by the vector product     
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The relations (2) and (3) can be expressed in the matrix form 
    ima


0 ,                                           (4) 

where         321
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a  of the metric tensor  and its determinant 0a , the covariant b  and mixed 
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
b  components of the tensor of curvature, the covariant vectors of the basis aa0  and the 

Christoffel symbols of the first Г  and second 
Г  ranks are determined, 
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The displacement vector of any point of the middle surface can be submitted in 
the initial basis by the expression         00 aWaWW 

 
 .                                          (6) 

Using the relation of the derivatives of the vectors of the basis [4] one can write 
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It is possible to determine the derivatives of the displacement vector on the 

curvilinear coordinates with the help of expressions 
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The location of any point of the shell's middle surface in the deformed condition 
will be determined by the radius-vector 
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 0 .                                                              (9) 
By the differentiation (9) the tangent vectors of the local basis in the deformed 

condition can be received as 
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The unit normal vector of the deformed middle surface can be determined by the 
vector product 
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2. Deformations and strains in a shell. The location of any shell point, being 
distant from the middle surface at the distance of   in the initial and deformed 
conditions is described by the suitable position vectors 
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Included in the (12) the displacement vector of the point, being distant from 

the middle surface at the distance of , using the hypothesis of the straight unit 
vectors is determined by the relation 
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For the determination of deformations of an any shell's layer it is possible 

to take advantage of the relations of the mechanics of a solid medium [4] 
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where 0,  gg  are the components of the metric tensors of the initial and de-
formed conditions, which are determined be the differentiation (12) on the glob-
al coordinates                      gggggg 
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Included in (14) the tangent vectors of the basis are determined by the 

differentiation (12) on the global coordinates 
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As a result of the consecutive substitution (16) and (15) in (14) it is possible 

to describe the deformations 
 of an any shell's layer by the deformations   

and the curatives 
  of the shell's middle surface in the final form 
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When obtaining (18) are omitted the items )( 0
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 as quantities of 
the trifle's second rank. Taking into account the relations (16), (8) and (7), the 
expressions (18) can be represented as 
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When obtaining (19) was used the known relation 
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The describing of the components of the strain tensor   through the compo-
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nents of the deformation tensor of an any shell's layer 
  can be represented as  
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E is the module of elasticity of the shell's material; v is the factor of Poisson 
(Poisson's factor). 

3. The finite elements and the interpolation of the displacement. 
As the finite element is accepted the fragment of an any shell in the form 

of the curvilinear quadrangle on its middle surface with nodes i, j, k, I, which 

is reflect on the square with the local system of coordinates —1     1. The 

connection between the global coordinates   and the local coordinates   is 
represented by the bilinear dependence 
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where   is the global coordinate of the internal point of the finite element; 
li     and  are the global coordinates of the finite element's nodes. 

By the differentiation of the relations (22) the derivatives of the global 
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3.1. The finite element with the matrix of rigidity by the size 36x36. The 
vectors of the nodal unknowns containing the displacement vectors of the finite 
element's nodes and their first derivatives in the local and global systems of 
coordinates look like 
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The displacement vector of the internal point of the finite element is ap-
proximated through the nodal vectors (23) by the expression 
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  is the coordinate 1  от 2 ; [L] is the matrix of the transfer of the nodal displace-
ment vector from the local system of coordinates into the global one. By the differentia-
tion (24), the first and second derivatives of the displacement vector of the internal point 
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of the finite element's in the global system of coordinates can be received 
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The column of the nodal unknowns of the vector in the global system of co-
ordinates taking into account (6) and (8) can be represented by the matrix relation. 
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[A] is the matrix, which elements are the vectors of the local basis of the nodal points of 
the element .,,,,,,, 00
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As the result of the substitution (26) into (24) the last relation will accept the 
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It is possible to choose the matrix  G  so, that the equality will be carried out 
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When using (4) and expressing the vectors of the local bases of the nodal points 
through the vectors of the basis of the internal point of the finite element, the matrix 
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Taking into account (28), (29) and (6), the relation (27) can be given the form  
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From that one are received the expressions of the approximation for the com-
ponent of the displacement vector of the internal point of the finite element 
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The derivatives (25), taking into account (24), (26), (28) and (29), can be 

represented in the form 
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Taking into account the relations (8), it is possible to receive from (32) the expres-
sions of the components of the derivatives of the displacement vector of the point of the 
finite element through all nodal quantities 
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As it is obvious from (31) and (33), the proposed method of the interpolation dif-

fer by that, that every component of the displacement vector of the internal point and its 
derivatives depends on the nodal meanings of all the three components, whereas at the 
traditional approach [2, 3] a separate component is expressed only through the nodal 
meanings of this component and its derivatives. 

For the formation of the stiffness matrix of the finite element are introduced the ma-
trix designations 

            .   ;22    ;2 122211
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and on the basis of (17), (21) and (19), the matrix relations are formed 
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From the equality of works of the external and internal forces one may write 
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1
1 is the vector of the external forces, taking into account (34) 
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can be received . Here          
v

TT dVBГcГBk is the stiffness matrix of the finite 

element;            PPaPaPaPaf TTT
3

20
22

10
122

20
12

10
111 )()(   ds   

is the vector of loads. 
3.2. The finite element with the stiffness matrix by the size 72 x 72. The 

column of the regard unknowns, containing the nodal displacement vectors, their 
first and second derivatives in the local and global systems of coordinates have 
the form 
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The displacement vector of the internal point of the finite element is approxima-
ted through the nodal vectors (38), using the polynomials of the fifth power. 

                       
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where  N is the matrix of the transformation of the column of the unknowns  л
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

 
in the local system of the coordinates through the column of the unknowns 
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where )()( 21  mkkm ggH   is the multinominal, which represents the product of 
the polynomials of the fifth power on the coordinates of the local system 
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 is the symbol, designating the coordinates of the local system 1  or 2 . 
By the differentiation (39) on the global coordinates, the derivatives of the 

displacement vector can be presented in the form 

          ;
2

,

1

,, 21
Г
y

Г
y

TT WNWNW


 





 








 





 

   

        




























































Г
y

TTT

TT

WN

W

r

r



































22

,

12

,

22

,

1221

,

11

,,

2122

2111

   

    Г
у

Т WN


 .                                                                         (42) 

The column of the nodal vectors  Г
yW  can be represented by the product 
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where the column of the regard nodal unknowns has the following form  
  

;2
22

2
22

1
22

1
221212

1
12

1
122222

2
22

2
22

1
22

1
221111

2
11

2
11

1
11

1
1122

2
2

2
2

1
2

1
2

11
2
1

2
1

1
1

1
1

2211

lilililili

lililililililili

lilililililiГ
y

tttttttttt

ttttttttttmmmmmm

mmmmmmWWWWWWu







             (44) 



56 
 

Fig. 1 

 A


 is the matrix, which elements contain only the basis vectors; 0
2

0
1 , aa  and 

0a  of the nodal points of the finite element (n=i, j, k, l). 
Taking into account (43) the displacement vector of the internal point of the 

finite element and its derivatives will accept the form 
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When expressing the basis vectors of the nodal points through the vectors 
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When substituting (47) into (45) and comparing the received relations 
with (8) it is possible to express the components of the displacement vector and 
its derivatives through the column of the nodal unknowns of the finite element 
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The algorithm of the formation of the stiffness matrix by the size 72 x 72 
is similar to the above-stated in item (3.1). It is necessary to note, that the nu-
merical integration is carried out as it is accepted in [2, 3]. 

The advantages of the supposed method of the approximation of the dis-
placement of the points of the finite element of a quadrilated shape are shown 
on the numerical examples. 

4. The calculation examples. 
Example 1. As the example, the sum about the determination of the ten-

sion-deformed condition of the compensator, being under the influence of the 
inner pressure of the intensively )( figq  was solved. The radius of the rotation was 

given by the functional depen-
dence of the kind  

)/cos( cxBAr  . 
Owing to the presence of 

symmetry planes was examined 
1/8 of the shell. The following 
initial data was accepted: q = 
0,2 MPa, A=1,3 m, В=0,4 m, 
С=12 m, t = 0,01 m, E = 2 ·105  

MPa, v=0, 3. The coordinate x 
varied in the limits 0 < x < 
36 m . 

The calculations were car-
t
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ried out in the two variants. In the first variant when constructing the matrix of rigidity 
of the finite element of a quadrilated shape by the size 36 x 36 was used the traditional 
independent interpolation procedure [2, 3]. In the second variant was used the proposed 
way of the vector interpolation of the vectors displacements (see the ratios (23)...(33)).   
The calculation results are shown in the table 1, in which are listed the values of the ring 
(for the points 1,2,3 of the calculated construction) and meridian (for the point 4) ten-
sions in the inner fibers of the shell in depending on the meridian direction. Along the 
ring the compensator was parted in the 2 or 3 finite elements. 

The analysis of the calculation results listed in the table 1, shows, that in the first 
calculation variant the convergent of the calculation process is practically absent, in 
spite of the sufficiently small network of the discrete elements. In the second calcula-
tion variant one can see the fast gathering of the calculation process by the comparative-
ly small number of the finite elements. 

The chosen calculation scheme, by which the left edge of the shell (the point 4 
on fig. 1) remains free, allows us to compare the received numerical value of the me-
ridian tension with the precise one, which must be equal to zero. 

From the table 1 one can see, that in the first calculation variant even by the di-
viding of the compensator in 120 elements in the meridian direction the controlling ten-
sion (the last line in the table 1) remains very far of the meaning of zero 
 )7,346 Мраam  . In the second calculation variant the meridian tension on the right 
edge of the shell is going up zero by the increasing of the number of the discrete ele-
ment. For the determination of the tensions in the nodal points of the finite element it is 
necessary to calculate the second derivatives of the normal displacement wap (in the 
first calculation variant) and the polynomials tap (for the second variant), which suppos-
es the necessity to use the full set of the nodal variable parameters of the discrete ele-
ment 36 x 36. By the correct calculation the tensions in the nodal point calculated when 
using of the nodal unknowns of the adjacent finite elements, must be quite near in the 
values. 

In the table 2, the numerical values of the ring tension in the inner fibers in the point 
2 and 3 of the compensator are given, which are calculated when using the nodal un-
knowns of the finite elements, which side left and right with the examined know. 

The analysis of the numerical tension values, listed in the table 2, shows, that in 
the first calculation variant along with the unsatisfactory gathering of the calculation 
process one can see the sharp difference in the tension values, which were calculated 
when using of the adjacent finite elements. Even by the dividing of the compensator in 
120 discrete elements the controlling tensions differ not only in the value, but also in 
the sign. In the second calculation variant by any number of the discrete elements one 
can see the full coincidence of the numerical tension values, calculated when using of 
the finite elements, which side to the examined knot, and the good gathering of the 
calculation process by the comparatively small number of the finite elements. 

Based on the analysis of the above mentioned table's material one can draw the 
conclusion, that the use of the quadrilated finite element by the size of the matrix of 
stiffness 36 x 36 for the calculation of the shells with the considerable gradients of 
the curvature of the middle surface demands the realization of the supposed way of the 
interpolation of the fields of the shift vectors (the ratio (23)...(33)). The use of the qua-
drilated discrete elements 36 x 36, in which by the formation of the matrix of stiffness 
was realized the traditional interpolation procedure (2,3), does not allow by the calcula-
tions of the above mentioned constructions to get the satisfactory results even by the 
small network of the finite elements. 
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Table 1 
Variant of the 

way of interpo-
lation of the 

shifts 

I II 

Number of FE 
along the meri-
dian and coor-

dinates of 
points 

48 60 72 90 108 120 49 60 72 90 

p . l ,  x=0 32.5 17.3 -4.9 -39.5 -65.2 -77.5 -136.1 -133.6 -132.9 -132.8 

p.2,x =12  -139.0 -127.4 -108.0 -63.7 -27.0 -9.2 49.6 49.4 49.2 49.0 
p.3, x=24  203.7 269.9 281.9 205.2 111.9 61.3 -136.1 -133.6 -132.9 -132.8 
p.4, x=36  -1193 -1356 -1356 -1099 -800.1 -634.7 -3.6 -1.9 -1.2 -0.6 

Here and below FE is Finite element 
Table 2 

Variant of the 
way of interpola-
tion of the shifts 

I     II 

Number of FE 
along the meri-
dian and coordi-

nates 

49 60 72 90 108 120 49 60 72 90 

p. 2, Left -139.0 -127.4 -108.0 -63.7 -27.0 -9.2 49.6 49.4 49.2 49.0 
x =  12  Right -89.3 -17.2 39.5 72.7 73.6 70.5 49.6 49.4 49.2 49.0 

p. 3, Left 203.7 269.9 281.9 205.2 111.8 61.3 -136.1 -133.6 -132.9 -132.8 
x = 24  Right -141.8 -249.4 -311.1 -300.0 -251.9 -224.6 -136.1 -133.6 -132.9 -132.8 

Example 2. The quadrilated finite element by the size of the matrix of stiffness 
72 X 72 was used for the calculation of the compensator, described in the previous ex-
ample. The calculations also were carried out in the 2 variants. In the first one in the 
algorithm of the formation of the matrix of stiffness of the finite element 72 x 72 was 
realized the traditional interpolation procedure [2,3]. In the second one — the suppose 
vector procedure. The calculation results are listed in the table 3, which structure coin-
cides with the structure of the table 1. The analysis of the calculation shows, that in the 
first calculation variant one can watch the slow convergent of the calculation process by 
the considerable number of the discrete elements. 

Table 3 
Variant of the 

way of interpo-
lation of the 

shifts 

I II 

Number of FE 
along the meri-
dian and coor-

dinates of 
points 

12 18 30 48 72 90 12 15 18 24 

p.l, x = 0 41.9 50.1 -32.8 -115.5 -130.4 -131.7 -139.3 -136.9 -136.9 -138.0 
p.2,  x =12  -68.6 -70.6 -7.2 -37.6 45.2 46.1 42.7 45.5 46.6 47.4 

Р.3, x = 24  -109.2 -106.6 -35.1 -116.1 -132.4 -133.3 -140.6 -138.7 -138.5 -138.7 
p.4, x = 36  -495.1 -1006.8 -230.7 -392.8 141.1 59.0 -12.2 -8.0 -4.2 -0.9 

The meridian tension on the right edge of the shell remains very far from the zero 
value )59( Mpam  even by the dividing of the compensator in 90 finite elements in 
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Table 4 
Variant of the 
way of interpo-

lation of the 
shifts 

  I    II 

Number of FE 
along the meri-
dian and coor-

dinates of 
points 

15 36 60 72 96 120 15 24 36 48 

p .l ,1 = 0 29.1 351.0 93.0 17.1 -78.5 -108.2 -136.2 -123.5 -123.8 -122.5 
p.2, x = 12  79.7 -590.9 -283.4 -178.2 -34.9 10.8 35.2 45.0 48.8 49.5 
p.3, x = 24  -103.4 456.8 119.6 0.63 -93.8 -116.8 -134.6 -125.6 123.4 121.4 
p.4, x — 36  -343.5 -843.9 1815.5 2024.8 1467.7 748.6 -43.3 -7.4 0.7 -0.8 

the meridian direction. In the second variant one can see the rapid gathering on the 
calculation process by the considerable smaller (in comparison with the first variant) 
number of the finite elements. The finite tension on the right edge of the shell becomes 
near enough to zero )9,0( Mpam   by the comparatively small number of the discrete 
elements (equal to 24). By the increasing of the compensator's wave frequency in 1,5 
time mxmc 240,8   in the first calculation example (see table 4) the convergent of 
the calculation process is practically absent and the meridian tension on the right edge 
of the compensator becomes equal to 768,6 М Ра (instead of 0m ) even by the divid-
ing of the shell in 120 finite elements. In the second calculation variant one can see the 
fast gathering of the calculation process and m  in the point 4 is very near to zero al-
ready by the number of the discrete elements equal to 36. 

Based on the analysis of the above given table's material one can draw the conclu-
sion, that the use of the traditional independent interpolation procedure in the algo-
rithms of the construction of the matrix of rigidity of the quadrilated finite elements 
[2,3] by the calculation of the shells with high gradients of the curvature of the middle 
surface becomes very un effective, in spite of the increasing of the number of the nodal 
changeable parameters of the discrete element. For the correct determination of the ten-
sion-deformed condition of such the constructions it is necessary to use the interpolation 
of the fields of the shifts (correlations (23)...(33)). 
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КОНЕЧНЫЙ ЭЛЕМЕНТ ЧЕТЫРЕХУГОЛЬНОЙ ФОРМЫ ДЛЯ РАСЧЕТА 
ОБОЛОЧЕК С УЧЕТОМ СМЕЩЕНИЯ КАК ЖЕСТКОГО ЦЕЛОГО 

Ю. В. КЛОЧКОВ, А. П. НИКОЛАЕВ, А. П. КИСЕЛЁВ 
На базе криволинейного четырехугольного конечного элемента реализован новый 

способ аппроксимации полей перемещений, суть которого заключается в том, что на 
этапе аппроксимации внутренних величин через узловые неизвестные за узловые неиз-
вестные конечного элемента выбираются не отдельные компоненты вектора перемеще-
ния и их производные, а непосредственно сам вектор перемещений узловых точек ко-
нечного элемента и его производные. На примере расчета компенсатора нагруженного 
внутренним давлением с наличием конструкционного смещения как жесткого целого 
показано, что использование разработанного алгоритма решает общеизвестную про-
блему МКЭ – учета смещения конечного элемента как жесткого целого.  

Ключевые слова: метод конечного элемента, учет смещения как жесткого целого. 


