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On the basis of a curvilinear quadrilated finite element the new mode of approximation of
fields of displacements is realized, which essence consists that at a stage of approximation of inte-
rior magnitudes through nodal unknown of a finite element accept not separate components of a
vector of displacement and their derivative, and immediately vector of displacement of nodal
points of a finite element and its derivative.

On an example of account of an equalizer loaded by interior pressure with presence of con-
structional displacement as rigid body is shown. That use of the developed algorithm solves a
well-known problem FEM — account of displacement of finite element as rigid body.
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Introduction

The method of approximation of displacement fields for the method of the finite
elements is proposed, allowing to take automatically into account a displacement of the
finite element with rigid body modes. Its essence consists of a choice of a column of
nodal unknown quantities, containing the self vectors of the nodal points and their de-
rivatives. Through the chooses column of nodal unknown quantities is approximated
the displacement vector of the internal point of the finite element, that allows to express
components of the displacement vector and its derivatives through all displacements
and derivatives of the displacement of the nodal points of the finite element.

Numeral examples are shown. This approach, natural to approximation of the dis-
placement, allows solving a problem of the displacement of the finite element with ri-
gid body modes.

1. Basic geometrical relations of any nonshallow shell. The middle surface of any
nonshallow shell in the Cartesian system of coordinates can be described by a position
vector

RO =x'(0",0%)iy+x* (0" .0%)iy+x> (0" 0753 =x* (0“7, (1)
where x*, iy, are coordinates and unit vectors of the Cartesian system of coordinates,

0 are the curvilinear coordinates of the shell middle surface. Here and below, the Lat-
in indexes accept the meanings 1, 2, 3 and the Greek ones meaning 1, 2.
The tangent vectors of the local basis of the point of the middle surface in the

initial condition can be received by the differential (1) on curvilinear coordinates ¢ [1]
-0 _p0 k =
g :R,a =X q (9}/ )i - )
The unit normal vector of the local basis is determined by the vector product

_ _ k=~ Irs
-0 aloxag x’llkxx"glm
a = =
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The relations (2) and (3) can be expressed in the matrix form

@l @

where {Zz 0 }T = {5 10 , 5§ , Zz? } {f}z {fl , 172 , z} } According to [4], the covariant compo-

nents agﬂ of the metric tensor and its determinant ¢, the covariant b, and mixed
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b f components of the tensor of curvature, the covariant vectors of the basis & * and the

Christoffel symbols of the first /75 and second I’ Z ranks are determined,

0 50 =0,
aﬁ _aa ﬂ’ \/“11“22 61126121, ap =R gpd”s
~0a _ _Oap~0 _2¢,0 0o _ 0 _,Oap
a”=a""Tay; Iy, 2(aaﬁ’y+aa%ﬁ aﬁya) Fﬁy =a "I g, %)
The displacement vector of any point of the middle surface can be submitted in
the initial basis by the expression W:W“ag +wal. (6)
Using the relation of the derivatives of the vectors of the basis [4] one can write
~0 ~0 ~0, =0 ~0
dy :F(fﬂap +bypd ;s d, :—b(fap. (7)

It is possible to determine the derivatives of the displacement vector on the
curvilinear coordinates with the help of expressions

Wy=ap Wi+W' I+ W25 - Wb )+af Wi+ W TE +W 213 -Wbi )+
&0(W1+W1b12 +W)=m11c710 +m12&§+m150,

Wo=al Wh+W I+ W20y —Why)+(W3+ W' Th+W 23, -Wh3 )+
&O(VI{Z +W1b12 +W)=m§510+m§c7§ +m2c70,

W,n :‘_ilo(rlllmll +F;1m12 +W,}1 +W,}F111 +W1F111,1 +W,12F%1 "‘Wzlgl,l -
_VV,lbll _Wbll,l _bllml)""_ig(rlzlml] +F221m12 +W,121 +W,}F121 +W1F121,1 +
+W,12F221 +W2F221,1 —W,lbl2 —Wb12,1 —blzml)"‘ao(bnmll +b21m12 +Wo+
W,{bn +Why +W,12b21 +W2b21,1)=t111510 +f1215§ +f1150= 3)
717,12=671()(F112m11+F§2m12+W,%2+W,12F111+W1F111,2 +W,%F51+W2F%1,2—
_W,Zbll_Wbll,Z —b}m1)+5§(F122m11+F222m12+VI{122 +W,12F121+W1F121,2+
+W,122F221+W2F221,2 —W,zblz—Wblz,z ~bymy)+a" (bjymi +bzzm12+W,12+
W,12511+W1f?11,2 +W,%f?21+W2f?21,2)=f112510+f122678 +15a°,

W,zz =6710(F1]zm£+F§2m%+W212+W,12F112+W1F112,2 +W,%F52 +W2F112,2—
—W,zbé —Wbé,z —b}m2)+a§(F122m§+F222m§+l/l{§z +W,%F122 +W1F122,2+
W33 +W I3 5 =W 33 —Wh3 o —b3my )+ (bamy +byym3 +W 5 +

W,lzblz +W1b12,2 +W,%bzz +Wzbzz,2)=f§2510 +13,d3 123" .

The location of any point of the shell's middle surface in the deformed condition
will be determined by the radius-vector

R=R°+W. ©)

By the differentiation (9) the tangent vectors of the local basis in the deformed
condition can be received as

R - - r I r r r
ar=R :a10 (1+m11)+agml2 +a0m1 ; @y =R, = almy +ay(1+m3)+a’m,. (10)
The unit normal vector of the deformed middle surface can be determined by the
vector product

50



- Zil Xaz

|a1 ><612| \/—0

2. Deformations and strains in a shell. The location of any shell point, being
distant from the middle surface at the distance of { in the initial and deformed

(V a +a1 XW2+W1><612) (11)

Q

conditions is described by the suitable position vectors
R% =R%+a°, RS =R% +V . (12)
Included in the (12) the displacement vector of the point, being distant from
the middle surface at the distance of { , using the hypothesis of the straight unit
vectors is determined by the relation

V=W+&(G—-al)=Ww+cw". (13)
For the determination of deformations of an any shell's layer it is possible
to take advantage of the relations of the mechanics of a solid medium [4]

aﬁ 2(gaﬁ ~Zop): (14)

where gqp ,gaﬁ are the components of the metric tensors of the initial and de-
formed conditions, which are determined be the differentiation (12) on the glob-
al coordinates ggﬁ =g2 -g%; 8ap=8a8p - (15)

Included in (14) the tangent vectors of the basis are determined by the
differentiation (12) on the global coordinates

goc —‘_ioc ~{bla ap: 80=8u +W +§(Wn _aﬂ) (16)
As a result of the consecutive substitution (16) and (15) in (14) it is possible
to describe the deformations sgﬂ of an any shell's layer by the deformations ¢,

and the curatives ;(gﬂ of the shell's middle surface in the final form
ggﬁ =gaﬁ +Chop, (17)
where g, ﬁ— (a Wﬁ+a W @) Xap= 1a Wﬂ+aﬂ W +aaWﬂ+aﬂW ), (18)

When obtaining (18) are omitted the items Vf/’a (ap—a ﬁ)as quantities of

the trifle's second rank. Taking into account the relations (16), (8) and (7), the
expressions (18) can be represented as

01 0. 2. _ 0 1 0 2.
&y =apmy +a,m;; Exp =apmy +a,m,;

1l 0o 1,0 .2,0.1,0 2
slzzg(allmlﬂzlzm1+a12m2+a22m2); (19)

1 1 2 2] -
x11=—myby1+m I +my ' —m5 by =115

2 2 1 1
X22=—mybiy+myl "3y —try —mibyy +my12);

2 1 1 2
X12=—mabyy —mybyy+m 'y +my ' —1y5.
When obtaining (19) was used the known relation

1 oVa®
Ja0 00 To

The describing of the components of the strain tensor raﬂ through the compo-
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nents of the deformation tensor of an any shell's layer ggy can be represented as

9B — gobpy ggy , where E%PPY =L2[(1—V )gOa;/ gOﬂp +vg 0ap gpr ; (21)
1-v

E is the module of elasticity of the shell's material; v is the factor of Poisson
(Poisson's factor).

3. The finite elements and the interpolation of the displacement.

As the finite element is accepted the fragment of an any shell in the form
of the curvilinear quadrangle on its middle surface with nodes i, j, &, I, which

is reflect on the square with the local system of coordinates —1 < £% < 1. The

connection between the global coordinates % and the local coordinates ¥ is
represented by the bilinear dependence

1 2 1 2
g (=60 1=6%) pai (14ED) (1-67) oy,
2 2 2 2
LD A+6%) ok, (1-6) (1467) pos
2 2 2 2 ’

(22)

where % is the global coordinate of the internal point of the finite element;

O0%and 0 are the global coordinates of the finite element's nodes.
By the differentiation of the relations (22) the derivatives of the global

. 0%  0%0% .
coordinates on the local ones ——, ﬁand the derivatives of the local
ocP aglos
a 2¢a
coordinates on the global ones % , 0 15 - can be received
20" " 80'06

3.1. The finite element with the matrix of rigidity by the size 36x36. The
vectors of the nodal unknowns containing the displacement vectors of the finite
element's nodes and their first derivatives in the local and global systems of
coordinates look like

- T T
{Wy”} ={W’WfWleW’]WJ]W

k 177!
gl gl

RN RN };
gl et e e g 23)
L e P
i<l o A7 |
The displacement vector of the internal point of the finite element is ap-
proximated through the nodal vectors (23) by the expression

=t} W, o) [] V)| 24)

102 oy 112 12x12 5
T
where {of ={G|1G21G,G12G31G41G4,G37G13G23G 4Gy f

G =l (EVh (E2): (z)%(ﬂ?—un);

hy (A):—%()ﬁ—n—z); h3(1)=i(z3—12—1+1); h4(l)=%(l3 +A2 - 2-1);

A is the coordinate 51 oT 52; [L] is the matrix of the transfer of the nodal displace-

ment vector from the local system of coordinates into the global one. By the differentia-
tion (24), the first and second derivatives of the displacement vector of the internal point
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of the finite element's in the global system of coordinates can be received

bl b b

00“ 00“

W,aﬁ z[{‘pgg }765 s {‘p,g‘gz}r[ag e

20% 008 20 aeﬁ

agag +{¢22 oe? oe? {{p ag
To08 a0 | 0] a0 0 Sgangn T

ooy Mz T |

00%00%
The column of the nodal unknowns of the vector in the global system of co-
ordinates taking into account (6) and (8) can be represented by the matrix relation.

iy = [A] b (26)
12x1  12x3636x
T . .
where {uf} ={ Wll...W”WZI...,WZIW’ Sl ol md . mP ml . mi x
xm%’, mymz \ m%lmz, mé},

[A] is the matrix, which elements are the vectors of the local basis of the nodal points of
the element 510”, 53”, a, n=i, j, k, L.
As the result of the substitution (26) into (24) the last relation will accept the

(25)

form W:{qo}T [L][;l]{u 5 } . (27)
It is possible to choose the matrix [G] so, that the equality will be carried out
Ari=rieEs (28)

When using (4) and expressing the vectors of the local bases of the nodal points
through the vectors of the basis of the internal point of the finite element, the matrix

[A] can be represented by the sum [21]2510 L, ]+a§ [L, }+a 0 [L5]. (29)
Taking into account (28), (29) and (6), the relation (27) can be given the form
whaf o 2adwa® ~lo)" @l beadlee bra®ls I6 T }. 60)

From that one are received the expressions of the approximation for the com-
ponent of the displacement vector of the internal point of the finite element

wh=lo)T (1] [6] b =t T Wl s w2 =lol (o TG Tl felun 0
Ix12 12x1212x36 365 1x36 36x]
W=t} [L3J6T) f=tus ) el ) &
The derivatives (25), taking into account (24), (26), (28) and (29), can be
represented in the form

", [{40 P b }(zr[a J+ BT 20, o T

00“ 00
W g =12 @0 [ @S (1o a®ls Yol . (32)

Taking into account the relations (8), it is possible to receive from (32) the expres-

sions of the components of the derivatives of the displacement vector of the point of the

finite element through all nodal quantities
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00“

lap -z Zop s ][G]{“f }: {“gcﬂ }{“yr } ;

As it is obvious from (31) and (33), the proposed method of the interpolation dif-
fer by that, that every component of the displacement vector of the internal point and its
derivatives depends on the nodal meanings of all the three components, whereas at the
traditional approach [2, 3] a separate component is expressed only through the nodal
meanings of this component and its derivatives.

For the formation of the stiffness matrix of the finite element are introduced the ma-
trix designations

{gg} {5115222512} {g}T 2{5115222512k11k222k12}; {T}T 2{7”722712} . (34
and on the basis of (17), (21) and (19), the matrix relations are formed

b€ Hrlek: tei-lele® § to-[Blk] | 65)

From the equality of works of the external and internal forces one may write

| prsgydv=j W Pds, (36)

bl b e 22 kot ot
(b =1Zap T L TG YL =it el -
i b }”5 o V25 uslohd ot |
tap Eaﬁ} [£2TGT fluds ot | (33)

o 25l 25 sttt |

where P=P! a 0, p? a, 9 4 PG is the vector of the external forces, taking into account (34)

the relation [k] lu§ }:{ 1. 37)
36x3636x] 361
can be received . Here [k]zj[B]T [ ]T [c]r[Blav is the stiffness matrix of the finite
v
T 1 2 T, 0 pl, 0 p2 T

element; {f}:ﬂ{ul} (a),P +aly PPy +{us | a2y P +ad, PP )+{us ) PJx {olds
is the vector of loads.

3.2. The finite element with the stiffness matrix by the size 72 x 72. The
column of the regard unknowns, containing the nodal displacement vectors, their

first and second derivatives in the local and global systems of coordinates have
the form

{“;}z{wfwkwlw R N

152'” g2 gl T gl g2

(38)
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The displacement vector of the internal point of the finite element is approxima-
ted through the nodal vectors (38), using the polynomials of the fifth power.

=ty =l V] (39)

1x24 24x1 1x24 24x24 24x1

where [N ] is the matrix of the transformation of the column of the unknowns {Wy” }
in the local system of the coordinates through the column of the unknowns
{I/f/yr} in the global one.
The line, containing functions of the form looks like

T
Wi ={H 1 Hy Hoy H\s H3 Hy Hyp HyyHi3Hos Hoy Hy4Hs He

(40)
HeyHsyHysHysHogH g H33H 3 H g Hzy ),

where H,, =g (§l)gm (52) is the multinominal, which represents the product of
the polynomials of the fifth power on the coordinates of the local system

g (A):%(—wf +104° —151 +8); g2(1)=%(315 —104* +151 +8);
g5 (2) =%(—3)§ + 24 +102° =642 =74+ 5);
24 () =%(—3)§ — 24 +102° 4647 =74 -5); (41)

g5(1)=%(—)§ + 2 4223 222 -2y, gé(zu)=%()u5 + 223 222 + A+,

A is the symbol, designating the coordinates of the local system f.fl or fz.

By the differentiation (39) on the global coordinates, the derivatives of the
displacement Vector can be presented in the form

W{iy L ) Y J r b VI )
V{/,aﬂz[{w,é'é' }T££+{l//,é'éz }T[agl 2o a(g N J

00% 00° 00% 60° ae“ 00"

+{'/’,525 } ?ja (?jﬂ {V’é' }T a;“geﬁ +{V }Tae aeﬂJ ]{W }

b T IVI ) 42
The column of the nodal vectors {WF} can be represented by the product
of the matrices {WF} [A] {u } (43)

24x1 2872725
where the column of the regard nodal unknowns has the following form

{ur}z{WU...WIIWZi...WZIWi...Wlm mlllm1 . m121m1 mll

1i 1/ 21 [,1i 17,2 21,0 [l 1 17 ,2i 21
my .. mzmz -1y mz D R R L R LA PRI LS SRS P LS R 0 (44)

[ 1 17 ,i I 1 17 ,2i 21
tzz Typlyn--Ipln--Aalpp - Ioalon -5 |
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[;1] is the matrix, which elements contain only the basis vectors; Zzlo, ag and
a° of the nodal points of the finite element (n=i, j, k, 1).

Taking into account (43) the displacement vector of the internal point of the
finite element and its derivatives will accept the form

r r r r r r
T r T r T r
= VDb o =t ] Al = Y V] A s
1x24 " 24x24 Tox]
24x72

The product of the matrices [N][Z!] can be replaced through the other
product INJAE[A[m]. (46)
When expressing the basis vectors of the nodal points through the vectors

of the internal point of the finite eclement @", a3", a*" the product (46) will
“1(50 -0 -0 r
have the form [N [=(a® [v, Jra® [V, Fra®[vs D T | @7)
When substituting (47) into (45) and comparing the received relations
with (8) it is possible to express the components of the displacement vector and
its derivatives through the column of the nodal unknowns of the finite element

W=t} IV [E] b Y= e b =t IV T = ) e

1x24  24x24 24x72 754 Ix72 72x1
T
1 r
b

T I 7 A RN R T S v 1Y 24
m? =l I TE ! b= 02 ) my =, IV T e =
thy =t VIV TH Y J= 00 el

thp =g ) I TE N S = 02 el 1 =tV INSTE R = /7l | 49)

The algorithm of the formation of the stiffness matrix by the size 72 x 72
is similar to the above-stated in item (3.1). It is necessary to note, that the nu-
merical integration is carried out as it is accepted in [2, 3].

The advantages of the supposed method of the approximation of the dis-
placement of the points of the finite element of a quadrilated shape are shown
on the numerical examples.

4. The calculation examples.

Example 1. As the example, the sum about the determination of the ten-
sion-deformed condition of the compensator, being under the influence of the
inner pressure of the intensively g (fig) was solved. The radius of the rotation was

given by the functional depen-
dence of the kind

r=A+Bcos(x/c) .

Owing to the presence of
symmetry planes was examined
1/8 of the shell. The following
initial data was accepted: q =
0,2 MPa, A=1,3 m, B=0,4 m,
C=12m, t = 0,0l m, E =2 -10°
MPa, v=0, 3. The coordinate x
varied in the limits 0 < x <
367m.

The calculations were car-




ried out in the two variants. In the first variant when constructing the matrix of rigidity
of the finite element of a quadrilated shape by the size 36 x 36 was used the traditional
independent interpolation procedure [2, 3]. In the second variant was used the proposed
way of the vector interpolation of the vectors displacements (see the ratios (23)...(33)).
The calculation results are shown in the table 1, in which are listed the values of the ring
(for the points 1,2,3 of the calculated construction) and meridian (for the point 4) ten-
sions in the inner fibers of the shell in depending on the meridian direction. Along the
ring the compensator was parted in the 2 or 3 finite elements.

The analysis of the calculation results listed in the table 1, shows, that in the first
calculation variant the convergent of the calculation process is practically absent, in
spite of the sufficiently small network of the discrete elements. In the second calcula-
tion variant one can see the fast gathering of the calculation process by the comparative-
ly small number of the finite elements.

The chosen calculation scheme, by which the left edge of the shell (the point 4
on fig. 1) remains free, allows us to compare the received numerical value of the me-
ridian tension with the precise one, which must be equal to zero.

From the table 1 one can see, that in the first calculation variant even by the di-
viding of the compensator in 120 elements in the meridian direction the controlling ten-
sion (the last line in the table 1) remains very far of the meaning of zero
(a,, =—634,7Mpa) . In the second calculation variant the meridian tension on the right

edge of the shell is going up zero by the increasing of the number of the discrete ele-
ment. For the determination of the tensions in the nodal points of the finite element it is
necessary to calculate the second derivatives of the normal displacement w,, (in the
first calculation variant) and the polynomials ¢,, (for the second variant), which suppos-
es the necessity to use the full set of the nodal variable parameters of the discrete ele-
ment 36 x 36. By the correct calculation the tensions in the nodal point calculated when
using of the nodal unknowns of the adjacent finite elements, must be quite near in the
values.

In the table 2, the numerical values of the ring tension in the inner fibers in the point
2 and 3 of the compensator are given, which are calculated when using the nodal un-
knowns of the finite elements, which side left and right with the examined know.

The analysis of the numerical tension values, listed in the table 2, shows, that in
the first calculation variant along with the unsatisfactory gathering of the calculation
process one can see the sharp difference in the tension values, which were calculated
when using of the adjacent finite elements. Even by the dividing of the compensator in
120 discrete elements the controlling tensions differ not only in the value, but also in
the sign. In the second calculation variant by any number of the discrete elements one
can see the full coincidence of the numerical tension values, calculated when using of
the finite elements, which side to the examined knot, and the good gathering of the
calculation process by the comparatively small number of the finite elements.

Based on the analysis of the above mentioned table's material one can draw the
conclusion, that the use of the quadrilated finite element by the size of the matrix of
stiffness 36 x 36 for the calculation of the shells with the considerable gradients of
the curvature of the middle surface demands the realization of the supposed way of the
interpolation of the fields of the shift vectors (the ratio (23)...(33)). The use of the qua-
drilated discrete elements 36 x 36, in which by the formation of the matrix of stiffness
was realized the traditional interpolation procedure (2,3), does not allow by the calcula-
tions of the above mentioned constructions to get the satisfactory results even by the
small network of the finite elements.
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Table 1

Variant of the I 1I
way of interpo-
lation of the
shifts

Number of FE| 48 60 72 90 108 120 49 60 72 90
along the meri-
dian and coor-
dinates of
points

p.1, x=0 325 173 4.9 -395 | -652 | -775 | -136.1 | -133.6 | -132.9| -132.8

p2x=127T | -139.0 [ -127.4| -108.0 [ -63.7 | -27.0 9.2 49.6 49.4 49.2 49.0

p3,x=24x | 2037 | 2699 | 2819 | 2052 | 1119 | 613 | -136.1 | -133.6 | -1329 | -132.8

p4,x=367 | -1193 | -1356 | -1356 | -1099 | -800.1 | -634.7| -3.6 -1.9 -1.2 -0.6

Here and below FE is Finite element
Table 2

Variant of the I 1I
way of interpola-
tion of the shifts

Number of FE 49 60 72 90 108 120 49 60 72 90
along the meri-
dian and coordi-

nates
p- 2, |Left -139.0 [-127.4 | -108.0 | -63.7 | -27.0 9.2 49.6 494 492 49.0
k= 1277 |Right -89.3 | -17.2 39.5 72.7 73.6 70.5 49.6 494 492 49.0
p-3, [Left 203.7 | 2699 | 2819 | 2052 | 111.8 | 613 | -136.1 | -133.6 | -132.9 | -132.8
x =24 77 |Right -141.8 | 2494 | -311.1 | -300.0 | -251.9 | -224.6 | -136.1 | -133.6 | -132.9 | -132.8

Example 2. The quadrilated finite element by the size of the matrix of stiffness
72 X 72 was used for the calculation of the compensator, described in the previous ex-
ample. The calculations also were carried out in the 2 variants. In the first one in the
algorithm of the formation of the matrix of stiffness of the finite element 72 x 72 was
realized the traditional interpolation procedure [2,3]. In the second one — the suppose
vector procedure. The calculation results are listed in the table 3, which structure coin-
cides with the structure of the table 1. The analysis of the calculation shows, that in the
first calculation variant one can watch the slow convergent of the calculation process by
the considerable number of the discrete elements.
Table 3

Variant of the I 1I
way of interpo-
lation of the
shifts

Number of FE 12 18 30 48 72 90 12 15 18 24
along the meri-
dian and coor-
dinates of
points
p.Lx=0 41.9 50.1 -32.8 | -115.5| -1304 | -131.7| -139.3 | -136.9 | -136.9 | -138.0
p.2,x=12x | 686 | -70.6 212 -37.6 | 452 46.1 42.7 455 46.6 474
P3,x=24x | -1092 | -106.6 | -35.1 | -116.1 | -132.4 | -133.3 | -140.6 | -138.7 | -138.5| -138.7

p-4,x =367 | 4951 -1006.8| -230.7 | -392.8 | 141.1 590 | -122 -8.0 42 -0.9

The meridian tension on the right edge of the shell remains very far from the zero
value (o,, = 59Mpa)even by the dividing of the compensator in 90 finite elements in
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Table 4

Variant of the I 1I
way of interpo-
lation of the
shifts

Number of FE 15 36 60 72 96 120 15 24 36 48
along the meri-
dian and coor-
dinates of
points

p.1,1=0 29.1 3510 | 93.0 171 <785 | -108.2 | -136.2 | -123.5 | -123.8 | -122.5

p2,x=12x | 797 | -590.9 | 2834 | -1782 | -34.9 10.8 352 45.0 48.8 49.5

p3.,x=24m [ -103.4 | 4568 | 1196 | 0.63 | -93.8 | -116.8 | -134.6 | -125.6 | 1234 | 1214

p4,x—367 | -343.5 | -843.9 [ 1815.5 | 2024.8 | 1467.7 | 748.6 | 433 -14 0.7 -0.8

the meridian direction. In the second variant one can see the rapid gathering on the
calculation process by the considerable smaller (in comparison with the first variant)
number of the finite elements. The finite tension on the right edge of the shell becomes
near enough to zero (o, =0,9Mpa) by the comparatively small number of the discrete
elements (equal to 24). By the increasing of the compensator's wave frequency in 1,5
time ¢=8,0 m<x< 24z m in the first calculation example (see table 4) the convergent of
the calculation process is practically absent and the meridian tension on the right edge
of the compensator becomes equal to 768,6 M Pa (instead of o,, =0) even by the divid-
ing of the shell in 120 finite elements. In the second calculation variant one can see the
fast gathering of the calculation process and &, in the point 4 is very near to zero al-
ready by the number of the discrete elements equal to 36.

Based on the analysis of the above given table's material one can draw the conclu-
sion, that the use of the traditional independent interpolation procedure in the algo-
rithms of the construction of the matrix of rigidity of the quadrilated finite elements
[2,3] by the calculation of the shells with high gradients of the curvature of the middle
surface becomes very un effective, in spite of the increasing of the number of the nodal
changeable parameters of the discrete element. For the correct determination of the ten-
sion-deformed condition of such the constructions it is necessary to use the interpolation
of the fields of the shifts (correlations (23)...(33)).
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KOHEYHBII 3JJEMEHT YETBIPEXYTI' OJIbHOM ®OPMBI JIJI51 PACUETA
OBOJIOYEK C YYETOM CMEIIEHUSA KAK )KECTKOI'O IIEJIOI'O

10. B. KJIOUKOB, A. I1. HUKOJIAEB, A. I1. KUCEJIEB

Ha 6a3e KpHUBOJUHEHHOTO YETHIPEXYTOJLHOIO KOHEYHOTO JIEMEHTA PeaTM30BaH HOBBIN
croco0 anmpoKCUMAIIMU TTOJICH MepeMeIleH i, CYTh KOTOPOro 3aKJIF0YaeTCs B TOM, YTO Ha
JTare anmpoKCUMAIUU BHYTPCHHUX BEIMYHMH Yepe3 y3JIOBbIC HCHM3BECTHBIC 3a Y3JIOBBIC HEU3-
BECTHBIC KOHEYHOTO JJIEMEHTA BBIOMPAIOTCS HE OT/ACIbHBIC KOMIIOHCHTHI BEKTOpa IepeMellie-
HUS M UX MPOU3BOJHBIC, @ HEITOCPEICTBCHHO CaM BEKTOP MEPEMEIICHUHN Y3J0BBIX TOYCK KO-
HEYHOTO AJIEMEHTa U €ro MpOoM3BojHbIe. Ha mpuMepe pacyeTa KOMIIGHCATOPa HATrPY)KEHHOTO
BHYTPCHHHM JIaBJICHHUEM C HAJHYHUEM KOHCTPYKIMOHHOI'O CMEIICHUS KaK JKECTKOIro IIEJIOro
MMOKa3aHO, YTO HCIIOJNB30BAaHUE Pa3pa0OTAHHOIO aJTrOpUTMa peIIaeT OOIIEU3BECTHYIO IPO-
omemy MKD — ydera cMEIICHUST KOHEYHOTO JIEMEHTa KaK JKECTKOTO IIEJIOr0.

KitroueBbie c10Ba: METOJ] KOHEYHOTO AJIEMEHTA, YUEeT CMEIICHUS KaK KECTKOTO LIEJIOT0.
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