<u>Теория тонких упругих оболочек</u>

РАСЧЕТ ТОНКИХ УПРУГИХ ОБОЛОЧЕК В ФОРМЕ ДЛИННОГО КОСОГО ГЕЛИКОИДА

Е.М. ТУПИКОВА, ассистент

Российский университет дружбы народов, инженерный факультет 115419, Москва, ул. Орджоникидзе, д. 3

В статье рассмотрены вопросы расчета тонких упругих оболочек в форме косого геликоида полуаналитическим методом. Получены квадратичные формы поверхности в несопряженной неортогональной системе координат, основные геометрические и физические соотношения, уравнения равновесия для случая пологой оболочки. Проведена серия расчетов по данному методу и дано сравнение результатов с расчетами по методу конечных элементов.

КЛЮЧЕВЫЕ СЛОВА: косой геликоид, неортогональная несопряженная система криволинейных координат, уравнения равновесия тонких упругих оболочек в перемещениях, метод прогонки для решения систем дифференциальных уравнений.

Оболочки в форме косого геликоида применяются в технике: форму косого геликоида имеют пандусы, другие винтообразные архитектурные элементы, а также резьбы, шнеки, детали ветрогенераторов [1, 2]. Образующей косого геликоида является наклонная прямая, направляющей – винтовая линия. Чаще всего параметрическое уравнение данной поверхности представляется в виде:

 $x = u \cos v$, $y = u \sin v$, z = k u + c v.

Это уравнение в цилиндрической системе координат. Можно также представить это уравнение в системе координат, в которой за координату u будет принято расстояние по образующей, а за координату v – угол вращения образующей, как и в обычной цилиндрической системе координат, $\varphi = \text{const} -$ угол наклона образующей, тогда

 $x = u \cos \varphi \cos v, \quad y = u \cos \varphi \sin v, \quad z = u \sin \varphi + c v.$

Такая система будет также несопряженной и неортогональной, но выражения для квадратичных форм в этом случае несколько упростятся по сравнению с ранее упомянутой системой:

$$A = 1, B = \sqrt{u^2 \cos^2 \varphi + c^2}, F = c \sin \varphi, \quad L = 0, M = -\frac{c \cos \varphi}{\sqrt{u^2 + c^2}}, N = \frac{u^2 \sin 2\varphi}{\sqrt{u^2 + c^2}},$$
$$\chi = \arccos\left(\frac{c \sin \varphi}{\sqrt{u^2 \cos^2 \varphi + c^2}}\right),$$

где $\chi = \text{const} - \text{угол между координатными линиями } u$ и *v*.

Для упрощения задачи примем, что геликоид имеет большое число витков и напряженно-деформированное состояние не зависит от координаты v, т.е. рассматривается двумерная задача. Задача рассматривается для пологой оболочки. Тогда геометрические соотношения, согласно А.Л. Гольденвейзера [3], принимают вид:

$$\varepsilon_{u} = \frac{\partial}{\partial u} u_{u} - \frac{c \sin \varphi \, u_{v} \, u \cos^{2} \varphi}{(u^{2} \cos^{2} \varphi + c^{2})^{3/2}} + \frac{c \sin \varphi \, \frac{\partial}{\partial u} u_{v}}{\sqrt{u^{2} \cos^{2} \varphi + c^{2}}},$$

$$\varepsilon_{v} = \frac{u_{u} \, u \cos^{2} \varphi}{u^{2} \cos^{2} \varphi + c^{2}} + \frac{u^{2} \sin^{2} \varphi \, u_{z}}{(u^{2} \cos^{2} \varphi + c^{2})\sqrt{u^{2} + c^{2}}},$$

$$\omega_{u} = \frac{c^{2} \sin^{2} \varphi \, u_{v} \, u \cos \varphi}{(u^{2} \cos^{2} \varphi + c^{2})^{3/2}\sqrt{u^{2} + c^{2}}} + \frac{\cos \varphi \, \sqrt{u^{2} + c^{2}} \frac{\partial}{\partial u} u_{v}}{\sqrt{u^{2} \cos^{2} \varphi + c^{2}}} - \frac{cu_{z}}{u^{2} + c^{2}},$$

Строительная механика инженерных конструкций и сооружений, 2015, № 3

$u_z u \cos \varphi$	$u_u u c \cos \varphi \sin \varphi$				
$\omega_v = -\frac{1}{\sqrt{u^2 \cos^2 \varphi + c^2} \sqrt{u^2 + c^2}}$	$\overline{(u^2 \cos^2 \varphi + c^2)\sqrt{u^2 + c^2}}$				
$u_z c(u^2 + c^2 + u^2 sin^2 \varphi)$					
$+\frac{1}{(u^2\cos^2\varphi+c^2)}$	$(u^2 + c^2)'$				
$v = -\frac{\partial}{\partial u} u + \frac{c \cos \varphi u_v}{c - c \cos \varphi u$					
$\gamma u = \frac{\partial u}{\partial u^2} \sqrt{u^2 \cos^2 \varphi + c^2} \sqrt{u^2 + c^2},$					
$u^2 \sin 2\varphi \ u_v$	$c \cos \varphi \ u_u$				
$\gamma_v = \frac{1}{(u^2 \cos^2 \varphi + c^2)\sqrt{u^2 + c^2}}$	$\sqrt{u^2 \cos^2 \varphi + c^2} \sqrt{u^2 + c^2}$				
$\kappa_{z} = \frac{\sqrt{u^2 \cos^2 \varphi} + c^2 \frac{\partial^2}{\partial u^2} u_z}{\partial u^2} - \frac{1}{2}$	$c^2 \sin^2 \varphi u \frac{\partial}{\partial u} u_z$				
$\kappa_u = \cos \varphi \sqrt{u^2 + c^2} \qquad \cos \varphi \sqrt{u^2 \cos^2 \varphi + c^2} (u^2 + c^2)^{3/2}$					
$\frac{c^2 \cos \varphi u_z}{c^2 \cos \varphi u_z}$					
$\sqrt{u^2 + c^2}(u^2 cos^2 \varphi + c^2)^{3/2'}$					
$\cos \varphi \ u \ \frac{\partial}{\partial u} u_z $	$c^2 \cos \varphi \ u_z$				
$\kappa_v = \sqrt{u^2 \cos^2 \varphi + c^2} \sqrt{u^2 + c^2} + (4)$	$u^2 cos^2 \varphi + c^2)^{3/2} \sqrt{u^2 + c^2}$				
$\sin 2\varphi \left(u^2 \cos^2\varphi (u^2 + c^2) - \frac{1}{2}\right)$	$\frac{1}{2}c^2(u^2+c^2+u^2\sin^2\varphi)\Big)cu_z$				
$\kappa_{uv} = \frac{(u^2 + c^2)^{3/2}(u^2\cos^2\varphi + c^2)^2}{(u^2 + c^2)^2}$					
$\pm \frac{1}{2} \frac{c \sin 2\varphi \ u \frac{\partial}{\partial u} u_z}{c \sin 2\varphi}$					
$\frac{1}{2}\left(u^2\cos^2\varphi+c^2\right)\sqrt{u^2+c^2}$					

Уравнения равновесия для случая пологой оболочки:

$$\begin{split} \frac{\sqrt{u^2 \cos^2 \varphi + c^2}}{\cos \varphi \sqrt{u^2 + c^2}} \frac{\partial}{\partial u} \Big(\sqrt{u^2 \cos^2 \varphi + c^2} + N_u c \sin \varphi S_u \Big) \\ &- \frac{u \cos \varphi}{\sqrt{u^2 \cos^2 \varphi + c^2}} N_v + \sqrt{u^2 \cos^2 \varphi + c^2} X + c \sin \varphi Y \\ &= 0, \\ \frac{\sqrt{u^2 \cos^2 \varphi + c^2}}{\cos \varphi \sqrt{u^2 + c^2}} \frac{\partial}{\partial u} \Big(c \sin \varphi N_u + \sqrt{u^2 \cos^2 \varphi + c^2} S_u \Big) \\ &+ \frac{c u \sin \varphi \cos \varphi}{\sqrt{u^2 \cos^2 \varphi + c^2} \sqrt{u^2 + c^2}} N_u - \frac{u \cos \varphi}{\sqrt{u^2 + c^2}} S_v + c \sin \varphi X \\ &+ \sqrt{u^2 \cos^2 \varphi + c^2} \sqrt{u^2 + c^2} Y = 0, \\ \sqrt{u^2 \cos^2 \varphi + c^2} \Big(\frac{N_u}{R_u} + \frac{N_v}{R_v} \Big) + \frac{\partial}{\partial u} \Big(\sqrt{u^2 \cos^2 \varphi + c^2} Q_u \Big) + \frac{\cos^2 \varphi (u^2 + c^2)}{\sqrt{u^2 \cos^2 \varphi + c^2}} Z = 0, \\ Q_u &= \left(\frac{\sqrt{u^2 \cos^2 \varphi + c^2}}{\cos^2 \varphi (u^2 + c^2)} \frac{\partial}{\partial u} \Big(\sqrt{u^2 \cos^2 \varphi + c^2} M_u + c \sin \varphi M_{uv}) \Big) \\ &- \frac{c u \sin \varphi \cos^2 \varphi}{(u^2 \cos^2 \varphi + c^2)^{\frac{3}{2}}} M_{uv} + \frac{u \cos^2 \varphi}{u^2 \cos^2 \varphi + c^2} M_v \Big). \end{split}$$

Подставив геометрические уравнения в физические [3], а далее – выражения для усилий и моментов в уравнения равновесия, получаем 3 обыкновенных дифференциальных уравнения равновесия в перемещениях, которые могут быть преобразованы в 8 дифференциальных уравнений первого порядка и решены методом прогонки. Полностью система не приводится ввиду большого объема. Вычислив перемещения и их производные, можно в свою очередь вычислить внутренние усилия и моменты в оболочке.

Современные компьютеры и программные средства дают широкие возможности, как для численных расчетов, так и для символьных преобразований и упрощения выражений, для автоматизации процесса расчета и хранения в памяти больших символьных выражений.

Автором была проведена серия расчетов для геликоидов с углами наклона образующих от 0 до 20 градусов по данному полуаналитическому методу, а также серия расчетов по методу конечных элементов с теми же исходными данными. Расчеты по полуаналитическому методу проводились для случая длинного геликоида, для которого закрепление поперечных краев не оказывает существенного влияния на напряженно-деформированное состояние. Расчеты проводились в программном комплексе Maple 17. Поскольку в работе [4] приводятся доказательства того, что эти закрепления влияют на НДС оболочки только на незначительном участке, расчет длинных геликоидов представляется рациональным ввиду его корректности при заметном упрощении расчеты проводятся для фрагмента оболочки, представляющего собой сегмент 45°. Расчеты проводились в программном комплексе ЛИРА 9.6, конечные элементы — четырехугольные, пластинчатые.

Исходные данные: угол наклона образующих $\varphi = 5^{\circ}$; контурные радиусы – $R_1 = 2 \text{ м}, R_2 = 4 \text{ м}$; шаг винта направляющей – $0,01 \cdot 2\pi$; материал оболочки с E = 32500 МПа, v = 0,17; толщина h = 12 см; нагрузка равномерно распределенная вдоль вертикальной оси z - 1000 кг/м^2 , закрепление краев – жесткая заделка.

Графики перемещений для длинного косого геликоида, рассчитанного по полуаналитическому методу, представлены на рис.1.

Строительная механика инженерных конструкций и сооружений, 2015, № 3

Таблица 1. Сравнительная таблица результатов при разных углах наклона образующих

φ	0	3	5	10	15
максимальное пере-	8,69·10 ⁻⁵	8,45·10 ⁻⁵	8,43·10 ⁻⁵	7,99·10 ⁻⁵	$4,67 \cdot 10^{-5}$
мещение по оси z	,	,	,	,	<i>,</i>
метод 1, м					
то же, метод 2, м	8,7·10 ⁻⁵	8,6·10 ⁻⁵	8,0·10 ⁻⁵	7,4·10 ⁻⁵	6,6·10 ⁻⁵

Методы демонстрируют близкие результаты в диапазоне малых углов, и расхождение их при углах более 10°, что примерно соответствует пределам пологости.

Попытка решить аналогичную задачу аналитическим методом была предпринята в монографии [5], но она не была доведена до числового результата.

Наиболее близко подошел к решению практических задач для косого геликоида А.Р. Ярошенко [6]. В работах [7, 8, 9] также рассматриваются геликоиды с большим количеством витков, что дает возможность получить расчетную систему в виде трех обыкновенных дифференциальных уравнений, но здесь рассматриваются прямые [7, 8] и развертывающиеся геликоиды [8, 9].

Литература

1. *Krivoshapko S.N.* Geometry and strength of general helicoidal shells// Applied Mechanics Reviews (USA). – Vol.52. – No 5. – May 1999. – P. 161-175.

2. Кривошапко С.Н. Расчет и проектирование винтообразных конструкций, применяемых в строительстве и строительных машинах. – Обзорная информация. – М.: РОССТРОЙ России, ВНИИНТПИ, 2006. – Вып. 1-2. – Сер. «Строительные конструкции и материалы». – 68 с.

3. Гольденвейзер А.Л. Теория тонких упругих оболочек. – М.:ГТТИ, 1953. – 544 с.

4. Александров А.В., Косицын С.Б., Косицын А.С. Нетрадиционные модели конечных элементов высоких порядков// Теоретические основы строительства. - Warszawa 2.07.96-5.07.96, Москва: Изд-во АСВ, 1996. - С. 26-30.

5. Рекач В.Г., Кривошапко С.Н. Расчет оболочек сложной геометрии: Монография. - М.: Изд-во УДН, 1988. – 176 с.

6. *Ярошенко А.Р.* Осесимметричная деформация винтовой оболочки с прямоугольным профилем//Динамика и прочность машин. – Харьков, 1971. – Вып. 12. – С. 3-9.

7. *O'Mathuna D*. Rotationally symmetric deformations in helicoidal shells// J. of Mathematics and Physics. -1963. -42, No2. -P. 85 - 111.

8. *Рынковская М.И.* Применение метода В.Г. Рекача к расчету прямых геликоидальных оболочек// Строительная механика инженерных конструкций и сооружений. – 2008. – № 3. – С. 23-29.

9. *Krivoshapko S.N.* Static analysis of shells with developable middle surfaces// Applied Mechanics Reviews (USA). – Vol.51. – No12, Part 1. – December 1998. – P. 731-746.

References

1. Krivoshapko, S.N. (1999). Geometry and strength of general helicoidal shells. Applied Mechanics Reviews (USA), Vol. 52, No 5, p. 161-175.

2. Krivoshapko, S.N. (2006). Analysis and design of helix-shaped structures as applied to building and building machines: Review, Moscow: ROSSTROY Rossii, VNIINTPI, Vol. 1-2, "Stroit. Konstruktzii i Materialy", 68 p.

3. Goldenweizer, A.L. (1953). Theory of Thin Elastic Shells. Moscow: GTTI, 544 p.

4. Alexandrov, A.V., Kositsyn, S.B., Kositsyn, A.S. (1996). Netradizionnye modeli konechnyh elementov vysokih poryadkov. Teoreticheskie Osnovy Stroitelstva, Warszawa - 2.07.96-5.07.96 - Moscow, Izd-vo SSV, p.26-30.

5. Rekach, V.G., Krivoshapko, S.N. (1988). Analysis of Shells of Complex Forms: Monograph. Moscow: Izd-vo UDN, 176 p.

6. Yaroshenko, A.R. (1971). Axisymmetric deformation of a helicoidal shell of rectangular cross section. *Dinamika i Prochnost Mashin*, Kharkov, Vol. 12, p. 3-9.

7. O'Mathuna D. (1963). Rotationally symmetric deformations in helicoidal shells. J. of Mathematics and Physics, 42, №2, p. 85 – 111.

8. *Rynkovskaya*, *M.I.* (2008). Application of Rekatch's method for analysis of right helicoidal shells. *Structural Mechanics of Engineering Constructions and Buildings*, № 3, p. 23-29.

9. Krivoshapko, S.N. (1998). Static analysis of shells with developable middle surfaces. Applied Mechanics Reviews (USA), Vol. 51, No12, Part 1, p. 731-746.

ANALYSIS OF THE THIN ELASTIC SHELLS IN THE FORM OF LONG OBLIQUE HELICOID

E.M. Tupikova

Peoples' Friendship University of Russia, Moscow

The paper discusses the problems of the analysis of the stress-strain state of oblique helicoidal shells. Basic geometrical and elastic stress-strain relations, equilibrium equations for the shells of this type are established. The numerical solution for the case of a shallow long helicoid is given and the results are compared with the results obtained by finite-element method.

KEY WORDS: oblique helicoid, shallow shell, semianalytic method, equilibrium equations for thin elastic shell theory, non-orthogonal and non-conjugate curvilinear coordinates.