Расчет машиностроительных конструкций

ОПТИМИЗАЦИЯ ПРОЦЕССА КАЛИБРОВКИ ПРИ ВАЛЬЦОВКЕ

Л. С. КОХАН, ∂ -р техн. наук, профессор,

Г. Б. РЕМПЕЛЬ, аспирант.

Московский государственный вечерний металлургический институт, 112500, г. Москва, ул. Лефортовский вал, д. 26 Georgiirempel@mail.ru

В статье изложена методика выбора оптимальных деформационных и силовых параметров калибровки при вальцовке.

КЛЮЧЕВЫЕ СЛОВА: вальцовка, прокатка, овал, квадрат, прямоугольник.

Из всей номенклатуры заготовок, применяемых в авиационной отрасли, свыше 40 % составляют детали удлиненной формы с резкой разницей площадей поперечных сечений вдоль оси - лопатки, закрылки, стойки и др. Перспективным способом получения такого типа заготовок является процесс вальцовки на ковочных вальцах. В зависимости от формы сечения изделия могут быть приняты несколько вариантов заготовок. Ниже предлагается методика выбора профиля заготовки на основании оптимизации кинематических и силовых параметров устойчивости процесса.

Исследуем вначале калибровку «квадрат-овал» (рис. 1).

Установим кинематику процесса, используя механику сплошных сред. Принимаем функцию перемещений «U» в виде: $U_x = k_1 \cdot x + k_2 \cdot y$, где k_i – постоянные коэффициенты.

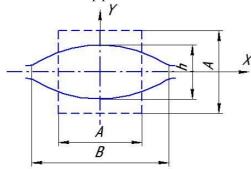


Рис. 1. Схема вальцовки с калибровкой "квадрат-овал".

При краевых условиях
$$x = 0$$
 и $y = A/2$

горизонтальное перемещение
$$U_x = 0$$
 .
 Тогда $0 = k_1 \cdot 0 + k_2 \cdot h/2$ и $k_2 = 0$.

При
$$x = B/2$$
 и $y = 0$ перемещение

$$U_x = B/2 - A/2 = k_1 \cdot B/2$$
,

откуда
$$k_1 = 1 - A/B$$
, $U_x = (1 - A/B)x$,

относительная деформация

$$\varepsilon_{x} = \frac{\partial U_{x}}{\partial x} = 1 - \frac{A}{B}.$$
 (1)

Вертикальное перемещение $U_y = k_1 \cdot \mathbf{x} + k_2 \cdot y$. При x = A/2 и y = 0 имеем

$$U_{_{V}} = 0 = k_{_{1}} \cdot A / 2 + k_{_{2}} \cdot 0$$
 и $k_{_{1}} = 0$,

а при x=0 и y=A/2 получаем $U_v=h/2-A/2=k_2\cdot A/2$, и $k_2=h/A-1$.

Соответственно,
$$U_y = (h/A - 1) \cdot y$$
 и $\varepsilon_y = \partial U_y / \partial y = h/A - 1$. (2)

По ряду наших экспериментальных исследований определено отношение B/h:

$$\frac{B}{h} = 2,802 - 0,0056 \cdot A$$
 и $A = \frac{2,802 - B/h}{0.0056}$. (3)

Исследуем горячую калибровку изделия из стали 45 с размерами сечения B = 67 мм, h = 26 мм на вальцовочном стане с диаметром валков 350 мм.

Из соотношения (3) находим A = (2.802 - 67/26)/0.0056 = 40.18 мм и принима-

ем
$$A=40$$
 мм . Вычисляем вытяжку: $\mu=\frac{F_{\kappa \theta}}{F_{o\theta}}=\frac{A^2}{B\cdot h\cdot (\pi/4)}=1{,}17$.

Далее проводим проверку выбора размеров заготовки. Прежде всего, уточняется возможность осуществления уширения. Максимально возможное уширение $\Delta B = B \cdot \varepsilon_x = 27$ мм. Среднее относительное давление:

$$\overline{\sigma_{cp}} = \frac{2}{\varepsilon_y \cdot \delta} \cdot \left(\frac{1}{\left(1 - \varepsilon_y\right)^{0.5 \cdot (\delta - 1)}} - 1 + 0.5 \cdot \varepsilon_y \right),\tag{4}$$

 R_k — катающий радиус, $R_k=(0.9D_{ean}-h)/2=144.5$ мм. Тогда $\varepsilon_x=1-A/B=1-40/67=0.4 \quad \text{и} \quad \varepsilon_y=h/A-1=26/40-1=-0.35 \ ;$

$$\varepsilon_x = 1 - A/B = 1 - 40/67 = 0,4$$
 и $\varepsilon_y = h/A - 1 = 26/40 - 1 = -0,35$;

$$\delta$$
 - основной параметр прокатки, $\delta = \frac{2 \cdot f}{\sqrt{A \cdot \varepsilon_y / R_k}} = \frac{2 \cdot 0.35}{\sqrt{40 \cdot 0.35 / 144.5}} = 2.25$,

$$\overline{\sigma_{cp}} = \frac{2}{0.35 \cdot 2.25} \cdot \left(\frac{1}{(1 - 0.35)^{0.5 \cdot 1.25}} - 1 + 0.5 \cdot 0.35 \right) = 1.23.$$

Затем по методике Колмогорова В. Л. [1] определяется коэффициент жесткости напряженного состояния $K_{\mathcal{H}} = \sigma_{\mathcal{CP}} / \sqrt{3} = -1.23 / \sqrt{3} = -1.3$. Отрицательный знак показывает напряжение сжатия. По величине $K_{\rm x}$ по диаграмме пластичности [1] определяется степень деформации сдвига при разрушении λ_p , затем вычисляется степень деформации сдвига для процесса λ:

$$\lambda = 2 \cdot \sqrt{\varepsilon_x^2 + \varepsilon_y^2 - \varepsilon_x \cdot \varepsilon_y}, \quad \lambda = 2 \cdot \sqrt{0.4^2 + 0.35^2 - 0.4 \cdot 0.35}. \tag{5}$$

Определим используемый запас ресурса пластичности:

$$\psi = \lambda/\lambda_p = 0.755/4 = 0.189$$
 , что меньше допускаемого запаса [ψ] = 0.28 [1].

Усилие вальцовки рассчитывается по формуле:
$$P = \overline{\sigma_{cp}} \cdot \sigma_{\rm T} \cdot B \cdot l$$
, (6)

где
$$l$$
 - длина дуги захвата, $l = \sqrt{A \cdot \varepsilon_y \cdot R_k} = \sqrt{40 \cdot 0.35 \cdot 144.5} = 44.98$ мм , $\sigma_{_{\rm T}}$ -

сопротивление пластической деформации, $\sigma_{\rm T} = \sigma_{\rm T0} \cdot K_{\varepsilon} \cdot K_{U} \cdot K_{T}$, $\sigma_{\rm T0}$ - coпротивление пластической деформации при горячем процессе, σ_{T0} = 80 МПа, K_{ε} - степень упрочнения, принимается по справочнику Целикова А.И., для обжатия $\varepsilon_y = -0.35$; $K_\varepsilon = 1.2$; K_U — скоростной коэффициент деформации, по [2] $K_U =$ 1,33; K_T – температурный коэффициент деформации, при $T=1100^{\circ}\mathrm{C}$ $K_T = 0.75$ [2], $\sigma_{\rm T} = 80 \cdot 1.2 \cdot 1.33 \cdot 0.75 = 96$ МПа. Тогда усилие вальцовки

$$P = 1,23.96.67.44,98 = 355853$$
 H.

Последняя проверка устанавливает устойчивость самого профиля:

$$K_{ycm} = P_{\kappa p}/P > [K_{ycm}] = 1.3;$$

где $P_{\kappa p}$ - критическое усилие, $P_{\kappa p} = \frac{J \cdot E \cdot \pi^2}{2 \cdot L_k}$, J - момент инерции,

$$J=2\cdot\int\limits_{-B/2}^{B/2}(x^2)\cdot y\cdot dx$$
 , для овального сечения $J=rac{0,196h^2B^2}{1-(h/B)^2}=516929,4$ мм 4 ,

 $E=1,6\cdot 10^5\,{\rm M\Pi a}$ — модуль упругости, L_k — расстояние между направляющими роликами стана, для стана с диаметрами валков 350 мм $L_k=700$ мм, тогда

$$P_{\kappa p} = \frac{516929, 4 \cdot 1, 6 \cdot 10^5 \cdot \pi^2}{2 \cdot 700} = 832134 \text{ H}.$$

Запас устойчивости $K_{ycm} = 832134/355853 = 2,338 > \left[K_{ycm}\right] = 1,3$.

Отметим, что расход металла определяется площадью ее сечения:

$$F_{KB} = 40^2 = 1600 \text{ mm}^2$$
.

Таким образом, просчитан весь режим данного варианта вальцовки.

2. Исследуем вариант калибровки «круг-овал» (рис. 1).

Горизонтальное перемещение в данном случае: $U_x = k_1 \cdot x + k_2 \cdot y$.

При краевых условиях: x=0 и $y=B/2-U_x=0$; при x=B/2 и $y=0-U_x=(B-d)/2$, $U_x=(1-d/B)\cdot x$ и $\varepsilon_x=1-d/B$. Аналогичная по высоте модель определяет $U_y=(h/d-1)\cdot y$, $\varepsilon_y=h/d-1$. По ряду наших экспериментальных исследований определено отношение

$$\frac{B}{h}$$
: $\frac{B}{h} = 0.53 - 0.0405 \cdot d$, откуда $d = \frac{B/h - 0.53}{0.0405} = 50.54$ мм.

Принимаем $\,d=50\,{
m \, km}$, тогда $\,{arepsilon}_x=1-50\,/\,67=0,\!254\,{
m \, k}\,\,{arepsilon}_v=26\,/\,50-1=-0,\!48$.

Вычисляем вытяжку:

$$\mu = \frac{F_{\kappa p}}{F_{OB}} = \frac{(\pi.4) \cdot d^2}{B \cdot h \cdot (\pi/4)} = 1,435$$

Основной параметр прокатки: $\delta = \frac{2 \cdot f}{\sqrt{\frac{d \cdot \varepsilon_{\mathcal{Y}}}{R_k}}} = \frac{2 \cdot 0,35}{\sqrt{\frac{50 \cdot 0,48}{144,5}}} = 2,382 \ .$

Среднее относительное давление по (4):

$$\overline{\sigma_{cp}} = \frac{2}{0,48 \cdot 2,382} \cdot \left(\frac{1}{(1-0,48)^{0,691}} - 1 + 0,5 \cdot 0,48 \right) = 1,419.$$

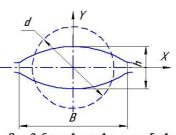


Рис. 2. Схема вальцовки с калибровкой "коиг-овал"

При $K_{\mathcal{H}c} = \frac{\overline{\sigma_{cp}}}{\sqrt{3}} = -\frac{1,419}{\sqrt{3}} = -0,82$ $\lambda_p = 4,1.$

Степень деформации сдвига процесса по (5) $\lambda = 0.832$.

Используемый запас ресурса пластичности:

$$\psi = \frac{\lambda}{\lambda_p} = \frac{0.832}{4.1} = 0.203 < [\psi] = 0.28$$
.

Проверяем устойчивость изделия при заданном режиме. Сопротивление пластической де-

формации $\sigma_{\scriptscriptstyle \rm T}$ определяется коэффициентом упрочнения $K_{\scriptscriptstyle \cal E}$, скоростным коэффициентом $K_{\scriptscriptstyle \it U}$, начальным значением $\sigma_{\scriptscriptstyle \it mo}$ и длиной дуги захвата

$$l = \sqrt{d \cdot \varepsilon_y \cdot R_k} = \sqrt{50 \cdot 0,48 \cdot 144,5} = 58,88$$
 мм . При $\varepsilon_y = 0,48,~K_\varepsilon = 1,2$ по [2]

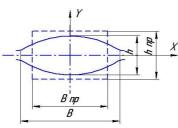


Рис. З. Схема вальцовки с калибровкой "прямоцгольник-овал".

$$K_{U} = 1.33$$
; $\sigma_{T} = 80 \cdot 1.2 \cdot 1.33 \cdot 0.75 = 96$ M Π a.

Усилие вальцовки находим по формуле (6) $P = 1,419 \cdot 96 \cdot 67 \cdot 58,88 = 537487$ Н. При неизменных в данном примере размерах овала $P_{\kappa D}$ = 832134 Н. Тогда запас устойчивости

$$K_{vcm} = 832134/355853 = 1,548 > [K_{vcm}] = 1,3$$
.

Отметим, что расход материала заготовки определяется площадью ее сечения:

$$F_{\kappa p} = (\pi/4) \cdot 50^2 = 1962 \,\mathrm{mm}^2$$
.

Таким образом, просчитан весь режим данного варианта вальцовки.

3. Исследуем вариант калибровки «прямоугольник – овал» (рис. 3).

По ряду наших экспериментальных исследований определено отношение h_{np} и B_{np} через коэффициент высотной деформации η : $\eta = h_{np}/h = 1, 1 \div 1, 6$.

Принимаем
$$\eta=1,23$$
 и $h_{np}=26\cdot1,23=32$ мм. Из условия вытяжки:
$$\mu=\frac{F_{np}}{F_{o6}}=\frac{h_{np}\cdot B_{np}}{B\cdot h\cdot \pi/4}=1,17;$$

ширина прямоугольника $B_{np} = \frac{1,17 \cdot 26 \cdot 67 \cdot \pi/4}{32} = 50 \,$ мм .

Согласно формулам (1) и (2), соответственно:

$$U_{x} = \left(\frac{B}{B_{np}} - 1\right) \cdot x , \ \varepsilon_{x} = \frac{B}{B_{np}} - 1 , \ U_{y} = \left(\frac{h}{h_{np}} - 1\right) \cdot y , \ \varepsilon_{y} = \frac{h}{h_{np}} - 1 ,$$

$$\varepsilon_{x} = 67/50 - 1 = 0.34 , \ \varepsilon_{y} = 26/32 - 1 = -0.188 .$$

Проверка деформационного режима: $\Delta B = B_{np} \varepsilon_x = 50(67/50-1) = 17$ мм.

Основной параметр прокатки:
$$\delta = \frac{2 \cdot f}{\sqrt{h_{np} \cdot \varepsilon_{y} / R_{k}}} = \frac{2 \cdot 0.35}{\sqrt{32 \cdot 0.188 / 144.5}} = 3,43$$
 .

Среднее относительное давление по (4) : $\overline{\sigma_{cp}} = 1,185; K_{3c} = -1,185/\sqrt{3} = -0,684.$

Степень деформации сдвига при разрушении: $\lambda_p = 4,05$.

Степень деформации сдвига процесса вычисляем по формуле (5): $\lambda = 0.59$.

Используемый запас ресурса пластичности: $\psi = \frac{\lambda}{\lambda_p} = \frac{0.59}{4.05} = 0.146 < [\psi] = 0.28$.

Проверяем устойчивость изделия при заданном режиме.

При упрочнении имеем $\varepsilon_y = 0.188$ $K_{\varepsilon} = 1.1$; $\sigma_{\mathrm{T}} = 80 \cdot 1.15 \cdot 1.3 \cdot 0.75 = 92$ МПа.

Длина дуги захвата:
$$l = \sqrt{h_{np}\cdot \varepsilon_{\,y}\cdot R_k} = \sqrt{32\cdot 0,\!188\cdot 144,\!5} = 29,\!48$$
 мм .

Усилие вальцовки по формуле (6): $P = 1,185 \cdot 92 \cdot 67 \cdot 29,48 = 215331.9 \text{ H}.$

Запас устойчивости:
$$K_{vcm} = 832134/215331,9 = 3,86 > [K_{vcm}] = 1,3$$
.

Отметим, что расход материала заготовки определяется площадью ее сечения: $F_{np} = 32.50 = 1600 \text{ мм}^2$. Таким образом, просчитан весь режим данного ва-

Ниже, в табл. 1 приведены основные параметры калибровки для изготовления заданного профиля.

Вид калибровки	Площадь сечения заготовки, мм ²	Используемый запас ресурса пластичности	Запас устой- чивости изде- лия	Усилие процесса, Н
Квадрат-овал	1600	0,189	2,34	355853
Круг-овал	1963	0,203	1,548	538847
Прямоугольник-овал	1600	0,146	3,86	215332

Табл. 1. Параметры калибровки для изготовления профиля

Анализ таблицы показывает, что оптимальным вариантом служит вальцовка с калибровкой «прямоугольник-параболический профиль», т.к. используется заготовка с наименьшей площадью сечения, процесс проводится при наименьшем усилии и обладает наибольшим запасом устойчивости.

Проведенный анализ показывает существенное повышение стабильности эксплуатационных свойств изделия, что подтверждено опытно- производственными испытаниями, проведенными на кафедре МиОМД МГВМИ. Установлено, что КИМ повышается на 15-20%, силовая нагрузка снижается на 30%, равномерность эксплуатационных свойств (распределение деформации) снижается на 25-30%.

Литер атура

- 1. *Колмогоров В. Л.* Механика обработки металлов давлением. М. Металлургия, $1986.-688~\mathrm{c}.$
- 2. *Целиков А. И., Томленов А. Д., Зюзин В. И.* и др. Теория прокатки. М. Металлургия, 1982.-335 с.
- 3. *Yang S., Kou S., Deng C.* Research and application of precision roll-forging taper-leaf spring of vehicle// Journal of Materials Processing Technology. Vol. 65, Number 1, March 1997. PP. 268-271
- 4. *Sedighi M., Mahmood M.* An approach to simulate cold roll-forging of turbo-engine thin compressor blade// Aircraft Engineering and Aerospace Technology. 2009. Vol. 81, Iss. 3. PP. 191 198.
- $5. \ www.american machinist.com/metal-forming-amp-joining/timken-installing-first-us-forge-rolling-line-mitsubishi$
- 6. *Hakan Karacaovali*. Analysis of roll-forging process. Graduate School of Natural and Applied Sciences, September 2005.

References

- 1. Kolmogorov, V.L. (1986). The Mechanics of Machining of Metals by Pressing, Moscow, Metallurgiya, 688 p.
 - 2. Tselikov, A.I., Tomlenov, A.D. (1982). The Theory of Rolling, Moscow, Metallurgiya, 335 p.
- 3. Yang, S.; Kou, S.; Deng, C. Research and application of precision roll-forging taper-leaf spring of vehicle, Journal of Materials Processing Technology, Vol. 65, Number 1, March 1997, 268-271
- 4. *Sedighi, M., Mahmood, M.* (2009). An approach to simulate cold roll-forging of turbo-engine thin compressor blade, *Aircraft Engineering and Aerospace Technology*, Vol. 81, Iss. 3, 191 198.
- $5. \ \ www.american machinist.com/metal-forming-amp-joining/timken-installing-first-us-forge-rolling-line-mitsubishi$
- 6. *Hakan Karacaovali* (2005). Analysis of roll-forging process, Graduate School of Natural and Applied Sciences, September 2005.

OPTIMIZATION OF CALIBRATION PROCESS WHEN FORGE-ROLLING

L. S. Kohan, G. B. Rempel *Moscow State Night Institute, Moscow*

In the paper, the methodology of optimal choice of deformation and force parameters of calibration sets out when forge-rolling.

KEYWORDS: forge-rolling, rolling, oval, foursquare, rectangle.