## РАЗВИТИЕ МЕТОДОВ ОЦЕНКИ ПРОЧНОСТИ НАКЛОННЫХ СЕЧЕ-НИЙ ЭКСПЛУАТИРУЕМЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

В.М. БОНДАРЕНКО, д-р техн. наук, профессор, акад РААСН Р.Е. МИГАЛЬ, канд. техн. наук, доцент Московская государственная академия коммунального хозяйства и строительства 111024, Москва, ул. Старообрядческая, 30/32, migal-64@mail.ru

Сформулирован метод оценки ресурса силового сопротивления железобетонных элементов по наклонному сечению с учетом коррозионных повреждений.

КЛЮЧЕВЫЕ СЛОВА: коррозионные повреждения, поперечный изгиб, силовое сопротивление, деформации.

При поперечном изгибе железобетонных элементов их напряженное состояние оценивается главными напряжениями, которые в свою очередь предопределяются нормальными и касательными напряжениями.<sup>1</sup> Запись главных напряжений общеизвестна:

$$\sigma_m(z) = -0.5\sigma_x(z) \pm \sqrt{[0.5\sigma_x(z)]^2 + \tau^2(z)}, \quad (1)$$

где z - ордината по высоте поперечного сечения,  $\sigma_x(z)$  - нормальные напряжения, соответствующие изгибающему моменту в сечении (M),  $\tau(z)$  - касательные напряжения, соответствующие поперечной силе в сечении (Q); причем главные растягивающие напряжения ответственны за разрыв материала  $\sigma_{mz} \ge R_{bz}$  (образование трещин в бетоне), главные сжимающие напряжения ответственны за раздробление материала  $\sigma_{mc} \ge R_b$  (разрушение сжатой зоны балки), рис. 1.



Рис. 1. а - схема главных напряжений; б - схема наклонных трещин, центр зоны сжатия Д; в<sub>0</sub>, h, h<sub>0</sub>, x, S, δ, c, W - геометрические размеры (в т.ч. с- горизонтальная проекция наклонной трещины, S-шаг поперечной арматуры, W-анкерная заделка арматуры)

Функции  $\sigma_x(z)$  нормальных,  $\tau(z)$  касательных напряжений, входящие в выражения главных напряжений  $\sigma_{mc}(z)$  и  $\sigma_m(z)$ , соответствующая стадии устойчивого напряженно-деформированного состояния [1], зависят от структурных и коррозионных повреждений [2], а также старения, нелинейности, неравновесности, наследственности и режимности деформирования [5]. В связи с этим продуктивно зафиксировать основные исходные посылки дальнейшего исследования.

1. Уравнение силового сопротивления бетона принимается в квазилинейной форме [6]:

$$\varepsilon(t) = \frac{\sigma(t)S^0[\sigma(t)]}{E_{\text{gp,n}}(t,t_0)},\tag{2}$$

где  $t_0, t$  -начало наблюдения, контрольное время наблюдения,  $\varepsilon(t)$ - полные отно-

<sup>&</sup>lt;sup>1</sup> Знаку «минус» отвечают главные сжимающие напряжения, знаку «плюс»-главные растятивающие напряжения

сительные деформации, -напряжения, Е<sub>врл</sub>-линейный (начальный) временный модуль деформации

$$E_{BP,T}(t,t_0) = \left[\frac{1}{E_{MT}(t)} + C^0(t,t) - \int_{t_0}^{t} \frac{\sigma(\tau)}{\sigma(t)} dc(\tau,t_0) d\tau\right]^{-1},$$
(3)

или без учета режима нагружения (СП):

$$E_{\rm gp,\pi}(t,t_0) = \frac{E_{\rm MF}^0(t)}{1 + E_{\rm MF}(t) C(t,t_0)} .$$
(4)

Здесь  $E_{Mr}^{0}(t)$ - начальный модуль мгновенной деформации,  $C(t,t_{0})$ - начальная мера ползучести,  $S^{0}[\sigma(t)]$ - функция нелинейности полной относительной деформации при неубывающем нагружении [4]:

$$\overline{S^{o}}[\sigma(t)] = \alpha[\sigma(t)]^{o-1}$$
 или  $\overline{S^{o}}[\sigma(t)] = 1 + \overline{V}[\frac{\sigma(t)}{R}]^{\overline{m}}$ ; (5)

а, в,  $\vec{V}$ , *m* - взаимосвязанные эмпирические параметры нелинейности, например:

$$e = \frac{1}{\ln c} \ln \left[ c \frac{(1+\bar{V})c}{(1+\bar{V})}, \ a = (1+\bar{V})R^{1-e} \right]$$

причем *с* назначается по соображениям минимизации отклонениям между разными вариантами  $\overline{S^{0}}$ , например *c* = 0,7.

2. Гипотеза плоских сечений (в смысле В.И. Мурашова):

$$\varepsilon(z,t) = \frac{M(t)}{D(t)}z,$$
 (6)

где M(t)-изгибающий момент в сечении, D(t)-изгибная жесткость сечения, z - ордината, отсчитываемая от нейтральной оси.

3. Коррозионные повреждения начинаются после полного нагружения конструкции; характер коррозионных повреждений позволяет выделить в сжатой зоне изгибаемого элемента три слоя: А-слой полного разрушения (толщина  $z^*$ ), Б-слой частичного коррозионного повреждения (толщина  $\delta$ ), В-слой неповрежденного коррозией части сжатой зоны (толщина p), рис. 2[2].



Рис. 2. Схема послойного коррозионного повреждения бетона и арматуры в поперечном сечении изгибаемого железобетонного элемента

Здесь z, v - координаты (*ov* - нейтральная ось сечения),  $e_0$ , h,  $a_s$ ,  $h_0$ ,  $x^*$ ,  $A_s$ традиционные обозначения геометрических характеристик сечения, R-предел прочности бетона на сжатие,  $\omega_s$ -коэффициент сохранения арматуры при коррозионном повреждении,  $N_s$  и  $N_e$  - равнодействующие внутренних сил растяжения и сжатия,  $K^*$ -функция коррозионных повреждений в слое Б [2]:

$$K^{*}(z) = \sum_{i=0}^{t-2} a_{i} z^{i}, \tag{7}$$

30

параметры а<sub>і</sub> которой вычисляются из геометрических условий:

при 
$$z=p$$
 будет  $K^*(p) = 1; \quad \frac{dK}{dz}\Big|_{z=p} = 0$  (8)

при  $z = p + \delta$  будет  $K^*(p + \delta) = 0$ , т.е.

$$a_0 = 1 - \left(\frac{p}{\delta}\right)^2; \quad a_1 = \frac{2p}{\delta^2}; \quad a_2 = -\frac{1}{\delta^2} \operatorname{пpH} p = x^* - (z^* + \delta); \tag{9}$$

поскольку условия (8) являются чисто геометрическими, постольку  $K^{*}(z)$  равновелико относится ко всем механическим характеристикам бетона:

$$K^{*}(z) = \frac{R^{*}(z)}{R} = \frac{E^{*}(z)}{E} = \frac{G^{*}(z)}{G} = \frac{c}{c^{*}(z)} = \frac{k_{o\delta}^{*}}{k_{o\delta}} = \cdots,$$
(10)

где знак «\*» соответствует характеристике поврежденного бетона, G - модуль сдвига,  $k_{ob}$ -коэффициент обратимости полных относительных деформаций; при этом  $\delta$  - глубина коррозионного повреждения к моменту времени (t) (в стадии устойчивого напряженно- деформированного состояния [1]) вычисляется решением уравнения:

$$\frac{d\Delta\delta}{dt} = \alpha (\Delta\delta)^m, \text{ где } \Delta\delta = \frac{\delta_{\kappa p} - \delta}{\delta_{\kappa p}} = 1 - \frac{\delta}{\delta_{\kappa p}} \text{ при } m \ge 1,$$
(11)

где  $\alpha$ , *m*,  $\delta_{\kappa p}$  - эмпирические параметры, зависящие как от сочетания бетона и коррозионной агрессивной среды, так и уровня действующих напряжений [2]; причем  $\delta_{\kappa p}$  - *max* глубина коррозионного повреждения может быть установлена по любым расчетным зависимостям, если они отражают уровень напряженного состояния бетона  $\eta = \sigma/R$ .

Например, для *т* связь с *п* приводится на рис.3 и дается соотношением:

$$m = \sum_{i>0}^{n-n} q_{mi} \eta^i \quad (\text{прн} n = 2; q_{m2} < 0) .$$
 (12)



0,4-0,5-уровень линейного деформирования,

0,8-0,9-уровень длительной прочности бетона,

0,95-уровень начала разрушения бетона,

1,0-полное разрушение бетона).

Решение уравнения (11) имеет вид:

$$\delta(t) = f_m \delta_{sp}(t_0), \qquad (13)$$

$$f_m = 1 - \Delta \delta(t_0) \ell^{-\alpha(t-t_0)} , \qquad (14)$$

при 
$$m \ge 1 f_m = 1 - (\Delta \delta(t_0)^{[(-m)+1]} + \alpha[(-m)+1](t-t_0))^{\overline{[(-m)+1]}}$$
. (15)

4. Существующая анизотропия бетона в части отличия силового сопротивления при сжатии от аналогичного показателя при растяжении отражена ограничением  $x^* \ge z^* + \delta$ , (16) исключающим проникновение коррозионной среды в растянутую зону бетона (коррозионные повреждения арматуры оцениваются независимо).

5. Снижение модуля сдвига бетона G в растянутой зоне изгибаемого железобетонного элемента, интенсифицирущиеся по мере роста растягивающих напряжений, оценивается расчетным уменьшением G

$$G^* = K_p(z)G$$
 rge  $K_p(z) < 1$  (17)

(до экспериментального уточнения  $K_p$  принимается в виде  $K^*$ ).

пр

Условия равновесия и приведенные посылки (2), (5), (6), (7), (10), (17) приводят к решениям для  $\sigma_x(z), \tau(z), x$ :



а) без учета влияния коррозионных повреждений [4,7]

$$\sigma_x(z) = \left[\frac{E_{gp,3}M}{(1+\bar{V})DR}\right]^{1/\epsilon}R , \qquad (18)$$

$$\tau(z) = 1.5 \frac{Q}{\varepsilon_0 h_0} \left[ 1 - \left(\frac{z}{x}\right)^2 \right],\tag{19}$$

$$x = \left\{ \frac{(1 + 1/\epsilon)A_s \sigma_s}{\epsilon_0 R} \left[ \frac{(1 + \overline{V})R}{E_{spax}M} \right]^{1/\epsilon} \right\}^{1+\epsilon};$$
(20)

б) с учетом влияния коррозионных повреждений:

$$\sigma_{x}^{*}(z_{1}) = \left[\frac{E_{qp,x}M}{(1+\bar{V})DR}z_{1}\right]^{\gamma_{q}}K^{*}(z)R,$$

$$\tau^{*}(z_{1}) = f(z_{1})K^{*}(z_{1})\tau(z_{1}).$$
(21)
(22)

При этом высота сжатой зоны  $x^*$  с учетом коррозионных повреждений бетона и арматуры находится численно [4]; соответственно меняется положение нейтральной оси и отсчет ординаты  $z_1$ , а также очертание эпюр напряжений, рис. 4.

Отметим, что изменения  $G^*$  в сжатой зоне и G в растянутой зоне, учитываемые введением  $K^*(7)$  и  $K_p(17)$ , требуют корректирующей функции к  $\tau^*(z_1)$ :

$$f_G^*(z_1) = \sum_{i=0}^n c_i \, z_1^i \,, \tag{23}$$

значения коэффициента с, который устанавливается из естественных условий:

$$Q = e_0 \int_{-(h_0 - x_1^*)}^{x_1^* - z^*} (z_1) dz_1 = e_0 \int_{-(h_0 - x^*)}^{x_1^* - z_1} f_G^*(z_1) K^*(z_1) \tau(z_1) dz_1,$$
(24)

а также при:

$$z_1 = x_1^* - z^*$$
 будет  $f_G^*(x_1^*, z^*) = 1$ , т.е.  $f_G^*(x_1^*, z^*) = c_0 + c_1(x_1^* - z^*) + c_2(x_1^* - z^*)^2 = 1$ ; (25) при  $z_1 = -(h_0 - x_1^*)$  будет  $f_G^* = 1$ ,

T.e. 
$$f_G^*[-(h_0 - x_1^*)] = c_0 + c_1[-(h_0 - x_1^*)] + c_2[-(h_0 - x_1^*)]^2 = 1.$$
 (26)



Рис.4. Схемы напряженного состояния сечений элементов: a) до коррозионных повреждений, б) после коррозионных повреждений.

Решение системы (24)-(26) приводится к алгебраической матрице вида:  $a_{11}c_0 + a_{12}c_1 + a_{13}c_2 = e_1$ 

$$a_{21}c_0 + a_{22}c_1 + a_{23}c_2 = e_2 \quad \text{при } e_1 = e_2 = e_3 \qquad (27)$$
$$a_{31}c_0 + a_{32}c_1 + a_{33}c_2 = e_3,$$

а искомые  $c_i$  даются формулами Крамера:  $c_0 = \frac{D_1}{D}$ ;  $c_1 = \frac{D_2}{D}$ ;  $c_2 = \frac{D_2}{D}$ , (28) где D - общий определимой системы (27),  $D_i$ -частные определимой системы:

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} : D_e = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$D_2 = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{2} & a_{23} \\ a_{31} & a_{3} & a_{33} \end{vmatrix} : D_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{33} & a_{33} \end{vmatrix}$$
(29)

Здесь:  $a_{11} = a_0q_0 + a_1q_1 + a_2q_2 - a_0r^*q_2 - a_1r^*q_3 - a_2r^*q_4$ ;  $a_{12} = a_0q_1 + a_1q_2 + a_2q_2 + a_2q_3 - a_0r^*q_3 - a_1r^*q_4 - a_2r^*q_5$ ;  $a_{13} = a_1q_3 + a_2q_4 - a_0r^*q_4 - a_1r^*a_5 - a_2r^*q_6$ ;  $a_{21} = 1$ ;  $a_{22} = x^* - z^*$ ;

$$a_{23} = (x^* - z^*)^2, a_{31} = 1; \quad a_{32} = [-(h_0 - x^*)]; \quad a_{33} = [-(h_0 - x_1^*)]^2.$$
(30)

Отметим, что все  $a_{ij}$  определяются геометрическими параметрами  $h_0$ ,  $x^*, z^*, \delta$ ; параметр  $a_i \phi$ ормулами (9);

$$r^* = \frac{1}{x^* - z^*}; \qquad q_i = \frac{3\left\{ (x^* - z^*)^{(i+1)} - \left[ -(h_0 - x^*) \right]^{(i+1)} \right\}}{2(i+1)(h_0 - z^*)}. \tag{31}$$

Таким образом, для поврежденных коррозией железобетонных конструкций устанавливаются нормальные напряжения  $\sigma_x^*(z_1)$  (21) и касательные напряжения  $\tau^*(z_1)$  (22), корректирующая функция  $f_G^*(z_1)$  (23) вычисляется с помощью (28). Совокупно это приводит к искомой записи главных напряжений для поврежденной коррозией изгибаемой железобетонной балки

$$\sigma_m^*(z_1) = -0.5\sigma_x^*(z_1) \pm \sqrt{[0.5\sigma_x^*(z_1)]^2 + \tau^2(z_1)^2} \quad . \tag{32}$$

Далее, согласно (10) предел прочности на растяжение поврежденного коррозией бетона  $R_{st}^*$  является функцией  $z_1$ :

$$K_{st}(z_1) = K^*(z_1)R_{st}$$
 (33)

а место разрыва бетона - первая трещина для наклонного сечения дается решением уравнения:  $\sigma_{mt}^*(z_1) = K^*(z_1)R_{st}$ . (34)

Экспериментально установлено, что существует три типа разрушения изгибаемого поврежденной коррозией железобетонного элемента по наклонному сечению:

<u>1тип.</u> Раздробление главными сжимающими напряжениями бетона стенки по наклонной полосе между трещинами:

$$\sigma_{mc}^* \ge R_s^*(z_1)$$
, (35)

причем ордината места начала разрушения (*z*<sub>1</sub>) находится решением уравнения (36) относительно *z*:

$$\frac{0.5\sigma_x^*(z_1) + \sqrt{[0.5\sigma_x^*(z_1)]^2 + \tau^*(z_1)^2}}{\frac{K^*(z_1)}{E}} = R_\varepsilon,$$
(36)

где  $\sigma_x^*(z_1)$  по (21),  $\tau^*(z_1)$  пс (22),  $K^*(z_1)$  по (7). <u>2 тип</u>. Разрушение наклонного сечения по т.н. «срезу» в случае если поперечная сила от внешних нагрузок Q больше силового сопротивления разрушению бетона и арматуры [3]. Разрушение предотвращается, если удовлетворяется условие<sup>2</sup>:  $Q \leq Q_{xy}^* = Q_{xw}^* + Q_s^*$  (37)

<sup>&</sup>lt;sup>2</sup> Принято, что отогнутой арматуры нет

где

$$Q_{sw}^* = q_{sw}^* c \qquad \text{прн} \quad q_{sw}^* = \frac{1}{s} \sum \omega_{sw} A_{sw} R_{sw}, \qquad (38)$$
$$Q_e^* = \frac{K_e^*}{c},$$

где

$$K_{\epsilon}^{*} = \varphi_{0} \left\{ \left[ h_{0} - (z^{*} + \delta) \right] + \int_{\varphi}^{\delta} K^{*}(z_{1}) dz_{1} \right\} e_{0}(h_{0} - z^{*}) R_{et},$$
(39)

или

$$K_{\sigma}^{*} = \varphi_{0} \left\{ \left[ h_{0} - (z^{*} + \delta) \right] + \sum_{i=1}^{i=2} \frac{a_{i}}{i+1} (\delta^{i} - p^{i}) \right\} \frac{\epsilon(h_{0} - z^{*})}{c} R_{\sigma \xi},$$
(40)

при

$$\frac{dQ_{\rm Kp}^*}{dc} = q_{\rm SW}^* - \frac{K_{\rm S}^*}{(c)^2} = 0, \, \text{t.e.} \, c = \sqrt{\frac{K_{\rm S}^*}{q_{\rm SW}^*}} \,. \tag{41}$$

<u>З тип.</u> Поворот по наклонному сечению, который наступает в случае, когда главные растягивающие напряжения в растянутой зоне достигают предела прочности бетона на растяжение (23) или приближенно:

$$\sigma_{mt}^{*}(h_{0} - x^{*}) = R_{et}^{*}(h_{0} - x^{*}). \qquad (42)$$

После этого при недостаточной анкеровке продольной арматуры, её разрыве за счет коррозионных повреждений ( $\omega_s < 1$ ) происходит излом железобетонного элемента с поворотом его частей вокруг центра тяжести сжатой зоны бетона.

В целом, при коррозионном повреждении бетона сжатой зоны и рабочей поперечной или растянутой арматуры вероятность разрушения изгибаемого железобетонного элемента по наклонному сечению существенно возрастает; изложенный метод оценки ресурса силового сопротивления направлен на предупреждение такой опасности.

## Литература

1. Бондаренко В.М. К вопросу об устойчивом и неустойчивом сопротивлении железобетонных конструкций, поврежденных коррозией// Известия ОрелГТУ, серия «Строительство. Транспорт»-№1/21(533)-Орел-2009.

2. Бондаренко В.М. Феноменология кинетики повреждений бетона железобетонных конструкций, эксплуатирующихся в агрессивной среде// Бетон и железобетон-Москва. -№ 2. - 2008.

3. *Мигаль Р.Е.* К вопросу оценки сопротивления поврежденных коррозией железобетонных элементов// Материалы VI научно-технической конференции МГАКХиС. Москва. -2006.

4. Бондаренко В.М. Особенности силового сопротивления поврежденных коррозией железобетонных элементов знакопеременному нагружению// Строительная механика инженерных конструкций и сооружений. - №1. - 2011.

5. Бондаренко В.М., Бондаренко С.В. Инженерные методы нелинейной теории железобетона. – М.:Стройиздат, 1982.

6. Бондаренко С.В., Санжаровский Р.С. Усиление железобетонных конструкций при реконструкций зданий. – М.: Стройиздат, 1990.

7. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов. – М.: Высшая школ, 1995.

## DEVELOPMENT OF METHODS OF ESTIMATION OF DURABILITY OF SLOPING SECTIONS OF ON THE ROAD REINFORCED CONCRETE CONSTRUCTIONS.

## V. M. Bondarenko, R.E. Migal

The method of estimation of resource of power resistance of reinforce-concrete elements is set forth on a sloping section taking into account corrosive damages.

KEYWORDS: corrosive damages, cross-bending, power resistance, deformation.