ОДНОРОДНЫЙ ИЗГИБ ПЛАСТИНЫ, ОСЛАБЛЕННОЙ ПЕРИОДИЧЕСКОЙ СИСТЕМОЙ КРУГОВЫХ ОТВЕРСТИЙ И ПРЯМОЛИНЕЙНЫМИ СКВОЗНЫМИ ТРЕЩИНАМИ

Р.А. ИСКЕНДЕРОВ, аспирант

Азербайджанский архитектурно-строительный университет, Азербайджан, AZ1117, Баку, ул. М. Гусейнзаде, 31 e-mail: iske@mail.ru

Рассматривается задача механики разрушения для изгибаемой изотропной пластины, ослабленной периодической системой круговых отверстий и прямолинейными сквозными трещинами. Найдены коэффициенты интенсивности напряжений.

КЛЮЧЕВЫЕ СЛОВА: пластина, периодическая система круговых отверстий, чистый изгиб, трещины, коэффициенты интенсивности напряжений.

Постановка задачи. Задачи теории изгиба пластин для многосвязных областей представляют значительный интерес [1, 2].

Пусть имеется изотропная упругая пластина, ослабленная периодической системой круговых отверстий и прямолинейными сквозными трещинами неравной длины коллинеарными осям абсцисс и ординат (рисунок). Круговые отверстия имеют радиус λ (λ < 1) и центры в точках

Контуры круговых отверстий и берега сквозных прямолинейных трещин свободны от внешних нагрузок. Пластина подвергается изгибу средними моментами (изгиб на бесконечности)

$$M_x = M_x^{\infty}$$
, $M_y = M_y^{\infty}$, $H_{xy} = 0$.

Принято, что в процессе деформации пластины противоположные берега трещины не входят в контакт. На основании симметрии граничных условий и геометрии области D_z , занятой упругой средой, компоненты тензора напряжений являются периодическими функциями с периодом ω . Требуется определить напряженно-деформированное состояние пластины по граничным условиям, выражающим отсутствие внешних нагрузок вдоль обвода круговых отверстий и

на берегах периодической системы сквозных трещин вдоль осей абсцисс и ординат. Начало системы координат совмещаем с геометрическим центром круга L_0 в срединной плоскости пластины.

Представим удельные моменты, удельные поперечные силы для однородной задачи изгиба через аналитические функции $\Phi(z)$ и $\Psi(z)$ [3]

$$\begin{split} M_x + M_y &= -4D(1+v)\,\mathrm{Re}\,\Phi(z)\,, \quad M_y - M_x + 2iH_{xy} = 2D(1-v)\Big[\bar{z}\Phi'(z) + \Psi(z)\Big],\\ D &= \frac{Eh^3}{12(1-v^2)}\,, \end{split}$$

где M_x , M_y и H_{xy} – соответственно удельные изгибающие и крутящие моменты; E – модуль Юнга; v – коэффициент Пуассона; h – толщина пластины.

На основании соотношений классической теории Кирхгофа [3] и Колосова-Мусхелишвили [4] и граничных условий на контурах круговых отверстий и берегах трещин задача сводится к определению аналитических функций $\Phi(z)$ и $\Psi(z)$ из краевых условий

$$\kappa \overline{\Phi(\tau)} + \Phi(\tau) - \left[\overline{\tau} \Phi'(\tau) + \Psi(\tau)\right] e^{2i\theta} = 0, \qquad (1)$$

$$\kappa \Phi(t) + \Phi(t) + t \overline{\Phi'(t)} + \overline{\Psi(t)} = iC, \qquad (2)$$

$$\kappa \Phi(t_1) + \Phi(t_1) + t_1 \overline{\Phi'(t_1)} + \overline{\Psi(t_1)} = iC, \qquad (3)$$

где $\tau = \lambda e^{i\theta} + m\omega$ ($m = 0, \pm 1, \pm 2, ...$); t и t_1 – аффиксы точек берегов трещин; C и C_1 – действительные постоянные, определяемые из условия равенства нулю скачка прогиба в вершинах трещин; $\kappa = -(3+\nu)/(1-\nu)$, $\kappa = 1$ для второй основной задачи.

Постановка задачи охватывает одновременно случаи жестких включений и свободных отверстий, причем трещины могут выходить на контур отверстия.

Решение задачи. Ищем решение граничной задачи (1)-(3) в следующем виде

$$\Phi(z) = \Phi_1(z) + \Phi_2(z) + \Phi_3(z), \quad \Psi(z) = \Psi_1(z) + \Psi_2(z) + \Psi_3(z), \quad (4)$$

$$\Phi_1(z) = -\frac{M_x^{\infty} + M_y^{\infty}}{4(1+\nu)D} + \alpha_0 + \sum_{k=0}^{\infty} \alpha_{2k+2} \frac{\lambda^{2k+2} \rho^{(2k)}(z)}{(2k+1)!},$$
(5)

$$\Psi_{1}(z) = \frac{M_{y}^{\infty} - M_{x}^{\infty}}{2(1-v)D} + \sum_{k=0}^{\infty} \beta_{2k+2} \frac{\lambda^{2k+2} \rho^{(2k)}(z)}{(2k+1)!} - \sum_{k=0}^{\infty} \alpha_{2k+2} \frac{\lambda^{2k+2} S^{(2k)}(z)}{(2k+1)!},$$

$$\Phi_{2}(z) = \frac{1}{i\omega(1+\kappa)} \int_{L} g(t) \operatorname{ctg} \frac{\pi}{\omega} (t-z) dt, \qquad (6)$$

$$\Psi_{2}(z) = -\frac{\pi z}{i\omega^{2}(1+\kappa)} \int_{L}^{g} g(t) \sin^{-2} \frac{\pi}{\omega} (t-z) dt ,$$

$$\Phi_{3}(z) = \frac{1}{i\omega(1+\kappa)} \int_{L_{1}}^{g} g_{1}(t_{1}) \operatorname{ctg} \frac{\pi}{\omega} (it_{1}-z) dt_{1} , \qquad (7)$$

$$\Psi_{3}(z) = -\frac{1}{\omega(1+\kappa)} \int_{L_{1}} g_{1}(t_{1}) \left[2 \operatorname{ctg} \frac{\pi}{\omega} (it_{1}-z) + \frac{\pi}{\omega} (2t_{1}+iz) \sin^{2} \frac{\pi}{\omega} (it_{1}-z) \right] dt_{1} .$$

37

Интегралы в (6) и (7) берутся по линиям $L = [-l, -\lambda_1] + [\lambda_1, l]$ и $L_1 = [-h, -r] + [r, h]$,

$$\pm g(t) = \frac{d}{dt} \left[\frac{\partial W^{\pm}}{\partial x} + i \frac{\partial W^{\pm}}{\partial y} \right], \quad t \in L, \quad \rho(z) = \left(\frac{\pi}{\omega} \right)^2 \left(\frac{1}{\sin^2 \frac{\pi}{\omega} z} - \frac{1}{3} \right),$$

S(z) – специальная мероморфная функция [5]; g(x), $g_1(y)$ – искомые функции, описывающие разрывы производных смещений на берегах трещин.

Из условия равенства нулю главного вектора и главного момента сил, действующих на дугу, соединяющие две конгруэнтные точки в D_z , следует

$$\alpha_0 = -\frac{1}{6} \left(\frac{\pi}{\omega}\right)^2 \frac{1-\nu}{1+\nu} \beta_2 \lambda^2 \,. \tag{8}$$

Из условий симметрии относительно координатных осей имеем

$$Im \alpha_{2k} = 0, Im \beta_{2k} = 0 \quad (k = 0, 1, 2, ...).$$
(9)

Легко убедиться, что представления (4)-(7) определяют класс симметричных задач с периодическим распределением напряжений. Неизвестные функции g(x), $g_1(y)$ и коэффициенты α_{2k} , β_{2k} должны быть определены из граничных условий (1)-(3). Так как выполняются условия периодичности, система краевых условий (1) вырождается в одно функциональное уравнение, например, на контуре $L_0 \tau = \lambda e^{i\theta}$, а система граничных условий (2), (3) вырождается в краевые условия на контурах L и L_1 . К соотношениям (3)-(7) следует добавить дополнительные условия [5, 6]

$$\int_{-l}^{-\lambda_{1}} g(t)dt = 0, \quad \int_{\lambda_{1}}^{l} g(t)dt = 0, \quad \int_{-h}^{-r} g_{1}(t_{1})dt_{1} = 0, \quad \int_{r}^{h_{1}} g_{1}(t_{1})dt_{1} = 0, \quad (10)$$

которые обеспечивают однозначность улов поворота срединной плоскости при обходе контуров трещин [6].

Удовлетворяя краевым условиям, сводим решение задачи к двум бесконечным алгебраическим системам и двум сингулярным интегральным уравнениям первого рода.

$$\begin{split} &\alpha_{2j+2} = \sum_{k=0}^{\infty} \alpha_{j,k} \alpha_{2k+2} + b_j \ (j = 0,1,2,\ldots). \\ &\text{B} \text{десь} \quad \alpha_{j,k} = (2j+1) \gamma_{j,k} \lambda^{2j+2k+2}, \quad \gamma_{0,0} = \frac{3}{8} g_2 \lambda^2 + \sum_{j=1}^{\infty} \frac{(2j+1)g_{j+1}^2 \lambda^{4j+2}}{2^{4j+4}}, \\ &\gamma_{j,k} = \frac{(2j+2k+2)!g_{j+k+1}}{(2j+1)!(2k+1)!2^{2j+2k+2}} + \frac{(2j+2k+4)!g_{j+k+2}\lambda^2}{(2j+2)!(2k+2)!2^{2j+2k+4}} + \\ &\quad + \sum_{i=0}^{\infty} \frac{(2j+2i+1)!g_{j+1+1}(2k+2i+1)!g_{k+i+1}\lambda^{4i+2}}{(2j+1)!(2k+1)!(2i+1)!(2i)!2^{2j+2k+4i+4}} + b_{j,k}, \\ &b_{0,k} = 0, \quad b_{j,0} = 0, \quad b_{j,k} = \frac{g_{j+1}g_{k+1}\lambda^2}{2^{2j+2k+4}} \left(1 + \frac{2K_2\lambda^2}{K_0}\right) \quad (j,k = 0,1,2,\ldots), \end{split}$$

38

$$K_0 = 1 - K_2 \lambda^2$$
, $K_2 = -\frac{\pi^2}{24} \frac{1 - \nu}{1 + \nu}$.

Постоянные β_{2k} определяются из следующих уравнений

$$\beta_{2} = \frac{1}{K_{0}} \left[-C_{0} + 2\sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+2}}{2^{2k+2}} \alpha_{2k+2} \right],$$

$$\beta_{2j+4} = -C_{-2j-2} + (2j+3)\alpha_{2k+2} + \sum_{k=0}^{\infty} \frac{(2j+2k+3)!g_{j+k+2}\lambda^{2j+2k+4}}{(2j+2)!(2k+1)!2^{2j+2k+4}} \alpha_{2k+2} + \sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+2}}{(2j+2)!(2k+1)!2^{2j+2k+4}} \alpha_{2k+2} + \sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+2}}{(2j+2)!(2k+1)!2^{2k+4}} \alpha_{2k+2} + \sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+2}}{(2j+2)!(2k+1)!2^{2k+4}} \alpha_{2k+2} + \sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+2}}{(2j+2)!(2k+1)!2^{2k+4}} \alpha_{2k+2} + \sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+2}}{(2j+2)!(2k+1)!2^{2k+4}} \alpha_{2k+2} + \sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+4}}{(2j+2)!(2k+1)!2^{2k+4}} + \sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+4}}{(2j+2)!2^{2k+4}} + \sum_{k=0}^{\infty} \frac{g_{k+1}\lambda^{2k+4}}{(2j+2$$

Относительно искомой функции g(x) имеем

$$\frac{2\pi}{i\omega^2(1+\kappa)} \int_L g(t) \operatorname{ctg} \frac{\pi}{\omega} (t-x) dt + N(x) = iC,$$
$$N(x) = -\frac{M_x^{\infty} + M_y^{\infty}}{4(1+\nu)D} + \frac{M_y^{\infty} - M_x^{\infty}}{2(1-\nu)D} + \Phi_*(x) + \overline{\Phi_*(x)} + x\overline{\Phi_*'(x)} + \overline{\Psi_*(x)},$$

$$\Phi_*(z) = \Phi_1(z) + \Phi_3(z), \qquad \Psi_*(z) = \Psi_1(z) + \Psi_3(z)$$

Относительно искомой функции $g_1(y)$ имеем

$$\begin{aligned} &\frac{2\pi}{i\omega^2(1+\kappa)} \int_{L_1} g_1(t)(t-y) \operatorname{sh}^{-2} \frac{\pi}{\omega} (t-y) dt + N_1(y) = iC_1, \\ N_1(y) &= -\frac{M_x^{\infty} + M_y^{\infty}}{2(1+\nu)D} + \frac{M_y^{\infty} - M_x^{\infty}}{2(1-\nu)D} + \Phi_4(iy) + \overline{\Phi_4(iy)} + iy \overline{\Phi_4'(iy)} + \overline{\Psi_4(iy)} \\ &\Phi_4(z) = \Phi_1(z) + \Phi_2(z), \qquad \Psi_4(z) = \Psi_1(z) + \Psi_2(z). \end{aligned}$$

Каждое сингулярное интегральное уравнение задачи с помощью интерполяционного полинома Лагранжа, построенного по чебышевским узлам, сводится к конечной системе линейных алгебраических уравнений без промежуточного этапа приведения его к уравнению Фредгольма. Полученные алгебраические системы решались методами урезания и Гаусса с выбором главного элемента для различных значений порядка M(M - число чебышевских узлов) в зависимости от радиуса круговых отверстий.

Для определения постоянной *С* имеем следующие соотношения [6], обеспечивающие равенство нулю скачка прогиба в вершинах разрезов *L*

$$\operatorname{Re} \int_{-l}^{-\lambda_{1}} tg(t)dt = 0, \quad \operatorname{Re} \int_{\lambda_{1}}^{l} tg(t)dt = 0, \quad (11)$$

Аналогично, для определения постоянной C_1 имеем следующие соотношения, обеспечивающие равенство нулю скачка прогиба L_1

$$\operatorname{Re}_{-h}^{-r} \overline{t_1} g_1(t_1) dt_1 = 0, \qquad \operatorname{Re}_{r}^{h} \overline{t_1} g_1(t_1) dt_1 = 0, \qquad (12)$$

Для численной реализации изложенного способа были выполнены расчеты. Исследовался односторонний изгиб пластины моментами M_y^{∞} ($M_x^{\infty} = 0$) и всесторонний изгиб моментами $M_x^{\infty} = M_y^{\infty} = M_0$. 39

При изменении радиуса кругового отверстия в диапазоне $0,1 \le \lambda \le 0,6$ значения коэффициента интенсивности напряжений, а также коэффициенты α_{2k} , β_{2k} по существу не меняются (совпадают с точностью до шестого знака) начиная с M = 20. В диапазоне изменения радиуса $0,6 \le \lambda \le 0,8$ оказалось достаточным взять M = 40, а бесконечные системы урезать до 12 уравнений (решения совпадают с точностью до четвертого знака).

Были проведены расчеты по определению коэффициентов интенсивности напряжений. Для коэффициентов интенсивности напряжений в случае одностороннего изгиба пластины имеем

$$\begin{split} K_{\mathrm{I}}^{\lambda_{1}} &= M_{y}^{\infty} \sqrt{\pi l} F_{1}(\lambda, \lambda_{1}, l, r, h), \quad K_{\mathrm{I}}^{\lambda} = M_{y}^{\infty} \sqrt{\pi l} F_{2}(\lambda, \lambda_{1}, l, r, h), \\ K_{\mathrm{I}}^{r} &= M_{y}^{\infty} \sqrt{\pi h} F_{3}(\lambda, \lambda_{1}, l, r, h), \quad K_{\mathrm{I}}^{h} = M_{y}^{\infty} \sqrt{\pi h} F_{4}(\lambda, \lambda_{1}, l, r, h). \end{split}$$

В случае всестороннего изгиба пластины для коэффициентов интенсивности напряжений имеем

$$\begin{split} K_{\mathrm{I}}^{\lambda_{\mathrm{I}}} &= M_0 \sqrt{\pi l} F_{\mathrm{I}}^*(\lambda,\lambda_{\mathrm{I}},l,r,h) \,, \quad K_{\mathrm{I}}^{\lambda} = M_0 \sqrt{\pi l} F_{\mathrm{2}}^*(\lambda,\lambda_{\mathrm{I}},l,r,h) \,, \\ K_{\mathrm{I}}^r &= M_0 \sqrt{\pi h} F_{\mathrm{3}}^*(\lambda,\lambda_{\mathrm{I}},l,r,h) \,, \quad K_{\mathrm{I}}^h = M_0 \sqrt{\pi h} F_{\mathrm{4}}^*(\lambda,\lambda_{\mathrm{I}},l,r,h) \,. \end{split}$$

Как показали исследования, с учетом взаимодействия системы трещин и отверстий при изгибе коэффициент интенсивности напряжений увеличивается по сравнению с одиночным отверстием и изолированной трещиной. Концентрация напряжений около отверстий в пластине существенно влияет на рост очень малых трещин. С увеличением длины трещин это влияние уменьшается и при длине трещины большей радиуса отверстия им можно пренебречь, однако одновременно растет влияние взаимодействия трещин.

Литература

1. Odishelidze N., Criado-Aldeanueva F., Criado F.and Sanchez J. M. Solution of one mixed problem of plate bending for a domain with partially unknown boundary// Acta Mechanica. 2011. Vol. 219, No. 1-2, P. 169-179

2. *Mirsalimov V. M. and Kazymov Kh. I.* The reverse task of failure mechanics of column-supported plates // Journal of Machinery Manufacture and Reliability. 2009. Vol. 38, No. 2, P. 135-143

3. *Савин Г.Н.* Концентрация напряжений около отверстий. – М., – Л.: Гостехиздат, 1951. – 496 с.

4. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. – М.: Наука, 1966. – 707 с.

5. *Мирсалимов В.М.* Разрушение упругих и упругопластических тел с трещинами. – Баку.: Элм, 1984. – 124с.

6. Саврук М.П. Двумерные задачи упругости для тел с трещинами. – Киев: Наук. думка, 1981. – 324 с.

References

1. *Odishelidze*, *N.*, *Criado-Aldeanueva*, *F.*, *Criado*, *F.* and *Sanchez*, *J. M.* (2011). Solution of one mixed problem of plate bending for a domain with partially unknown boundary, *Acta Mechanica*, Vol. 219, No. 1-2, pp. 169-179.

2. Mirsalimov, V. M. and Kazymov, Kh. I. (2009). The reverse task of failure mechanics of column-supported plates, Journal of Machinery Manufacture and Reliability, Vol. 38, No. 2, pp. 135-143

3. Savin G.N. (1951). Kontsentratsiya Napryazheniy Okolo Otverstiy, M.-L.: Gostehizdat, 496 p.

4. Mushelishvili N.I. (1966). Some General Problems of Mathematical Theory of Elasticity, M.: Nauka, 707 p.

5. Mirsalimov, V.M. (1984). A Destruction of Elastic and Elastic–Plastic bodies with Cracks, Baku: Elm, 124 p.

6. Savruk M.P. (1981). Two-Dimensional Elastic Problems for the Bodies with Cracks, Kiev, Naukova dumka, 324 p.

PURE BENDING OF THE PLATE WEAKENED BY THE PERIODIC SYSTEM OF CIRCULAR HOLES AND RECTILINEARLY THROUGH CRACKS

R.A. Isgandarov

Azerbaijan Architecture and Construction University, Azerbaijan

The fracture mechanics problem for isotropic plate weakened by a periodic system of circular holes and straight through cracks is considered. The plate is bending. The stress intensity factors were found.

KEYWORDS: plate, periodic system of circular holes, pure bending, cracks, stress intensity factors.

