Вестник РУДН. Серия: ФИЛОСОФИЯ

http://journals.rudn.ru/philosophy

ОНТОЛОГИЯ И ТЕОРИЯ ПОЗНАНИЯ ONTOLOGY AND GNOSEOLOGY

DOI: 10.22363/2313-2302-2018-22-2-139-148

УСЛОВИЯ ПРИМЕНИМОСТИ КЛАССИЧЕСКОЙ ЛОГИКИ К ФИЛОСОФСКИМ РАССУЖДЕНИЯМ

С.А. Павлов

Институт философии РАН Гончарная ул., 12, стр. 1, Москва, Россия 109240

Исследованы условия применимости классической логики высказываний к философским рассуждениям. Это исследование проведено в рамках различных семантик для многозначных логик. В качестве последних рассматривались: семантика многозначных логик, метатеория значений истинности Зиновьева, элементарная теория операторов истинности и ложности.

В метатеории логической семантики, в которой строятся семантики для многозначных логик, принимают классическую логику. В этой метатеории используется теория J-операторов (введенных Россером и Тьюркеттом). Теория J-операторов является частью метатеории логической семантики. Семантическое утверждение вида «P принимает значение v^k » содержательно соответствует формуле $J_k(P)$. Показано, что для формул языка-объекта P, для котоых выполняется условие (P принимает выделенное значение или P принимает анти-выделенное значение), имеет место классическая логика.

Синтезирующий подход в исследованиях и построениях А. Зиновьева привел к тому, что он объединил логику, онтологию и методологию в единую науку, в которой первые являются ее аспектами. Только в процессе изложения он выделяет в ней три части: 1) базисную логику, 2) логическую онтологию, и 3) логическую методологию. В этом состоит радикальное отличие от подходов Д. Гильберта и А. Тарского, отделявших язык-объект от метаязыка, семантику от синтаксиса.

Также рассматривалась элементарная теория операторов истинности и ложности, обоснованная в обобщенной на неклассический случай объединенной Буль—Фреге семантике. Показано, что для формулы языка-объекта P, для которых выполняется условие (содержательно выраженное) формула P либо истинна, либо ложна, то для нее имеет место классическая двузначная логика.

Отмечается, что рассмотренные условия близки к определениям высказываниям в естественном языке.

Ключевые слова: логика высказываний, логическая семантика, истина, ложь, условия применимости

ВВЕДЕНИЕ

В философских рассуждениях используются разного рода суждения. Так, уже Аристотель рассуждает о предложениях, которые не являются истинными или ложными: «ведь то, что Сократ здоров, противоположно тому, что Сократ болен. Но не всегда одно здесь необходимо истинно, а другое ложно. Если Сократ

существует, то одно из них будет истинным, другое — ложным ...если вообще нет самого Сократа, неистинно и то, что Сократ болен, и то, что он здоров» [3]. Особый интерес для аналитической философии и рациональной философии представляют рассуждения, использующие классическую логику высказываний. Поэтому целью данной статьи является решение задачи нахождения условий применимости классической логики высказываний к философским рассуждениям. Это исследование проводится в рамках различных семантик для многозначных логик.

1. СЕМАНТИЧЕСКОЕ ОБОСНОВАНИЕ МНОГОЗНАЧНЫХ ЛОГИК

Многозначные интерпретации классической и неклассических логик [2; 13; 17] основываются на следующих положениях.

Имеется язык n-значной логики c множеством переменных Var и c множеством формул этого языка For.

Имеется множество значений $\{v^0,\,v^1,\,...\,\,v^{n-1}\}$ n-значной логики, которые попарно различны.

Функция оценки (означивания) v есть отображение множества For на множество $\{v^0, v^1, ... v^{n-1}\}$ (сокр. v: $For \rightarrow \{v^0, v^1, ... v^{n-1}\}$).

В качестве выделенного значения принимаем v¹.

В метатеории логической семантики, в которой строятся семантики для многозначных логик, принимают классическую логику.

Определяются понятия общезначности, логического следования и т.д.

Метатеорию (теорию) логической семантики логик, имеющих многозначную интерпретацию, будем сокращенно обозначать **MVT**.

1.1. Теория *J*-операторов и классические напарники логик, имеющих многозначную интерпретацию

Будем использовать теорию J-операторов (введенными Россером и Тьюркеттом [17]. Теория J-операторов является частью метатеории логической семантики **MVT**, в которой строятся семантики для многозначных логик и доказываются метатеоремы корректности и семантической полноты.

Введем следующее сокращение (определение), в котором P есть формула языка n-значной логики и $(0 \le k \le n-1)$:

 $J_{\rm k}({\rm P})$ есть сокращение для формулы ($v({\rm P})={\rm v}^{\rm k}$), которая является формулой языка логической семантики. Семантическое утверждение вида «Р принимает значение ${\rm v}^{\rm k}$ » содержательно соответствует формуле $J_{\rm k}({\rm P})$.

Эти унарные J_i -операторы соответствуют функции $j_i(m)$, которая принимает следующие значения:

$$j_i(m) = \begin{cases} v^1, \text{ если } m = v^i, \\ v^0, \text{ если } m \neq v^i. \end{cases}$$

Сформулируем (мета)
теорию J-операторов (сокращенно ${\bf JT}$) как подтеорию метатеории логической семантики многозначных логик.

Пусть имеем класс L неклассических логик L_n^o , имеющих многозначную интерпретацию с одним выделенным значением v^1 и одним антивыделенным значением v^0 . J_1 -оператору соответствует значение v^1 , а J_0 -оператору соответствует значение v^0 . Свойства этих операторов будем задавать аксиоматически.

Множество формул языка, в который входит множество О исходных операторов n-значной логики $L_n^{\ o}$ ($L_n^{\ o}$ -формул), есть $L_n^{\ o}$ -For. Пусть P, P_1 есть метапеременные для $L_n^{\ o}$ -формул.

Принимается, что для формул $J_k(P)$, префиксированных J_k -операторами, то есть J_k -формул, имеет место классическая логика высказываний CL_2 . Отметим, что теоремы, фигурирующие далее, являются формулами, для которых имеет место CL_2 , поэтому их доказательство не является трудным.

Приведем формулировку теории ЈТ.

Язык **JT** (включает в себя множества L_n° -*For*), а также:

 J_k — J-оператор, $0 \le k \le n$;

 J_1 — выделенный J-оператор;

 J_0 — анти-выделенный J-оператор.

Правила образования для языка ЈТ

- 1. Если P есть L_n° -формула, то $J_k(P)$ есть CL_2 -формула (сокр. CL_2 -ф.).
- 2. J_k -операторы допускает итерацию:
 - 2.1. Если Q есть CL_2 -ф., то $J_k(Q)$ есть CL_2 -ф.
 - 2.2. Если Q_1 , Q_2 есть CL_2 -ф., то (Q_1) и $(Q_1 \Rightarrow Q_2)$ есть CL_2 -ф.
- 3. Ничто иное не есть CL_2 -формула.

Обозначим множество CL_2 -формул как CL_2 -For. Пусть Q, Q_1 , есть метапеременные для CL_2 -формул.

Отметим, что множества L_n° -For и CL_2 -For не пересекаются: $(L_n^{\circ}$ - $For \cap CL_2$ - $For) = \emptyset$.

Определим множество ${}_{n}{}^{o}For = {}_{df} (CL_{2}\text{-}For \cup L_{n}{}^{o}\text{-}For)$. Пусть R, R_{1} есть метапеременные для формул из множества ${}_{n}{}^{o}For$.

А.1. **Схемы аксиом** для классической логики $CL_2(CL_2$ -For, \neg , \Rightarrow))

Определим ряд производных связок на множестве ${\rm CL_2} ext{-}For$ классическим образом.

D1.1.
$$(Q_1 \wedge Q_2) =_{\mathrm{df}} \P(Q_1 \Rightarrow \P Q_2),$$

D1.2.
$$(Q_1 \vee Q_2) =_{\mathrm{df}} (Q_1 \Rightarrow Q_2),$$

D1.3.
$$(Q_1 \vee Q_2) =_{df} ((Q_1 \vee Q_2) \wedge \neg (Q_1 \wedge Q_2)),$$

D1.4.
$$(Q_1 \Leftrightarrow Q_2) =_{\mathrm{df}} ((Q_1 \Rightarrow Q_2) \land (Q_2 \Rightarrow Q_1)).$$

Определим n-местную исключающую дизъюнкцию $\underline{\vee}$:

D2.
$$\underline{\vee}(Q_1, Q_2, Q_3, ..., Q_n) \equiv_{\mathrm{df}} (Q_1 \land \neg Q_2 \land \neg Q_3 \land ... \neg Q_n) \lor \lor (\neg Q_1 \land Q_2 \land \neg Q_3 \land ... \neg Q_n) \lor \lor ... \lor (\neg Q_1 \land \neg Q_2 \land \neg Q_3 \land ... \land Q_n).$$

Схема аксиом (аксиомы редукции) для J_1 -оператора (выделенного J-оператора)

A.2.1.
$$(J_1Q \Leftrightarrow Q)$$
,

и для J_0 -оператора (анти-выделенного J-оператора)

A.2.2.
$$(J_0Q \Leftrightarrow \neg Q)$$
.

п-лемма:

A.3.
$$\underline{\vee}(J_0R, J_1R, ... J_{n-1}R)$$
.

Правила вывода:

R1.
$$\frac{Q_1, (Q_1 \Rightarrow Q_2)}{Q_2}$$
 MP.

Правила введения и удаления J_1 -оператора:

R2.1.
$$\frac{R}{J_1 R}$$
 R2.2. $\frac{J_1 R}{R}$.

Построение теории J-операторов **JT** закончено.

Введем следующие определения для D-импликации и D-отрицания на множестве $_{n}^{o}For$:

D3.1.
$$(R_1 \supset R_2) \equiv_{df} (J_1(R_1) \Longrightarrow J_1(R_2)),$$

D3.2.
$$\neg R \equiv_{df} \exists J_1(R)$$
.

Имеем следующие метатеоремы и теоремы, позволяющие построить логику со связками: \neg и \supset .

Выводимое правило образования:

2.3. Если R_1 , R_2 есть формулы, то $(\neg R_1)$ и $(R_1 \supset R_2)$ есть формулы.

Теоремы:

T1.1.
$$(R_1 \supset (R_2 \supset R_1))$$
,

T1.2.
$$(R_1 \supset (R_2 \supset R_3)) \supset ((R_1 \supset R_2) \supset (R_1 \supset R_3)),$$

T1.3.
$$((\neg R_1 \supset \neg R_2) \supset (R_2 \supset R_1))$$

и производное правило вывода:

R3.
$$\frac{R_1, (R_1 \supset R_2)}{R_2} MP$$

Метатеоремы:

МТ1. Для формул из множества ${}_{n}{}^{o}$ For имеет место логика с отрицанием \neg и импликацией $\supset CL_{n}({}_{n}{}^{o}$ For, \neg , \supset) с n-значной неглавной (в смысле Черча) интерпретацией.

Отсюда следует, что для каждой логики $L_n^{\ o}$, имеющей многозначную интерпретацию с одним выделенным значением v^1 , существует логика $CL_n({}_n^{\ o} For, \neg, \supset)$, которая синтаксически подобна классической логике и которую будем называть ее классическим напарником логики $L_n^{\ o}$ (см. [15]). Отметим, что это не тезис Сушко.

Определим внутренних и внешних напарников логик $L_n^{\ o}$.

Множество логик $L_n^{\ o}$ разбиваем на два класса:

- 1) имеющих внутреннего напарника (в языке которых выразимы оператор J_1 и связки \neg , \Rightarrow , как напр: логика Бочвара B_3 и логика Лукасевича \mathfrak{L}_3) и
- 2) имеющих только внешнего напарника, то есть не имеющих внутреннего напарника (в языке которых невыразим оператор J_1), (как в логике Гейтинга H_3).

Имеем метатаорему:

MT2.
$$Ecnu \mid_{CLn(noFor, \neg, \neg)} R, mo \mid_{JT} R$$
.

Таким образом, имеем класс синтаксически эквивалентных (подобных с точностью до замены ${}_{n}{}^{\circ}For$ на ${}_{n}{}^{\circ}For'$) логик $\mathrm{CL}_{n}({}_{n}{}^{\circ}For, \neg, \supset)$.

Необходимо отметить, что в проведенном построении мы не выходили за пределы теории Ј-операторов Россера—Тюркетта, т. е. ЈТ есть подтеория вышеупомянутой теории.

1.2. Условие вывода семантических правил классической логики

В ЈТ можно найти условие вывода семантических правил классической двузначной логики.

Приведем V-интерпретацию для языка классической двузначной сентенциальной логики CL со связками \sim и \rightarrow с использованием *J*-операторов.

Отметим, что $J_k(P)$ есть сокращение для формулы ($v(P) = v^k$). Тогда сформулируем V-интерпретацию.

V-интерпретация

Функция оценки v есть отображение множества For на множество $\{v^0, v^1\}$ (сокр. $v: For \to \{v^0, v^1\}$). Выделенное значение: v^1 .

1. v:
$$Var \rightarrow \{v^0, v^1\}$$
.

При этом формулы с равенством заменяются на формулы с J-операторами.

2.
$$\begin{cases} J_0(\sim A), \text{ если } J_1(A); \\ J_1(\sim A), \text{ если } J_0(A). \end{cases}$$

2.
$$\begin{cases} J_0(\sim A), \text{ если } J_1(A); \\ J_1(\sim A), \text{ если } J_0(A). \end{cases}$$
 3.
$$\begin{cases} J_1(A \to B), \text{ если } J_0(A) \text{ или } J_1(B); \\ J_0(A \to B), \text{ если } J_1(A) \text{ или } J_0(B). \end{cases}$$

В теории ЈТ имеем следующие теоремы, соответствующие условиям V-интерпретации с Ј-операторами логики со связками ¬ и ⊃.

T2.1.
$$(J_I(R) \vee J_0(R)) \Rightarrow (J_I(R) \Rightarrow J_0(\neg R)),$$

T2.2.
$$(J_1(\mathbf{R}) \vee J_0(\mathbf{R})) \Rightarrow (J_0(\mathbf{R}) \Rightarrow J_1(\neg \mathbf{R})),$$

$$\mathsf{T2.3.} \quad ((J_{I}(\mathsf{R}_1) \vee J_0(\mathsf{R}_1)) \wedge (J_{I}(\mathsf{R}_2) \vee J_0(\mathsf{R}_2))) \Rightarrow ((J_0(\mathsf{R}_1) \vee J_I(\mathsf{R}_2)) \Rightarrow J_I(\mathsf{R}_1 \supset \mathsf{R}_2)),$$

T2.4.
$$((J_I(R_1) \vee J_0(R_1)) \wedge (J_I(R_2) \vee J_0(R_2))) \Rightarrow ((J_1(R_1) \wedge J_0(R_2)) \Rightarrow J_0(R_1 \supset R_2)).$$

Из этих теорем следует метатеорема.

Пусть For_2 есть множество, к которому принадлежит не менее 3-х формул, таких, что $(R_k \in For_2)$ е.т.е. $(J_1(R_k) \vee J_0(R_k))$. Тогда имеем:

MT3.
$$\downarrow_{JT} CL_2(For_2, \neg, \supset)$$
.

Отметим, что для автора был неожиданным вывод $CL_2(For_2, \neg, \neg)$ в теории **JT** при условии только $(J_1(R_k) \vee J_0(R_k))$, без условия принятия семантических правил для связок. Семантические правила для связок выводимы при соблюдении этих условий. Также необходимо сказать, что подобный результат возможен только для классической двузначной логики.

Условие $(J_1(R_k) \vee J_0(R_k))$ можно сравнить с определениями высказываний.

Д. Гильберт и В. Аккерман (в [5]) пишут: «Под высказыванием следует понимать каждое предложение, в отношении которого имеет смысл утверждать, что его содержание истинно или ложно».

В [12] Фреге предложил «на каждое утвердительно-повествовательное предложение ... смотреть как на собственное имя, причем на такое, значение которого, если оно существует, есть либо истина, либо ложь».

А.М. Анисов определяет в [1] «Высказывания — это предложения, которые оцениваются либо как истинные, либо как ложные».

2. ПОДХОД ЗИНОВЬЕВА К ФОРМАЛИЗАЦИИ ЛОГИЧЕСКОЙ СЕМАНТИКИ

Для обоснования и построения логики высказываний Зиновьев использует построенную им метатеорию значений истинности.

Для того, чтобы говорить о значениях истинности высказываний, он в [6] вводит термины [X], обозначающие высказывания X. Метавысказывание «[X] имеет значение истинности v^i », он символизирует формулой метаязыка: [X] $\leftarrow v^i$. Квадратные скобки он предлагает для упрощения записи опускать, то есть записывать предшествующую формулу следующим образом: $X \leftarrow v^i$. Отметим, что этот язык недостаточно «богат» (в смысле A. Тарского), что не позволяет возникнуть семантическим парадоксам, так как в таком языке нельзя построить автореферентные конструкции. Семантические свойства понятий истинности и ложности обсуждаются в [14].

В метатеории значений истинности Зиновьева в метавысказываниях о значениях истинности одновременно присутствуют как высказывания, так и их значения истинности, то есть термины разного семантического порядка. В метавысказывании «[X] имеет значение истинности v^i » присутствуют синтаксическое выражение [X], семантическое отношение «имеет значение» и значение истинности v^i , принадлежащее, по Γ . Фреге, к логической онтологии. Тем самым такой подход отличается от подхода Тарского [11].

Синтезирующий подход в исследованиях и построениях А. Зиновьева [7] привел к тому, что он объединил логику, онтологию и методологию в единую науку, в которой первые являются ее аспектами. Только в процессе изложения он выделяет в ней три части: 1) базисную логику, 2) логическую онтологию, и 3) логическую методологию. В этом состоит радикальное отличие от подходов Д. Гильберта и А. Тарского, отделявших язык-объект от метаязыка, семантику от синтаксиса.

В качестве первой аксиомы метатеории значений истинности Зиновьев предлагает следующую:

A1. Всякое высказывание A либо имеет некоторое значение истинности v, либо не имеет его:

$$(X \leftarrow v) : \sim (X \leftarrow v).$$

Необходимо отметить, что эта аксиома имеет место как в классическом случае, так и в неклассическом.

В классическом или двузначном случае Зиновьев различает два подслучая:

а) В качестве основных значений принимаются v^t «истинно» и v^t «ложно», причем в случае трех и более значений v^t не будет отрицанием v^t . Для таких случаев можно выделить только класс высказываний, для которых будет иметь место:

$$\sim\!\!(X\leftarrow v^f) \leftrightarrow (X\leftarrow v^t).$$

Зиновьевым рассматривается не только классический двузначный случай, но и неклассические случаи, отбрасывая, как Я. Лукасевич, принцип двузначности. Таким образом, имеем другой подслучай:

б) Исходя из основного (выделенного) значения «истинно» v^t — определяется его отрицание «неистинно» nvt, символически:

$$(X \leftarrow nv^t) \equiv \sim (X \leftarrow v^t).$$

Он отмечает, что «все положения такой двузначной логики имеют силу для высказываний независимо от того, сколько значений истинности может быть им приписано» [6].

Обратим внимание на сходство последнего определения с определением D-отрицания. Проведя аналогию ($X \leftarrow v^t$) с формулой с выделенным J-оператором J_1X , можно построить определение D-импликации и затем вывести логику, аналогичную $\mathrm{CL}_n({}_n{}^oFor, \neg, \supset)$. Теперь условием вывода классической логики будем выполнение формулы $\sim (X \leftarrow v^t) \leftrightarrow (X \leftarrow v^t)$ или эквивалентной ей ($X \leftarrow v^t$) \vee \vee ($X \leftarrow v^t$).

Обозначим метатеорию значений истинности Зиновьева как **ZV**. Тогда имеем: пусть For_2 есть множество, к которому принадлежит не менее 3-х формул, таких, что $(X_k \in For_2)$ е.т.е. $((X_k \leftarrow v^f) \underline{\vee} (X_k \leftarrow v^t)$.). Тогда имеем:

MT4.
$$\downarrow_{\mathbf{ZV}} CL_2(For_2, \neg, \supset)$$
.

Таким образом, в качестве условия вывода классической логики высказываний в метатеории значений истинности Зиновьева фигурирует формула со строгой дизьюнкцией, в отличие от **JT**.

3. УСЛОВИЯ ВЫВОДА КЛАССИЧЕСКОЙ ЛОГИКИ В ТЕОРИИ ОПЕРАТОРОВ ИСТИННОСТИ И ЛОЖНОСТИ

Найдем условия вывода классической двузначной логики в элементарной теории операторов истинности и ложности [8; 16] $_{\rm E}$ TFT. Эта теория обоснована в обобщенной на неклассический случай объединенной Буль \cap Фреге семантике [9]. Обоснование употребления операторов истинности и ложности вместо соответствующих им предикатов обоснована в [4]. Отметим, что интерпретация теории $_{\rm E}$ TFT семантически близка четырехзначной интерпретации логики истины фон Вригта [18] и четырехзначной интерпретации логики **AVT** [10]. Отличие состоит в том, что для $_{\rm E}$ TFT имеется метатеорема строгой адекватности, а для **AVT** такой метатеоремы нет (контрпример: имеет место (р \wedge р) $|_{\rm AVT}$ р, но в интерпретации **AVT** из (р \wedge р) логически не следует р).

Так как в $_{\rm E}$ **TFT** определяются унарные операторы, подобные *J*-операторам в теории **JT**, то переформулируем *V*-интерпретацию, использующую *J*-операторы, в интерпретацию, использующую операторы истинности и ложности.

Интерпретация CL с использованием операторов истинности и ложности

1.
$$(TE \underline{\vee} FE)$$
.
2.
$$\begin{cases} F(\sim A), \text{ если } T(A); \\ T(A), \text{ если } F(A). \end{cases}$$

3.
$$\begin{cases} T(A \to B), \text{ если } F(A) \text{ или } T(B); \\ F(A \to B), \text{ если } T(A) \text{ и } F(B). \end{cases}$$

В теории $_{\rm E}$ **ТFТ** имеем следующие теоремы, соответствующие условиям интерпретации CL с операторами истинности и ложности логики со связками \neg и \supset , которые определяются через оператор строгой истинности \lceil , последний аналогичен выделенному J_1 -оператору

D3.1.
$$A =_{df} (TA \land \neg FA)$$
.

T3.1.
$$(TR \vee FR) \Rightarrow (TR \Rightarrow F \neg R)$$
,

T3.2.
$$(TR \vee FR) \Rightarrow (FR \Rightarrow T \neg R)$$
,

T3.3.
$$((TR_1 \vee FR_1) \wedge (TR_2 \vee FR_2)) \Rightarrow (FR_1 \vee TR_2) \Rightarrow T(R_1 \supset R_2)),$$

T3.4.
$$((TR_1 \vee FR_1) \wedge (TR_2 \vee FR_2)) \Rightarrow (TR_1 \wedge FR_2) \Rightarrow F(R_1 \supset R_2)$$
.

Из этих теорем следует метатеорема:

Пусть For_2 есть множество, к которому принадлежит не менее 3-х формул, таких, что $(R_k \in For_2)$ е.т.е. $(TR_k \vee FR_k)$. Тогда имеем:

MT5.
$$\vdash_{\text{ETFT}} CL_2(For_2, \neg, \supset)$$
.

Содержательно теорема означает, что если формула R_k либо истинна, либо ложна (то есть $R_k \in \text{For}_2$), то для нее имеет место классическая двузначная логика $\text{CL}_2(\text{For}_2, \neg, \supset)$.

Сравнение этой метатеоремы с аналогичной из 1.1 показывает, что первая содержательно более понятна, чем последняя из 1.1, и что для ее доказательства необходимо меньше предпосылок. Поэтому $_{\rm E}{\rm TFT}$ является более слабой теорией, чем ${\rm JT}$.

В заключение констатируем, что исследованы и найдены условия вывода классической двузначной логики в ряде семантических теорий для языков, включающих как классический, так и неклассические. Последнее позволяет рассматривать широкий круг философских рассуждений и находить среди них те, для которых применима классическая логика высказываний.

© Павлов С.А., 2017

ЛИТЕРАТУРА

- [1] Анисов А.М. Современная логика. М., 2002.
- [2] *Аншаков О.М., Рычков С.В.* О многозначных логических исчислениях // Семиотика и информатика. Вып. 19. М., 1982. С. 90—117.
- [3] Аристотель. Категории // Аристотель. Соч.: в 4 т. Т. 2. М., 1978. С. 85. 13b15.
- [4] *Бессонов А.В.* К основаниям логической теории истины // Философия науки. 1999. № 1(5). С. 52—63.
- [5] Гильберт Д., Аккерман В. Основы теоретической логики. М., 1947.
- [6] Зиновьев А.А. Логика науки. М., 1971.
- [7] Зиновьев А.А. Фактор понимания М., 2006.
- [8] Павлов С.А. Исчисление предикатов истинности и ложности // Логический анализ естественных языков: 2-й Советско-Финский коллоквиум по логике. М., 1979. С. 70—73.
- [9] *Павлов С.А.* Онтологический тезис обобщенной Буль ∩ Фреге семантики // Вестник Российского университета дружбы народов. Серия: Философия. 2016. № 1. С. 58—69.

- [10] Попов В.М. Об одной четырехзначной паранормальной логике // Логика и В.Е.К. М., 2003. С. 192—195.
- [11] Тарский А. Семантическая концепция истины и основания семантики // Аналитическая философия: становление и развитие. М., 1998. С. 90—129.
- [12] Фреге Γ . О смысле и значении // Логика и логическая семантика. М., 2000. С. 230—246.
- [13] Lukasievicz J. Investigations Into the Sentential Calculus. Amsterdam; L.; Warszawa, 1970. P. 131—152.
- [14] *Pavlenko A.N.* The epistemological glaucoma and psematical paradox (autological feature of truth and heterological feature of false) // Вестник Российского университета дружбы народов. Серия: Философия. 2018. № 2.
- [15] *Pavlov S.A.* Designated Operator Theory and Domain of Symbol Expressions // Book of abstracts 15th Congress of Logic, Methodology and Philosophy of Science CLMPS. Helsinki, 2015. P. 263—264.
- [16] Pawlow S.A. Einige nichttraditionelle Ideen in der Logik // Philosophie und Naturwissenschaften in Vergangenheit und Gegenwart. Heft 5: Philosophische Probleme der Logik. Berlin, 1978. S. 33—40.
- [17] Rosser J.B., Turquette A.R. Many-valued logics. 1987. Vol. 120. Nouvelle serie. P. 311—334.

DOI: 10.22363/2313-2302-2018-22-2-139-148

CONDITIONS OF APPLICABILITY OF CLASSICAL LOGIC TO PHILOSOPHICAL REASONING

S.A. Pavlov

Institute of Philosophy of RAS 12/1 Goncharnaya Str., Moscow, 109240, Russia

Abstract. The conditions for the applicability of the classical logic of statements to philosophical reasonings are investigated. This research is carried out within the framework of various semantics for many-valued logics. As the latter, the semantics of many-valued logics, the meta-theory of Zinoviev's truth values, the elementary theory of truth and falsehood operators were considered.

In the meta-theory of logical semantics, in which semantics are constructed for many-valued logics, classical logic is hold. In this meta-theory, the theory of J-operators (introduced by Rosser and Turquette) is used. The theory of J-operators is part of the meta-theory of logical semantics. A semantic statement of the form "P haves the value v^k " meaningfully corresponds to the formula $J_k(P)$. It is shown that for classical object-language formulas P, for which the condition (P takes a designated value or P takes an anti-designated value), classical logic takes place.

The synthesizing approach in A. Zinoviev's studies and constructions led to the fact that he combined logic, ontology and methodology into a unified science, in which the first are its aspects. Only in the process of exposition, he distinguishes in it three parts: 1) basic logic, 2) logical ontology, and 3) logical methodology. This is a radical difference from the approaches of D. Hilbert and A. Tarski separating the object-language from the metalanguage, semantics from the syntax.

The elementary theory of truth and falsehood operators was also considered, which was founded in the Boole-Frege semantics, generalized to the non-classical case. It is shown that for the formula of the object language P for which the condition (informally expressed) is satisfied, the formula P is either true or false, then for it there is a classical two-valued logic.

It is noted that the conditions considered are close to the definitions of the utterance in natural language.

Key words: classical logic, logical semantics, true, false, conditions of applicability

REFERENCES

- [1] Anisov AM. Sovremennaya logika. Moscow, 2002.
- [2] Anshakov OM., Rychkov SV. O mnogoznachnykh logicheskikh ischisleniyakh. *Semiotika i informatika*. Vyp. 19. Moscow, 1982.
- [3] Aristotel'. Kategorii. Aristotel'. Soch.: v 4 t. T. 2. Moscow., 1978. 13b15.
- [4] Bessonov AV. K osnovaniyam logicheskoi teorii istiny. Filosofiya nauki. 1999; 5 (1):52—63.
- [5] Gil'bert D., Akkerman V. Osnovy teoreticheskoi logiki. Moscow, 1947.
- [6] Zinov'ev AA. Logika nauki. Moscow, 1971.
- [7] Zinov'ev AA. Faktor ponimaniya. Moscow, 2006.
- [8] Pavlov SA. Ischislenie predikatov istinnosti i lozhnosti. *Logicheskii analiz estestvennykh yazykov*: 2-i Sovetsko-Finskii kollokvium po logike. Moscow, 1979.
- [9] Pavlov SA. Ontologicheskii tezis obobshchennoi Bul' ∩ Frege semantiki. *Vestnik Rossiiskogo universiteta druzhby narodov, Seriya: Filosofiya.* 2016;(1):58—69.
- [10] Popov VM. Ob odnoi chetyrekhznachnoi paranormal'noi logike. Logika i V.E.K. Moscow, 2003.
- [11] Tarskii A. Semanticheskaya kontseptsiya istiny i osnovaniya semantiki. *Analiticheskaya filosofiya:* stanovlenie i razvitie. M., 1998.
- [12] Frege G. O smysle i znachenii. Logika i logicheskaya semantika. Moscow, 2000.
- [13] Łukasievicz J. Investigations Into the Sentential Calculus. Amsterdam; L.; Warszawa, 1970. P. 131—152.
- [14] Pavlenko AN. The epistemological glaucoma and psematical paradox (autological feature of truth and heterological feature of false). *Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Filosofiya.* 2018; (2).
- [15] Pavlov SA. Designated Operator Theory and Domain of Symbol Expressions. *Book of abstracts* 15th Congress of Logic, Methodology and Philosophy of Science CLMPS. Helsinki, 2015. P. 263—264.
- [16] Pawlow SA. Einige nichttraditionelle Ideen in der Logi. *Philosophie und Naturwissenschaften in Vergangenheit und Gegenwart. Heft 5: Philosophische Probleme der Logik.* Berlin, 1978.
- [17] Rosser JB., Turquette AR. Many-valued logics. 1987. Vol. 120. Nouvelle serie. P. 311—334.

Для цитирования:

Павлов С.А. Условия применимости классической логики к философским рассуждениям // Вестник Российского университета дружбы народов. Серия: Философия. 2018. Т. 22. № 2. С. 139—148. doi: 10.22363/2313-2302-2018-22-2-139-148.

For citation:

Pavlov, S.A. Conditions of applicability of classical logic to philosophical reasoning. *RUDN Journal of Philosophy.* 2018; 22 (2):139—148. doi: 10.22363/2313-2302-2018-22-2-139-148.

Сведения об авторе:

Павлов Сергей Афанасьевич — кандидат философских наук, старший научный сотрудник сектора теории познания Института философии PAH (e-mail: sergey.aph.pavlov@gmail.com).