Аннотация
В данной статье рассматривается вопрос стабилизации связей динамической системы. Широко использовано уравнение движения Лагранжа второго порядка для моделирования динамики механических систем, рассматриваемых в этой статье. Известно, что метод Баумгарта по ограничению стабилизации не позволяет избежать проблемы сингулярности массовых матриц, которая может возникнуть в результате избыточности ограничений, и не сможет запускать симуляции вблизи и на точках сингулярности. Разработан обобщённый метод Баумгарта и определены условия стабилизации на основе метода Ляпунова. Разработанный метод позволяет определить коррекцию параметров ограничений, накладываемых на фазовые переменные. Известный метод Баумгарта, использующий коррекцию уравнений связей, следует из методов, предлагаемых в работе. Модифицированные уравнения Лагранжа построены в соответствии с условиями стабилизации связей и охватывают также случай сингулярной матрицы коэффициентов кинетической энергии. Как и в случае метода Баумгарта, обычное уравнение Лагранжа является частным случаем более совершенного метода, описанного в данной статье. Численный пример иллюстрирует эффективность разработанных методов. Предлагаемый метод моделирования обеспечивает асимптотическую устойчивость решения уравнений динамики по отношению к уравнениям связей также в сингулярном случае.