Аннотация
Описана процедура построения самонастраиваемого управляющего вектора для приведения состояния механических систем без удара в заданное многообразие за конечный промежуток времени в условиях неопределённости. Ранее было получено решение задачи приведения фазового состояния системы в заданную окрестность многообразия, образованного нестационарными голономными программными связями. В данной работе этот подход распространяется на решение задачи безударного приведения фазового состояния системы за конечный промежуток времени в многообразие, образованное голономными и неголономными программными связями. При этом сама механическая система может иметь кроме стационарных и нестационарные связи. Получено множество векторов управления, обеспечивающих решение этой задачи самонастраиваемым управлением по принципу обратной связи по квазиускорениям в дискретные моменты времени. А затем из этого множества выделяются векторы управления с размерностью, меньшей числа степеней свободы системы, в том числе вектора минимальной размерности. В случаях, когда размерность векторов управления больше минимальной, выделяются векторы с минимальной евклидовой нормой. Полученные результаты позволяют решать задачи прикладного характера, такие как управление процессом безударной стыковки наземных, плавательных, летательных и космических аппаратов при их свободном движении в пространстве, а также процессом безударной посадки спускаемых аппаратов на подвижные платформы, характер движения которых известен не полностью. Для иллюстрации эффективности предложенного способа решения таких задач приводится пример управления процессом безударного придания положению тела заданной ориентации при преследующем движении центра масс тела по принципу пропорциональной навигации.