Аннотация
Существующие теории разрешимости систем нелинейных дифференциальных уравнений в конечном виде представляют собой обобщения теории Галуа и по этой причине список элементарных операций в этих теория считается предметом договора. В своих Стокгольмских лекциях (1897) Пенлеве на примере уравнений 1-го и 2-го порядка указал свойство, общее всем уравнениям, разрешимым в элементарных, специальных и абелевых функциях: общее решения этих уравнений зависят от констант интегрирования алгебраически. Тем самым зафиксировав алгебраические свойства общего решения, можно выделить класс общеупотребимых трансцендентных функций. Это утверждение можно вписать в круг идей теории Галуа, тем самым построив для дифференциальных уравнений теорию и без фиксации этого списка. Рассмотрим произвольную систему g1(x1,. . ., x˙1,... )=0,..., где g1,... - многочлены от x1,x'1 ... , коэффициенты которых лежат в поле k функций переменной t, напр., k = C(t). Эта система имеет решения в алгебраически замкнутом поле K, напр., в поле рядов Пюизё. Будем предполагать, что идеал p =(f1,... ) кольца K[x1,... ] прост и что существует дифференцирование D кольца рациональных функций на многообразии V (p/K), ядром которого является поле интегралов системы. Обозначим его степень трансцендентности как r и докажем, что существует r-параметрическая группа автоморфизмов поля интегралов. Эта теорема будет использована для вычисления интегралов системы дифференциальных уравнений.