Хронология развития алгоритмов активного управления очередями семейства RED. Часть 1: 1993-2005

Обложка

Цитировать

Полный текст

Аннотация

Статья является первой частью большого библиографического обзора по алгоритмам активного управления очередями, относящимся к семейству алгоритмов случайного раннего обнаружения (RED), представленных в научной печати с 1993 по 2023 года. В первой части приведены данные по алгоритмам, опубликованным с 1993 по 2005 года.

Об авторах

И. С. Зарядов

Российский университет дружбы народов; Федеральный исследовательский центр «Информатика и управление» РАН

Автор, ответственный за переписку.
Email: zaryadov_is@rudn.ru
ORCID iD: 0000-0002-7909-6396

Candidate of Physical and Mathematical Sciences, Assistant Professor of Department of Probability Theory and Cyber Security, Institute of Computer Science and Telecommunications

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация; ул. Вавилова, д. 44, корп. 2, Москва, 119333, Российская Федерация

К. К. И. Виана

Российский университет дружбы народов

Email: hilvianamat1@gmail.com
ORCID iD: 0000-0002-1928-7641

Ph.D. student of Department of Probability Theory and Cyber Security, Institute of Computer Science and Telecommunications

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

А. В. Королькова

Российский университет дружбы народов

Email: korolkova_av@rudn.ru
ORCID iD: 0000-0001-7141-7610

Candidate of Physical and Mathematical Sciences, Associate Professor of Department of Probability Theory and Cybersecurity, Institute of Computer Science and Telecommunications

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

Т. А. Милованова

Российский университет дружбы народов

Email: milovanova_ta@rudn.ru
ORCID iD: 0000-0002-9388-9499

Candidate of Physical and Mathematical Sciences, Assistant Professor of Department of Probability Theory and Cybersecurity, Institute of Computer Science and Telecommunications

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

Список литературы

  1. C.-Q. Yang and A. V. S. Reddy, “A taxonomy for congestion control algorithms in packet switching networks,” IEEE Network, vol. 9, no. 4, pp. 34-45, 1995. doi: 10.1109/65.397042.
  2. W.-C. Feng, “Improving Internet Congestion Control and Queue Management Algorithms. Doctor of Philosophy dissertation,” The University of Michigan, Tech. Rep., 1999.
  3. S. Ryu, C. Rump, and C. Qiao, “Advances in internet congestion control,” IEEE Communications Surveys & Tutorials, vol. 5, no. 1, pp. 28-39, 2003. doi: 10.1109/COMST.2003.5342228.
  4. G. Chatranon, M. A. Labrador, and S. Banerjee, “A survey of TCPfriendly router-based AQM schemes,” Computer Communications, vol. 27, no. 15, pp. 1424-1440, 2004. doi: 10.1016/j.comcom.2004. 05.001.
  5. A. V. Korolkova, D. S. Kulyabov, and A. I. Tchernoivanov, “On the classification of RED algorithms,” Russian, RUDN Journal of Mathematics, Information Sciences and Physics, vol. 3, pp. 34-46, 2009.
  6. R. Adams, “Active queue management: a survey,” Communications Surveys & Tutorials, IEEE, vol. 15, pp. 1425-1476, 2013. DOI: 10. 1109/SURV.2012.082212.00018.
  7. G. Abbas, Z. Halim, and Z. H. Abbas, “Fairness-driven queue management: a survey and taxonomy,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 324-367, 2016. doi: 10.1109/COMST.2015.2463121.
  8. D. D. Zala and A. K. Vyas, “Comparative analysis of RED queue variants for data traffic reduction over wireless network,” in Recent Advances in Communication Infrastructure, A. Mehta, A. Rawat, and P. Chauhan, Eds., ser. Lecture Notes in Electrical Engineering, vol. 618, Singapore: Springer Singapore, 2020, pp. 31-39. doi: 10.1007/978981-15-0974-2_3.
  9. S. Sunassee, A. Mungur, S. Armoogum, and S. Pudaruth, “A comprehensive review on congestion control techniques in networking,” in 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India: IEEE, 2021, pp. 305-312. doi: 10.1109/ICCMC51019.2021.9418329.
  10. A. A. Mahawish and H. Hassan, “Survey on: A variety of AQM algorithm schemas and intelligent techniques developed for congestion control,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 3, pp. 1419-1431, Sep. 2021. doi: 10.11591/ijeecs.v23.i3.pp1419-1431.
  11. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, 1993. doi: 10.1109/90.251892.
  12. M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy RED,” in 1999 Seventh International Workshop on Quality of Service. IWQoS’99. (Cat. No.98EX354), 1999, pp. 260-262. doi: 10.1109/IWQOS.1999.766502.
  13. T. Bonald, M. May, and J.-C. Bolot, “Analytic evaluation of RED performance,” in Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), vol. 3, IEEE, 2000, pp. 1415-1424. doi: 10.1109/INFCOM.2000.832539.
  14. S. De Cnodder, O. Elloumi, and K. Pauwels, “RED behavior with different packet sizes,” in Proceedings ISCC 2000. Fifth IEEE Symposium on Computers and Communications, IEEE, 2000, pp. 793-799. doi: 10.1109/ISCC.2000.860741.
  15. M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith, “Tuning RED for Web traffic,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp. 249-264, 2001. doi: 10.1109/90.929849.
  16. C. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A control theoretic analysis of RED,” in Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), vol. 3, IEEE, 2001, pp. 1510-1519. doi: 10.1109/INFCOM.2001.916647.
  17. C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S. Fdida, and M. May, “Comparison of tail drop and active queue management performance for bulk-data and Web-like Internet traffic,” in Proceedings. Sixth IEEE Symposium on Computers and Communications, IEEE, 2001, pp. 122- 129. doi: 10.1109/ISCC.2001.935364.
  18. C. Joo and S. Bahk, “Scalability problems of RED,” Electronics Letters, vol. 38, no. 21, pp. 1297-1298, 2002. doi: 10.1049/el:20020744.
  19. R. Vaidya and S. Bhatnagar, “Robust optimization of Random Early Detection,” Telecommunication Systems, vol. 33, pp. 291-316, Dec. 2006. doi: 10.1007/s11235-006-9020-2.
  20. L. Tan, W. Zhang, G. Peng, and G. Chen, “Stability of TCP/RED systems in AQM routers,” IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1393-1398, 2006. doi: 10.1109/TAC.2006.876802.
  21. B. Zheng and M. Atiquzzaman, “A framework to determine bounds of maximum loss rate parameter of RED queue for next generation routers,” Journal of Network and Computer Applications, vol. 31, no. 4, pp. 429-445, 2008. DOI: https://doi.org/10.1016/j.jnca.2008.02.003.
  22. B. Zheng and M. Atiquzzaman, “A framework to determine the optimal weight parameter of RED in next-generation Internet routers,” International Journal of Communication Systems, vol. 21, no. 9, pp. 987- 1008, 2008. DOI: https://doi.org/10.1002/dac.932.
  23. G. Min and X. Jin, “Performance Modelling of Random Early Detection Based Congestion Control for Multi-Class Self-Similar Network Traffic,” in 2008 IEEE International Conference on Communications, IEEE, 2008, pp. 5564-5568. doi: 10.1109/ICC.2008.1043.
  24. X. Chen, S.-C. Wong, and C. K. Tse, “Adding Randomness to Modeling Internet TCP-RED Systems with Interactive Gateways,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 4, pp. 300-304, 2010. doi: 10.1109/TCSII.2010.2043388.
  25. S. Woo and K. Kim, “Tight Upper Bound for Stability of TCP/RED Systems in AQM Routers,” IEEE Communications Letters, vol. 14, no. 7, pp. 682-684, 2010. doi: 10.1109/LCOMM.2010.07.100375.
  26. J. Shahram and R. Z. Seyed, “An Active Queue Management for High Bandwidth-Delay Product Networks,” International Journal of Computer Theory and Engineering, vol. 5, no. 5, pp. 763-767, 2013. doi: 10.7763/IJCTE.2013.V5.792.
  27. Hendrawan and P. Hernandia, “Random Early Detection utilizing genetics algorithm,” in 2014 8th International Conference on Telecommunication Systems Services and Applications (TSSA), Kuta, Bali, Indonesia: IEEE, 2014, pp. 1-7. doi: 10.1109/TSSA.2014.7065952.
  28. A. Waheed, N. Habib Khan, M. Zareei, S. Ul Isla, L. Jan, A. Iqbal Umar, and M. M. Ehab, “Traffic queuing management in the Internet of Things: an optimized RED algorithm based approach,” Computers, Materials & Continua, vol. 66, no. 1, pp. 359-372, 2021. doi: 10.32604/cmc.2020.012196.
  29. N. G. Goudru, “Tuning Pmax in RED Gateways for QoS Enhancement in Wireless Packet Switching Networks,” in Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy, M. Sahni, J. M. Merigó, R. Sahni, and R. Verma, Eds., Singapore: Springer Singapore, 2022, pp. 321-334. doi: 10.1007/978-981-16-5952-2_28.
  30. A. Basheer, H. J. Hassan, and G. Muttasher, “Intelligent Parameter Tuning Using Deep Q-Network for RED Algorithm in Adaptive Queue Management Systems,” in Micro-Electronics and Telecommunication Engineering, D. K. Sharma, S.-L. Peng, R. Sharma, and D. A. Zaitsev, Eds., Singapore: Springer Nature Singapore, 2022, pp. 439-446. doi: 10.1007/978-981-16-8721-1_42.
  31. X. Xu, B. Liu, L. Zhang, Y. Mao, X. Wu, J. Ren, S. Han, L. Jiang, and X. Xin, “Self-adaptive bandwidth scheduling based on improved Random Early Detection for NG-PON,” in 2019 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China: IEEE, 2019, pp. 1-3. doi: 10.1109/ICOCN.2019.8934251.
  32. D. Lin and R. Morris, “Dynamics of Random Early Detection,” in Proceedings of the ACM SIGCOMM’97 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, ser. SIGCOMM’97, Cannes, France: Association for Computing Machinery, 1997, pp. 127-137. doi: 10.1145/263105.263154.
  33. D. Lin and R. Morris, “Dynamics of Random Early Detection,” SIGCOMM Comput. Commun. Rev., vol. 27, no. 4, pp. 127-137, 1997. doi: 10.1145/263109.263154.
  34. W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “Techniques for Eliminating Packet Loss in Congested TCP/IP Networks,” The University of Michigan, Tech. Rep., 1997.
  35. S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm for Increasing the Robustness of RED’s Active Queue Management,” AT&T Center for Internet Research at ICSI, Tech. Rep., 2001.
  36. L. Zhang, C. Partridge, S. Shenker, et al., “Recommendations on Queue Management and Congestion Avoidance in the Internet,” Internet Engineering Task Force, Tech. Rep. 2309, 1998, 17 pp. DOI: 10.17487/ RFC2309.
  37. D. Clark and W. Fang, “Explicit allocation of best-effort packet delivery service,” IEEE/ACM Transactions on Networking, vol. 6, no. 4, pp. 362-373, 1998. doi: 10.1109/90.720870.
  38. Y. Hori, T. Ikenaga, and Y. Oie, “Queue management of RIO to achieve high throughput and low delay,” in 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233), vol. 2, IEEE, 2001, 619-622 vol.2. doi: 10.1109/PACRIM.2001.953709.
  39. N. Malouch and Z. Liu, “Performance analysis of TCP with RIO routers,” in Global Telecommunications Conference, 2002. GLOBECOM’02. IEEE, vol. 2, IEEE, 2002, 1623-1627 vol.2. doi: 10.1109/GLOCOM.2002.1188472.
  40. M. Barbera, A. Lombardo, G. Schembra, and C. A. Trecarichi, “A fluid-flow model of RIO routers loaded by Markov modulated fluid processes,” in 2004 Workshop on High Performance Switching and Routing, 2004. HPSR, 2004, pp. 67-71. doi: 10.1109/HPSR.2004.1303429.
  41. Y.-I. Joo, K. Hur, J.-K. Kim, D.-S. Eom, and Y. Lee, “RIO configuration optimization for assured service in diffserv networks,” IEEE Transactions on Consumer Electronics, vol. 55, no. 4, pp. 1968-1972, 2009. doi: 10.1109/TCE.2009.5373757.
  42. N. Seddigh, B. Nandy, P. S. Pieda, J. H. Salim, and A. Chapman, “Experimental study of assured services in a diffserv IP QoS network,” in Internet Routing and Quality of Service, R. O. Onvural, S. Civanlar, P. J. Doolan, J. V. Luciani, S. Civanlar, P. J. Doolan, and J. V. Luciani, Eds., International Society for Optics and Photonics, vol. 3529, SPIE, 1998, pp. 217-230. doi: 10.1117/12.333712.
  43. K. Singh and G. Kaur, “Comparison of random early detection (RED) techniques for congestion control in differentiated services networks based on packet dropping,” International Journal of Neural Networks, vol. 2, no. 1, pp. 25-29, 2012.
  44. W.-J. Kim and B. G. Lee, “The FB-RED algorithm for TCP over ATM,” in IEEE GLOBECOM 1998 (Cat. NO. 98CH36250), vol. 1, IEEE, 1998, 551-555 vol.1. doi: 10.1109/GLOCOM.1998.775788.
  45. W.-J. Kim and G. Byeong, “FRED - fair random early detection algorithm for TCP over ATM networks,” Electronics Letters, vol. 34, no. 2, pp. 152-154, 1998. doi: 10.1049/el:19980049.
  46. C. Cisco Systems Inc, Cisco IOS 12.0 Quality of Service. USA: Cisco Press, 1999, p. 288.
  47. C. Cisco Systems Inc, “Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2,” Cisco, Tech. Rep., 1999.
  48. M.-D. Cano, F. Cerdán, and P. López-Matencio, “Experimental Study of Bandwidth Assurance in a DiffServ Network,” in Internet and Multimedia Systems and Applications, EuroIMSA, Grindelwald, Switzerland, 2005, pp. 202-208.
  49. W.-T. Lee, F.-H. Liu, and H.-F. Lo, “Improving the performance of MPEG-4 transmission in IEEE 802.15.3 WPAN,” in 2008 8th IEEE International Conference on Computer and Information Technology, Sydney, NSW, Australia: IEEE, 2008, pp. 676-681. doi: 10.1109/CIT. 2008.4594756.
  50. L. B. Lim, L. Guan, A. Grigg, I. W. Phillips, X. Wang, and I. U. Awan, “RED and WRED Performance Analysis Based on Superposition of N MMBP Arrival Proccess,” in 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, WA, Australia: IEEE, 2010, pp. 66-73. doi: 10.1109/AINA.2010.85.
  51. R. Jiang, Y. Pan, Y. Liu, and X. Xue, “Simulation Study of RED/WRED Mechanism Based on OPNET,” in International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Atlantis Press, 2015, pp. 138-141. doi: 10.2991/meic-15.2015.34.
  52. W. Lafta and W. One, “Performance Evaluation of Heterogeneous Network Based on RED and WRED,” Indonesian Journal of Electrical Engineering and Computer Science, pp. 540-545, 2016. doi: 10.11591/jeecs.v3.i3.pp540-545.
  53. W. Lin, R. Zheng, and J. C. Hou, “How to make assured service more assured,” in Proceedings. Seventh International Conference on Network Protocols, Toronto, Ontario, Canada: IEEE, 1999, pp. 182-191. doi: 10.1109/ICNP.1999.801934.
  54. S. Herreria-Alonso, M. Fernandez-Veiga, C. Lopez-Garcia, M. Rodriguez-Perez, and A. Suarez-Gonzalez, “Improving fairness requirements for assured services in a differentiated services network,” in 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), vol. 4, Paris, France: IEEE, 2004, pp. 2076-2080. doi: 10.1109/ICC.2004.1312884.
  55. T. Ott, T. Lakshman, and L. H. Wong, “SRED: stabilized RED,” in IEEE INFOCOM’99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320), vol. 3, New York, NY, USA: IEEE, 1999, pp. 1346-1355. doi: 10.1109/INFCOM.1999.752153.
  56. F. Anjum and L. Tassiulas, “Fair bandwidth sharing among adaptive and non-adaptive flows in the Internet,” in IEEE INFOCOM’99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320), vol. 3, New York, NY, USA: IEEE, 1999, pp. 1412-1420. doi: 10.1109/INFCOM.1999.752161.
  57. F. Anjum and L. Tassiulas, “Balanced RED: an algorithm to achieve fairness in the Internet,” The Center for Satellite and Hybrid Communication Networks, Tech. Rep., 1999.
  58. M. Parris, K. Jeffay, and F. Donelson Smith, “Lightweight active router-queue management for multimedia networking,” in Multimedia Computing and Networking 1999, D. D. Kandlur, K. Jeffay, and T. Roscoe, Eds., International Society for Optics and Photonics, vol. 3654, SPIE, 1998, pp. 162-174. doi: 10.1117/12.333807.
  59. V. Rosolen, O. Bonaventure, and G. Leduc, “A RED Discard Strategy for ATM Networks and Its Performance Evaluation with TCP/IP Traffic,” SIGCOMM Comput. Commun. Rev., vol. 29, no. 3, pp. 23-43, 1999. doi: 10.1145/505724.505728.
  60. H. Wang and K. G. Shin, “Refined design of random early detection gateways,” in Seamless Interconnection for Universal Services. Global Telecommunications Conference. GLOBECOM’99. (Cat. No.99CH37042), vol. 1B, Rio de Janeiro, Brazil: IEEE, 1999, pp. 769- 775. doi: 10.1109/GLOCOM.1999.830170.
  61. W.-C. Feng, D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring RED gateway,” in IEEE INFOCOM’99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320), vol. 3, New York, NY, USA: IEEE, 1999, pp. 1320- 1328. doi: 10.1109/INFCOM.1999.752150.
  62. V. Jacobson, K. M. Nichols, and K. Poduri, “RED in a Different Light,” Cisco Systems: San Jose, CA, USA, Tech. Rep., 1999.
  63. S. Floyd, “Recommendation on using the “gentle variant of RED”,” The ICSI Networking ans Security Gropup, Tech. Rep., 2000.
  64. C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S. Fdida, and M. May, “Comparison of tail drop and active queue management performance for bulk-data and Web-like Internet traffic,” in Proceedings. Sixth IEEE Symposium on Computers and Communications, Hammamet, Tunisia: IEEE, 2001, pp. 122-129. doi: 10.1109/ISCC.2001.935364.
  65. T. Eguchi, H. Ohsaki, and M. Murata, “On control parameters tuning for active queue management mechanisms using multivariate analysis,” in 2003 Symposium on Applications and the Internet, 2003. Proceedings, Orlando, FL, USA: IEEE, 2003, pp. 120-127. doi: 10.1109/SAINT. 2003.1183040.
  66. J. Aweya, M. Ouellette, and D. Y. Montuno, “A control theoretic approach to active queue management,” Computer Networks, vol. 36, no. 2, pp. 203-235, 2001, Theme issue: Overlay Networks. DOI: 10. 1016/S1389-1286(00)00206-1.
  67. H. Abdel-jaber, F. Thabtah, and M. Woodward, “Traffic management for the gentle random early detection using discrete-time queueing,” in International Business Information Management Association (9th IBIMA) Conference. The Conference Proceedings, Marrakech, Morocco: IBIMA, 2008, pp. 289-298.
  68. R. Hema, G. Murugesan, M. J. A. Jude, V. Diniesh, D. Sree Arthi, and S. Malini, “Active queue versus passive queue - An experimental analysis on multi-hop wireless networks,” in 2017 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India: IEEE, 2017, pp. 1-5. doi: 10.1109/ICCCI.2017.8117774.
  69. N. Hamadneh, M. Alkasassbeh, I. Obeidat, and M. BaniKhalaf, “Revisiting the Gentle Parameter of the Random Early Detection (RED) for TCP Congestion Control,” Journal of Communications, vol. 14, pp. 229-235, Mar. 2019. doi: 10.12720/jcm.14.3.229-235.
  70. U. Bodin, O. Schelén, and S. Pink, “Load-tolerant differentiation with active queue management,” Computer Communication Review, vol. 30, pp. 4-16, Jul. 2000. doi: 10.1145/382179.382180.
  71. M. May, C. Diot, B. Lyles, and J. Bolot, “Influence of Active Queue Management Parameters on Aggregate Traffic Performance,” INRIA, Research Report RR-3995, 2000, p. 21.
  72. W. H. Park, S. Bahk, and H. Kim, “A modified RIO algorithm that alleviates the bandwidth skew problem in Internet differentiated service,” in 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record, vol. 3, New Orleans, LA, USA: IEEE, 2000, pp. 1599-1603. doi: 10.1109/ICC.2000.853765.
  73. R. Loukas, S. Kohler, P. Andreas, and T.-G. Phuoc, “Fuzzy RED: congestion control for TCP/IP Diff-Serv,” in 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No.00CH37099), vol. 1, Lemesos, Cyprus: IEEE, 2000, pp. 19-22. doi: 10.1109/MELCON.2000.880358.
  74. L. Rossides, A. Sekercioglu, A. Pitsillides, A. Vasilakos, S. Kohler, and P. Tran-Gia, “Fuzzy RED: Congestion Control for TCP/IP DiffServ,” in Advances in Computational Intelligence and Learning: Methods and Applications (International Series in Intelligent Technologies), International Series in Intelligent Technologies. Dordrecht: Springer Netherlands, 2002, vol. 18, pp. 343-352. doi: 10.1007/97894010-0324-7_24.
  75. C. Chrysostomou, A. Pitsillides, L. Rossides, M. Polycarpou, and Sekercioglu, “Congestion control in differentiated services networks using Fuzzy-RED,” Control Engineering Practice, vol. 11, no. 10, pp. 1153-1170, 2003, 10.1016/S0967-0661(03)00052-2.
  76. C. Chrysostomou, A. Pitsillides, L. Rossides, and A. Sekercioglu, “Fuzzy logic controlled RED: congestion control in TCP/IP differentiated services networks,” Soft Computing, vol. 18, pp. 79-92, 2003, Special Section on Control Methods for Telecommunication. DOI: 110.1007/s00500-002-0248-9.
  77. S. De Cnodder, K. Pauwels, and O. Elloumi, “A Rate Based RED Mechanism,” in The 10th International Workshop on Network and Operating System Support for Digital Audio and Video, Chapel Hill, North Carolina, USA, 2000.
  78. B. Zheng and M. Atiquzzaman, “DSRED: an active queue management scheme for next generation networks,” in Proceedings 25th Annual IEEE Conference on Local Computer Networks. LCN 2000, Tampa, FL, USA: IEEE, 2000, pp. 242-251. doi: 10.1109/LCN.2000.891036.
  79. B. Zheng and M. Atiquzzaman, “DSRED: improving performance of active queue management over heterogeneous networks,” in ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240), vol. 8, Helsinki, Finland: IEEE, 2001, pp. 2375- 2379. doi: 10.1109/ICC.2001.936557.
  80. B. Zheng and M. Atiquzzaman, “DSRED: A New Queue Management Scheme for the Next Generation Internet,” IEICE Transactions on Communications, vol. E89B, no. 3, pp. 764-774, 2006. doi: 10.1093/ietcom/e89-b.3.764.
  81. J. Domańska, A. Domański, and T. Czachórski, “The Drop-From-Front Strategy in AQM,” in Next Generation Teletraffic and Wired/Wireless Advanced Networking, Y. Koucheryavy, J. Harju, and A. Sayenko, Eds., ser. Lecture Notes in Computer Science, vol. 4712, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 61-72. doi: 10.1007/978-3540-74833-5_6.
  82. M. Arpaci and J. A. Copeland, “An adaptive queue management method for congestion avoidance in TCP/IP networks,” in Globecom’00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137), vol. 1, San Francisco, CA, USA: IEEE, 2000, pp. 309-315. doi: 10.1109/GLOCOM.2000.892022.
  83. L. Yang, J. Zhu, W. Xie, and X. Tan, “Stable tuning for random early detection algorithm,” in Proceedings of the 33rd Chinese Control Conference, Nanjing, China: IEEE, 2014, pp. 5470-5475. doi: 10.1109/ChiCC.2014.6895874.
  84. D. Marek, J. Szyguła, A. Domański, J. Domańska, K. Filus, and M. Szczygieł, “Adaptive Hurst-Sensitive Active Queue Management,” Entropy, vol. 24, no. 3, 2022. doi: 10.3390/e24030418.
  85. J. Liu and D. Wei, “Active Queue Management Based on Q-Learning Traffic Predictor,” in 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI), Nanjing, China: IEEE, 2022, pp. 399-404. doi: 10.1109/ICCSI55536.2022.9970698.
  86. J. Schwardmann, D. Wagner, and M. Kühlewind, “Evaluation of ARED, CoDel and PIE,” in Advances in Communication Networking, Y. Kermarrec, Ed., ser. Lecture Notes in Computer Science, vol. 8846, Cham: Springer International Publishing, 2014, pp. 185-191. doi: 10.1007/978-3-319-13488-8_17.
  87. C. A. Grazia, N. Patriciello, M. Klapez, and M. Casoni, “Which AQM fits IoT better?” In 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy: IEEE, 2017, pp. 1-6. doi: 10.1109/RTSI.2017.8065903.
  88. W. G. de Morais, C. E. M. Santos, and C. M. Pedroso, “Application of active queue management for real-time adaptive video streaming,” Telecommunication Systems, vol. 79, pp. 261-270, 2022. doi: 10.1007/s11235-021-00848-0.
  89. T. Eguchi, H. Ohsaki, and M. Murata, “On control parameters tuning for active queue management mechanisms using multivariate analysis,” in 2003 Symposium on Applications and the Internet, 2003. Proceedings, Orlando, FL, USA: IEEE, 2003, pp. 120-127. doi: 10.1109/SAINT.2003.1183040.
  90. E.-C. Park, H. Lim, K.-J. Park, and C.-H. Choi, “Analysis and design of the virtual rate control algorithm for stabilizing queues in TCP networks,” Computer Networks, vol. 44, no. 1, pp. 17-41, 2004. doi: 10.1016/S1389-1286(03)00321-9.
  91. H. Abdel-Jaber, M. Woodward, F. Thabtah, and A. Abu-Ali, “Performance evaluation for DRED discrete-time queueing network analytical model,” Journal of Network and Computer Applications, vol. 31, no. 4, pp. 750-770, 2008. doi: 10.1016/j.jnca.2007.09.003.
  92. J. Ababneh, H. Abdel-Jaber, F. Thabtah, W. Hadi, and E. Badarneh, “Derivation of Three Queue Nodes Discrete-Time Analytical Model Based on DRED Algorithm,” in 2010 Seventh International Conference on Information Technology: New Generations, Las Vegas, NV, USA: IEEE, 2010, pp. 885-890. doi: 10.1109/ITNG.2010.252.
  93. J. Koo, B. Song, K. Chung, H. Lee, and H. Kahng, “MRED: a new approach to random early detection,” in Proceedings 15th International Conference on Information Networking, Beppu, Japan: IEEE, 2001, pp. 347-352. doi: 10.1109/ICOIN.2001.905450.
  94. S. A. L. N. Reddy, “LRU-RED: an active queue management scheme to contain high bandwidth flows at congested routers,” in GLOBECOM’01. IEEE Global Telecommunications Conference, vol. 4, San Antonio, TX, USA: IEEE, 2001, pp. 2311-2315. doi: 10.1109/GLOCOM.2001. 966191.
  95. R. Mahajan, S. Floyd, and D. Wetherall, “Controlling high-bandwidth flows at the congested router,” in Proceedings Ninth International Conference on Network Protocols. ICNP 2001, Riverside, CA, USA: IEEE, 2001, pp. 192-201. doi: 10.1109/ICNP.2001.992899.
  96. M. Claypool and J. Chung, “Rate-Based Active Queue Management with Priority Classes for Better Video Transmission,” in Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications, Los Alamitos, CA, USA: IEEE Computer Society, 2002, p. 99. doi: 10.1109/ISCC.2002.1021664.
  97. S. Prabhavat, R. Varakulsiripunth, and S. Noppanakeepong, “Throughput improvement on RED mechanism,” in The 8th International Conference on Communication Systems, 2002. ICCS 2002, vol. 1, Singapore: IEEE, 2002, pp. 599-603. doi: 10.1109/ICCS.2002.1182545.
  98. L. A. Grieco and S. Mascolo, “TCP Westwood and Easy RED to Improve Fairness in High-Speed Networks,” in Protocols for High Speed Networks, G. Carle and M. Zitterbart, Eds., ser. Lecture Notes in Computer Science, vol. 2334, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 130-146. doi: 10.1007/3-540-47828-0_9.
  99. A. Gyasi-Agyei, “Service differentiation in wireless Internet using multiclass RED with drop threshold proportional scheduling,” in Proceedings 10th IEEE International Conference on Networks (ICON 2002). Towards Network Superiority, Singapore: IEEE, 2002, pp. 175-180. doi: 10.1109/ICON.2002.1033307.
  100. J. Koo, K. Chung, H. Kim, and H. Lee, “A New Active RED Algorithm for Congestion Control in IP Networks,” in Information Networking: Wired Communications and Management, I. Chong, Ed., ser. Lecture Notes in Computer Science, vol. 2343, Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 469-479. doi: 10.1007/3-540-458034_42.
  101. V. Phirke, M. Claypool, and R. Kinicki, “RED-Worcester - traffic sensitive active queue management,” in 10th IEEE International Conference on Network Protocols, 2002. Proceedings, Paris, France: IEEE, 2002, pp. 194-195. doi: 10.1109/ICNP.2002.1181403.
  102. R. Verma, A. Iyer, and A. Karandikar, “Active queue management using adaptive RED,” Journal of Communications and Networks, vol. 5, no. 3, pp. 275-281, 2003. doi: 10.1109/JCN.2003.6596822.
  103. N. Yamagaki, H. Tode, and K. Murakami, “RED method with dualfairness metrics cooperating with TCP congestion control,” in IEEE International Conference on Communications, 2003. ICC’03, vol. 1, Anchorage, AK, USA: IEEE, 2003, pp. 652-656. doi: 10.1109/ICC.2003.1204256.
  104. J. Sun, K.-T. Ko, G. Chen, S. Chan, and M. Zukerman, “PD-RED: to improve the performance of RED,” IEEE Communications Letters, vol. 7, no. 8, pp. 406-408, 2003. doi: 10.1109/LCOMM.2003.815653.
  105. C. Wang, B. Li, K. Sohraby, and Y. Peng, “AFRED: an adaptive fuzzy-based control algorithm for active queue management,” in 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN’03. Proceedings, Bonn/Konigswinter, Germany: IEEE, 2003, pp. 12-20. doi: 10.1109/LCN.2003.1243108.
  106. C.-H. Chien and W. Liao, “A self-configuring RED gateway for quality of service (QoS) networks,” in 2003 International Conference on Multimedia and Expo. ICME’03. Proceedings, vol. 1, Baltimore, MD, USA: IEEE, 2003, pp. I-793. doi: 10.1109/ICME.2003.1221037.
  107. J. Orozco and D. Ros, “An Adaptive RIO (A-RIO) Queue Management Algorithm,” in Quality for All, G. Karlsson and M. I. Smirnov, Eds., ser. Lecture Notes in Computer Science, vol. 2811, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 11-20. doi: 10.1007/978-3540-45188-4_2.
  108. R. Cartas, J. Orozco, J. Incera, and D. Ros, “A fairness study of the adaptive RIO active queue management algorithm,” in Proceedings of the Fifth Mexican International Conference in Computer Science, 2004. ENC 2004, Colima, Mexico: IEEE, 2004, pp. 57-63. doi: 10.1109/ENC.2004.1342589.
  109. M. Barbera, F. Licandro, A. Lombardo, G. Schembra, and G. Tusa, “DARED: a double-feedback AQM technique for routers supporting real-time multimedia traffic in a best-effort scenario,” in First International Symposium on Control, Communications and Signal Processing, 2004, Colima, Mexico: IEEE, 2004, pp. 365-368. doi: 10.1109/ISCCSP.2004.1296304.
  110. G. Feng, A. Agarwal, A. Jayaraman, and C. K. Siew, “Modified RED gateways under bursty traffic,” IEEE Communications Letters, vol. 8, no. 5, pp. 323-325, 2004. doi: 10.1109/LCOMM.2004.827427.
  111. K.-P. Zhang, L. Tian, and Z.-Z. Li, “PRED: A new queue management algorithm with priority and self-adaptation,” Acta Electronica Sinica, vol. 32, no. 6, pp. 1039-1043, 2004.
  112. M. Claypool, R. Kinicki, and M. Hartling, “Active queue management for Web traffic,” in IEEE International Conference on Performance, Computing, and Communications, 2004, Phoenix, AZ, USA: IEEE, 2004, pp. 531-538. doi: 10.1109/PCCC.2004.1395082.
  113. V. Vukadinović and L. Trajković, “RED with Dynamic Thresholds for Improved Fairness,” in Proceedings of the 2004 ACM Symposium on Applied Computing, ser. SAC’04, Nicosia, Cyprus: Association for Computing Machinery, 2004, pp. 371-372. doi: 10.1145/967900.967980.
  114. L. Hu and A. D. Kshemkalyani, “HRED: a simple and efficient active queue management algorithm,” in Proceedings. 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969), Chicago, IL, USA: IEEE, 2004, pp. 387-393. DOI: 10. 1109/ICCCN.2004.1401681.
  115. W. Liu, Z. Yang, J. He, C. Le, and C. T. Chou, “Analysis and improvement on the robustness of AQM in DiffServ networks,” in 2004 IEEE International Conference on Communications, vol. 4, Paris, France: IEEE, 2004, pp. 2297-2301. doi: 10.1109/ICC.2004.1312928.
  116. W. Liu, Z. Yang, J. He, and C. T. Chou, “Two adaptive AQM algorithms for quantitative Differentiated Services,” in IEEE Global Telecommunications Conference, 2004. GLOBECOM’04, vol. 3, Dallas, TX, USA: IEEE, 2004, pp. 1703-1707. doi: 10.1109/GLOCOM.2004. 1378272.
  117. C. Wang, B. Li, Y. Thomas Hou, K. Sohraby, and Y. Lin, “LRED: a robust active queue management scheme based on packet loss ratio,” in IEEE INFOCOM 2004, vol. 1, Hong Kong: IEEE, 2004, p. 12. doi: 10.1109/INFCOM.2004.1354476.
  118. C. Wang, J. Liu, B. Li, K. Sohraby, and Y. T. Hou, “LRED: A Robust and Responsive AQM Algorithm Using Packet Loss Ratio Measurement,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 1, pp. 29-43, 2007. doi: 10.1109/TPDS.2007.253279.
  119. Y. Guo, Y. Zhao, G. Song, X. Xing, and C. Chen, “CGRED: class guided random early discarding,” in IEEE International Conference on Performance, Computing, and Communications, 2004, Phoenix, AZ, USA: IEEE, 2004, pp. 179-185. doi: 10.1109/PCCC.2004.1394975.
  120. S. Yi, M. Kappes, S. Garg, X. Deng, G. Kesidis, and C. R. Das, “Proxy-RED: an AQM scheme for wireless local area networks,” in Proceedings. 13th International Conference on Computer Communications and Networks, Chicago, IL, USA: IEEE, 2004, pp. 460-465. doi: 10.1109/ICCCN.2004.1401706.
  121. S. Yi, M. Kappes, S. Garg, X. Deng, G. Kesidis, and C. R. Das, “ProxyRED: an AQM scheme for wireless local area networks,” Wireless Communications and Mobile Computing, vol. 8, no. 4, pp. 421-434, 2008. DOI: https://doi.org/10.1002/wcm.460.
  122. S. Liu, T. Basar, and R. Srikant, “Exponential-RED: a stabilizing AQM scheme for lowand high-speed TCP protocols,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 1068-1081, 2005. doi: 10.1109/TNET.2005.857110.
  123. S. Guo, X. Liao, C. Li, and D. Yang, “Stability analysis of a novel exponential-RED model with heterogeneous delays,” Computer Communications, vol. 30, no. 5, pp. 1058-1074, 2007, Advances in Computer Communications Networks. doi: 10.1016/j.comcom.2006.11.003.
  124. A. E. Kamal and M. Murshed, “Adaptive RED with Dynamic Threshold Adjustment,” Iowa State University, Tech. Rep., 2005.
  125. Z. M. Patel, “Queue occupancy estimation technique for adaptive threshold based RED,” in 2017 IEEE International Conference on Circuits and Systems (ICCS), Thiruvananthapuram, India: IEEE, 2017, pp. 437-440. doi: 10.1109/ICCS1.2017.8326038.
  126. S. Suresh and Ö. Göl, “Congestion Management of IP Traffic Using Adaptive Exponential RED,” in Networking and Mobile Computing, X. Lu and W. Zhao, Eds., ser. Lecture Notes in Computer Science, vol. 3619, Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 580- 589. doi: 10.1007/11534310_62.
  127. C. Bouras and A. Sevasti, “Performance enhancement of an AF service using TCP-aware marking and dynamic WRED,” in 10th IEEE Symposium on Computers and Communications (ISCC’05), Murcia, Spain: IEEE, 2005, pp. 642-647. doi: 10.1109/ISCC.2005.121.
  128. C.-F. Ku, S.-J. Chen, J.-M. Ho, and R.-I. Chang, “Improving end-toend performance by active queue management,” in 19th International Conference on Advanced Information Networking and Applications (AINA’05), vol. 2, Taipei, Taiwan: IEEE, 2005, pp. 337-340. doi: 10.1109/AINA.2005.214.
  129. S. Kasera, J. Pinheiro, C. Loader, T. LaPorta, M. Karaul, and A. Hari, “Robust multiclass signaling overload control,” in 13TH IEEE International Conference on Network Protocols (ICNP’05), Boston, MA, USA: IEEE, 2005, pp. 249-258. doi: 10.1109/ICNP.2005.34.
  130. A. Kesselman, S. Leonardi, and V. Bonifaci, “Game-Theoretic Analysis of Internet Switching with Selfish Users,” in Internet and Network Economics, X. Deng and Y. Ye, Eds., ser. Lecture Notes in Computer Science, vol. 3828, Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 236-245. doi: 10.1007/11600930_23.
  131. B. Wang, B. Kasthurirangan, and J. Xu, “Subsidized RED: an active queue management mechanism for short-lived flows,” Computer Communications, vol. 28, no. 5, pp. 540-549, 2005. doi: 10.1016/j.comcom.2004.09.010.
  132. J. Zhang and D. A. J. Pearce, “On designing a burst-sensitive RED queue at GPRS links in a heterogeneous mobile environment,” in 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 3, Berlin, Germany: IEEE, 2005, pp. 1719- 1723. doi: 10.1109/PIMRC.2005.1651737.
  133. B. Ng, M. Safi Uddin, A. Malik Abusin, and D. Chieng, “POWARED for Non-Linear Adaptive RED,” in 2005 Asia-Pacific Conference on Communications, Perth, WA, Australia: IEEE, 2005, pp. 832-836. doi: 10.1109/APCC.2005.1554179.
  134. X. Lin, X. Chang, and J. K. Muppala, “VQ-RED: An efficient virtual queue management approach to improve fairness in infrastructure WLAN,” in The IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)l, Sydney, NSW, Australia: IEEE, 2005, pp. 1-7. doi: 10.1109/LCN.2005.136.
  135. A. V. Korolkova and I. S. Zaryadov, “The mathematical model of the traffic transfer process with a rate adjustable by RED,” in 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), IEEE, Moscow, Russia: IEEE, Oct. 2010, pp. 1046-1050. doi: 10.1109/ICUMT.2010.5676505.
  136. T. R. Velieva, A. V. Korolkova, and D. S. Kulyabov, “Designing installations for verification of the model of active queue management discipline RED in the GNS3,” in The 6th International Congress on Ultra Modern Telecommunications and Control Systems. Saint-Petersburg, Russia. October 6-8, 2014, IEEE Computer Society, 2015, pp. 570-577. doi: 10.1109/ICUMT.2014.7002164.
  137. A. V. Korolkova, D. S. Kulyabov, and L. A. Sevastianov, “Combinatorial and operator approaches to RED modeling,” Mathematical Modelling and Geometry, vol. 3, no. 3, pp. 1-18, 2015. doi: 10.26456/mmg/2015-331.
  138. A. V. Korolkova and I. S. Zaryadov, “The mathematical model of the traffic transfer process with a rate adjustable by RED,” in International Congress on Ultra Modern Telecommunications and Control Systems, Moscow, Russia: IEEE, 2010, pp. 1046-1050. doi: 10.1109/ICUMT.2010.5676505.
  139. I. S. Zaryadov, A. V. Korolkova, D. S. Kulyabov, T. Milovanova, and V. Tsurlukov, “The survey on Markov-Modulated Arrival Processes and their application to the analysis of active queue management algorithms,” in Distributed Computer and Communication Networks. DCCN 2017. Communications in Computer and Information Science, ser. Communications in Computer and Information Science, V. M. Vishnevskiy, K. E. Samouylov, and D. V. Kozyrev, Eds., vol. 700, Cham: Springer International Publishing, 2017, pp. 417-430. doi: 10.1007/978-3319-66836-9_35.
  140. V. C. C. Hilquias, I. S. Zaryadov, V. V. Tsurlukov, T. A. Milovanova, E. V. Bogdanova, A. V. Korolkova, and D. S. Kulyabov, “The general renovation as the active queue management mechanism. Some aspects and results,” in Distributed Computer and Communication Networks. DCCN 2019, ser. Communications in Computer and Information Science, V. Vishnevskiy, K. Samouylov, and D. Kozyrev, Eds., vol. 1141, Cham: Springer, 2019, ch. 39, pp. 488-502. doi: 10.1007/978-3-03036625-4_39.
  141. A. M. Y. Apreutesey, A. V. Korolkova, and D. S. Kulyabov, “Modeling RED algorithm modifications in the OpenModelica,” in Proceedings of the Selected Papers of the 8th International Conference ”Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems” (ITTMM-2019), Moscow, Russia, April 15-19, 2019, D. S. Kulyabov, K. E. Samouylov, and L. A. Sevastianov, Eds., vol. 2407, CEUR-WS, 2019, pp. 5-14.
  142. V. C. C. Hilquias, I. S. Zaryadov, and T. A. Milovanova, “Queueing systems with different types of renovation mechanism and thresholds as the mathematical models of active queue management mechanism,” Discrete and Continuous Models and Applied Computational Science, vol. 28, no. 4, pp. 305-318, 2020. doi: 10.22363/2658-4670-2020-28-4-305-318.

© Зарядов И.С., Виана К.К., Королькова А.В., Милованова Т.А., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах