Реализация метода Адамса для решения обычных дифференциальных уравнений в системе компьютерной алгебры Sage

Обложка

Цитировать

Полный текст

Аннотация

Работа посвящена реализации и тестированию метода Адамса для решения обыкновенных дифференциальных уравнений в системе компьютерной алгебры Sage. Система компьютерной алгебры Sage обладает в какой-то степени тривиальными средствами для численного интегрирования обыкновенных дифференциальных уравнений, но при этом, стоит заметить, что данная среда удобна и практична для проведения в ней компьютерных экспериментов, связанных с символьно-численными вычислениями. В работе представлен пакет FDM, разработанный на базе РУДН, в котором собраны наработки последних лет, выполненных М. Д. Малых и его учениками, для численного интегрирования дифференциальных уравнений. В данном пакете уделено внимание визуализации результатов вычисления, в том числе построению разного рода вспомогательных диаграмм, например диаграмм Ричардсона, а также графиков зависимости, например значения функции или шага от момента времени. В статье рассмотрена реализация метода Адамса, проведено её тестирование на различных примерах входных данных, а также выполнено сравнение метода с системой Якоби. Найдены и точные, и приближённые значения, проведено их сравнение, получена оценка для ошибки.

Полный текст

1. Introduction To describe models in a variety of subject areas from mechanics to economics, ordinary differential equations are used [1]. These equations admit solutions in elementary functions only in some very special cases, therefore they are usually investigated numerically. The finite difference method was proposed by Euler, the Runge-Kutta method of the 4th order is the most popular numerical method for solving initial problems for ordinary differential equations [2]. Old authors, including J. Scarborough [3, ch. XIII], mention numerical methods alternative to the Runge-Kutta method. The method that J. Scarborough has associated with the name of the English theoretical astronomer J. K. Adams, was forgotten for a long time, because it was very inconvenient to implement on a computer: before its use, a number of preparatory calculations had to be carried out on paper. However, with the development of computer computing, it became possible to perform these actions on a computer, which pushes us to study the possibility of implementing the Adams method in modern computer algebra systems. Currently, RUDN University is developing an addition to Sage - the FDM package, which contains the achievements of recent years, made by M. D. Malykh and his students. The goal of the project is to create a convenient environment for numerical experiments with ODES in the Sage computer algebra system. This project is available to everyone on https://github. com/malykhmd/fdm. The general principles of the package are described in [4]. The purpose of this work is to test the implementation of the Adams method in FDM. 2. The Adams method and its implementation in FDM Consider the initial problem
×

Об авторах

М. Д. Малых

Российский университет дружбы народов; Объединённый институт ядерных исследований

Автор, ответственный за переписку.
Email: malykh-md@rudn.ru
ORCID iD: 0000-0001-6541-6603
Scopus Author ID: 6602318510
ResearcherId: P-8123-2016

Doctor of Physical and Mathematical Sciences, Assistant Professor of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

П. С. Чусовитина

Российский университет дружбы народов

Email: 1032192941@rudn.ru
ORCID iD: 0009-0006-4191-2454

Student of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Список литературы

  1. H. Gould and J. Tobochnik, An introduction to computer simulation methods. Applications to physical systems. Addison-Wesley Publishing Company, 1988.
  2. A. Baddour and M. D. Malykh, “Richardson-Kalitkin method in abstract description,” Discrete and Continuous Models and Applied Computational Science, vol. 29, no. 3, pp. 271-284, 2021. doi: 10.22363/2658-4670-2021-29-3-271-284.
  3. J. B. Scarborough, Numerical methods of mathematical analysis. Oxford book company, 1930.
  4. L. Gonzalez and M. D. Malykh, “On a new package for numerical solution of ordinary differential equations in Sage [O novom pakete dlya chislennogo resheniya obyknovennykh differentsial’nykh uravneniy v Sage],” in Proceedings of ITTMM’22, Moscow, Russia, in Russian, 2022, pp. 360-364.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Малых М.Д., Чусовитина П.С., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.