Сходимость сеточного метода для уравнения Фредгольма первого рода с регуляризацией по Тихонову
- Авторы: Белов А.А.1,2
-
Учреждения:
- Московский государственный университет им. М. В. Ломоносова
- Российский университет дружбы народов
- Выпуск: Том 31, № 2 (2023)
- Страницы: 120-127
- Раздел: Статьи
- URL: https://journals.rudn.ru/miph/article/view/35108
- DOI: https://doi.org/10.22363/2658-4670-2023-31-2-120-127
- EDN: https://elibrary.ru/WIMGRX
Цитировать
Полный текст
Аннотация
В статье описан сеточный метод решения некорректной задачи для уравнения Фредгольма первого рода с использованием регуляризатора А. Н. Тихонова. Сформулирована и доказана теорема о сходимости этого метода. Для её практической реализации предложена процедура сгущения сеток с одновременным увеличением разрядности вычислений.
Ключевые слова
Об авторах
А. А. Белов
Московский государственный университет им. М. В. Ломоносова; Российский университет дружбы народов
Автор, ответственный за переписку.
Email: aa.belov@physics.msu.ru
ORCID iD: 0000-0002-0918-9263
Scopus Author ID: 57191950560
ResearcherId: Q-5064-2016
Candidate of Physical and Mathematical Sciences, Researcher of Faculty of Physics, M. V. Lomonosov Moscow State University; Assistant Professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia
Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия; ул. Миклухо-Маклая, д. 6, Москва, 117198, РоссияСписок литературы
- W. Jun-Gang, L. Yan, and R. Yu-Hong, “Convergence of Chebyshev type regularization method under Morozov discrepancy principle,” Applied Mathematics Letters, vol. 74, pp. 174-180, 2017. doi: 10.1016/j.aml.2017.06.004.
- A. A. Belov and N. N. Kalitkin, “Processing of Experimental Curves by Applying a Regularized Double Period Method,” Doklady Mathematics, vol. 94, no. 2, pp. 539-543, 2016. doi: 10.1134/S1064562416050100.
- A. A. Belov and N. N. Kalitkin, “Regularization of the double period method for experimental data processing,” Computational Mathematics and Mathematical Physics, vol. 57, no. 11, pp. 1741-1750, 2017. doi: 10.1134/S0965542517110033.
- A. B. Bakushinsky and A. Smirnova, “Irregular operator equations by iterative methods with undetermined reverse connection,” Journal of Inverse and Ill-posed Problems, vol. 18, pp. 147-165, 2010. doi: 10.1515/jiip.2010.005.
- A. B. Bakushinsky and A. Smirnova, “Discrepancy principle for generalized GN iterations combined with the reverse connection control,” Journal of Inverse and Ill-posed Problems, vol. 18, pp. 421-431, 2010. doi: 10.1515/jiip.2010.019.
- T. Jian-guo, “An implicit method for linear ill-posed problems with perturbed operators,” Mathematical Methods in the Applied Sciences, vol. 18, pp. 1327-1338, 2006. doi: 10.1002/mma.729.
- A. S. Leonov, Solving ill-posed inverse problems: essay on theory, practical algorithms and Matlab demonstrations [Resheniye nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskiye algoritmy i demonstratsii v Matlab]. Moscow: Librokom, 2010, in Russian.
- A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems. New York: Halsted, 1977.
- Y. L. Gaponenko, “On the degree of decidability and the accuracy of the solution of an ill-posed problem for a fixed level of error,” USSR Computational Mathematics and Mathematical Physics, vol. 24, pp. 96-101, 1984. doi: 10.1016/0041-5553(84)90092-2.
- Y. L. Gaponenko, “The accuracy of the solution of a non-linear ill-posed problem for a finite error level,” USSR Computational Mathematics and Mathematical Physics, vol. 25, pp. 81-85, 1985. doi: 10.1016/00415553(85)90076-X.
- Y. Hon and T. Wei, “Numerical computation of an inverse contact problem in elasticity,” Journal of Inverse and Ill-posed Problems, vol. 14, pp. 651-664, 2006. doi: 10.1515/156939406779802004.
- H. Ben Ameur and B. Kaltenbacher, “Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators,” Journal of Inverse and Ill-posed Problems, vol. 10, pp. 561-583, 2002. doi: 10.1515/jiip.2002.10.6.561.
- A. B. Bakushinsky and A. S. Leonov, “New a posteriori error estimates for approximate solutions to irregular operator equations [Novyye aposteriornyye otsenki pogreshnosti priblizhennykh resheniy neregulyarnykh operatornykh uravneniy],” Vychisl. Metody Programm., vol. 15, pp. 359-369, 2014, in Russian.
- A. B. Bakushinsky, A. Smirnova, and L. Hui, “A posteriori error analysis for unstable models,” Journal of Inverse and Ill-posed Problems, vol. 20, pp. 411-428, 2012. doi: 10.1515/jip-2012-0006.
- M. V. Klibanov, A. B. Bakushinsky, and L. Beilina, “Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess,” Journal of Inverse and Ill-posed Problems, vol. 19, pp. 83-105, 2011. doi: 10.1515/jiip.2011.024.
- A. V. Goncharskii, A. S. Leonov, and A. G. Yagola, “A generalized discrepancy principle,” USSR Computational Mathematics and Mathematical Physics, vol. 13, no. 2, pp. 25-37, 1973. doi: 10.1016/0041-5553(73)90128-6.
- A. A. Belov and N. N. Kalitkin, “Solution of the Fredholm Equation of the First Kind by the Mesh Method with Tikhonov Regularization,” Mathematical Models and Computer Simulations, vol. 11, pp. 287-300, 2018. doi: 10.1134/S2070048219020042.
- V. S. Ryabenkii and A. F. Fillipov, On stability of difference equations [Ob ustoychivosti raznostnykh uravneniy]. Moscow: Gos. Izdat. Tekh.-Teor. Liter., 1956, in Russian.
- R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems. New York: Interscience publishers, 1967.
- N. N. Kalitkin, L. F. Yuhno, and L. V. Kuzmina, “Quantitative criterion of conditioning for systems of linear algebraic equations,” Mathematical Models and Computer Simulations, vol. 3, pp. 541-556, 2011. DOI: 10. 1134/S2070048211050097.