Консервативные конечно-разностные схемы для динамических систем

Обложка

Цитировать

Полный текст

Аннотация

В статье представлена реализация одного из подходов к интегрированию динамических систем, при котором сохраняются алгебраические интегралы в оригинальной системе fdm for sage. Этот подход, восходящий к статье дель Буоно и Мастросерио, позволяет на основе двух любых явных разностных схем, в том числе любых двух явных схем Рунге-Кутты, сконструировать новый численный алгоритм интегрирования динамической системы, сохраняющий заданный интеграл. Этот подход реализован и протестирован в оригинальной системе fdm for sage. Обсуждены детали и трудности реализации. Для тестирования в качестве двух схем взяты две схемы Рунге-Кутты одного порядка, но с разными таблицами Бутчера, что не приводит к усложнению метода благодаря распараллеливанию. Рассмотрено два примера - линейный осциллятор и осциллятор Якоби, имеющий два квадратичных интеграла. На втором примере показано, что сохранение одного интеграла движения не приводит к сохранению другого. Проделанные эксперименты подтверждают, что данный подход может быть использован и при нестандартном выборе исходных схем. Более того, этот метод позволяет предложить практическое применение хорошо известной неоднозначности в определении таблиц Бутчера.

Об авторах

Юй Ин

Университет Кайли

Автор, ответственный за переписку.
Email: 45384377@qq.com
ORCID iD: 0000-0002-4105-2566

Assistant Professor of Department of Algebra and Geometry

3, Кайюань Роуд, Кайли, 556011, Китай

Чжэнь Лу

Университет Кайли

Email: 157739594@qq.com
ORCID iD: 0000-0002-7526-9026

Associate Professor, Department of Fine art

3, Кайюань Роуд, Кайли, 556011, Китай

Список литературы

  1. A. Goriely, Integrability and Nonintegrability of Dynamical Systems. Singapore; River Edge, NJ: World Scientific, 2001.
  2. E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary Differential Equations I, Nonstiff Problems, 3rd ed. Springer, 2008. doi: 10.1007/978-3-540-78862-1.
  3. V. V. Golubev, Vorlesungen über Differentialgleichungen im Komplexen. VEB Deutscher Verlag der Wissenschaften, 1958.
  4. D. Greenspan. “Completely Conservative and Covariant Numerical Methodology for N-Body Problems With Distance-Dependent Potentials. Technical Report no. 285.” (1992), [Online]. Available: http://hdl.handle.net/10106/2267.
  5. D. Greenspan, “Completely conservative, covariant numerical methodology,” Computers & Mathematics with Applications, vol. 29, no. 4, pp. 37- 43, 1995. doi: 10.1016/0898-1221(94)00236-E.
  6. D. Greenspan, “Completely conservative, covariant numerical solution of systems of ordinary differential equations with applications,” Rendiconti del Seminario Matematico e Fisico di Milano, vol. 65, pp. 63-87, 1995. doi: 10.1007/BF02925253.
  7. D. Greenspan, N-Body Problems and Models. World Scientific, 2004.
  8. Y. Ying, A. Baddour, V. P. Gerdt, M. Malykh, and L. Sevastianov, “On the quadratization of the integrals for the many-body problem,” Mathematics, vol. 9, no. 24, 2021. doi: 10.3390/math9243208.
  9. A. Baddour and M. Malykh, “On difference schemes for the many-body problem preserving all algebraic integrals,” Phys. Part. Nuclei Lett., vol. 19, pp. 77-80, 2022. doi: 10.1134/S1547477122010022.
  10. N. Del Buono and C. Mastroserio, “Explicit methods based on a class of four stage fourth order Runge-Kutta methods for preserving quadratic laws,” Journal of Computational and Applied Mathematics, vol. 140, pp. 231-243, 2002.
  11. M. Calvo, D. Hernández-Abreu, J. I. Montijano, and L. Rández, “On the preservation of invariants by explicit Runge-Kutta methods,” SIAM Journal on Scientific Computing, vol. 28, no. 3, pp. 868-885, 2006.
  12. Y. Ying, “The symbolic problems associated with Runge-Kutta methods and their solving in Sage,” Discrete and Continuous Models and Applied Computational Science, vol. 27, no. 1, pp. 33-41, 2019. doi: 10.22363/2658-4670-2019-27-1-33-41.
  13. Y. Ying and M. Malykh, “On the realization of explicit Runge-Kutta schemes preserving quadratic invariants of dynamical systems,” Discrete and Continuous Models and Applied Computational Science, vol. 28, no. 4, pp. 313-331, 2020. doi: 10.22363/2658-4670-2020-28-4-313-331.
  14. L. González and M. D. Malykh, “On a new package for the numerical solution of ordinary differential equations in Sage,” in Information and telecommunication technologies and mathematical modeling of high-tech systems. Materials of the All-Russian Conference with international participation, In Russian, Moscow: RUDN, 2022.
  15. A. Baddour and M. Malykh, “Richardson-Kalitkin method in abstract description,” Discrete and Continuous Models and Applied Computational Science, vol. 29, no. 3, pp. 271-284, 2021.
  16. W. H. Press. “Numerical Recipes Home Page.” (2019), [Online]. Available: http://numerical.recipes.

© Ин Ю., Лу Ч., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах