Исследование модели адиабатических волноводных мод для плавно-нерегулярных интегрально-оптических волноводов

Обложка

Цитировать

Полный текст

Аннотация

Проведено исследование модели адиабатических волноводных мод плавно-нерегулярного интегрально-оптического волновода. В модели явно учтена зависимость от быстропеременной поперечной координаты и от медленно-переменных горизонтальных координат. Сформулированы уравнения для напряженностей полей АВМ в приближениях нулевого и первого порядка малости. Вклады первого порядка малости вносят в выражения электромагнитных полей АВМ деполяризацию и комлекснозначность, т.е. характерные черты вытекающих мод. Предложен устойчивый метод вычисления вертикального распределения электромагнитного поля направляемых мод регулярных многослойных волноводов, в том числе с переменным числом слоев. Описан устойчивый метод решения нелинейного уравнения в частных производных первого порядка (дисперсионного уравнения) для профиля толщины плавнонерегулярного интегрально-оптического волновода в моделях адиабатических волноводных мод нулевого и первого порядков малости. Описаны устойчивые регуляризованные методы вычисления напряженностей полей АВМ в зависимости от вертикальных и горизонтальных координат. В рамках перечисленных матричных моделей используются одинаковые методы и алгоритмы приближенного решения задач, возникающих в этих моделях. Предложена верификация приближенных решений моделей адиабатических волноводных мод первого и нулевого порядков; проведено сравнение их с результатами других авторов, полученных при исследовании более грубых моделей.

Об авторах

А. Л. Севастьянов

Национальный исследовательский университет «Высшая школа экономики»

Автор, ответственный за переписку.
Email: alsevastyanov@gmail.com
ORCID iD: 0000-0002-0280-485X

PhD in Physical and Mathematical Sciences, Deputy head of department: Department of Digitalization of Education

Покровский бульвар, д. 11, Москва, 109028, Россия

Список литературы

  1. B. Z. Katsenelenbaum, Theory of irregular waveguides with slowly varying parameters [Teoriya neregulyarnyh volnovodov s medlenno menyayushchimisya parametrami]. Moscow: Akad. Nauk SSSR, 1961, in Russian.
  2. V. V. Shevchenko, Continuous transitions in open waveguides [Plavnyye perekhody v otkrytykh volnovodakh]. Moscow: Nauka, 1969, in Russian.
  3. M. V. Fedoryuk, “Justification of the method of cross-sections for an acoustic waveguide with inhomogeneous filling”, USSR Computational Mathematics and Mathematical Physics, vol. 13, no. 1, pp. 162-173, 1973. doi: 10.1016/0041-5553(74)90012-3.
  4. A. A. Egorov and L. A. Sevast’yanov, “Structure of modes of a smoothly irregular integrated optical four-layer three-dimensional waveguide”, Quantum Electronics, vol. 39, no. 6, pp. 566-574, 2009. doi: 10.1070/QE2009v039n06ABEH013966.
  5. A. A. Egorov et al., “Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation”, Quantum Electronics, vol. 40, no. 9, pp. 830-836, 2010. doi: 10.1070/QE2010v040n09ABEH014332.
  6. A. A. Egorov, L. A. Sevastianov, and A. L. Sevastianov, “Method of adiabatic modes in research of smoothly irregular integrated optical waveguides: zero approximation”, Quantum Electronics, vol. 44, no. 2, pp. 167-173, 2014. doi: 10.1070/QE2014v044n02ABEH015303.
  7. A. L. Sevastianov, “Asymptotic method for constructing a model of adiabatic guided modes of smoothly irregular integrated optical waveguides”, Discrete and Continuous Models and Applied Computational Science, vol. 20, no. 3, pp. 252-273, 2020. doi: 10.22363/2658-4670-2020-283-252-273.
  8. A. L. Sevastianov, “Single-mode propagation of adiabatic guided modes in smoothly irregular integral optical waveguides”, Discrete and Continuous Models and Applied Computational Science, vol. 28, no. 4, pp. 361- 377, 2020. doi: 10.22363/2658-4670-2020-28-4-361-377.
  9. G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch oscillations in an array of curved optical waveguides”, Physical Review Letters, vol. 83, no. 5, pp. 963-966, 1999. doi: 10.1103/PhysRevLett.83.963.
  10. S. Longhi, D. Janner, M. Marano, and P. Laporta, “Quantum-mechanical analogy of beam propagation in waveguides with a bent axis: dynamic-mode stabilization and radiation-loss suppression”, Physical Review E, vol. 67, no. 3, p. 036601, 2003. doi: 10.1103/PhysRevE.67.036601.
  11. I. Vorobeichik et al., “Electromagnetic realization of orders-of-magnitude tunneling enhancement in a double well system”, Physical Review Letters, vol. 90, p. 176806, 17 2003. doi: 10.1103/PhysRevLett.90.176806.
  12. S. Longhi, “Coherent destruction of tunneling in waveguide directional couplers”, Physical Review A, vol. 71, p. 065801, 6 2005. doi: 10.1103/PhysRevA.71.065801.
  13. R. Khomeriki and S. Ruffo, “Nonadiabatic Landau-Zener tunneling in waveguide arrays with a step in the refractive index”, Physical Review Letters, vol. 94, p. 113904, 11 2005. doi: 10.1103/PhysRevLett.94.113904.
  14. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules”, Reviews of Modern Physics, vol. 70, pp. 1003-1025, 3 1998. doi: 10.1103/RevModPhys.70.1003.
  15. F.T.HioeandJ.H.Eberly,“N-Levelcoherencevectorandhigherconservation laws in quantum optics and quantum mechanics”, Physical Review Letters, vol. 47, pp. 838-841, 12 1981. doi: 10.1103/PhysRevLett.47.838.
  16. J. Oreg, F. T. Hioe, and J. H. Eberly, “Adiabatic following in multilevel systems”, Physical Review A, vol. 29, pp. 690-697, 2 1984. doi: 10.1103/PhysRevA.29.690.
  17. C. E. Carroll and F. T. Hioe, “Three-state systems driven by resonant optical pulses of different shapes”, Journal of the Optical Society of America B: Optical Physics, vol. 5, no. 6, pp. 1335-1340, 1988. doi: 10.1364/JOSAB.5.001335.
  18. J. Oreg, K. Bergmann, B. W. Shore, and S. Rosenwaks, “Population transfer with delayed pulses in four-state systems”, Physical Review A, vol. 45, pp. 4888-4896, 7 1992. doi: 10.1103/PhysRevA.45.4888.
  19. N. V. Vitanov and S. Stenholm, “Analytic properties and effective twolevel problems in stimulated Raman adiabatic passage”, Physical Review A, vol. 55, pp. 648-660, 1 1997. doi: 10.1103/PhysRevA.55.648.
  20. V. M. Babich and V. S. Buldyrev, Asymptotic methods in short-wavelength diffraction theory (Alpha Science Series on Wave Phenomena), English. Harrow, UK: Alpha Science International, 2009.
  21. Y. A. Kravtsov and Y. I. Orlov, Geometrical optics of inhomogeneous media. Berlin: Springer-Verlag, 1990.
  22. A. L. Sevastyanov, “Single-mode waveguide spread of light in a smooth irregular integral optical waveguide [Komp’yuternoe modelirovanie polej napravlyaemyh mod tonkoplenochnoj obobshchennoj volnovodnoj linzy Lyuneberga]”, in Russian, Ph.D. dissertation, Peoples’ Friendship University of Russia, Moscow, 2010.
  23. M. D. Malykh, “On integration of the first order differential equations in a finite terms”, Journal of Physics: Conference Series, vol. 788, p. 012026, 2017. doi: 10.1088/1742-6596/788/1/012026.
  24. A. D. Polyanin and V. E. Nazaikinskii, Handbook of linear partial differential equations for engineers and scientists, 2nd ed. Boca Raton, London: CRC Press, 2016. doi: 10.1201/b19056.

© Севастьянов А.Л., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах