Конечно-разностные методы решения 1D задачи Пуассона

Обложка

Цитировать

Полный текст

Аннотация

В статье обсуждается постановка и анализ методов решения одномерного уравнения Пуассона на основе конечно-разностных аппроксимаций - важного и очень полезного инструмента численного исследования дифференциальных уравнений. По сути, это классический метод аппроксимации, основанный на разложении решения в ряд Тейлора. Развитие теоретических и практических результатов на базе этого метода в последние годы позволили повысить точность, стабильность и сходимость методов решения дифференциальных уравнений. Некоторые особенности этого анализа включают интересные расширения классического численного анализа начальных и граничных задач. В первой части излагается численный метод решения одномерного уравнения Пуассона, сводящийся к решению системы линейных алгебраических уравнений (СЛАУ) с ленточной симметричной положительно определённой матрицей. В качестве метода решения СЛАУ используется широко известный метод прогонки (метод Томаса). Во второй части представлен метод решения, основанный на аналитическом представлении точной обратной матрицы дискретизированного варианта уравнения Пуассона. Выражения для обратных матриц существенно зависят от типов граничных условий в исходной постановке. Представлены варианты обратных матриц для уравнения Пуассона с различными граничными условиями на концах исследуемого интервала - условиями Дирихле на обоих концах интервала, условиями Дирихле на одном из концов и Неймана на другом. Во всех трёх случаях коэффициенты обратных матриц легко вычисляются (выписываются) и алгоритм решения задачи практически сводится к умножению матрицы на вектор правой части.

Об авторах

С. Ндайисенга

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: 1032195775@rudn.ru
ORCID iD: 0000-0002-9297-9839

Student of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Л. А. Севастьянов

Российский университет дружбы народов; Лаборатория теоретической физики им. Н.Н. Боголюбова Объединённый институт ядерных исследований

Email: sevastianov-la@rudn.ru
ORCID iD: 0000-0002-1856-4643

Doctor of Physical and Mathematical Sciences, Professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia (RUDN University), Leading Researcher of Bogoliubov Laboratory of Theoretical Physics, JINR

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

К. П. Ловецкий

Российский университет дружбы народов

Email: lovetskiy-kp@rudn.ru
ORCID iD: 0000-0002-3645-1060

Candidate of Physical and Mathematical Sciences, Associate Professor of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Список литературы

  1. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [Uravneniya matematicheskoy fiziki], 7th ed. Moscow: Moscow State University, Nauka, 2004, in Russian.
  2. D. A. Yakovlev, V. G. Chigrinov, and H. S. Kwok, Modeling and optimization of LCD optical performance. New York: Wiley, 2015. doi: 10.1002/9781118706749.
  3. L. N. Trefethen, Approximation theory and approximation practice. Philadelphia: SIAM - Society for Industrial and Applied Mathematics, 2019.
  4. M. Planitz et al., Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York: Cambridge University Press, 2007.
  5. N. N. Kalitkin and P. V. Koryakin, “Numerical methods [Chislennyye metody],” in Methods of Mathematical Physics, 1st ed. Moscow: Academia, 2013, vol. 2, in Russian.
  6. A. A. Abramov and V. B. Andreyev, “On the application of the method of successive substitution to the determination of periodic solutions of differential and difference equations,” USSR Computational Mathematics and Mathematical Physics, vol. 3, no. 2, pp. 498-504, 1963. doi: 10.1016/0041-5553(63)90034-x.
  7. A. A. Samarskiy and A. V. Gulin, Numerical Methods of Mathematical Physics [Chislennyye metody matematicheskoy fiziki]. Moscow: Scientific world, 2003, in Russian.
  8. L. H. Thomas, Elliptic problems in linear difference equations over a network. New York: Waston Sci. Comput. Lab. Rept., Columbia University, 1949.
  9. S. B. Gueye, K. Talla, and C. Mbow, “Generalization of the exact solution of 1D Poisson equation with robin boundary conditions, using the finite difference method,” Journal of Electromagnetic Analysis and Applications, vol. 6, no. 12, pp. 372-381, 2014. doi: 10.4236/jemaa.2014.612038.
  10. S. B. Gueye, K. Talla, and C. Mbow, “Solution of 1D Poisson equation with Neumann-Dirichlet and Dirichlet-Neumann boundary conditions, using the finite difference method,” Journal of Electromagnetic Analysis and Applications, vol. 6, no. 10, pp. 309-318, 2014. doi: 10.4236/jemaa.2014.610031.
  11. S. B. Gueye, “The exact formulation of the inverse of the tridiagonal matrix for solving the 1D Poisson equation with the finite difference method,” Journal of Electromagnetic Analysis and Applications, vol. 6, no. 10, pp. 303-308, 2014. doi: 10.4236/jemaa.2014.610031.
  12. N. N. Kalitkin and E. A. Alshina, “Numerical Methods [Chislennyye metody],” in Numerical analysis. Moscow: Academia, 2013, vol. 1, in Russian.
  13. A. Amosov, Y. Dubinsky, and N. Kopchenova, Computational Methods [Vychislitel’nyye metody], 4th ed. St. Petersburg: Lan’, 2021, in Russian.

© Ндайисенга С., Севастьянов Л.А., Ловецкий К.П., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах