Об инволютивном делении на моноидах
- Авторы: Кройтор О.К.1, Малых М.Д.1,2
-
Учреждения:
- Российский университет дружбы народов
- Объединённый институт ядерных исследований
- Выпуск: Том 29, № 4 (2021)
- Страницы: 387-398
- Раздел: Статьи
- URL: https://journals.rudn.ru/miph/article/view/29430
- DOI: https://doi.org/10.22363/2658-4670-2021-29-4-387-398
Цитировать
Полный текст
Аннотация
Рассматривается произвольный моноид , на котором введено инволютивное деление, и множество всех его конечных подмножеств Set. Деление рассматривается как отображение , образ которого - множество делителей в . Свойства деления и инволютивного деления задаются аксиоматически. Понятия инволютивного деления введено в соответствии с определением инволютивного мономиального деления, введённым В.П. Гердтом и Ю.А. Блинковым. Предложен ряд новых обозначений, позволяющих коротко, но явно учитывать зависимость деления от элемента Set. Теория инволютивного пополнения (замыкания) множеств изложена для произвольных моноидов, необходимые и достаточные условия полноты (замкнутости) - для моноидов, порождённых конечным множеством . Подчёркнута аналогия между этой теорией и теорией вполне непрерывных операторов. В последнем разделе обсуждена возможность решения задачи о пополнении заданного множества путём последовательного расширения исходной области и её связь с аксиомами, используемыми в определении деления. Все результаты проиллюстрированы примерами о мономиальном делении Томаса.
Ключевые слова
Об авторах
О. К. Кройтор
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: kroytor_ok@pfur.ru
ORCID iD: 0000-0002-5691-7331
PhD student of Department of Applied Probability and Informatics
ул. Миклухо-Маклая, д. 6, Москва, 117198, РоссияМ. Д. Малых
Российский университет дружбы народов; Объединённый институт ядерных исследований
Email: malykh_md@pfur.ru
ORCID iD: 0000-0001-6541-6603
Doctor of Physical and Mathematical Sciences, Assistant professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia (RUDN University); Researcher in Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, РоссияСписок литературы
- C. Riquier, Les Systèmes d’Equations aux Dérivées Partielles. Paris: Gauthier-Villars, 1910.
- M. Janet, “Systèmes d’équations aux dérivées partielles,” Journals de mathématiques, 8e série, vol. 3, pp. 65-151, 1920.
- J. Thomas, Differential systems. New York: American Mathematical Society, 1937.
- A. Y. Zharkov, “Involutive polynomial bases: general case,” in Preprint JINR E5-94-224. Dubna, 1994.
- A. Y. Zharkov and Y. A. Blinkov, “Involutive bases of zero-dimensional ideals,” in Preprint JINR E5-94-318. Dubna, 1994.
- A. Y. Zharkov and Y. A. Blinkov, “Solving zero-dimensional involutive systems,” in Progress in Mathematics. Basel: Birkhauser, 1996, vol. 143, pp. 389-399. doi: 10.1007/978-3-0348-9104-2_20.
- A. Y. Zharkov and Y. A. Blinkov, “Involution approach to investigating polynomial systems,” Mathematics and Computers in Simulation, vol. 42, pp. 323-332, 1996. doi: 10.1016/S0378-4754(96)00006-7.
- V. P. Gerdt and Y. A. Blinkov, “Involutive bases of polynomial ideals,” Mathematics and Computers in Simulation, vol. 45, no. 5-6, pp. 519- 541, 1998. doi: 10.1016/s0378-4754(97)00127-4.
- V. P. Gerdt, “Gröbner bases and involutive methods for algebraic and differential equations,” Mathematical and computer modelling, vol. 25, no. 8-9, pp. 75-90, 1997. doi: 10.1016/S0895-7177(97)00060-5.
- V. P. Gerdt and Y. A. Blinkov, “Involutive divisions of monomials,” Programming and Computer Software, vol. 24, no. 6, pp. 283-285, 1998.
- Y. A. Blinkov, “Division and algorithms in the ideal membership problem [Deleniye i algoritmy v zadache o prinadlezhnosti k idealu],” Izvestija Saratovskogo universiteta, vol. 1, no. 2, pp. 156-167, 2001, in Russian.
- V. P. Gerdt. “Compact involutive monomial bases.” (2020), [Online]. Available: https://events.rudn.ru/event/102.
- Y. A. Blinkov, “Involutive methods applied to models described by systems of algebraic and differential equations [Involyutivnyye metody issledovaniya modeley, opisyvayemykh sistemami algebraicheskikh i differentsial’nykh uravneniy],” in Russian, Ph.D. dissertation, Saratov State University, Saratov, 2009.
- J. Apel, “A Gröbner approach to involutive bases,” Journal of Symbolic Computation, vol. 19, no. 5, pp. 441-458, 1995. doi: 10.1006/jsco. 1995.1026.
- A. Y. Zharkov and Y. A. Blinkov, “Involution approach to solving systems of algebraic equations,” in Proceedings of the 1993 International IMACS Symposium on Symbolic Computation. Laboratoire d’Informatique Fondamentale de Lille, France, 1993, pp. 11-16.