Метод Ричардсона-Калиткина в абстрактном изложении

Обложка

Цитировать

Полный текст

Аннотация

Дано абстрактное описание метода Ричардсона-Калиткина для получения апостериорных оценок близости точного и найденного приближённого решения начальных задач для обыкновенных дифференциальных уравнений (ОДУ). Рассматривается задача Ρ{{\Rho}}, результатом решения которой является вещественное число uu. Для решения этой задачи используется численный метод, то есть заданы множество H{H\subset \mathbb{R}} и отображение uh:H{u_h:H\to\mathbb{R}}, значения которого имеется возможность вычислять конструктивно. При этом предполагается, что 0 является предельной точкой множества HH, uh{u_h} можно разложить в сходящийся ряд по степеням h:uh=u+c1hk+...{h:u_h=u+c_1h^k+...}. В этой весьма общей ситуации сформулирован метод Ричардсона–Калиткина получения оценок для uu и cc по двум значениям uh{u_h} . Рассмотрен вопрос об использовании большего числа значений uh{u_h} для получения такого рода оценок. Приведены примеры, иллюстрирующие теорию. Показано, что подход Ричардсона–Калиткина с успехом может быть применён к задачам, которые решаются не только методом конечных разностей.

Об авторах

Али Баддур

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: alibddour@gmail.com
ORCID iD: 0000-0001-8950-1781

PhD student of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

М. Д. Малых

Российский университет дружбы народов; Объединённый институт ядерных исследований

Email: malykh_md@pfur.ru
ORCID iD: 0000-0001-6541-6603

Doctor of Physical and Mathematical Sciences, Assistant professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia (RUDN University); Researcher in Meshcheryakov Laboratory of Information Technologies, Joint Institute for Nuclear Research

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Список литературы

  1. E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary Differential Equations, 3rd ed. New York: Springer, 2008, vol. 1.
  2. L. F. Richardson and J. A. Gaunt, “The deferred approach to the limit,” Phil. Trans. A, vol. 226, pp. 299-349, 1927. doi: 10.1098/rsta.1927.0008.
  3. N. N. Kalitkin, A. B. Al’shin, E. A. Al’shina, and B. V. Rogov, Calculations on quasi-uniform grids. Moscow: Fizmatlit, 2005, In Russian.
  4. N. N. Kalitkin, Numerical methods [Chislennyye metody]. Moscow: Nauka, 1979, In Russian.
  5. A. A. Belov, N. N. Kalitkin, and I. P. Poshivaylo, “Geometrically adaptive grids for stiff Cauchy problems,” Doklady Mathematics, vol. 93, no. 1, pp. 112-116, 2016. doi: 10.1134/S1064562416010129.
  6. A. A. Belov and N. N. Kalitkin, “Nonlinearity problem in the numerical solution of superstiff Cauchy problems,” Mathematical Models and Computer Simulations, vol. 8, no. 6, pp. 638-650, 2016. doi: 10.1134/S2070048216060065.
  7. A. A. Belov, N. N. Kalitkin, P. E. Bulatov, and E. K. Zholkovskii, “Explicit methods for integrating stiff Cauchy problems,” Doklady Mathematics, vol. 99, no. 2, pp. 230-234, 2019. doi: 10.1134/S1064562419020273.
  8. L. N. Trefethen and J. A. C. Weideman, “The exponentially convergent trapezoidal rule,” SIAM Review, vol. 56, pp. 385-458, 3 2014. doi: 10.1137/130932132.
  9. A. A. Belov and V. S. Khokhlachev, “Asymptotically accurate error estimates of exponential convergence for the trapezoid rule,” Discrete and Continuous Models and Applied Computational Science, vol. 3, pp. 251- 259, 2021. doi: 10.22363/2658-4670-2021-29-3-251-259.
  10. A. Baddour, M. D. Malykh, A. A. Panin, and L. A. Sevastianov, “Numerical determination of the singularity order of a system of differential equations,” Discrete and Continuous Models and Applied Computational Science, vol. 28, no. 5, pp. 17-34, 2020. doi: 10.22363/2658-46702020-28-1-17-34.
  11. The Sage Developers. “SageMath, the Sage Mathematics Software System (Version 7.4).” (2016), [Online]. Available: https://www.sagemath.org.
  12. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The finite element method: its basis and fundamentals, 7th ed. Elsiver, 2013.
  13. F. Hecht, “New development in FreeFem++,” Journal of Numerical Mathematics, vol. 20, no. 3-4, pp. 251-265, 2012. doi: 10.1515/jnum2012-0013.
  14. A. A. Panin, “Estimates of the accuracy of approximate solutions and their application in the problems of mathematical theory of waveguides [Otsenki tochnosti priblizhonnykh resheniy i ikh primeneniye v zadachakh matematicheskoy teorii volnovodov],” in Russian, Ph.D. dissertation, MSU, Moscow, 2009.

© Али Б., Малых М.Д., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах