Сдвинутые точки Соболя и многосеточный расчёт методом Монте-Карло
- Авторы: Белов А.А.1,2, Тинтул М.А.1
-
Учреждения:
- Московский государственный университет им. М.В. Ломоносова
- Российский университет дружбы народов
- Выпуск: Том 29, № 3 (2021)
- Страницы: 260-270
- Раздел: Статьи
- URL: https://journals.rudn.ru/miph/article/view/27530
- DOI: https://doi.org/10.22363/2658-4670-2021-29-3-260-270
- ID: 27530
Цитировать
Полный текст
Аннотация
Многомерные интегралы возникают во многих задачах физики. Например, моменты функции распределения в задачах переноса различных частиц (фотонов, нейтронов и др.) являются 6-мерными интегралами. При расчёте коэффициентов электропроводности и теплопроводности возникают интегралы рассеяния, размерность которых равна 12. Возникают задачи и с существенно большим числом переменных. Для вычисления интегралов столь высокой кратности наиболее эффективен метод Монте-Карло. Однако работоспособность этого метода сильно зависит от выбора последовательности, имитирующей набор случайных чисел. В литературе описано большое количество генераторов псевдослучайных чисел. Их качество проверяется с помощью батарей формальных тестов. Однако простейший визуальный анализ показывает, что прохождение таких тестов не гарантирует хорошей равномерности этих последовательностей. Для вычисления многомерных интегралов наиболее эффективны магические точки Соболя. В данной работе предложено усовершенствование этих последовательностей - смещённые магические точки Соболя, обеспечивающие большую равномерность распределения точек в многомерном кубе. Это ощутимо повышает точность кубатур. Существенной трудностью методов Монте-Карло является апостериорное подтверждение фактической точности. В данной работе предложен многосеточный алгоритм, позволяющий найти сеточное значение интеграла одновременно со статистически достоверной оценкой его точности. Ранее такие оценки были неизвестны. Проведены расчёты представительных тестовых интегралов с высокой фактической размерностью до 16. В качестве подынтегральной функции выбрана многомерная функция Вейерштрасса, не имеющая производной ни в одной точке. Эти расчёты убедительно показывают преимущества предложенных методов.
Полный текст
Introduction Integrals of multivariate functions occur in many areas of physics. Here are some examples. The transfer of neutrons, photons and other particles in © Belov A.A., Tintul M.A., 2021 This work is licensed under a Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ the medium is described by the equation for the distribution function; this function depends on three coordinates of the medium and three components of the particle velocity vector, that is, the number of variables is six. To determine the coefficients of thermal conductivity or electrical conductivity of a medium, it is necessary to calculate the collision integrals; they include components of the velocity vectors before the moment of collision and after the moment of collision. The total number of variables in such an integral is twelve. Problems also arise with a significantly larger number of variables. In the simplest formulation, the calculation of the integral in the unit
Об авторах
А. А. Белов
Московский государственный университет им. М.В. Ломоносова; Российский университет дружбы народов
Автор, ответственный за переписку.
Email: aa.belov@physics.msu.ru
ORCID iD: 0000-0002-0918-9263
Candidate of Physical and Mathematical Sciences, Assistant professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia (RUDN University); Researcher of Faculty of Physics, M.V. Lomonosov Moscow State University
Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия; ул. Миклухо-Маклая, д. 6, Москва, 117198, РоссияМ. А. Тинтул
Московский государственный университет им. М.В. Ломоносова
Email: maksim.tintul@mail.ru
ORCID iD: 0000-0002-5466-1221
Master’s degree student of Faculty of Physics
Ленинские горы, д. 1, стр. 2, Москва, 119991, РоссияСписок литературы
- I. M. Sobol, Numerical Monte-Carlo methods [Chislennyye metody MonteKarlo]. Moscow: Nauka, 1973, In Russian.
- D. E. Knuth, The art of computer programming, 3rd ed. Reading, Massachusetts: Addison-Wesley, 1997, vol. 2.
- G. S. Fishman, Monte Carlo: concepts, algorithms and applications. Berlin: Springer, 1996. doi: 10.1007/978-1-4757-2553-7.
- M. Matsumoto and T. Nishimura, “Mersenne twister: a 623dimensionally equidistributed uniform pseudo-random number generator,” ACM Transactions on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3-30, 1998. doi: 10.1145/272991.272995.
- T. Nishimura, “Tables of 64-bit Mersenne twisters,” ACM Transactions on Modeling and Computer Simulation, vol. 10, no. 4, pp. 348-357, 2000. doi: 10.1145/369534.369540.
- “Mersenne Twister Home Page.” (2021), [Online]. Available: http:// www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt.html.
- S. K. Park and K. W. Miller, “Random number generators: good ones are hard to find,” Communications of the ACM, vol. 31, no. 10, pp. 1192-1201, 1998. doi: 10.1145/63039.63042.
- M. Mascagni and A. Srinivasan, “Parameterizing parallel multiplicative Lagged-Fibonacci generators,” Parallel Computing, vol. 30, pp. 899-916, 2004. doi: 10.1016/j.parco.2004.06.001.
- P. L’Ecuyer, “Good parameter sets for combined multiple recursive random number generators,” Operations Research, vol. 47, no. 1, pp. 159-164, 1999. doi: 10.1287/opre.47.1.159.
- J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel random numbers: as easy as 1, 2, 3,” 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 1-12, 2011. doi: 10.1145/2063384.2063405.
- G. Marsaglia and W. W. Tsang, “The ziggurat method for generating random variables,” Journal of Statistical Software, vol. 5, pp. 1-7, 2000. doi: 10.18637/jss.v005.i08.
- G. Marsaglia and A. Zaman, “A new class of random number generators,” Annals of Applied Probability, vol. 1, no. 3, pp. 462-480, 1991. doi: 10.1214/aoap/1177005878.
- B. A. Wichmann and I. D. Hill, “An efficient and portable pseudorandom number generator,” Applied Statistics, vol. 31, no. 2, pp. 188-190, 1982. doi: 10.2307/2347988.
- E. A. Tsvetkov, “Empirical tests for statistical properties of some pseudorandom number generators,” Mathematical Models and Computer Simulations, vol. 3, pp. 697-705, 2011. doi: 10.1134/S207004821106010X.
- “The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness.” (2021), [Online]. Available: http:// ftpmirror.your.org/pub/misc/diehard/.
- P. L’Ecuyer and R. Simard, “TestU01: A C library for empirical testing of random number generators,” ACM Transactions on Mathematical Software (TOMS), vol. 33, no. 4, pp. 1-40, 2007. doi: 10.1145/1268776.1268777.
- L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, S. D. Leigh, M. Levenson, M. Vangel, N. A. Heckert, and D. L. Banks, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National Institute of Standards and Technology, NIST Special Publication, Gaithersburg, MD, Tech. Rep., 2010.
- A. A. Belov, N. N. Kalitkin, and M. A. Tintul, “Visual verification of pseudo-random number generators [Vizual’naya verifikatsiya generatorov psevdosluchaynykh chisel],” Keldysh IAM Preprints, Moscow, Tech. Rep. 137, 2019, In Russian. doi: 10.20948/prepr-2019-137.
- A. A. Belov, N. N. Kalitkin, and M. A. Tintul, “Unreliability of pseudorandom number generators,” Computational Mathematics and Mathematical Physics, vol. 60, no. 11, pp. 1747-1753, 2020. doi: 10.1134/S0965542520110044.
- I. M. Sobol, “Uniformly distributed sequences with additional uniformity properties,” USSR Computational Mathematics and Mathematical Physics, vol. 16, no. 5, pp. 236-242, 1976. doi: 10.1016/0041-5553(76)90154-3.
Дополнительные файлы










