Асимптотически точные оценки экспоненциальной сходимости для формулы трапеций

Обложка

Цитировать

Полный текст

Аннотация

Во многих прикладных задачах требуется экономичное вычисление квадратур с высокой точностью. Примерами являются: вычисление специальных функций математической физики, расчёт коэффициентов Фурье заданной функции, преобразования Фурье и Лапласа, численное решение интегральных уравнений, решение краевых задач для уравнений в частных производных в интегральной форме и т.д. Для сеточного вычисления квадратур обычно используют методы трапеций, средних и Симпсона. Обычно погрешность этих методов зависит от шага степенным образом, и для получения хорошей точности требуется большое число шагов. Однако существует ряд случаев, когда погрешность метода трапеций зависит от величины шага не квадратично, а экспоненциально. Такими случаями являются интеграл от периодической функции по полному периоду и интеграл по всей числовой прямой от функции, достаточно быстро убывающей на бесконечности. Если подынтегральная функция имеет полюса первого порядка в комплексной плоскости, то для таких квадратур справедливы мажорантные оценки точности Трефетена и Вайдемана. В работе построены новые оценки погрешности экспоненциально сходящихся квадратур от периодических функций по полному периоду. Подынтегральная функция может иметь произвольное число полюсов целого порядка на комплексной плоскости. Если сетка достаточно подробная (разрешает профиль подынтегральной функции), то предлагаемые оценки являются не мажорантными, а асимптотически точными. Экстраполируя, то есть исключая эту погрешность из численной квадратуры, можно вычислять интегралы указанных классов с точностью ошибок округления уже на чрезвычайно грубых сетках, содержащих всего ∼ 10 шагов.

Об авторах

А. А. Белов

Московский государственный университет им. М.В. Ломоносова; Российский университет дружбы народов

Автор, ответственный за переписку.
Email: aa.belov@physics.msu.ru
ORCID iD: 0000-0002-0918-9263

Candidate of Physical and Mathematical Sciences, Assistant professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia (RUDN University); Researcher of Faculty of Physics, M.V. Lomonosov Moscow State University

Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия; ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

В. С. Хохлачев

Московский государственный университет им. М.В. Ломоносова

Email: valentin.mycroft@yandex.ru
ORCID iD: 0000-0002-6590-5914

Master’s degree student of Faculty of Physics

Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия

Список литературы

  1. L. N. Trefethen and J. A. C. Weideman, “The exponentially convergent trapezoidal rule,” SIAM Review, vol. 56, no. 3, pp. 385-458, 2014. doi: 10.1137/130932132.
  2. J. Mohsin and L. N. Trefethen, “A trapezoidal rule error bound unifying the Euler-Maclaurin formula and geometric convergence for periodic functions,” in Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 470, 2014, p. 20130571. doi: 10.1098/rspa.2013.0571.
  3. J. A. C. Weideman, “Numerical integration of periodic functions: A few examples,” The American Mathematical Monthly, vol. 109, no. 1, pp. 21- 36, 2002. doi: 10.2307/2695765.
  4. N. Eggert and J. Lund, “The trapezoidal rule for analytic functions of rapid decrease,” Journal of Computational and Applied Mathematics, vol. 27, no. 3, pp. 389-406, 1989. doi: 10.1016/0377-0427(89)90024-1.
  5. H. Al Kafri, D. J. Jeffrey, and R. M. Corless, “Rapidly convergent integrals and function evaluation,” Lecture Notes in Computer Science, vol. 10693, pp. 270-274, 2017. doi: 10.1007/978-3-319-72453-9_20.
  6. J. Waldvogel, “Towards a general error theory of the trapezoidal rule,” in Springer Optimization and Its Applications. 2010, vol. 42, pp. 267- 282. doi: 10.1007/978-1-4419-6594-3_17.
  7. E. T. Goodwin, “The evaluation of integrals of the form f(x)e-x2dx,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, no. 2, pp. 241–245, 1949. DOI: 10.1017/ S0305004100024786.
  8. N. N. Kalitkin and S. A. Kolganov, “Quadrature formulas with exponential convergence and calculation of the Fermi–Dirac integrals,” Doklady Mathematics, vol. 95, no. 2, pp. 157–160, 2017. doi: 10.1134/S1064562417020156.
  9. N. N. Kalitkin and S. A. Kolganov, “Refinements of precision approximations of Fermi–Dirak functions of integer indices,” Mathematical Models and Computer Simulations, vol. 9, no. 5, pp. 554–560, 2017. doi: 10.1134/S2070048217050052.
  10. N. N. Kalitkin and S. A. Kolganov, “Computing the Fermi–Dirac functions by exponentially convergent quadratures,” Mathematical Models and Computer Simulations, vol. 10, no. 4, pp. 472–482, 2018. doi: 10.1134/S2070048218040063.
  11. A. A. Belov, N. N. Kalitkin, and V. S. Khokhlachev, “Improved error estimates for an exponentially convergent quadratures [Uluchshennyye otsenki pogreshnosti dlya eksponentsial’no skhodyashchikhsya kvadratur],” Preprints of IPM im. M.V. Keldysh, no. 75, 2020, in Russian. doi: 10.20948/prepr-2020-75.
  12. V. S. Khokhlachev, A. A. Belov, and N. N. Kalitkin, “Improvement of error estimates for exponentially convergent quadratures [Uluchsheniye otsenok pogreshnosti dlya eksponentsial’no skhodyashchikhsya kvadratur],” Izv. RAN. Ser. fiz., vol. 85, no. 2, pp. 282–288, 2021, in Russian. doi: 10.31857/S0367676521010166.

© Белов А.А., Хохлачев В.С., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах