Нормальные моды волновода как собственные векторы самосопряжённого операторного пучка
- Авторы: Малых М.Д.1
-
Учреждения:
- Российский университет дружбы народов
- Выпуск: Том 29, № 1 (2021)
- Страницы: 14-21
- Раздел: Статьи
- URL: https://journals.rudn.ru/miph/article/view/26137
- DOI: https://doi.org/10.22363/2658-4670-2021-29-1-14-21
Цитировать
Полный текст
Аннотация
В статье рассматривается волновод постоянного односвязного сечения при условии, что заполняющее волновод вещество характеризуется диэлектрической и магнитной проницаемостями, меняющимися плавно на сечении , но постоянными вдоль оси волновода. На стенках волновода взяты условия идеальной проводимости. На основе найденного ранее представления электромагнитного поля в таком волноводе при помощи четырёх скалярных функций — двух электрических и двух магнитных потенциалов — уравнения Максвелла записаны относительно потенциалов и продольных компонент поля. Из этой системы удаётся исключить потенциалы и записать пару интегро-дифференциальных уравнений относительно одних продольных компонент, расщепляющихся на два несвязанных волновых уравнения в оптически однородном случае. В оптически неоднородном случае этот подход позволяет свести задачу об отыскании нормальных мод волновода к исследованию спектра квадратичного самосопряжённого операторного пучка.
Об авторах
М. Д. Малых
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: malykh_md@pfur.ru
Doctor of Physical and Mathematical Sciences, Assistant Professor of Department of Applied Probability and Informatics
ул. Миклухо-Маклая, д. 6, Москва, 117198, РоссияСписок литературы
- A. G. Sveshnikov and I. E. Mogilevsky, Mathematical problems in the theory of diffraction [Matematicheskiye zadachi teorii difraktsii]. Moscow: MSU, 2010, in Russian.
- K. Zhang and D. Li, Electromagnetic theory for microwaves and optoelectronics, 2nd ed. Berlin: Springer, 2008.
- A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, “On the completeness of the set of eigen- and associated functions of a waveguide,” Computational Mathematics and Mathematical Physics, vol. 38, no. 11, pp. 1815-1823, 1998.
- A. N. Bogolyubov, A. L. Delitsyn, and M. D. Malykh, “On the root vectors of a cylindrical waveguide,” Computational Mathematics and Mathematical Physics, vol. 41, no. 1, pp. 121-124, 2001.
- A. L. Delitsyn, “On the completeness of the system of eigenvectors of electromagnetic waveguides,” Computational Mathematics and Mathematical Physics, vol. 51, pp. 1771-1776, 2011. DOI: 10. 1134 / S0965542511100058.
- W. C. Chew. “Lectures on theory of microwave and optical waveguides.” (2012), [Online]. Available: http://wcchew.ece.illinois.edu/chew/ course/tgwAll20121211.pdf.
- N. A. Novoselova, S. B. Raevskii, and A. A. Titarenko, “Calculation of characteristics of symmetric modes propagating in a circular waveguide with radially-heterogeneous dielectric filling [Raschet kharakteristik rasprostraneniya simmetrichnykh voln kruglogo volnovoda s radial’no-neodnorodnym dielektricheskim zapolneniyem],” Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R.Ye. Alekseyeva, no. 2(81), pp. 30-38, 2010, in Russian.
- A. L. Delitsyn and S. I. Kruglov, “Mixed finite elements used to analyze the real and complex modes of cylindrical waveguides,” Moscow University Physics Bulletin, vol. 66, pp. 546-560, 2011. DOI: 10.3103/ S0027134911060063.
- A. L. Delitsyn and S. I. Kruglov, “Application of the mixed finite element method for calculating the modes of cylindrical waveguides with a variable refractive index [Primeneniye metoda smeshannykh konechnykh elementov dlya vychisleniya mod tsilindricheskikh volnovodov s peremennym pokazatelem prelomleniya],” Zhurnal radioelektroniki, no. 4, pp. 1-28, 2012, in Russian.
- F. Hecht, Freefem++, 3rd ed., Laboratoire Jacques-Louis Lions, Universitè Pierre et Marie Curie, Paris, 2018.
- M. D. Malykh, N. E. Nikolaev, L. A. Sevastianov, and A. A. Tiutiunnik, “On the representation of electromagnetic fields in closed waveguides using four scalar potentials,” Journal of Electromagnetic Waves and Applications, vol. 32, no. 7, pp. 886-898, 2018. doi: 10.1080/09205071. 2017.1409137.
- M. D. Malykh and L. A. Sevast’yanov, “On the representation of electromagnetic fields in discontinuously filled closed waveguides by means of continuous potentials,” Computational Mathematics and Mathematical Physics, vol. 59, pp. 330-342, 2019. doi: 10.1134/S0965542519020118.
- I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators in Hilbert Space. American Mathematical Society, 1969.