Численное моделирование стационарных псевдоспиновых волн на моноатомных плёнках графена

Обложка

Цитировать

Полный текст

Аннотация

В экспериментах на однослойных графеновых плёнках наблюдается явление ферромагнетизма. При этом данный феномен не может порождаться ни одной из трёх распространённых причин: наличием примесей в графене, наличием дефектов в графене, влиянием границ однослойной графеновой плёнки. Авторы предполагают, что источником ферромагнетизма может служить спонтанное нарушение спиновой симметрии в графеновой плёнке. Классические полевые модели, описывающие спонтанное нарушение симметрии, являются нелинейными. Среди нелинейных моделей одной из простейших является широко известная 4 модель. Предполагается, что в рамках данной модели можно описать большинство интересующих нас характеристик спиновых волн, а также феномен ферромагнетизма в графене. Эта модель допускает наличие кинковых и антикинковых точных решений, а также существование квазичастицы бризер. Авторами численно промоделировано квазичастичное решение бризер. Для этого численно получена энергия взаимодействия решений типа кинк-антикинк. Эта энергия используется для численного решения уравнения Шрёдингера для спиновых волн со структурой бризеров. Методом Ритца решения уравнения Шрёдингера приводятся к обобщённой задаче на собственные значения и собственные векторы. Эта задача исследуется в данной статье.

Об авторах

Ле Ань Ньат

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: leanhnhat@tuyenquang.edu.vn

Кафедра прикладной информатики и теории вероятностей

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

К. П. Ловецкий

Российский университет дружбы народов

Email: lovetskiy-kp@rudn.ru

Кафедра прикладной информатики и теории вероятностей

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Л. А. Севастьянов

Российский университет дружбы народов; Лаборатория теоретической физики Объединённый институт ядерных исследований

Email: sevastianov-la@rudn.ru

Кафедра прикладной информатики и теории вероятностей

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, г. Дубна, Московская область, 141980, Россия

Д. С. Кулябов

Российский университет дружбы народов; Лаборатория информационных технологий Объединённый институт ядерных исследований

Email: kulyabov-ds@rudn.ru

Кафедра прикладной информатики и теории вероятностей

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, г. Дубна, Московская область, 141980, Россия

Список литературы

  1. J. Červenka, M. I. Katsnelson, and C. F. Flipse, “Room-temperature ferromagnetism in graphite driven by two-dimensional networks of pointdefects,” Nature Physics, vol. 5, no. 11, pp. 840-844, 2009. doi: 10.1038/nphys1399.
  2. Y. Wang, Y. Hoang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Letters, vol. 9, no. 1, pp. 220-224, 2009. doi: 10.1021/nl802810g.
  3. P. Esquinazi, A. Setzer, R. Höhne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk, and M. Lösche, “Ferromagnetism in oriented graphite samples,” Physical Review B Condensed Matter and Materials Physics, vol. 66, no. 2, pp. 1-10, 2002. DOI: 10.1103/ PhysRevB.66.024429. arXiv: 0203153 [cond-mat].
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197-200, Nov. 2005. doi: 10.1038/nature04233.
  5. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201-204, Nov. 2005. DOI: 10. 1038 / nature04235.
  6. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Coulomb interactions and ferromagnetism in pure and doped graphene,” Physical Review B, vol. 72, no. 17, p. 174 406, Nov. 2005. doi: 10.1103/PhysRevB.72. 174406. arXiv: 0507061 [cond-mat].
  7. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Physical Review B, vol. 73, no. 12, p. 125 411, Mar. 2006. DOI: 10. 1103 / PhysRevB. 73. 125411. arXiv: 0512091 [cond-mat].
  8. D. D. Grachev, Y. P. Rybakov, L. A. Sevastianov, and E. F. Sheka, “Ferromagnetism in graphene and fulleren nanostructures. Theory, modeling, experiment,” Bulletin of PFUR. Series “Mathematics. Information Sciences. Physics”, no. 1, pp. 20-27, 2010.
  9. D. D. Grachev and L. A. Sevastyanov, “The Quantum Field Model of the Ferromagnetism in Graphene Films,” Nanostructures, Mathematical Physics and Modelling., vol. 4, pp. 5-15, 2011.
  10. Y. P. Rybakov, M. Iskandar, and A. Ahmed, “Magnetic Excitations of Graphene in 8-Spinor Realization of Chiral Model,” RUDN Journal of Mathematics, Information Sciences and Physics, vol. 25, no. 3, pp. 266- 275, 2017. doi: 10.22363/2312-9735-2017-25-3-266-275.
  11. Y. P. Rybakov, “Spin Excitations in Chiral Model of Graphene,” Solid State Phenomena, vol. 233-234, pp. 16-19, Jul. 2015. doi: 10.4028/www. scientific.net/SSP.233-234.16.
  12. Y. P. Rybakov, “On Chiral Model of Graphene,” Solid State Phenomena, vol. 190, pp. 59-62, Jun. 2012. doi: 10.4028/ href='www.scientific.net/' target='_blank'>www.scientific.net/ SSP.190.59.
  13. D. V. Kolesnikov and V. A. Osipov, “The continuum gauge field-theory model for low-energy electronic states of icosahedral fullerenes,” The European Physical Journal B, vol. 49, no. 4, pp. 465-470, Feb. 2006. doi: 10.1140/epjb/e2006-00087-y. arXiv: 0510636 [cond-mat].
  14. H. Watanabe and H. Murayama, “Unified Description of Non-Relativistic Nambu-Goldstone bosons,” Physical Review Letters, vol. 108, p. 25 160, 2012. doi: 10.1103/PhysRevLett.108.251602.
  15. D. S. Kulyabov, K. P. Lovetskiy, and L. A. Nhat, “Simple Model of Nonlinear Spin Waves in Graphene Structures,” RUDN Journal of Mathematics, Information Sciences and Physics, vol. 26, no. 3, pp. 244-251, 2018. doi: 10.22363/2312-9735-2018-26-3-244-251.
  16. L. A. Nhat, K. P. Lovetskiy, and D. S. Kulyabov, “A new algorithm used the Chebyshev pseudospectral method to solve the nonlinear secondorder Lienard differential equations,” Journal of Physics: Conference Series, vol. 1368, pp. 042036.1-8, Nov. 2019. DOI: 10. 1088 / 1742 6596/1368/4/042036.
  17. J. F. Cariñena, M. F. Rañada, and M. Santander, “One-dimensional model of a quantum nonlinear harmonic oscillator,” Reports on Mathematical Physics, vol. 54, no. 2, pp. 285-293, Oct. 2004. doi: 10.1016/S00344877(04)80020-X. arXiv: 0501106 [hep-th].

© Ньат Л.А., Ловецкий К.П., Севастьянов Л.А., Кулябов Д.С., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах