О диффузии заряда в однородных молекулярных цепочках на основе анализа обобщенных частотных спектров в рамках модели Холстейна

Обложка

Цитировать

Полный текст

Аннотация

В статье проведён анализ автокорреляционных функций скорости и обобщённых частотных спектров распространения заряда в однородных последовательностях ДНК при конечной температуре. Функции рассчитаны численно в рамках квазиклассической модели Холстейна. Показано, что в системе только один параметр главным образом определяет кинетику заряда для всех последовательностей. Анализ позволил определить характер отдельных движений, вносящих вклад в подвижность заряда, и выделить различные режимы распространения заряда в зависимости от температуры.

Об авторах

Д А Тихонов

Институт математических проблем биологии (ИМПБ РАН); Институт теоретической и экспериментальной биофизики РАН

Email: dmitry.tikhonov@gmail.com
ул. проф. Виткевича, д. 1, г.Пущино, Московская область, 142290, Россия; ул. Институтская, д. 3, г. Пущино, Московская область, 142290, Россия

Е В Соболев

Институт математических проблем биологии (ИМПБ РАН); Европейская лаборатория молекулярной биологии, отделение в Гамбурге

Email: egor@embl-hamburg.de
ул. проф. Виткевича, д. 1, г.Пущино, Московская область, 142290, Россия; c/o DESY, д. 25А, Ноткештрассе 85, 22607 Гамбург, Германия

В Д Лахно

Институт математических проблем биологии (ИМПБ РАН)

Email: lak@impb.ru
ул. проф. Виткевича, д. 1, г.Пущино, Московская область, 142290, Россия

Список литературы

  1. P. Maniadis, G. Kalosakas, K. Ø. Rasmussen, and A. R. Bishop, “AC conductivity in a DNA charge transport model,” Physical Review E, vol. 72, p. 021 912, 2 Aug. 2005. doi: 10.1103/PhysRevE.72.021912.
  2. G. L. Goodvin, A. S. Mishchenko, and M. Berciu, “Optical conductivity of the Holstein polaron,” Physical Review Letters, vol. 107, p. 076 403, 7 Aug. 2011. doi: 10.1103/PhysRevLett.107.076403.
  3. L. D. Siebbeles and Y. A. Berlin, “Quantum motion of particles along one-dimensional pathways with static and dynamic energy disorder,” Chemical Physics, vol. 238, no. 1, pp. 97-107, 1998. doi: 10.1016/S0301- 0104(98)00311-5.
  4. P. Prins, F. C. Grozema, J. M. Schins, and L. D. A. Siebbeles, “Frequency dependent mobility of charge carriers along polymer chains with finite length,” Physica Status Solidi B, vol. 243, no. 2, pp. 382-386, 2006. doi: 10.1002/pssb.200562719.
  5. C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, and J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix,” Science, vol. 262, no. 5136, pp. 1025- 1029, 1993. doi: 10.1126/science.7802858.
  6. P. O’Neill, A. W. Parker, M. A. Plumb, and L. D. A. Siebbeles, “Guanine modifications following ionization of DNA occurs predominantly via intraand not interstrand charge migration: an experimental and theoretical study,” Journal of Physical Chemistry B, vol. 105, no. 22, pp. 5283-5290, 2001. doi: 10.1021/jp003514t.
  7. G. I. Livshits et al., “Long-range charge transport in single G-quadruplex DNA molecules,” Nature Nanotechnology, vol. 9, no. 12, pp. 1040-1046, 2014. doi: 10.1038/nnano.2014.246.
  8. V. D. Lakhno, “DNA nanobioelectronics,” International Journal of Quantum Chemistry, vol. 108, no. 11, pp. 1970-1981, 2008. DOI: 10.1002/ qua.21717.
  9. T. Chakraborty, Charge migration in DNA: perspectives from Physics, Chemistry, and Biology, ser. NanoScience and Technology. Springer Berlin Heidelberg, 2007.
  10. A. Offenhäusser and R. Rinaldi, Eds., Nanobioelectronics - for Electronics, Biology, and Medicine. Springer, New York, 2009, 337 pp.
  11. T. Holstein, “Studies of polaron motion,” Annals of Physics, vol. 8, no. 3, pp. 325-342, 1959. doi: 10.1016/0003-4916(59)90002-8.
  12. N. S. Fialko and V. D. Lakhno, “Nonlinear dynamics of excitations in DNA,” Physics Letters A, vol. 278, pp. 108-111, 1-2 2000. doi: 10.1016/S0375-9601(00)00755-6.
  13. D. A. Tikhonov, N. S. Fialko, E. V. Sobolev, and V. D. Lakhno, “Scaling of temperature dependence of charge mobility in molecular Holstein chains,” Physical Review E, vol. 89, p. 032 124, 3 Mar. 2014. DOI: 10. 1103/PhysRevE.89.032124.
  14. E. V. Sobolev, D. Tikhonov, and N. S. Fialko, “About Numerical solution of the Holstein’s discrete model [O chislennom reshenii uravneniy diskretnoy modeli Kholsteyna],” in Proceedings of the XIX All-Russian Conference “Theoretical bases and generation of numerical algorithms of solving mathematical physics problems”, devoted to K. I. Babenko, Durso, Russia, 2012, in Russian, Moscow: Keldysh Institute of Applied Mathematics, 2012, p. 90.
  15. E. V. Sobolev, D. Tikhonov, and N. S. Fialko, “Numerical solution of the Holstein’s discrete model in the problem of charge transfer in DNA [Chislennoye resheniye uravneniy diskretnoy modeli Kholsteyna v zadache o modelirovanii perenosa zaryada v DNK],” in Proceedings of the 4th International Conference on Mathematical Biology and Bioinformatics, Pushchino, Russia, 2012, V. D. Lakhno, Ed., in Russian, Moscow: MAKS Press, 2012, p. 18.
  16. D. A. Tikhonov, E. V. Sobolev, V. D. Lakhno, and N. S. Fialko, “Adiabatic approximation for the calculation of the charge mobility in the DNA Holstein model [Adiabaticheskoye priblizheniye pri raschetakh podvizhnosti zaryada v kholsteynovskoy modeli DNK],” Matematicheskaya biologiya i bioinformatika, vol. 6, no. 2, pp. 264-272, 2011, in Russian. doi: 10.17537/2011.6.264.
  17. J. C. Dyre and T. B. Schrøder, “Universality of AC conduction in disordered solids,” Reviews of Modern Physics, vol. 72, pp. 873-892, 3 Jul. 2000. doi: 10.1103/RevModPhys.72.873.
  18. V. D. Lakhno and N. S. Fialko, “Bloch oscillations in a homogeneous nucleotide chain,” English, JETP Letters, vol. 79, no. 10, pp. 464-467, 2004. doi: 10.1134/1.1780553.
  19. D. M. Basko and E. M. Conwell, “Effect of solvation on hole motion in DNA,” Physical Review Letters, vol. 88, p. 098 102, 9 Feb. 2002. doi: 10.1103/PhysRevLett.88.098102.
  20. V. D. Lakhno and N. S. Fialko, “Solvation effects on hole mobility in the poly G/Poly C duplex,” Russian Journal of Physical Chemistry A, vol. 86, no. 5, pp. 832-836, 2012. doi: 10.1134/S0036024412050196.
  21. D. A. Tikhonov, E. V. Sobolev, and V. D. Lakhno, “Charge diffusion in homogeneous molecular chains based on the analysis of generalized frequency spectra in the framework of the Holstein model,” Tech. Rep. 70-e, 2018, pp. 1-16. doi: 10.20948/prepr-2018-70-e.

© Тихонов Д.А., Соболев Е.В., Лахно В.Д., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах