Программное обеспечение для численного решения дифференциальных уравнений в частных производных первого порядка

Обложка

Цитировать

Полный текст

Аннотация

Дифференциальные уравнения с частными производными первого порядка, возникающие в прикладных задачах оптики и оптоэлектроники, часто содержат коэффициенты, которые не определяются одним аналитическим выражением во всей рассматриваемой области. Например, уравнение эйконала содержит показатель преломления, который описывается различными выражениями в зависимости от оптических свойств сред, которые заполняют рассматриваемую область. Этот тип уравнений не может быть проанализирован стандартными инструментами, встроенными в современные системы компьютерной алгебры, включая Maple. В статье рассматривается адаптация классического метода Коши интегрирования уравнений в частных производных первого порядка к случаю, когда коэффициенты уравнения являются различными аналитическими выражениями в подобластях G1,. , , , Gk, на которые делится рассматриваемый домен. В этом случае предполагается, что эти субдомены задаются неравенствами. Этот метод интеграции реализован как программа на Python с использованием библиотеки SymPy. Характеристики рассчитываются численно с использованием метода Рунге-Кутты, но с учетом изменения выражений для коэффициентов уравнения при переходе от одного субдомена к другому. Описаны основные функции программы, в том числе те, которые можно использовать для иллюстрации метода Коши. Проверка проводилась путем сравнения с результатами, полученными в системе компьютерной алгебры Maple.

Ключевые слова

Об авторах

Ярослав Юрьевич Кузив

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: yaroslav.kuziw@yandex.ru

postgraduate student of Department of Applied Probability and Informatics

6, Miklukho-Maklaya str., Moscow, 117198, Russian Federation

Список литературы

  1. M. Born, E. Wolf, Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light, 6th Edition, Elsevier, 1980.
  2. B. Enquist, O. Runborg, Computational high frequency wave propagation, 6th Edition, Cambridge University Press, 2003.
  3. A. A. Egorov, L. A. Sevastianov, Structure of modes of a smoothly irregular integrated-optical four-layer three-dimensional waveguide, Quantum Electronics 39 (6) (2009) 566. doi: 10.1070/QE2009v039n06ABEH013966.
  4. A. A. Egorov, K. P. Lovetsky, L. A. Sevastianov, A. L. Sevastianov, Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation, Quantum Electronics 40 (9) (2010) 830-836. doi: 10.1070/QE2010v040n09ABEH014332.
  5. A. A. Egorov, L. A. Sevastianov, A. L. Sevastianov, Method of adiabatic modes in research of smoothly irregular integrated optical waveguides: zero approximation, Quantum Electronics 44 (2) (2014) 167-173. doi: 10.1070/QE2014v044n02ABEH015303.
  6. A. D. Polyanin, V. E. Nazaikinskii, Handbook of linear partial differential equations for engineers and scientists, 2nd Edition, CRC Press, Boca Raton, London, 2016.
  7. E. Goursat, Cours d’analyse mathématique, 3rd Edition, Vol. 2, Gauthier-Villars, Paris, 1918.
  8. PDEplot for Maple (2019). URL http://www.maplesoft.com
  9. Python library for symbolic mathematics SymPy (2019). URL http://www.sympy.org
  10. M. D. Malykh, On integration of the first order differential equations in finite terms, IOP Conf. Series: Journal of Physics: Conf. Series 788 (2017) 012026. doi: 10.1088/1742-6596/788/1/012026.
  11. IarKuz at Github (2019). URL https://github.com/IarKuz/PostGradeCode/blob/MF_Solver_PDE/MF_Solver_PDE.ipynb
  12. E. Hairer, G. Wanner, S. P. Nørsett, Solving ordinary differential equations, 3rd Edition, Vol. 1, Springer, New York, 2008.
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes in C: the art of scientific computing, 2nd Edition, Cambridge University Press, 1992.
  14. J. Lock, Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory, Journal of the Optical Society of America A: Optics Image Science and Vision 25 (2008) 2980-2990. doi: 10.1364/JOSAA.25.002980.
  15. S. Cornbleet, Geometrical optics reviewed: A new light on an old subject, Proceeding of the IEEE 71 (1983). doi: 10.1109/PROC.1983.12620.

© Kuziv Y.Y., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах