Аннотация
Представлен метод оценки многомерной плотности, основанный на взвешенном методе ближайших соседей и имитирующий метод естественных соседей. Оценка многомерной плотности важна в машинном обучении, астрономии, биологии, физике и эконометрике.Строится 2-аддитивная нечёткая мера на основе аппроксимации индексов парных взаимодействий. Соседи, лежащие примерно в одном направлении, рассматриваются как излишние,и вклад дальнего соседа передаётся ближнему соседу. Расчёт локальной оценки плотности осуществляется с помощью дискретного интеграла Шоке таким образом, что учитывается вклад соседей, расположенных со всех сторон точки, где производятся вычисления. Однако вклад соседей, расположенных с одной и той же стороны, занижается с помощью выбора подходящей нечёткой меры. Таким образом вычисляется приближение к множеству естественных соседей Сибсона. Этот метод значительно снижает вычислительную нагрузку методов на базе естественных соседей, которые лежат на основе тесселяции Делоне, в высокой размерности, для которых вычислительная сложность растёт как экспонента раз-мерности. Описанный метод подходит для оценки плотности структурированных данных(возможно, лежащих на многообразии более низкой размерности), так как в этом случае ближайшие соседи могут значительно отличаться от естественных соседей.