Аннотация
Рассмотрены многомерные модели популяционной динамики, являющиеся обобщениями модели Лотки-Вольтерра на случай взаимодействия конечного числа популяций. Детерминистическое описание моделей даётся системами обыкновенных нелинейных дифференци-альных уравнений, представленными в работе в виде многомерных векторных дифференциальных уравнений. Качественные свойства указанных моделей достаточно хорошо изучены с помощью методов Ляпунова. Однако при детерминистическом описании моделей не учитываются вероятностные факторы, влияющие на поведение моделей. В недетерминистическом случае новые подходы к моделированию и анализу устойчивости представляют теоретический и прикладной интерес.В настоящей работе рассмотрены способы построения многомерных недетерминированных моделей взаимодействия популяций. Первый способ связан с переходом от векторного нелинейного обыкновенного дифференциального уравнения к соответствующим векторным дифференциальным включениям, нечётким и стохастическим дифференциальным уравнениям. На основе принципа редукции, позволяющего свести задачу об устойчивости решений дифференциального включения к задаче об устойчивости решений других типов уравнений, получены условия устойчивости для построенных моделей. Второй способ связан с методикой построения самосогласованных стохастических моделей. На основе этойметодики получена схема взаимодействия, которая включает в себя символическую запись возможных взаимодействий между элементами системы. С помощью операторов состоя-ния системы и оператора изменения состояния системы описана структура многомерных стохастических моделей Лотки-Вольтерра, и осуществлён переход к соответствующим век-торным уравнениям Фоккера-Планка. Сформулированы правила перехода к многомерному стохастическому дифференциальному уравнению в форме Ланжевена. Для моделей,являющихся конкретизациями изучаемых общих моделей, возможно проведение численного эксперимента с применением разработанного программного комплекса для решения систем стохастических дифференциальных уравнений. Описанный подход к моделированию стохастических систем может найти применение в задачах сравнения качественных свойств моделей в детерминированном и стохастическом случаях. Полученные результаты направлены на развитие методов анализа недетерминированных нелинейных моделей.