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Abstract. We describe introduced in the journal the rubric system.We describe the general structure of an IMRAD
research publication. The IMRAD structure for a research article is described in detail.
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For citation: Kulyabov,D. S., Sevastianov, L. A. IMRAD structure. Discrete and Continuous Models and Applied Computational
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1. General structure of the IMRAD paper
IMRAD is an abbreviation of introduction, materials and methods, results and discussion. The struc-
ture of IMRAD is described in ANSI Z39.16-1972 (Preparation of Scientific Papers for Written or
Oral Presentation). In the 1970s, IMRAD became the de facto standard for the design of scientific
articles [1].
The structure of an article according to IMRAD should look as follows.

– Introduction.
– Why the study was done.
– What was researched.
– Purpose of the study.
– What hypotheses were tested.

– Methods (aka Materials and Methods, Theoretical Framework).
– When, where, and how the research was conducted.
– What materials were used.

– Results.
– What answer was found.
– Whether the hypothesis was tested correctly.

– Discussion.
– What the answer implies and why it matters.
– How it fits in with what other researchers have found.
– What are the prospects for research.

– Also included in the article structure are Title, Annotation, Keywords.

© 2024 Kulyabov,D. S., Sevastianov, L. A.
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2. Different IMRAD structure options
The IMRAD structure is not a dogma, but a guide to action. Therefore, for different types of articles
and for different scientific fields, some modifications may be made to this structure.

– The Materials and Methods section may be replaced by the Theory section.
– The Results and Discussion sections can be combined into one section.
– The Conclusions section can be included as the last part of the Discussion section.
– Only themain aspects can be given in the article, all additional aspects are listed as Supplemental

Materials (on the journal’s website).
– Review articles do not have a Results and Discussion section.
– Grant information may be included in the Funding section.

3. Structure of a research paper based on IMRAD

3.1. Title

– The title of the article should describe the content of the article as accurately as possible.
– The title of the article should be understandable for both humans and tools for processing and

analyzing scientific information.
– The title of the article—this is what is looked at first.

Guidelines for writing the title of the article:

– the title should contain as few words as possible (7 ± 2 words) [2];
– is assumed that in our journal, the title of the article should not exceed 12 words;
– the title should accurately and specifically describe the content of the article;
– the title should not contain abbreviations, formulas and jargonisms;
– the title should not use abbreviations such as “Some notes on”, “Observations on”, “Investigations

on”, “Study of”, “Effect of”, etc;
– the title should not be flashy, as in newspapers;
– the title should communicate the subject of the study, not the results.

3.2. Authors

– This section is organized according to the rules of the author list.
– These rules may vary from one field of science to another.

3.3. Keywords

– Keywords should not duplicate terms specified in the title of the article.
– Keywords are used to analyze articles by automatic tools of abstract databases.

3.4. Abstract

– The main purpose of this section is to give the reader a comprehensive idea of what the article
is about, so that he or she can decide whether or not to read it in its entirety.

– The abstract summarizes the main quantitative results of the study and the conclusions drawn
from the work.
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3.5. Introduction

– The introduction does not repeat the abstract; its purpose is to introduce the topic of the publi-
cation.

– The introduction aims to immerse the reader in the context of the research.
– The introduction provides a brief overview of the literature most relevant to the topic.
– The introduction answers the questions what we are researching and why we are researching.

In the introduction, the following objectives need to be addressed:

– to justify the relevance of the research (make ahistorical excursion, highlight themost significant
works in the field);

– to reflect the most relevant recent achievements in the chosen field and the current state of the
field;

– to introduce the necessary abbreviations and definitions;
– to formulate the prerequisites for the formation of the hypothesis to test which the article is

devoted to;
– to define the specific problem, the solution to which the study is devoted;
– to formulate the goals and objectives of the work;
– to put the questions that this paper answers.

It is recommended to place service sections within the introduction: Structure of the paper and
Notations and conventions.

3.5.1. Structure of the paper

In this section, the authors briefly summarize the structure of the article.

3.5.2. Notations and conventions

In this block the authors explain special terms, reveal abbreviations.

3.6. Materials and Methods

The section may also be called Theoretical Basis. The main objective of this section is to enable other
scientists to reproduce the work done in the paper. It specifies the preparation mechanism, the
equipment used, the algorithm for constructing the experimental process in chronological order, the
laboratory procedures, the reagents and materials used, the laboratory objects, the methodology for
processing the experimental results, and the research software used to write the paper.
Guidelines for preparing the section:

– avoid ambiguity in abbreviations or names;
– write all quantitative characteristics in standard international units of measurement (the choice

of measurement system can be justified in the Introduction);
– explain each step of the study;
– explain all methods used;
– avoid irrelevant and unnecessary information that is not relevant to the results of the paper.

3.7. Results

In the section, authors presents the main results of the research findings.
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– If data is obtained in the paper, the section presents a report on this data.
– It is recommended to use data visualization in the form of figures, tables, and charts.

Guidelines for preparing the section:

– try to present results clearly and concisely;
– not to give large amounts of data;
– reduce the data to statistically analyzable summary forms and present them in tables or graphs

along with the necessary statistical information;
– do not repeat in the text the data presented in tables and figures;
– include only tables and figures that are necessary, understandable and should be reproduced;
– do not display the same data in tables and graphs at the same time.

3.8. Discussion

– The section summarizes the relationship between the findings and the answer to the questions
posed in the Introduction.

– The section summarizes and shows the relationship between the results and conclusions.
– In the section, the authors justify their hypotheses.
– The section may include a theoretical justification of the findings.
– If there are deviations in the process of experimentation or doubts of the authors of the article,

they are indicated here.
– The section indicates the consistency or discrepancy between the results of research published

on the subject previously.
– In the section, you can emphasize the merits of your research and what could be improved in

further research on the topic.
– This section demonstrates the significance of the work presented and its expected impact on

the development of future research trajectories (can be included in the Conclusion section).
– Unfortunately, inconsistency between stated aims and discussion is a common problem inmany

manuscripts.

Guidelines for preparing the section:

– do not repeat what has already been said in the literature review;
– relate the results to the issues that were outlined in the Introduction;
– show whether the results and interpretations are consistent with current knowledge of the

subject, i.e., previously published work;
– explain the theoretical background of the observed results;
– the significance of the results;
– suggest directions for future research;
– discuss only those results that were presented in the study;
– do not make generalizations or assumptions that are not justified by the findings;
– formulate conclusions with evidence for each conclusion.

3.9. Conclusion

– Summary of the analysis of the results of the study and perspectives.
– Should summarize the outcome of the study.
– The answers to each of the questions presented in the introduction should be noted.
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3.10. Ethical clauses

The classic structure of this section usually included only an Acknowledgements section. This section
thanked individuals and organizations that had supported the research in various ways. In addition,
funding information was also provided in this section. Private or corporate investors or grant funds,
laboratories that were used to conduct certain blocks of work, collaborators indirectly involved in
this block of work and therefore not reflected in the section Authors, and technical specialists who
assisted in conducting the measurements were mentioned. This section also reflected the genesis of
the work, e.g., that the work was done as part of the dissertation.

Influenced by the COPE ethics committee [3], a more complex structure is now used for this section,
and it is divided into several thematic subsections. For more information, see the related article [4].

3.11. References

– The formatting of the reference list should be done according to the style (in our journal we are
trying to solve this issue with the help of automatic generation of bibliography).

– In the reference list, only those sources are listed that are referenced in the text of the article.
– For a scientific article usually use a minimum of 20 sources.
– If you cite information but do not provide a reference, it can be considered plagiarism.
– You can also link to sites with the date of visit (but do not abuse it).

3.12. Appendices

The section may also be called Supplementary information.

– The section provides details of the elements of the study for those who later wish to replicate
the work.

– The section may include details of data processing, design of the experiment, and characteriza-
tion of the equipment, objects, and materials used.

– The section provides any additional information that is relevant to the paper but of secondary
importance.

– Appendices usually contain information that is necessary to fully explain and understand the
results, but are too bulky and complex to be included in the main body of the paper.

4. Conclusion
The editors expect authors to adhere to the recommended structure of the article.
Author Contributions: The contributions of the authors are equal. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analysed during this study. Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
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Аннотация.Описывается общая структура научнойпубликации IMRAD.Подробно описывается структура
IMRAD для исследовательской статьи.
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Two-queue polling system as amodel of an integrated access
and backhaul network node in half-duplexmode
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Abstract. Integrated Access and Backhaul (IAB) technology facilitates the establishment of a compact network by
utilizing repeater nodes rather than fully equipped base stations, which subsequently minimizes the expenses
associated with the transition towards next-generation networks. The majority of studies focusing on IAB
networks rely on simulation tools and the creation of discrete-timemodels. This paper introduces amathematical
model for the boundary node in an IAB network functioning in half-duplex mode. The proposed model is
structured as a polling service system with a dual-queue setup, represented as a random process in continuous
time, and is examined through the lens of queueing theory, integral transforms, and generating functions (GF).
As a result, analytical expressions were obtained for the GF, marginal distribution, as well as the mean and
variance of the number of requests in the queues, which correspond to packets pending transmission by the
relay node via access and backhaul channels.

Key words and phrases: polling, queuing system, integrated access and backhaul, half-duplex

For citation: Nikolaev,D. I., Beschastnyi, V. A., Gaidamaka, Y. V. Two-queue polling system as a model of an integrated access
and backhaul network node in half-duplex mode. Discrete and Continuous Models and Applied Computational Science 32 (4),
362–369. doi: 10.22363/2658-4670-2024-32-4-362-369. edn: DRHDFU (2024).

1. Introduction
To simplify and reduce the cost of deploying dense 5G networks, standardizing organizations have
proposed various technologies, one of which is Integrated Access and Backhaul (IAB) [1]. This
technology enables telecom operators to seamlessly transition to 5G-compliant networks by utilizing
cost-effective relay nodes that implement wireless relay instead of fully-equipped base stations. By
implementing a network with IAB technology, consisting of backbone and relay nodes, operators can
meet the limitations of 5G standards and have the flexibility to upgrade relay nodes with access to
the backbone network in the future, ultimately enhancing the quality of service for users.
Integrated Access and Backhaul is one of the approved objectives of the 17th Release of the 3GPP

(3rd Generation Partnership Project) [2]. In IAB, a small number of backbone base stations (BSs) are
connected to the existing fibre-optic network infrastructure. The remaining BSs transmit backhaul
traffic over wireless channels [3].

© 2024 Nikolaev,D. I., Beschastnyi, V. A., Gaidamaka, Y. V.
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Figure 1. IAB network fragment in the form of a spanning tree

In comparison to LTE-Advanced, IAB is amore advanced solution that supportsmulti-hop, dynamic
resource multiplexing, and plug-and-play design, significantly reducing the complexity of network
deployment. Given the aforementioned benefits of IAB technology, the design of an efficient and
high-performance 5G/6G network incorporating this technology has become a pressing research
topic. As such, further exploration and utilization of IAB within the context of 5G/6G networks holds
immense potential for enhancing network capabilities and improving overall user experience [4].
The IAB technology, along with its characteristics and operational mechanisms, has been

investigated frommultiple perspectives. Research efforts have addressed challenges such as routing
in multi-hop networks [5, 6], the selection of optimal network topology [7], and efficient resource
allocation [8]. In addition, advanced beamforming techniques have been explored [9], while the
development of data channel management policies for latency control [10] and the establishment of
network stability conditions that maximize throughput have also been studied [11, 12]. Furthermore,
frequency reuse using graph coloring methods has been investigated [13]. Moreover, one study
constructs a mathematical model of the IAB edge node as a Markov process and analyzes packet
transmission delays [14], while another work develops a simulation model of the IAB edge node [15].
Complementary research includes the construction of mathematical models for IAB networks
incorporating blockage effects [16], mean and the formulation of queuing systemmodels to represent
the number of users at an IAB node [17].
Figure 1 shows an example of the IAB network topology in the form of a spanning tree, with the

IAB-donor reference base station (BS) located at the root vertex. The remaining IAB nodes in the
network are branch vertices and leaf vertices. The focus of this study is on the IAB boundary node,
which corresponds to the leaf vertex in the tree. The subject of the study is the packet flow that passes
through this node.
Due to the separation of downlink and uplink channels, a mathematical model has been proposed

in the form of a polling service system [18–23]. Data packets will be associated with requests, and the
IAB boundary node will correspond to a server. Downlink traffic from the parent node to the current
node and from the current node to user equipments (UEs) will be directed to queue 𝑄1 for receiving
and servicing requests. Uplink traffic from UEs to the current node and from the current node to the
parent node will correspond for receiving and servicing requests in queue 𝑄2 (see Table 1).
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Table 1
The correspondence between the objects and processes of the technical system and the queueing system

Technical
system

IAB-
node

Data
packets

Downlink
from the
parent node

Uplink to the
current node

Downlink
from the
current node

Uplink to the
parent node

Queueing
system

Server Requests Receipt of
requests in
the queue 𝑄1

Receipt of
requests in
the queue 𝑄2

Servicing of
requests in
the queue 𝑄1

Servicing of
requests in
the queue 𝑄2

Considering the limitations imposed by the half-duplex data transmission mode, we can divide
the operation of the IAB boundary node into phases shown in Table 2. For simplicity, let’s combine
the first two phases of request receipt into one. We then arrive at a polling service system with two
queues, where requests are received during the switching of devices at the end of each service cycle.
That is, the switching time between queues within the service cycle is zero, and applications are
received exclusively during the above-described period. The characteristics of this model will be
studied in the next section.

Table 2
Phases of operation of the IAB network boundary node

𝑄1 𝑄2
Downlink from the parent node + 0

Uplink to the current node 0 +

Downlink from the current node − 0

Uplink to the parent node 0 −

2. Mathematical model
Wewill now delve deeper into the details of the𝑀2|𝐺𝐼2|1 polling service system that was introduced in
the preceding section. In order to study the system, wemust make the assumption that it is operating
in a stationary mode. Within this context, we will use 𝑋𝑗

𝑖 to denote the number of requests in the
queue 𝑄𝑗 at any given time 𝑄𝑖, 𝑖, 𝑗 = 1, 2 [24].
Additionally, we make use of the notation 𝐴𝑖(𝑡) to represent the number of requests received in

the 𝑖-th queue during time 𝑡. It is important to note that our system consists of 2 Poisson input flows,
each with their own parameter, denoted by 𝜆𝑖. Furthermore, the service time for a given request in
queue 𝑄𝑖 is denoted as 𝑏𝑖𝑘, with 𝑘 representing the 𝑘-th request. It is also stated that these service
times are independent and equally distributed with a cumulative distribution function (CDF) of 𝐵𝑖(𝑡).
Moving on to the half-duplex aspect of the system, we introduce the random variable 𝑠0, which

represents the switching time of the server. Its distribution is given by the CDF 𝑆(𝑡), and it has raw
moments of arbitrary order 𝑠(𝑛)0 = ∫∞

0 𝑡𝑛 d(𝑆(𝑡)), with 𝑛 ≥ 1. Finally, we arrive at the expressions for
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𝑋𝑗
𝑖 for our system, which can be written as follows:

𝑋𝑗
𝑖 =

⎧
⎨
⎩

0, 𝑗 < 𝑖,

𝐴𝑗(𝑠0), 𝑗 ≥ 𝑖,
⇔ 𝑋𝑗

𝑖 =

⎧
⎪

⎨
⎪
⎩

0, (𝑗 = 1) ∧ (𝑖 = 2),

𝐴1(𝑠0), (𝑗 = 1) ∧ (𝑖 = 1),

𝐴2(𝑠0), 𝑗 = 2.

(1)

For these values, we have 𝑝𝑖(𝑛1, 𝑛2)— the probability distribution that at any moment of servicing
the 𝑖-th queue 𝑄𝑖 𝑗-th queue 𝑄𝑗 contains 𝑛𝑗 applications, 𝑛𝑗 ≥ 0, 𝑖, 𝑗 = 1, 2.
The generating functions (GFs) of random variables (𝑋1

𝑖 , 𝑋2
𝑖 ,… , 𝑋𝐾

𝑖 ), 𝑖 = 1,… , 𝐾 are expressed
according to the following lemma.

Lemma 1. GF of random variables (𝑋1
𝑖 , 𝑋2

𝑖 ), 𝑖 = 1, 2 have the following form

𝑃𝑖(z) = 𝑃𝑖(𝑧1, 𝑧2) = ̃𝑆 (
2
∑
𝑗=𝑖
(𝜆𝑗(1 − 𝑧𝑗))) , 𝑖 = 1, 2, (2)

where ̃𝑆(𝑤)—Laplace-Stieltjes Transform (LST) of RV 𝑠0 ∼ 𝑆(𝑡).

Substituting the value of 1 into the variable z in the derivatives of (2), we obtain the values of the
mean and variance of the number of requests in the queues.

Theorem 1. For a polling system 𝑀2|𝐺𝐼2|1 with state-dependent input flows and switching time 𝑠0
distributed according to the CDF 𝑆(𝑡), the mean 𝑁𝑖(𝑗) and the variance Var (𝑋𝑗

𝑖 ) of the number of requests
in queue 𝑄𝑗 at the time of servicing queue 𝑄𝑖, 𝑖, 𝑗 = 1, 2, are expressed by the following formulas:

𝑁𝑖(𝑗) =
⎧
⎨
⎩

0, 𝑗 < 𝑖,

𝑠0𝜆𝑗, 𝑗 ≥ 𝑖,
Var (𝑋𝑗

𝑖 ) =
⎧
⎨
⎩

0, 𝑗 < 𝑖,

𝑠(2)0 𝜆2𝑗 + 𝑠0𝜆𝑗(1 − 𝑠0𝜆𝑗), 𝑗 ≥ 𝑖,
(3)

If the switching time is exponentially distributed with parameter 𝑠 (𝑆(𝑡) = 1 − 𝑒−𝑠𝑡, 𝑡 ≥ 0), then formulas(3)
are transformed to the form (4).

𝑁𝑖(𝑗) =
⎧

⎨
⎩

0, 𝑗 < 𝑖,
𝜆𝑗
𝑠 , 𝑗 ≥ 𝑖,

Var (𝑋𝑗
𝑖 ) =

⎧

⎨
⎩

0, 𝑗 < 𝑖,
𝜆2𝑗
𝑠2 +

𝜆𝑗
𝑠 , 𝑗 ≥ 𝑖,

(4)

where Var (⋅)— Variance of RV.

Substituting the value of 0 into the variable z in the derivatives of (2), we obtain the probability
distribution of number of requests in queues.

Theorem 2. For a polling system 𝑀2|𝐺𝐼2|1 with state-dependent input flows and switching time 𝑠0
distributed according to the exponential law 𝑆(𝑡) = 1−𝑒−𝑠𝑡, 𝑡 ≥ 0, the distributions of the number of requests
in queue 𝑄𝑗 at the moment of servicing queue 𝑄𝑖, 𝑖, 𝑗 = 1, 2, are expressed by the following formulas:

𝑝𝑖(𝑛1, 𝑛2) =

⎧
⎪⎪

⎨
⎪⎪
⎩

0, (𝑛1 ≥ 1) ∧ (𝑖 = 2),
𝑠𝜆𝑛22

(𝑠 + 𝜆2)𝑛2+1
, (𝑛1 = 0) ∧ (𝑖 = 2),

𝑠𝜆𝑛11 𝜆
𝑛2
2 (𝑛1 + 𝑛2)!

(𝑛1)!(𝑛2)!(𝑠 + 𝜆1 + 𝜆2)𝑛1+𝑛2+1
, 𝑖 = 1,

(5)

where 𝑛𝑘 = 0,… ,∞— the number of requests in queue 𝑄𝑘, 𝑘 = 1, 2.
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3. Conclusion
In the transition to the next generation of networks, integrated access and backhaul (IAB) technology
is considered a key technology. However, due to limitations imposed by the half-duplex mode of data
transmission, it is necessary to build adequate models of how IAB networks operate.
In this paper, a model of the boundary node of an IAB network in the form of a queueing polling

systemwas constructed. We also derived analytical expressions for the generating functions,marginal
distribution, raw, and central moments of the number of requests (packets) in queues.
These results allow us to estimate the probability and conditions of overloads at the IAB boundary

node. For future research, we plan to build and analyze an energy-efficient model of the entire IAB
network. This will be done for both the topology presented in this paper and for more complex
topologies where there are multiple routes from the reference base station to user devices.
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Система поллинга с двумя очередями как модель узла
сети интегрированного доступа и транзита
в полудуплексном режиме
Д. И. Николаев1, В. А. Бесчастный1, Ю. В. Гайдамака1, 2

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская
Федерация
2 Институт проблем информатики, Федеральный исследовательский центр «Информатика
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Аннотация. Технология интегрированного доступа и транзита (Integrated Access and Backhaul, IAB)
позволяет создать компактную сеть за счёт использования узлов ретрансляторов вместо полностью
оборудованных базовых станций, что впоследствии минимизирует расходы, связанные с переходом
к сетям следующего поколения. Большая часть работ, посвящённых сетям IAB, опираются на инстру-
менты имитационного моделирования и создание моделей, функционирующих в дискретном времени.
В данной работе представлена математическая модель граничного узла в сети IAB с полудуплексным
режимом передачи данных. Предлагаемая модель конструируется как система поллинга с двумя очере-
дями в непрерывном времени и анализируется с помощью аппарата теории массового обслуживания,
интегральных преобразований и производящих функций (ПФ). В результате получены аналитические
выражения для ПФ, вероятностных распределений, а также средних и дисперсий числа заявок в оче-
редях, которые соответствуют пакетам, ожидающим своей передачи на ретрансляционном узле по
каналам доступа и транзита.

Ключевые слова: поллинг, система массового обслуживания, интегрированный доступ и транзит,
полудуплекс
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Abstract. The paper presents a new multimodal approach to analyzing the psycho-emotional state of a person
using nonlinear classifiers. Themainmodalities are the subject’s speech data and video data of facial expressions.
Speech is digitized and transcribed using the Scribe library, and then mood cues are extracted using the Titanis
sentiment analyzer from the FRC CSC RAS. For visual analysis, two different approaches were implemented:
a pre-trained ResNet model for direct sentiment classification from facial expressions, and a deep learning
model that integrates ResNet with a graph-based deep neural network for facial recognition. Both approaches
have faced challenges related to environmental factors affecting the stability of results. The second approach
demonstrated greater flexibility with adjustable classification vocabularies, which facilitated post-deployment
calibration. Integration of text and visual data has significantly improved the accuracy and reliability of the
analysis of a person’s psycho-emotional state

Key words and phrases: dataset, emotion analysis, multimodal data mining, artificial intelligence, machine
learning, deep learning, neuroscience data mining
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1. Introduction
Automatic detection and identification of signs of psychoemotional states are among the topical
applied directions of engineering and artificial intelligence technologies development. Such systems
make it possible to automate the process of controlling the actions of both individuals and groups of
people, including in places of increased danger by timely informing the controlling services.
In recent years, in the field of recognizing the psycho-emotional state of users, the importance of

automatic multimodal recognition has been increasing, providing the next level after syntax and
semantics analysis, word search from emotion dictionaries. Automatic multimodal recognition
techniques allow to increase the amount of information processed, which has a positive impact on
the accuracy of emotion recognition. Addition of video and audiomodalities allows to operate also on
the analysis of users’ gestures, their facial expressions, sequences of reactive movements, to analyze
the timbre, volume of the voice, to find hidden artifacts in it. These factors significantly complement
classical textual methods of analyzing the emotional state of users and allow to create applied actual
systems.
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Operational recognition of emotional states as an applied task of artificial intelligence technology
is in demand in many fields. Risk analysis of employee behavior allows the employer to optimally
plan the company’s business processes and predict the personal efficiency of employees and the team
as a whole. Monitoring of an employee’s condition allows to take timely measures to stabilize it at
the individual level or to solve general organizational problems. The library can be used in modeling
the psychological climate of teams.
To recognize target psycho-emotional states, basic methods of emotion recognition supplemented

with behavioral models can be used. Most existing developments (FaceReader by Dutch company
Noldus, EmoDetect, etc.) are based on the theory of basic emotions, where the classes are 6 emotions:
joy, surprise, sadness, disgust, anger, fear. In the present project, a complex psychophysiological state
will be revealed not only on the basis of mimic signs, but also by analyzing the subject’s movements
and speech. This way of analysis is chosen on the basis of ideas about behavioral approach and
its differences from the discrete model of emotions. An example of a discrete model system is the
development of [1], which uses human skeletal landmarks to analyze movements and identify the six
emotions mentioned above. In addition to analyzing movements and facial expression multimodal
methods (video, audio, text) are used to recognize emotions, as in [2–4].

Subjective psychological experience is inevitably accompanied by physiological changes necessary
to organize a particular behavior. Emotion allows rapid organization of responses of separated
physiological systems, including facial expressions, somatic muscle tone, acoustic characteristics of
the speech signal, autonomic nervous and endocrine systems, to prepare the organism for adaptive
behavior [5–7].

2. Modality overview
Analyzing human emotion is a complex process with step-by-step extraction of feature space and its
analysis.
Analysis of facial features. Mimics are coordinated movements of facial muscles. Certain facial

expressions that occur to communicate one’s state to others (expression of emotions) are closely
related to the psychophysiological state. The mimic expression of basic emotions is very similar
across cultures, but is often masked depending on certain cultural attitudes, partially discordant with
subjective experiences and physiological indicators, justifying validation within a specific culture.
Analysis of gestures and posture. The need to analyze human gestures and posture is due to two

main factors. Human posture, as well as facial expressions, is an important means of expressing
emotions. The analysis of posture allows to reveal not only obvious psychophysiological states, but
also more subtle non-verbal signals reflecting tension, fatigue or stress, which may not be explicitly
expressed through facial expressions.
Speech analysis. The need for speech analysis stems from the increased accuracy of emotion

recognition in identifying features such as acoustic and tempo-dynamic characteristics of speech.
Assessing the dynamics of posture change. One important quantitative measure is the change in

posture over time. The dynamics of body movements offer a rich source of emotional information
that cannot be obtained from static postures alone. The way a personmoves from one pose to another,
the speed and fluidity of movements can indicate specific emotions with greater clarity and nuance.
Information from a person’s face, voice, and posture is interrelated with the person’s movements,
reinforcing the emotions expressed in the face and voice. Certain emotions are closely related to
specific temporal movement patterns. For example, sudden, jerky movements may indicate surprise
or fear, while slow, jerky movements may signal fatigue and depression. Capturing these dynamics is
critical for accurate emotion recognition.
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Understanding the context of a movement sequence can greatly influence its emotional
interpretation. By analyzing dynamics, the context and progression of emotional states can be better
understood, leading to more accurate recognition. Some emotions are expressed through subtle
changes inmovement dynamics thatmight bemissed if only static postureswere analyzed. Evaluating
the dynamics allows these subtle signals to be detected. In using applications, understanding the
dynamics of body movement can lead to more immersive and responsive experiences. This allows
systems to respond not only to the fact of movement, but also to its emotional content. Analyzing
body movement dynamics can also help in predicting future actions and emotional states, which is
valuable in the fields of safety, health, and education [8]. Analysis of dynamics (both pose and facial
expressions) can eliminate artifacts associated with an individual’s habitual postures and expressive
expressions. While the analysis of static images can be distorted by facial or body features, analyzing
the changes that occur significantly increases the reliability of the data obtained.

3. Methods

Algorithm 1 Algorithmic representation of approach 1

Require: 𝑖 ▷ Input image
Require: 𝑎 ▷ Input audio (last n seconds)
Require: 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ▷ Face detector and cropper module
Require: 𝑓𝑒𝑟 ▷ Face expression classifier model
Require: 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑟 ▷ Text transcriber module (Pisets)
Require: 𝑡𝑎 ▷ Text analyzer module (Titanis)
Require: ⃗𝑏𝑖𝑎𝑠 ▷ Bias for calibrating modality result weight in final classification
1: while 𝑖 do ▷While the video stream supplies the image
2: ⃗𝑓𝑎𝑐𝑒𝑠 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟(𝑖) ▷ Detecting all faces on image
3: ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑒𝑥𝑡 ← 𝑡𝑎(𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑟(𝑎)) ▷ Classifying text sentiment
4: if | ⃗𝑓𝑎𝑐𝑒𝑠| > 0 then ▷ If we have detected at least one face
5: for 𝑓𝑎𝑐𝑒 in ⃗𝑓𝑎𝑐𝑒𝑠 do ▷ Iterating over detected faces
6: ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑓𝑎𝑐𝑒 ← 𝑓𝑒𝑟(𝑓𝑎𝑐𝑒) ▷ Classifying face expression
7: if | ⃗𝑓𝑎𝑐𝑒𝑠| = 1 then ▷ If we have detected only one face, combine the classifications
8: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥( ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑓𝑎𝑐𝑒 + ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑒𝑥𝑡 ⃗𝑏𝑖𝑎𝑠)
9: else ▷ Else, displaying each face label separately
10: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥( ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑓𝑎𝑐𝑒)
11: end if
12: display 𝑟𝑒𝑠𝑢𝑙𝑡
13: end for
14: if | ⃗𝑓𝑎𝑐𝑒𝑠| > 1 then▷ If we have more than one face, displaying text sentiment separately
15: display ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑒𝑥𝑡
16: end if
17: end if
18: end while

Analytical review of methods of complex multimodal analysis of human psycho-emotional state, as
well as multimodal datasets used for emotion detection, has shown that most of the existing datasets
designed for training neural networkmodels are based on the selection of a set of individual emotions
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Algorithm 2 Algorithmic representation of approach 2

Require: 𝑖 ▷ Input image
Require: 𝑎 ▷ Input audio (last n seconds)
Require: 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ▷ Face detector and cropper module
Require: 𝑎𝑢 ▷ Face action unit detector model
Require: 𝑑𝑖𝑐𝑡𝑎ᵆ ▷ Label dict for action units combinations
Require: 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑟 ▷ Text transcriber module (Pisets)
Require: 𝑡𝑎 ▷ Text analyzer module (Titanis)
Require: ⃗𝑏𝑖𝑎𝑠 ▷ Bias for calibrating modality result weight in final classification
1: while 𝑖 do
2: ⃗𝑓𝑎𝑐𝑒𝑠 ← 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟(𝑖)
3: ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑒𝑥𝑡 ← 𝑡𝑎(𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑏𝑒𝑟(𝑎))
4: if | ⃗𝑓𝑎𝑐𝑒𝑠| > 0 then
5: for 𝑓𝑎𝑐𝑒 in ⃗𝑓𝑎𝑐𝑒𝑠 do
6: ⃗𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑎𝑐𝑒 ← 𝑎𝑢(𝑓𝑎𝑐𝑒) ▷ Get action unit labels
7: ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑓𝑎𝑐𝑒 ← 𝑑𝑖𝑐𝑡𝑎ᵆ[ ⃗𝑙𝑎𝑏𝑒𝑙𝑠𝑓𝑎𝑐𝑒] ▷ Convert to logits using label dict
8: if | ⃗𝑓𝑎𝑐𝑒𝑠| = 1 then
9: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥( ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑓𝑎𝑐𝑒 + ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑒𝑥𝑡 ⃗𝑏𝑖𝑎𝑠)
10: else
11: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥( ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑓𝑎𝑐𝑒)
12: end if
13: display 𝑟𝑒𝑠𝑢𝑙𝑡
14: end for
15: if | ⃗𝑓𝑎𝑐𝑒𝑠| > 1 then
16: display ⃗𝑙𝑜𝑔𝑖𝑡𝑠𝑡𝑒𝑥𝑡
17: end if
18: end if
19: end while

[3, 4, 9–15]. Also, one of the disadvantages of existing databases is the frequent use of static images as
material for processing, which gives a large error due to the individual characteristics of the subjects.
We propose a dynamic option for processing and continuous feature extraction, which will improve
the validity and predictive power of the data.
There are no open non-commercial datasets of this kind in Russia; the possibility of using foreign

datasets may be limited by the cultural context, which determines the peculiarities of speech
and rules of emotion expression. Four types of expression are distinguished in the literature:
expression of an existing emotion according to its intensity; aggravation (amplification) of an
emotion, masking (reduction or suppression) of an emotion, and distortion—expression of another
emotional state. Which emotions are “allowed” or “forbidden” for expression, depends significantly
on cultural attitudes and can affectmarkers of psychophysiological state. Thus, the proposed solution,
implemented on the Russian sample, has a significant novelty. The achievability of the task is ensured
by the fact that the team of authors is experienced in data collection, processing and utilization.

To identify the subject’s emotional state, it is proposed to use an approach in which the dynamics of
changes in the subject’s facial expressions, posture, and voice (prosodic and temporal characteristics
of speech) are considered as a marker of specific psychophysiological states. In these visually
and auditorily registered characteristics, specific features (markers) associated with target states
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will be identified with the help of self-learning neural networks. The input data will be the signal
from a surveillance camera that allows recording both video and audio data of the subjects. The
use of dynamic features will allow us to overcome the limitations associated with the individual
characteristics of different people (stable features that, when analyzing static data, can be confused
with expressive manifestations, e.g., constitutionally lowered corners of the lips—interpreted as
a depressive state).
The analysis of behavioral sequences has been widely developed in the ethological approach,

including human ethology [16]. Features of changes inmimicry and posture that are not characteristic
of a conditionally healthy population are used within the framework of this approach in psychiatric
practice, showing good criteria for differential diagnosis [17], which allows us to predict the possibility
of applying them to the tasks of monitoring pronounced changes in psychophysiological states in
conditionally healthy individuals.
Facial recognition technologies will enable a future strategy for tracking emergent change to be

applied to people moving between different observation points by being able to identify the same
person and collect consistent information about them.
In the first stage of the empirical study, in order to identify groups of people for whom certain

states are characteristic (i.e., we can expect their manifestation in a wide range of conditions),
standardized psychodiagnostic techniques, which will allow us to compare the results obtained with
population norms. A survey method will also be used to screen out those who do not fit the criteria
for participation in the study. The method of completing the methods and questionnaire online with
initial automatic processing of the results will be used.
It is also planned to apply a psychodiagnostic method and an interview method immediately

prior to the video recording, which will make it possible to control the current state of the subjects.
Methods of induction of the appearance of specific psychophysiological states will be used during
videoregistration. Selection of methods common for all groups of respondents and methods specific
for each group will make it possible to achieve a higher probability of occurrence of the necessary
states. Artifact control methods such as counterbalancing of influences (applying them in a random
order for different subjects) and introduction of neutral stimuli (so that when the next stimuli are
presented, the subject can get out of the previous emotional state) will be used. In all experimental
sequences, the subject will say something aloud (his own or a suggested text), which will allow the
extraction of speech characteristics.
The actual occurrence in each case of the expected psychoemotional states will be validated using

the heart rate variability index, which is a good indicator of their occurrence, but in comparison with
visual and auditory markers cannot be so easily (without a device attached to the human body) used
as an independent monitoring tool in the conditions of everyday human activity [18].
Experts will be recruited to extract episodes of target psychophysiological states, accompanied

by visual and voice changes, by partitioning and filtering the recordings. Candidates of extracted
markers and combinations of markers could be, for example:

1. a combined lowering of the shoulders, the appearance of a transverse crease between the
eyebrows, the lowering of the corners of the mouth, a decrease in the volume of the voice, and
the appearance of pauses while the depressive state intensifies;

2. combined raising of shoulders and elbows, raising of eyebrows, appearance of transverse folds
on the bridge of the nose, appearance of a specific sign “square mouth”, increase in the volume
and tempo of the voice, etc. when the aggressive state increases.

The application of an integrated approach will increase the validity of detectable signs in terms of
assessing the state of a person.
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Table 1
Most frequent face expression decisions generated by model for one person showing happiness in different environments

Method Environment Top Label Frequency

1 A Happiness 75.4%

1 B Contempt 65.1%

1 C Contempt 71.8%

1 D Happiness 51.4%

1 E Happiness 55.3%

2 A Happiness 65.7%

2 B Happiness 65.1%

2 C Contempt 66.9%

2 D Disgust 59.8%

2 E Contempt 57.2%

4. Prototype
Our prototype leverages both visual and textual data to enhance sentiment analysis capabilities.
Textual data is generated through audio transcription using the Pisets library [19]. Subsequently,
sentiment features are extracted from the transcribed text using the FRC CSC RAS Titanis sentiment
analyzer, which provides detailed sentiment feature labels.
For the visual analysis component, we implemented and benchmarked two distinct approaches to

sentiment recognition. The first approach employs a stand-alone ResNet model designed to directly
classify sentiment based on cropped face images. Specifically, we utilized the model [20], which
performs single-label classification to identify one of eight possible emotions from facial expressions.
This approach is described by algorithm 1.
The second approach focuses on facial action unit (AU) recognition. For this, we employed

a sophisticated deep learning model proposed by [21], which integrates a ResNet with a graph-
based deep neural network (DNN) to achieve multi-label classification of facial action units. These
AU labels are then translated into final sentiment labels using classification dictionaries. This method
allows for the identification of specific sentiments, such as frustration or intoxication, in addition to
the same eight emotions used in the first approach. To facilitate fine-tuning, a calibration tool was
developed. This tool enables users to display chosen emotions or sentiments via a user interface,
aiding in the adjustment of classification dictionaries. This approach is described by algorithm 2.
In both approaches, initial face boundary detection is essential for cropping the face from the

image. We used the FaceTorch utility [22], which incorporates the RetinaFace model by [23] for
accurate face localization. All the models we used were pre-trained by their papers’ authors.

5. Results
Both visual sentiment recognition approaches encountered similar practical challenges.
Environmental factors, such as background and lighting, significantly influenced the consistency of
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Table 2
Most consistent action unit labels detected by model from the second approach. The shown expression is ’Happiness’ in all
cases. The labels in bold are least related to the facial expression shown, while the remaining labels are also not the main

ones, indicating this expression only indirectly

Environment Top Final
Label

Top Action Unit Labels

lips part nose wrinkler left upper lip
raiser

cheek raiser

A Happiness 80.9% 0.0% 95.2% 40.2%

B Happiness 24.0% 10.2% 89.8% 47.4%

C Contempt 33.3% 45.6% 74.1% 10.0%

D Disgust 68.3% 70.1% 44.2% 32.0%

E Contempt 30.1% 66.6% 33.8% 5.9%

results. Table 1 illustrates the classification outcomes for a single person displaying a ’Happiness’
emotion across various environments, differing in lighting conditions, capturing devices, and
backgrounds. The first approach frequently misclassified ’Happiness’ as ’Contempt’ in some
environments. Conversely, the second approach produced varying results, with certain facial action
units being detected consistently, irrespective of the actual facial expression, as shown in Table 2.

6. Conclusions
In summary, the first approach, utilizing a straightforward model architecture, requires extensive
fine-tuning for application-specific environments and lacks manual adjustability of model outputs. In
contrast, the second approach offers greater flexibility by outputting detected facial actions that can
bemapped to final sentiment labels. This flexibility allows for bothmodel and classification dictionary
adjustments, facilitating easier post-deployment calibration and modification of the sentiment set.

For the textual analysis, it complements the visual results, contributing to the final sentiment label
determination for the individual in the image. The integration of textual and visual data enhances
the accuracy and robustness of the sentiment analysis in our prototype.
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ММЕмАсис: мультимодальный метод оценки
психофизиологического состояния человека.
Г. А. Киселёв1, 2, Я. М. Лубышева1, Д. А. Вейценфельд1, 2

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская
Федерация
2Федеральный исследовательский центр «Информатика и управление» Российской академии наук,
ул. Вавилова, д. 44, корп. 2, Москва, 119333, Российская Федерация

Аннотация. В статье представлен новый мультимодальный подход анализа психоэмоционального состо-
яния человека с помощью нелинейных классификаторов. Основными модальностями являются данные
речи испытуемого и видеоданные мимики. Речь оцифровывается и транскрибируется библиотекой
Писец, признаки настроения извлекаются системой Titanis от ФИЦ ИУ РАН. Для визуального анали-
за были реализованы два различных подхода: дообученная модель ResNet для прямой классификации
настроений по выражениям лица и модель глубокого обучения, интегрирующая ResNet с основанной
на графах глубокой нейронной сетью для распознавания мимических признаков. Оба подхода стал-
кивались с трудностями, связанными с факторами окружающей среды, влияющими на стабильность
результатов. Второй подход продемонстрировал бóльшую гибкость благодаря регулируемым словарям
классификации, что облегчало калибровку после развёртывания. Интеграция текстовых и визуаль-
ных данных значительно улучшила точность и надёжность анализа психоэмоционального состояния
человека.
Ключевые слова: набор данных, анализ эмоций, мультимодальный анализ данных, искусственный
интеллект, машинное обучение, глубокое обучение, анализ нейрофизиологических данных
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Abstract. The paper considers a single-line retrial queueing system with an unreliable server. Queuing systems
are called unreliable if their servers may fail from time to time and require restoration (repair), only after which
they can resume servicing customers. The input of the system is a simple Poisson flow of customers. The service
time and uptime of the server are distributed exponentially. An incoming customer try to get service. The server
can be free, busy or under repair. The customer is serviced immediately if the server is free. If it is busy or
under repair, the customer goes into orbit. And after a random time it tries to get service again. The study is
carried out by the method of asymptotically diffusion analysis under the condition of a large delay of requests in
orbit. In this work, the transfer coefficient and diffusion coefficient were found and a diffusion approximation
was constructed.
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1. Introduction
Queuing systems with repeated requests are quite often used in various areas of telecommunications.
Modern information processing systems often encounter unstable operating conditions, such as
overloads, failures, and resource limitations. Under these conditions, conventional retrial queuing
(RQ) systems may not be able to process all incoming requests, resulting in lost information and poor
performance [1–4].

Repetitive request systems offer a solution to this problemby providing amechanism for processing
requests that cannot be fulfilled immediately. Instead of discarding such requests, they are
resubmitted to the queue after a certain time, increasing the likelihood of successful completion of
service. The most complete and detailed description of RQ systems and their detailed comparison
with classical queuing systems was reflected in [5–7].

There are different types of unreliability. For example, the works [8–10] consider the unreliability
of the server as a breakdown. The authors in [11–14] consider an unreliable server with collisions or
conflicts during simultaneous access to the server.
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Figure 1. Model of retrial queueing systemM/M/1 with unreliable server

This problem is especially relevant when it comes to unreliable servers that can fail due to software
errors, hardware malfunctions or external factors. Server failures can lead to data loss, interruption
of services, and decreased performance.
If the server fails while servicing the request, it goes to repair. A request under maintenance goes

into orbit and awaits recovery of the server. A fairly large number of works are devoted to systems
with unreliable server [15–20].

To understand the behavior of systems with repeated requests and evaluate their performance, it
is necessary to use analytical methods.
In this paper, we consider a single-line queuing system with an unreliable server. We will conduct

the study using the method of asymptotic diffusion analysis. It has been proven that the accuracy of
the diffusion approximation exceeds the accuracy of the Gaussian approximation calculated in [21].

2. System description
Any data network, having generated customers, sends them to a shared resource (server). If the
server is free, then the customer is served. If the server fails while servicing a customer, it is sent for
repair, and the customers go into orbit.
Let’s consider an RQ system with an unreliable server, the input of which receives a simple flow

of customers with parameter 𝜆. The request is served by the server at a random time, distributed
according to an exponential law with the parameter 𝜇1. An unreliable server can be in one of the
following states: idle, busy, or under repair. If the server is idle and an entry customer is received,
the server immediately begins servicing the incoming customer. If a customer arrives at a time when
the server is busy, then the received customer goes into orbit and waits for the opportunity to occupy
the server at the next attempt.
After a random delay, a customer with intensity 𝜎 again contacts the device with an attempt

to capture it (see Fig. 1). The server’s uptime is distributed according to an exponential law with
parameter 𝛾1 if the server is idle, and with parameter 𝛾2, if the server is busy. As soon as a breakdown
occurs, the server is sent for repair. All incoming customers go into orbit. The recovery time after
repair is distributed exponentially with the parameter 𝜇2.
The goal of the work is to study such a system, as well as to find its main characteristics.

3. Kolmogorov equations
Let us denote by 𝑃 {𝑖(𝑡) = 𝑖, 𝑘(𝑡) = 𝑘, 𝑛(𝑡) = 𝑛} = 𝑃(𝑘, 𝑖, 𝑡)—the probability that at a given time 𝑡 the
server is in state 𝑘 and in the orbit of 𝑖 customers. The probability distribution 𝑃(𝑘, 𝑖, 𝑡) satisfies the
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following system of equations:

𝑃0(𝑖, 𝑡 + 𝛥𝑡) =(1 − 𝜆𝛥𝑡)(1 − 𝑖𝜎𝛥𝑡)(1 − 𝛾1𝛥𝑡)𝑃0(𝑖, 𝑡) + 𝜇1𝛥𝑡𝑃1(𝑖, 𝑡)+

+ 𝜇2𝛥𝑡𝑃2(𝑖, 𝑡) + 𝑜(𝛥𝑡),

𝑃1(𝑖, 𝑡 + 𝛥𝑡) =(1 − 𝜆𝛥𝑡)(1 − 𝜇1𝛥𝑡)(1 − 𝛾2𝛥𝑡)𝑃1(𝑖, 𝑡) + 𝜆𝛥𝑡𝑃0(𝑖, 𝑡)+

+ 𝜎(𝑖 + 1)𝛥𝑡𝑃0(𝑖 + 1, 𝑡) + 𝜆𝑃1(𝑖 − 1, 𝑡) + 𝑜(𝛥𝑡),

𝑃2(𝑖, 𝑡 + 𝛥𝑡) =(1 − 𝜆𝛥𝑡)(1 − 𝜇2𝛥𝑡)𝑃2(𝑖, 𝑡) + 𝛾1𝛥𝑡𝑃0(𝑖, 𝑡)+

+ 𝛾2𝛥𝑡𝑃1(𝑖 − 1, 𝑡) + 𝜆𝛥𝑡𝑃2(𝑖 − 1, 𝑡) + 𝑜(𝛥𝑡).

Let’s create a system of Kolmogorov differential equations:

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝜕𝑃0(𝑖, 𝑡)
𝜕𝑡 = − (𝜆 + 𝑖𝜎 + 𝛾1)𝑃0(𝑖, 𝑡) + 𝜇1𝑃1(𝑖, 𝑡) + 𝜇2𝑃2(𝑖, 𝑡),

𝜕𝑃1(𝑖, 𝑡)
𝜕𝑡 = − (𝜆 + 𝜇1 + 𝛾2)𝑃1(𝑖, 𝑡) + 𝜆𝑃0(𝑖, 𝑡)+

+ 𝜎(𝑖 + 1)𝑃0(𝑖 + 1, 𝑡) + 𝜆𝑃1(𝑖 − 1, 𝑡),
𝜕𝑃2(𝑖, 𝑡)
𝜕𝑡 = − (𝜆 + 𝜇2)𝑃2(𝑖, 𝑡) + 𝛾1𝑃0(𝑖, 𝑡) + 𝛾2𝑃1(𝑖 − 1, 𝑡) + 𝜆𝑃2(𝑖 − 1, 𝑡).

(1)

Let us write down the partial characteristic functions:

𝐻𝑘(𝑢, 𝑡) =
∞
∑
𝑖=0

𝑒𝑖ᵆ𝑗𝑃𝑘(𝑖, 𝑡), 𝑘 = {0, 1, 2},

where 𝑗 = √−1.
Multiplying the equations of the system (1) by 𝑒𝑖ᵆ𝑗, we obtain

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝐻0(𝑖, 𝑡)
𝜕𝑡 = − (𝜆 + 𝛾1)𝐻0(𝑢, 𝑡) + 𝑗𝜎𝑒𝑗ᵆ

𝜕𝐻0(𝑢, 𝑡)
𝜕𝑢 +

+ 𝜇1𝐻1(𝑢, 𝑡) + 𝜇2𝐻2(𝑢, 𝑡),
𝜕𝐻1(𝑖, 𝑡)

𝜕𝑡 = − (𝜆 + 𝜇1 + 𝛾2)𝐻1(𝑢, 𝑡) + 𝜆𝐻0(𝑢, 𝑡)−

− 𝑗𝜎
𝜕𝐻0(𝑢, 𝑡)

𝜕𝑢 + 𝜆𝑒𝑗ᵆ𝐻1(𝑢, 𝑡),

𝜕𝐻2(𝑖, 𝑡)
𝜕𝑡 = − (𝜆 + 𝜇2)𝐻2(𝑢, 𝑡) + 𝛾1𝐻0(𝑢, 𝑡)+

+ 𝛾2𝑒𝑗ᵆ𝐻1(𝑢, 𝑡) + 𝜆𝑒𝑗ᵆ𝐻2(𝑢, 𝑡).

(2)

Summing up the equations of the system (2), we write the equation for the characteristic function

𝐻(𝑢, 𝑡) = 𝐻0(𝑢, 𝑡) + 𝐻1(𝑢, 𝑡) + 𝐻2(𝑢, 𝑡),

then we get
𝜕𝐻(𝑢, 𝑡)

𝜕𝑡 = (𝑒𝑗ᵆ − 1)(𝐻1(𝑢, 𝑡)(𝜆 + 𝛾2) + 𝐻2(𝑢, 𝑡)𝜆 + 𝑗𝜎
𝜕𝐻0(𝑢, 𝑡)

𝜕𝑢 ). (3)

We will find a characteristic function of the number of customers in orbit under the condition of
a long delay. We will investigate in two stages.
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4. Stage 1. Getting the transfer coefficient
Let us introduce the substitutions in the system (2) and the equation (3)

𝜎 = 𝜀, 𝜏 = 𝜀𝑡, 𝑢 = 𝜀𝜔, 𝐻𝑘(𝑢, 𝑡) = 𝐹𝑘(𝜔, 𝜏, 𝜀), 𝑘 = {0, 1, 2} .

Then we get the following system:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜀
𝜕𝐹0(𝜔, 𝜏, 𝜀)

𝜕𝜏 = − (𝜆 + 𝛾1)𝐹0(𝜔, 𝜏, 𝜀) + 𝑗𝑒𝑗𝜀𝜔
𝜕𝐹0(𝜔, 𝜏, 𝜀)

𝜕𝜔 +

+ 𝜇1𝐹1(𝜔, 𝜏, 𝜀) + 𝜇2𝐹2(𝜔, 𝜏, 𝜀),

𝜀 𝜕𝐹1(𝜔, 𝜏, 𝜀)𝜕𝜏 = − (𝜆 + 𝜇1 + 𝛾2)𝐹1(𝜔, 𝜏, 𝜀) + 𝜆𝐹0(𝜔, 𝜏, 𝜀)−

− 𝑗
𝜕𝐹0(𝜔, 𝜏, 𝜀)

𝜕𝜔 + 𝜆𝑒𝑗𝜀𝜔𝐹1(𝜔, 𝜏, 𝜀),

𝜀 𝜕𝐹2(𝜔, 𝜏, 𝜀)𝜕𝜏 = − (𝜆 + 𝜇2)𝐹2(𝜔, 𝜏, 𝜀) + 𝛾1𝐹0(𝜔, 𝜏, 𝜀)+

+ 𝛾2𝑒𝑗𝜀𝜔𝐹1(𝜔, 𝜏, 𝜀) + 𝜆𝑒𝑗𝜀𝜔𝐹2(𝜔, 𝜏, 𝜀).

(4)

The equation (3) will take the form:

𝜀𝜕𝐹(𝜔, 𝜏, 𝜀)𝜕𝜏 = (𝑒𝑗𝜀𝜔 − 1)(𝐹1(𝜔, 𝜏, 𝜀)(𝜆 + 𝛾2) + 𝐹2(𝜔, 𝜏, 𝜀)𝜆 + 𝑗
𝜕𝐹0(𝜔, 𝜏, 𝜀)

𝜕𝜔 ). (5)

In the system (4) and the equation (5), we decompose the exponent into a Taylor series:

𝑒𝑗𝜔𝜀 = 1 + 𝑗𝜔𝜀, lim
𝜀→0

𝑒𝑗𝜔𝜀
𝜀 = 𝑗𝜔.

Let us perform the transition to the limit at 𝜀 → 0, then we obtain:

⎧
⎪

⎨
⎪
⎩

− (𝜆 + 𝛾1)𝐹0(𝜔, 𝜏) + 𝑗
𝜕𝐹0(𝜔, 𝜏)

𝜕𝜔 + 𝜇1𝐹1(𝜔, 𝜏) + 𝜇2𝐹2(𝜔, 𝜏) = 0,

− (𝜇1 + 𝛾2)𝐹1(𝜔, 𝜏) + 𝜆𝐹0(𝜔, 𝜏) − 𝑗
𝜕𝐹0(𝜔, 𝜏)

𝜕𝜔 = 0,

− 𝜇2𝐹2(𝜔, 𝜏) + 𝛾1𝐹0(𝜔, 𝜏) + 𝛾2𝐹1(𝜔, 𝜏) = 0.

(6)

𝜕𝐹(𝜔, 𝜏)
𝜕𝜏 = 𝑗𝜔(𝐹1(𝜔, 𝜏)(𝜆 + 𝛾2) + 𝐹2(𝜔, 𝜏)𝜆 + 𝑗

𝜕𝐹0(𝜔, 𝜏)
𝜕𝜔 ). (7)

We will find a solution to the system (6) and the equation (7) in the form:

𝐹𝑘(𝜔, 𝜏) = 𝑅𝑘𝑒𝑗𝜔𝑥(𝜏), 𝑘 = {0, 1, 2},

where 𝑅𝑘 has the meaning of the stationary probability that the server is in state 𝑘, and 𝑥(𝜏) is a scalar
function of the argument 𝜏, which determines at 𝜀 → 0 the average value 𝜎𝑖(𝜏/𝜎) of the number of
customers in orbit normalized by the value at 𝜀 = 𝜎.
Then the system (6) and the equation (7) will take the form:

⎧

⎨
⎩

− (𝜆 + 𝛾1 + 𝑥(𝜏))𝑅0 + 𝜇1𝑅1 + 𝜇2𝑅2 = 0,

(𝜆 + 𝑥(𝜏))𝑅0 − (𝜇1 + 𝛾2)𝑅1 = 0,

𝛾1𝑅0 + 𝛾2𝑅1 − 𝜇2𝑅2 = 0.
(8)
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The probabilities 𝑅𝑘 can be found from the system (6) taking into account the normalization
condition 𝑅0 + 𝑅1 + 𝑅2 = 1.
Since the coefficient of the system of equations (6) depends on 𝑥, then 𝑅𝑘 can also be written as

𝑅𝑘(𝑥).

𝑅0 =
𝜇2(𝜇1 + 𝛾2)

(𝛾1 + 𝜆 + 𝜇2 + 𝑥(𝜏))𝛾2 + (𝜆 + 𝜇1 + 𝑥(𝜏))𝜇2 + 𝛾1𝜇1
,

𝑅1 =
(𝜆 + 𝑥(𝜏))𝜇2

(𝛾1 + 𝜆 + 𝜇2 + 𝑥(𝜏))𝛾2 + (𝜆 + 𝜇1 + 𝑥(𝜏))𝜇2 + 𝛾1𝜇1
,

𝑅2 =
(𝜆 + 𝛾1 + 𝑥(𝜏))𝛾2 + 𝛾1𝜇1

(𝛾1 + 𝜆 + 𝜇2 + 𝑥(𝜏))𝛾2 + (𝜆 + 𝜇1 + 𝑥(𝜏))𝜇2 + 𝛾1𝜇1
.

From the equation (7) we get:

𝑥′(𝜏) = −𝑥(𝜏)𝑅0 + (𝜆 + 𝛾2)𝑅1 + 𝜆𝑅2.

Let us denote the function 𝑎(𝑥) = 𝑥′(𝜏), then

𝑎(𝑥) = −𝑥(𝜏)𝑅0 + (𝜆 + 𝛾2)𝑅1 + 𝜆𝑅2,

where 𝑎(𝑥) is the transfer coefficient.

5. Stage 2. Centering and obtaining the diffusion coefficient
Let us introduce the substitutions in the system (2) and the equation (3)

𝐻𝑘(𝑢, 𝑡) = 𝐻(2)
𝑘 (𝑢, 𝑡)𝑒𝑗

𝑢
𝜍
𝑥(𝑡), 𝑘 = {0, 1, 2},

we get

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝐻(2)
0 (𝑢, 𝑡)
𝜕𝑡 +𝐻(2)

0 (𝑢, 𝑡)𝑗𝑢𝑥′(𝜎𝑡) = −(𝜆 + 𝛾1)𝐻
(2)
0 (𝑢, 𝑡)+

+ 𝑗𝜎𝑒𝑗ᵆ(
𝜕𝐻(2)

0 (𝑢, 𝑡)
𝜕𝑢 + 𝐻(2)

0 (𝑢, 𝑡)𝑗 1𝜎𝑥(𝜎𝑡))+

+ 𝜇1𝐻
(2)
1 (𝑢, 𝑡) + 𝜇2𝐻

(2)
2 (𝑢, 𝑡) = 0,

𝜕𝐻(2)
1 (𝑢, 𝑡)
𝜕𝑡 +𝐻(2)

1 (𝑢, 𝑡)𝑗𝑢𝑥′(𝜎𝑡) = −(𝜆 + 𝜇1 + 𝛾2)𝐻
(2)
1 (𝑢, 𝑡)+

+ 𝜆𝐻(2)
0 (𝑢, 𝑡) − 𝑗𝜎(

𝜕𝐻(2)
0 (𝑢, 𝑡)
𝜕𝑢 + 𝐻(2)

0 (𝑢, 𝑡)𝑗 1𝜎𝑥(𝜎𝑡))+

+ 𝜆𝑒𝑗ᵆ𝐻(2)
1 (𝑢, 𝑡) = 0,

𝜕𝐻(2)
2 (𝑢, 𝑡)
𝜕𝑡 +𝐻(2)

2 (𝑢, 𝑡)𝑗𝑢𝑥′(𝜎𝑡) = −(𝜆 + 𝜇2)𝐻
(2)
2 (𝑢, 𝑡)+

+ 𝛾1𝐻
(2)
0 (𝑢, 𝑡) + 𝛾2𝑒𝑗ᵆ𝐻

(2)
1 (𝑢, 𝑡) + 𝜆𝑒𝑗ᵆ𝐻(2)

2 (𝑢, 𝑡) = 0.

(9)

𝜕𝐻(2)(𝑢, 𝑡)
𝜕𝑡 +𝐻(2)(𝑢, 𝑡)𝑗𝑢𝑥′(𝜎𝑡) = (𝑒𝑗ᵆ − 1)(𝐻(2)

1 (𝑢, 𝑡)(𝜆 + 𝛾2)+

+ 𝐻(2)
2 (𝑢, 𝑡)𝜆 + 𝑗𝜎(

𝜕𝐻(2)
0 (𝑢, 𝑡)
𝜕𝑢 + 𝐻(2)

0 (𝑢, 𝑡)𝑗 1𝜎𝑥(𝜎𝑡))).
(10)
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Let us introduce the substitutions in the system (9) and the equation (10)

𝜎 = 𝜀2, 𝜏 = 𝜀2𝑡, 𝑢 = 𝜀𝜔, 𝐻𝑘
(2)(𝑢, 𝑡) = 𝐹(2)𝑘 (𝜔, 𝜏, 𝜀), 𝑘 = {0, 1, 2}.

Then we obtain:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝜀2
𝜕𝐹(2)0 (𝜔, 𝜏, 𝜀)

𝜕𝜏 +𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = −(𝜆 + 𝛾1)𝐹
(2)
0 (𝜔, 𝜏, 𝜀)+

+ 𝑗𝜀𝑒𝑗𝜀𝜔
𝜕𝐹(2)0 (𝜔, 𝜏, 𝜀)

𝜕𝜔 − 𝑒𝑗𝜀𝜔𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑥(𝜏)+

+ 𝜇1𝐹
(2)
1 (𝜔, 𝜏, 𝜀) + 𝜇2𝐹

(2)
2 (𝜔, 𝜏, 𝜀),

𝜀2
𝜕𝐹(2)1 (𝜔, 𝜏, 𝜀)

𝜕𝜏 +𝐹(2)1 (𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = −(𝜆 + 𝜇1 + 𝛾2)×

× 𝐹(2)1 (𝜔, 𝜏, 𝜀) + 𝜆𝐹(2)0 (𝜔, 𝜏, 𝜀) − 𝑗𝜀
𝜕𝐹(2)0 (𝜔, 𝜏, 𝜀)

𝜕𝜔 +

+ 𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑥(𝜏) + 𝜆𝑒𝑗𝜀𝜔𝐹(2)1 (𝜔, 𝜏, 𝜀),

𝜀2
𝜕𝐹(2)2 (𝜔, 𝜏, 𝜀)

𝜕𝜏 +𝐹(2)2 (𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = −(𝜆 + 𝜇2)𝐹
(2)
2 (𝜔, 𝜏, 𝜀)+

+ 𝛾1𝐹
(2)
0 (𝜔, 𝜏, 𝜀) + 𝛾2𝑒𝑗𝜀𝜔𝐹

(2)
1 (𝜔, 𝜏, 𝜀) + 𝜆𝑒𝑗𝜀𝜔𝐹(2)2 (𝜔, 𝜏, 𝜀).

(11)

𝜀2 𝜕𝐹
(2)(𝜔, 𝜏, 𝜀)
𝜕𝜏 +𝐹(2)(𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = (𝑒𝑗𝜀𝜔 − 1)×

×(𝐹(2)1 (𝜔, 𝜏, 𝜀)(𝜆 + 𝛾2) + 𝐹(2)2 (𝜔, 𝜏, 𝜀)𝜆+

+ 𝑗𝜀
𝜕𝐹(2)0 (𝜔, 𝜏, 𝜀)

𝜕𝜔 − 𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑥(𝜏)).

(12)

In the system (11), we expand the exponential in a Taylor series and group the terms of order of
smallness not higher than 𝜀2.

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = − (𝜆 + 𝛾1)𝐹
(2)
0 (𝜔, 𝜏, 𝜀)+

+ 𝑗𝜀(1 + 𝑗𝜔𝜀)
𝜕𝐹(2)0 (𝜔, 𝜏, 𝜀)

𝜕𝜔 − (1 + 𝑗𝜔𝜀)𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑥(𝜏)+

+ 𝜇1𝐹
(2)
1 (𝜔, 𝜏, 𝜀) + 𝜇2𝐹

(2)
2 (𝜔, 𝜏, 𝜀) + 𝑂(𝜀2),

𝐹(2)1 (𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = − (𝜆 + 𝜇1 + 𝛾2)𝐹
(2)
1 (𝜔, 𝜏, 𝜀)+

+ 𝜆𝐹(2)0 (𝜔, 𝜏, 𝜀) − 𝑗𝜀
𝜕𝐹(2)0 (𝜔, 𝜏, 𝜀)

𝜕𝜔 + 𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑥(𝜏)+

+ 𝜆(1 + 𝑗𝜔𝜀)𝐹(2)1 (𝜔, 𝜏, 𝜀) + 𝑂(𝜀2),

𝐹(2)2 (𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = − (𝜆 + 𝜇2)𝐹
(2)
2 (𝜔, 𝜏, 𝜀) + 𝛾1𝐹

(2)
0 (𝜔, 𝜏, 𝜀)+

+ 𝛾2(1 + 𝑗𝜔𝜀)𝐹(2)1 (𝜔, 𝜏, 𝜀) + 𝜆(1 + 𝑗𝜔𝜀)𝐹(2)2 (𝜔, 𝜏, 𝜀) + 𝑂(𝜀2).

(13)

We will find a solution to the system (13) in the form:

𝐹(2)𝑘 (𝜔, 𝜏, 𝜀) = 𝛷(𝜔, 𝜏)(𝑅𝑘 + 𝑗𝜔𝜀𝑓𝑘) + 𝑂(𝜀2), 𝑘 = {0, 1, 2}, (14)

where 𝑅𝑘 = 𝑅𝑘(𝑥, 𝜏).
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Substituting expansion (14) into the system (13), we obtain

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝛷(𝜔, 𝜏)𝑗𝜀𝜔𝑅0𝑎(𝑥, 𝜏) = − (𝜆 + 𝛾1)𝛷(𝜔, 𝜏)𝑅0 − (𝜆 + 𝛾1)𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0+

+ 𝑗𝜀𝜕𝛷(𝜔, 𝜏)𝜕𝜔 𝑅0 − 𝛷(𝜔, 𝜏)𝑅0𝑥(𝜏) − 𝑗𝜔𝜀𝛷(𝜔, 𝜏)𝑅0𝑥(𝜏)−

− 𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0𝑥(𝜏) + 𝜇1𝛷(𝜔, 𝜏)𝑅1 + 𝜇1𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓1+

+ 𝜇2𝛷(𝜔, 𝜏)𝑅2 + 𝜇2𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓2 + 𝑂(𝜀2),

𝛷(𝜔, 𝜏)𝑗𝜀𝜔𝑅1𝑎(𝑥, 𝜏) = − (𝜇1 + 𝛾2)𝛷(𝜔, 𝜏)𝑅1 + 𝜆𝑗𝜔𝜀𝛷(𝜔, 𝜏)𝑅1−

− (𝜇1 + 𝛾2)𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓1 + 𝜆𝛷(𝜔, 𝜏)𝑅0 + 𝜆𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0−

− 𝑗𝜀𝜕𝛷(𝜔, 𝜏)𝜕𝜔 𝑅0 + 𝛷(𝜔, 𝜏)𝑅0𝑥(𝜏) + 𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0𝑥(𝜏) + 𝑂(𝜀2),

𝛷(𝜔, 𝜏)𝑗𝜀𝜔𝑅2𝑎(𝑥, 𝜏) = − 𝜇2𝛷(𝜔, 𝜏)𝑅2 + 𝜆𝑗𝜔𝜀𝛷(𝜔, 𝜏)𝑅2−

− 𝜇2𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓2 + 𝛾1𝛷(𝜔, 𝜏)𝑅0 + 𝛾1𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0+

+ 𝛾2𝛷(𝜔, 𝜏)𝑅1 + 𝛾2𝑗𝜔𝜀𝛷(𝜔, 𝜏)𝑅1 + 𝛾2𝑗𝜔𝜀𝑓1 + 𝑂(𝜀2).

Taking into account the system (8), we get

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝛷(𝜔, 𝜏)𝑗𝜀𝜔𝑅0𝑎(𝑥, 𝜏) = − (𝜆 + 𝛾1)𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0 + 𝑗𝜀𝜕𝛷(𝜔, 𝜏)𝜕𝜔 𝑅0−

− 𝑗𝜔𝜀𝛷(𝜔, 𝜏)𝑅0𝑥(𝜏) − 𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0𝑥(𝜏) + 𝜇1𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓1+

+ 𝜇2𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓2 + 𝑂(𝜀2),

𝛷(𝜔, 𝜏)𝑗𝜀𝜔𝑅1𝑎(𝑥, 𝜏) =𝜆𝑗𝜔𝜀𝛷(𝜔, 𝜏)𝑅1 − (𝜇1 + 𝛾2)𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓1+

+ 𝜆𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0 − 𝑗𝜀𝜕𝛷(𝜔, 𝜏)𝜕𝜔 𝑅0 + 𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0𝑥(𝜏) + 𝑂(𝜀2),

𝛷(𝜔, 𝜏)𝑗𝜀𝜔𝑅2𝑎(𝑥, 𝜏) =𝜆𝑗𝜔𝜀𝛷(𝜔, 𝜏)𝑅2 − 𝜇2𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓2+

+ 𝛾1𝛷(𝜔, 𝜏)𝑗𝜔𝜀𝑓0 + 𝛾2𝑗𝜔𝜀𝛷(𝜔, 𝜏)𝑅1+

+ 𝛾2𝑗𝜔𝜀𝑓1 + 𝑂(𝜀2).

(15)

Dividing the equations of the system (15) by 𝑗𝜔𝜀𝛷(𝜔, 𝜏) at 𝜀 → 0, we obtain

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑅0𝑎(𝑥, 𝜏) = − (𝜆 + 𝛾1 + 𝑥(𝜏))𝑓0 +
𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏)

𝑅0 − 𝑅0𝑥(𝜏)+

+ 𝜇1𝑓1 + 𝜇2𝑓2,

𝑅1𝑎(𝑥, 𝜏) =𝜆𝑅1 − (𝜇1 + 𝛾2)𝑓1 + (𝜆 + 𝑥(𝜏))𝑓0 −
𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏)

𝑅0,

𝑅2𝑎(𝑥, 𝜏) =𝜆𝑅2 − 𝜇2𝑓2 + 𝛾1𝑓0 + 𝛾2𝑅1 + 𝛾2𝑓1.

(16)

The inhomogeneous system (16) corresponds to the homogeneous system (8), therefore we will
seek a solution to the system (16) in the form:

𝑓𝑘 = 𝐶𝑅𝑘 + 𝑔𝑘 − 𝜑𝑘
𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏)

, 𝑘 = {0, 1, 2}. (17)

Substituting the equation (17) into the system (16), we obtain systems with respect to 𝜑𝑘 and 𝑔𝑘:

⎧

⎨
⎩

− (𝜆 + 𝛾1 + 𝑥(𝜏))𝜑0 + 𝜇1𝜑1 + 𝜇2𝜑2 = 𝑅0,

(𝜆 + 𝑥(𝜏))𝜑0 − (𝜇1 + 𝛾2)𝜑1 = −𝑅0,

𝛾1𝜑0 + 𝛾2𝜑1 − 𝜇2𝜑2 = 0.
(18)
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⎧⎪
⎨⎪
⎩

− (𝜆 + 𝛾1 + 𝑥(𝜏))𝑔0 + 𝜇1𝑔1 + 𝜇2𝑔2 = (𝑎(𝑥, 𝜏) + 𝑥(𝜏))𝑅0,

(𝜆 + 𝑥(𝜏))𝑔0 − (𝜇1 + 𝛾2)𝑔1 = (𝑎(𝑥, 𝜏) − 𝜆)𝑅1,

𝛾1𝑔0 + 𝛾2𝑔1 − 𝜇2𝑔2 = (𝑎(𝑥, 𝜏) − 𝜆)𝑅2 − 𝛾2𝑅1.

(19)

If we differentiate the equations of the system (8) by 𝑥, then the resulting equations are identical to
the equations of the system (16), from which we can conclude that in the system (18) the following
equalities are satisfied:

𝜑𝑘 = 𝜑𝑘(𝑥, 𝜏) =
𝜕𝑅𝑘(𝑥, 𝜏)

𝜕𝑥 , 𝜑0 + 𝜑1 + 𝜑2 = 0.

Let us consider the system (19), which has an infinite number of solutions, since the determinant
of the systemmatrix is equal to zero, and the rank of the systemmatrix coincides with the rank of
the extended matrix of the system.
To find a solution to the system, we add an additional condition 𝑔0 + 𝑔1 + 𝑔2 = 0 to the system (19)

and obtain:

𝑔0 =
(−𝜇1 − 𝛾2)(𝑎(𝑥) + 𝑥(𝜏))𝑅0 + 𝑅1(𝜇1 − 𝜇2)(𝜆 − 𝑎(𝑥))
(𝜆 + 𝑥(𝜏) + 𝛾1 + 𝜇2)𝛾2 + (𝛾1 + 𝜇2)𝜇1 + 𝜇2(𝜆 + 𝑥(𝜏))

,

𝑔1 =
(𝜆 + 𝑥(𝜏) + 𝛾1 + 𝜇2)(𝜆 − 𝑎(𝑥))𝑅1 − 𝑅0(𝜆 + 𝑥(𝜏))(𝑎(𝑥) + 𝑥(𝜏))

(𝜆 + 𝑥(𝜏) + 𝛾1 + 𝜇2)𝛾2 + (𝛾1 + 𝜇2)𝜇1 + 𝜇2(𝜆 + 𝑥(𝜏))
,

𝑔2 =
(𝛾2 + 𝜆 + 𝜇1 + 𝑥(𝜏))(𝑎(𝑥) + 𝑥(𝜏))𝑅0 + 𝑅1(𝜆 + 𝑥(𝜏) + 𝛾1 + 𝜇1)(𝑎(𝑥) − 𝜆)

(𝜆 + 𝑥(𝜏) + 𝛾1 + 𝜇2)𝛾2 + (𝛾1 + 𝜇2)𝜇1 + 𝜇2(𝜆 + 𝑥(𝜏))
.

Let’s return to the equation (12). In this equation we group terms of order of smallness not higher
than 𝜀2.

𝜀2 𝜕𝐹
(2)(𝜔, 𝜏, 𝜀)
𝜕𝜏 +𝐹(2)(𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = (𝑗𝜔𝜀 +

(𝑗𝜔𝜀)2

2 )×

×(𝐹(2)1 (𝜔, 𝜏, 𝜀)(𝜆 + 𝛾2) + 𝐹(2)2 (𝜔, 𝜏, 𝜀)𝜆 + 𝑗𝜀
𝜕𝐹(2)0 (𝜔, 𝜏, 𝜀)

𝜕𝜔 −

− 𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑥(𝜏)).

𝜀2 𝜕𝐹
(2)(𝜔, 𝜏, 𝜀)
𝜕𝜏 +𝐹(2)(𝜔, 𝜏, 𝜀)𝑗𝜀𝜔𝑎(𝑥, 𝜏) = 𝑗𝜔𝜀𝐹(2)1 (𝜔, 𝜏, 𝜀)(𝜆 + 𝛾2)+

+ 𝑗𝜔𝜀𝐹(2)2 (𝜔, 𝜏, 𝜀)𝜆 + 𝑗2𝜔𝜀2
𝜕𝐹(2)0 (𝜔, 𝜏, 𝜀)

𝜕𝜔 − 𝑗𝜔𝜀𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑥(𝜏)+

+
(𝑗𝜔𝜀)2

2 𝐹(2)1 (𝜔, 𝜏, 𝜀)(𝜆 + 𝛾2) +
(𝑗𝜔𝜀)2

2 𝐹(2)2 (𝜔, 𝜏, 𝜀)𝜆−

−
(𝑗𝜔𝜀)2

2 𝐹(2)0 (𝜔, 𝜏, 𝜀)𝑥(𝜏) + 𝑂(𝜀3).

(20)

Substituting expansion (14) into the equation (20), we obtain

𝜀2 𝜕𝛷(𝜔, 𝜏, 𝜀)𝜕𝜏 + 𝑗𝜀𝜔𝑎(𝑥, 𝜏)𝛷(𝜔, 𝜏)(1 + 𝑗𝜔𝜀(𝑓0 + 𝑓1 + 𝑓2)) =

= 𝑗𝜔𝜀((𝜆 + 𝛾2)𝑅1 + 𝜆𝑅2 − 𝑥(𝜏)𝑅0 + 𝑗𝜀𝜕𝛷(𝜔, 𝜏, 𝜀)𝜕𝜔 𝑅0)𝛷(𝜔, 𝜏)+

+
(𝑗𝜔𝜀)2

2 ((𝜆 + 𝛾2)𝑅1 + 𝜆𝑅2 − 𝑥(𝜏)𝑅0)𝛷(𝜔, 𝜏)+

+ (𝑗𝜔𝜀)2((𝜆 + 𝛾2)𝑓1 + 𝜆𝑓2 − 𝑥(𝜏)𝑓0)𝛷(𝜔, 𝜏) + 𝑂(𝜀3).

(21)
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Taking into account that 𝑎(𝑥) = −𝑥(𝜏)𝑅0 + (𝜆 + 𝛾2)𝑅1 + 𝜆𝑅2, we eliminate the terms of the order
of smallness 𝜀 in the equation (21). Then we reduce by 𝜀2 and perform the transition to the limit at
𝜀 → 0.

𝜕𝛷(𝜔, 𝜏)
𝜕𝜏 + (𝑗𝜔)2𝑎(𝑥, 𝜏)𝛷(𝜔, 𝜏)(𝑓0 + 𝑓1 + 𝑓2) =

= (𝑗𝜔)2(𝜕𝛷(𝜔, 𝜏)/𝜕𝜔𝜔 𝑅0 + (𝜆 + 𝛾2)𝑓1 + 𝜆𝑓2 − 𝑥(𝜏)𝑓0)𝛷(𝜔, 𝜏)+

+
(𝑗𝜔𝜀)2

2 𝑎(𝑥, 𝜏)𝛷(𝜔, 𝜏).

(22)

Substituting the equation (17) into the equation (22), we obtain the following equation:

𝜕𝛷(𝜔, 𝜏)
𝜕𝜏 + (𝑗𝜔)2𝑎(𝑥, 𝜏)𝛷(𝜔, 𝜏) = (𝑗𝜔)2𝛷(𝜔, 𝜏)((𝜆 + 𝛾2)(𝐶𝑅1 + 𝑔1−

− 𝜑1
𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏) ) + 𝜆(𝐶𝑅2 + 𝑔2 − 𝜑2

𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏) ) − 𝑥(𝜏)(𝐶𝑅0+

+ 𝑔0 − 𝜑0
𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏) ) + 𝜕𝛷(𝜔, 𝜏)/𝜕𝜔

𝜔𝛷(𝜔, 𝜏)
𝑅0) +

(𝑗𝜔𝜀)2

2 𝑎(𝑥, 𝜏)𝛷(𝜔, 𝜏).

(23)

In the system (23), terms containing 𝐶 are destroyed, then we obtain:

𝜕𝛷(𝜔, 𝜏)
𝜕𝜏 =(𝑗𝜔)2𝛷(𝜔, 𝜏)((𝜆 + 𝛾2)(𝑔1 − 𝜑1

𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏) )+

+ 𝜆(𝑔2 − 𝜑2
𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏) ) − 𝑥(𝜏)(𝑔0 − 𝜑0

𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏) )+

+ 𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝜔𝛷(𝜔, 𝜏)

𝑅0) +
(𝑗𝜔𝜀)2

2 𝑎(𝑥, 𝜏)𝛷(𝜔, 𝜏).

(24)

Let us rewrite the equation (24) by collecting identical terms.

𝜕𝛷(𝜔, 𝜏)
𝜕𝜏 = − (𝑗𝜔)2𝛷(𝜔, 𝜏)𝜕𝛷(𝜔, 𝜏)/𝜕𝜔

𝜔𝛷(𝜔, 𝜏) ((𝜆 + 𝛾2)𝜑1 + 𝜆𝜑2−

− 𝑥(𝜏)𝜑0 − 𝑅0) + (𝑗𝜔)2𝛷(𝜔, 𝜏)((𝜆 + 𝛾2)𝑔1 + 𝜆𝑔2 − 𝑥(𝜏)𝑔0)+

+
(𝑗𝜔𝜀)2

2 𝑎(𝑥, 𝜏)𝛷(𝜔, 𝜏).

(25)

Let us pay attention to the multiplier in the first term of the equation (25), then we get:

−𝑥(𝜏)𝜑0 + (𝜆 + 𝛾2)𝜑1 + 𝜆𝜑2 − 𝑅0 = − 𝑥(𝜏)
𝜕𝑅0(𝑥)
𝜕𝑥 + (𝜆 + 𝛾2)

𝜕𝑅1(𝑥)
𝜕𝑥 +

+ 𝜆𝜕𝑅2(𝑥)𝜕𝑥 − 𝑅0(𝑥) = 𝑎′(𝑥).

Then the equation (25) will take the form:

𝜕𝛷(𝜔, 𝜏)
𝜕𝜏 =𝜔𝜕𝛷(𝜔, 𝜏)/𝜕𝜔

𝛷(𝜔, 𝜏)
𝑎′(𝑥) +

(𝑗𝜔𝜀)2

2 𝛷(𝜔, 𝜏)(𝑎(𝑥, 𝜏) + 2((𝜆 + 𝛾2)𝑔1+

+ 𝜆𝑔2 − 𝑥(𝜏)𝑔0)).

Let us denote
𝑏(𝑥) = 𝑎(𝑥, 𝜏) + 2((𝜆 + 𝛾2)𝑔1(𝑥) + 𝜆𝑔2(𝑥) − 𝑥(𝜏)𝑔0(𝑥)),
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we obtain:
𝜕𝛷(𝜔, 𝜏)

𝜕𝜏 = 𝑎′(𝑥)𝜔𝜕𝛷(𝜔, 𝜏)/𝜕𝜔
𝛷(𝜔, 𝜏)

+ 𝑏(𝑥)
(𝑗𝜔𝜀)2

2 𝛷(𝜔, 𝜏). (26)

In this equation, function 𝑏(𝑥) is the diffusion coefficient of the diffusion process for which the
transfer coefficient is function 𝑎(𝑥).

6. Construction of diffuse approximation
Next, applying the inverse Fourier transform to the equation (26), we move on to the equation for the
probability density.
Taking into account the following ratios:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝜔𝜕𝛷(𝜔, 𝜏)𝜕𝜔 = −

∞

∫
−∞

𝑒𝑗𝜔𝑦(𝑦𝑃(𝑦, 𝜏))′𝑑𝑦,

(𝑗𝜔𝜀)2

2 𝛷(𝜔, 𝜏) =

∞

∫
−∞

𝑒𝑗𝜔𝑦
𝜕2𝑃(𝑦, 𝜏)
𝜕𝑦2 𝑑𝑦,

we obtain an equation that is the Fokker–Planck equation for the probability density of some diffusion
process 𝑦(𝜏) with the transfer coefficient 𝑎′(𝑥) and the diffusion coefficient 𝑏(𝑥).
Thus, the process 𝑦(𝜏) is a solution to the stochastic differential equation

𝑑𝑦(𝑧) = 𝑎′(𝑥)𝑦(𝜏)𝑑𝜏 + √𝑏(𝑥)𝑑𝜔(𝜏),

where 𝜔(𝜏) is theWiener process.
Let us introduce the diffusion process

𝑧(𝜏) = 𝑥(𝜏) + 𝜀𝑦(𝜏),

where the function 𝑥(𝜏) is a solution to the ordinary differential equation

𝑑𝑥(𝜏) = 𝑎(𝑥)𝑑𝜏.

Then the diffusion process 𝑧(𝜏) is a solution to the stochastic differential equation:

𝑑𝑧(𝜏) = (𝑎(𝑥) + 𝜀𝑎′(𝑥)𝑦(𝜏))𝑑𝜏 + 𝜀√𝑏(𝑥)𝑑𝜔(𝜏).

Let us write the terms on the right side of the equation

𝑎(𝑥) + 𝜀𝑎′(𝑥)𝑦(𝜏) = 𝑎(𝑥 + 𝜀𝑦) + 𝑂(𝜀2) = 𝑎(𝑧) + 𝑂(𝜀2),

𝜀√𝑏(𝑥) = 𝜀√𝑏(𝑥 + 𝜀𝑦 − 𝜀𝑦) = 𝜀√𝑏(𝑧 − 𝜀𝑦) = 𝜀√𝑏(𝑧) + 𝑂(𝜀2).

Wewill assume that terms of order of smallness greater than 𝑒donotmake a significant contribution
to the solution, which means we can neglect them. Then we get an equation of the form:

𝑑𝑧(𝜏) = 𝑎(𝑧)𝑑𝜏 + 𝜀√𝑏(𝑧)𝑑𝜔(𝜏).
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Let us denote the probability density of the diffusion process 𝑧(𝜏):

𝛱(𝑧, 𝜏) =
𝜕(𝑧(𝜏) < 𝑧)

𝜕𝑧 .

Let us write the Fokker–Planck equation for the diffusion process 𝑧(𝜏):

𝜕𝛱(𝑧, 𝜏)
𝜕𝜏 = −

𝜕(𝑎(𝑧)𝛱(𝑧, 𝜏))
𝜕𝑧 + 𝜀2

2
𝜕2(𝑏(𝑧)𝛱(𝑧, 𝜏))

𝜕2𝑧 . (27)

In the equation (27) we make the reverse substitution 𝜎 = 𝜀2 and move on to the equation for the
stationary probability distribution of the diffusion process 𝑧(𝜏):

−(𝑎(𝑧)𝛱(𝑧))′ + 𝜎
2 (𝑏(𝑧)𝛱(𝑧))

″ = 0,

(𝑏(𝑧)𝛱(𝑧))′ = 2
𝜎𝑎(𝑧)𝛱(𝑧).

(28)

To solve the equation (28), we introduce the substitution 𝐺′(𝑧) = 𝑏(𝑧)𝛱(𝑧), then we get:

𝐺′(𝑧) = 2
𝜎
𝑎(𝑧)
𝑏(𝑧)

𝐺(𝑧), (29)

where 𝑎(𝑧), 𝑏(𝑧) are the transfer and diffusion coefficients.
In the equation (29) we make the reverse substitution 𝐺(𝑧)

𝑏(𝑧)
= 𝛱(𝑧), then the stationary probability

density of the approximating random process has the form:

𝛱(𝑧) = 𝐶
𝑏(𝑧)

exp( 2𝜎

𝑧

∫
0

𝑎(𝑧)
𝑏(𝑥)

𝑑𝑥),

where 𝐶 is a normalizing constant.
Let’s construct a diffusion approximation using the formula:

𝑃𝐷(𝑖) = 𝛱(𝑖𝜎)
𝑁
∑
𝑛=0

𝛱(𝑛𝜎)
.

7. Results and discussion
We consider a system with parameters: 𝜆 = 1, 𝜇2 = 3, 𝛾1 = 0.1, 𝛾2 = 0.1 and different system
occupancy parameters 𝜌 = 𝜆

𝜇1
.

Let us determine the accuracy of the approximation using the Kolmogorov distance

𝛥1 = max
0≤𝑖≤𝑁

||||

𝑁
∑
𝑖=0

𝑃_matrix(𝑖) −
𝑁
∑
𝑖=0

𝑃_diffusion(𝑖)
||||
,

𝛥2 = max
0≤𝑖≤𝑁

||||

𝑁
∑
𝑖=0

𝑃_matrix(𝑖) −
𝑁
∑
𝑖=0

𝑃_asimpt(𝑖)
||||
,

where 𝑃_matrix(𝑖) is the distribution obtained by thematrixmethod, 𝑃_diffusion(𝑖) is the distribution
obtained by the asymptotic-diffusion method and 𝑃_asimpt(𝑖) is the distribution obtained by the
asymptotic method.
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As a condition for the applicability of the asymptotic-diffusion method, we take the threshold value
of the Kolmogorov distance 𝛥 = 0.05.
Table 1 shows the accuracy between the matrix and asymptotic-diffusion distributions for various

parameters and different system loads.
Similarly, Table 2 shows the accuracy between the matrix and asymptotic distributions.

Table 1
Kolmogorov distance

𝛥1 𝜎 = 2 𝜎 = 1 𝜎 = 0.5 𝜎 = 0.2 𝜎 = 0.1 𝜎 = 0.05

𝜌 = 0.6 0.086 0.088 0.064 0.063 0.061 0.060

𝜌 = 0.7 0.062 0.049 0.047 0.045 0.043 0.041

𝜌 = 0.8 0.035 0.031 0.032 0.028 0.026 0.020

𝜌 = 0.9 0.012 0.0097 0.019 0.014 0.0085 0.0013

Table 2
Kolmogorov distance

𝛥2 𝜎 = 2 𝜎 = 1 𝜎 = 0.5 𝜎 = 0.2 𝜎 = 0.1 𝜎 = 0.05

𝜌 = 0.6 0.160 0.124 0.100 0.076 0.053 0.049

𝜌 = 0.7 0.295 0.250 0.219 0.186 0.168 0.134

𝜌 = 0.8 0.439 0.391 0.348 0.304 0.223 0.267

𝜌 = 0.9 0.442 0.381 0.327 0.193 0.255 0.184

According to the data in Table 1 and Table 2, we can conclude that the accuracy of the diffusion
approximation increases as the system load factor decreases. The method is applicable when 𝜌 = 0.8
for all parameters 𝜎. The accuracy of the diffusion approximation exceeds the accuracy of the
Gaussian approximation.

8. Conclusions
In this work, a study of the M/M/1 RQ system with an unreliable server was carried out using the
method of asymptotically diffusion analysis. The stationary distribution of server states, the transfer
coefficient and the diffusion coefficient are found. A diffusion approximation is constructed. The
accuracy of the approximation is determinedusing theKolmogorovdistancebetween thedistributions
constructed by the asymptotic diffusion method and the matrix method. It was proved that the
asymptotically diffusion analysis method is more accurate. It is shown that the accuracy of the
diffusion approximation exceeds the accuracy of the Gaussian approximation.
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Аннотация. В работе рассматривается однолинейная RQ-система массового обслуживания с ненадёж-
ным прибором. Системы массового обслуживания называются ненадёжными, если их приборы могут
время от времени выходить из строя и требовать восстановления (ремонта), только после которого они
могут возобновить обслуживание запросов. Исследование проводится методом асимптотически диффу-
зионного анализа в условии большой задержки заявок на орбите. Найдены стационарное распределение
состояний прибора, коэффициент переноса и коэффициент диффузии. Построена диффузионная ап-
проксимация. Доказано, что точность диффузионной аппроксимации превышает точность гауссовской
аппроксимации.
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Abstract. Various approaches to calculating normal modes of a closed waveguide are considered. A review of the
literature was given, a comparison of the two formulations of this problem was made. It is shown that using
a self-adjoint formulation of the problem of normal waveguide modes eliminates the occurrence of artifacts
associated with the appearance of a small imaginary additive to the eigenvalues. The implementation of this
approach for a rectangular waveguide with rectangular inserts in the Sage computer algebra system is presented
and tested on hybridmodes of layeredwaveguides. The tests showed that our program copeswell with calculating
the points of the dispersion curve corresponding to the hybrid modes of the waveguide.
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1. Introduction
In classical electrodynamics there are two related spectral problems, the problem of normal modes
of a waveguide and the problem of eigenmodes of a resonator [1, 2]. The first of these problems in
the vector case turned out to be surprisingly difficult, its solution requiring the use of very subtle
theorems from the field of functional analysis.

2. Scalar model

Let 𝑆 be regular domain in ℝ2, the cylinder 𝑆 × ℝ will be called a waveguide, and the 𝑂𝑧 axis of the
Cartesian coordinate system used is directed along the axis of the cylinder. A nontrivial solution

𝑢 = 𝑢(𝑥, 𝑦)𝑒𝑖𝜔𝑡−𝑖𝛾𝑧

of the oscillation equation
1
𝑐2
𝜕2𝑢
𝜕𝑡2 = 𝛥𝑢
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in the cylinder 𝑆 × ℝ, satisfying the Dirichlet boundary condition

𝑢|𝜕𝑆×ℝ = 0

or Neumann boundary condition
𝜕𝑢
𝜕𝑛
|||𝜕𝑆×ℝ

= 0

is called the normal mode of the scalar waveguide, and the corresponding value of the positive
parameter 𝜔 is called the natural frequency. The parameter 𝛾/𝑐 is called the propagation constant. If
𝛾 > 0, then the normal mode runs along the 𝑧 axis, if 𝛾 < 0, then against it. These modes are called
guided modes. If 𝛾 contains an imaginary part, then the normal modes either increase exponentially
or decrease exponentially with increasing 𝑧. Such modes are called evanescent.

The problem of finding normal modes of a scalar waveguide is reduced to a 2D spectral problem of
finding a nontrivial solution 𝑢 of the equation

𝛥2𝑢 + (𝑘2 − 𝛾2)𝑢 = 0

with Dirichlet or Neumann boundary conditions.
Let the eigenvalues of the problem

𝛥2𝜙 + 𝛼2𝜙 = 0, 𝜙|𝜕𝑆 = 0

be numbered in ascending order taking into account the multiplicity as 𝛼21, 𝛼22,… , and the
corresponding eigenfunctions be denoted as 𝜙𝑛. In this case, functions

𝜙𝑛(𝑥, 𝑦)𝑒𝑖𝛼𝑛𝑡

describe the natural oscillations of the membrane 𝑆. For a given domain 𝑆, the numbers 𝛼21, 𝛼22,…
are uniquely determined. For some domains, they can be calculated analytically, for all others they
are found using the Galerkin method.
For this reason, the parameters 𝜔 and 𝛾 of the normal modes of a scalar waveguide are related as

𝑘2 − 𝛾2 = 𝛼2𝑛.

Therefore, for a fixed frequency𝜔, there are atmost a finite number of positive values of the parameter
𝛾, for which normal modes exist. These modes describe waves traveling along the waveguide and,
as already said, are called guided modes. All other normal modes have an imaginary 𝛾 and for this
reason they exponentially increase or decrease along the waveguide axis.
By Steklov’s theorem, a monochromatic scalar field in a waveguide can always be represented as

a sum
∑(𝑎𝑛𝑒𝑖𝜔𝑡−𝑖𝛾𝑛𝑧 + 𝑏𝑛𝑒𝑖𝜔𝑡+𝑖𝛾𝑛𝑧) 𝜙𝑛(𝑥, 𝑦),

where 𝑎𝑛, 𝑏𝑛 are the complex amplitudes. Therefore, the field, say, at large 𝑧 is a superposition of
a finite number of running normal modes, a sum of exponentially decreasing evanescent modes, and
a sum of exponentially growing modes. The partial radiation conditions are such that there should
be no exponentially growing terms [1].
It should also be noted that normal modes in the framework of the scalar model with Dirichlet

conditions exist only for those values of 𝑘, 𝛾 that lie on hyperboles

𝑘2 − 𝛾2 = 𝛼2𝑛, 𝑛 = 1, 2,… .
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The set of such points (𝑘, 𝛾), which correspond to normal modes, is called the dispersion curve of the
waveguide. The dispersion curve of a scalar waveguide consists of a countable number of hyperbolas.

The case of Neumann boundary conditions does not present any fundamental difficulties. Let us
agree that the eigenvalues of the problem

𝛥2𝜓 + 𝛽2𝜓 = 0,
𝜕𝜓
𝜕𝑛 |𝜕𝑆 = 0

are numbered in ascending order and taking into account the multiplicity as 𝛽21 , 𝛽22 ,… , and the
corresponding eigenfunctions are denoted as 𝜓𝑛. Let us add to them the zero eigenvalue 𝛽0 = 0 and
the corresponding eigenfunction 𝜓0 = 1. The system of functions 𝜓𝑛 is again complete, and normal
modes within the framework of the scalar model with Neumann conditions exist only for those values
of 𝑘, 𝛾 that lie on the hyperbolas

𝑘2 − 𝛾2 = 𝛽2𝑛, 𝑛 = 0, 1, 2,… .

Thus, in the scalar case, classical theorems of mathematical physics are sufficient to construct the
theory of waveguides [1].

3. Vector model
Let us now turn to the vector model of an electromagnetic waveguide. A nontrivial field of the form

⃗𝐸 = ⃗𝐸(𝑥, 𝑦)𝑒𝑖𝜔𝑡−𝑖𝛾𝑧, �⃗� = �⃗�(𝑥, 𝑦)𝑒𝑖𝜔𝑡−𝑖𝛾𝑧,

satisfying the system of homogeneous Maxwell’s equations and the boundary conditions

⃗𝑛 × ⃗𝐸 = 0, ⃗𝑛 ⋅ �⃗� = 0,

is called an eigenmode, and the corresponding value of the positive parameter 𝜔 is called
an eigenfrequency. The parameter 𝛽 = 𝛾/𝑐 is called the propagation constant. To find the
eigenfrequencies, it is necessary to solve the eigenvalue problem

rot ⃗𝐸 = −𝑖𝑘𝜇�⃗�, rot�⃗� = 𝑖𝑘𝜖 ⃗𝐸 (1)

with the boundary conditions
⃗𝑛 × ⃗𝐸 = 0, ⃗𝑛 ⋅ �⃗� = 0.

Here rot is a differential operator in which differentiation with respect to 𝑧 is replaced with
multiplication by −𝑖𝛾. As in the scalar case, the points of the 𝑘𝛾 plane at which this problem has
a nontrivial solution form a certain curve called the dispersion curve of the waveguide.
In the case where the waveguide filling is uniform, Tikhonov A.N. and Samarskii A.A. [3] proved

a field decomposition theorem, from which it follows that the complete system of waveguide modes
can be composed of two types of modes: transverse magnetic (TM, 𝐻𝑧 = 0) and transverse electric
(TE, 𝐸𝑧 = 0). For a TE mode, from the equation

div 𝜖 ⃗𝐸 = 0

it follows that there is such a function 𝑢 that

𝐸𝑥 =
𝜕𝑢
𝜕𝑦 , 𝐸𝑦 = −𝜕𝑢𝜕𝑥 , 𝐸𝑧 = 0.
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Figure 1. Waveguide filled with layers

This function is called the Borgnis function [1]. By direct substitution of these expressions into
Maxwell’s equations, it is possible to express all the components of the field through the derivatives
of the Borgnis function, and for the Borgnis function itself to obtain a scalar eigenvalue problem
with the Dirichlet condition. Similarly, the TMmode can be expressed through the derivatives of the
Borgnis function, for which it is possible to obtain a scalar eigenvalue problem with the Neumann
condition. It is only necessary to discard the zero eigenvalue, which will correspond to the trivial
electromagnetic field.
Thus, the theory of Borgnis functions allows reducing the study of the modes of a waveguide filled

with an optically homogeneous substance to the study of the spectrum of the Laplace operator. In
this case, the dispersion curve turns out to be the union of a countable number of hyperbolas, which
are dispersion curves for a scalar waveguide with the Dirichlet and Neumann conditions.
However, in practice, waveguides with optically inhomogeneous filling are quite common. Such

waveguides include waveguides with a core, which are obtained by coating a dielectric cylinder with
another dielectric and then with a conducting layer, and multicore waveguides, which are obtained
by adding several dielectric cylinders into a bundle covered with a conducting layer on the outside.
In this case, it is impossible to decompose the field into TE and TMmodes.

4. Rectangular waveguide with two layers
As an example, consider a waveguide with rectangular cross-section 𝐿𝑥 × 𝐿𝑦 (see Fig. 1), the filling of
which is piecewise constant and depends only on 𝑦. In other words, the waveguide consists of several
layers, Fig. 1 shows two such layers of equal thickness 𝐿𝑦/2. When one of the layers is air, we say that
the waveguide is considered half-filled.
There are two families of normal modes in such a waveguide, the SLE and SLHmodes, the former

have 𝐸𝑦 = 0, and the latter have 𝐻𝑦 = 0 [4]. The theory of these modes is in many ways similar to the
theory of TM and TE modes developed by Tikhonov and Samarskii [5].
We will search for SLE modes using the method of separation of variables:

⃗𝐸 =
⎛
⎜
⎜
⎜
⎝

𝐴𝑥(𝑦) cos 𝑘𝑥𝑥

0

𝐴𝑧(𝑦) sin 𝑘𝑥𝑥

⎞
⎟
⎟
⎟
⎠

𝑒𝑖𝑘𝑧𝑧−𝑖𝜔𝑡 (2)
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and

�⃗� =
⎛
⎜
⎜
⎜
⎝

𝐵𝑥(𝑦) sin 𝑘𝑥𝑥

𝐵𝑦(𝑦) cos 𝑘𝑥𝑥

𝐵𝑧(𝑦) cos 𝑘𝑥𝑥

⎞
⎟
⎟
⎟
⎠

𝑒𝑖𝑘𝑧𝑧−𝑖𝜔𝑡.

Here the choice of sines and cosines is determined in such a way as to satisfy the boundary conditions.
First of all, let us consider what Maxwell’s equations lead to in a layer, where 𝜖 and 𝜇 are constant.

FromMaxwell’s equations we have:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑖𝑘𝜇𝐵𝑥 +
𝑑𝐴𝑧
𝑑𝑦 = 0,

𝑖𝑘𝜇𝐵𝑦 + 𝑖𝑘𝑧𝐴𝑥 − 𝑘𝑥𝐴𝑧 = 0,

− 𝑖𝑘𝜇𝐵𝑧 +
𝑑𝐴𝑥
𝑑𝑦 = 0,

− 𝑖𝜖𝑘𝐴𝑥 − 𝑖𝑘𝑧𝐵𝑦 +
𝑑𝐵𝑧
𝑑𝑦 = 0,

𝑖𝑘𝑧𝐵𝑥 + 𝑘𝑥𝐵𝑧 = 0,

𝑖𝜖𝑘𝐴𝑧 + 𝑘𝑥𝐵𝑦 +
𝑑𝐵𝑥
𝑑𝑦 = 0.

(3)

Three equations from this system allow us to express ⃗𝐵 in terms of 𝐴𝑥 and 𝐴𝑧 and their derivatives.
After this substitution, out of 6 equations, 3 non-trivial ones remain:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

− 𝑖𝜖𝑘𝐴𝑥 + 𝑖(𝑘𝑧𝐴𝑥 + 𝑖𝑘𝑥𝐴𝑧)
𝑘𝑧
𝑘𝜇 − 𝑖

𝑑2𝐴𝑥
𝑑𝑦2

1
𝑘𝜇 = 0,

− 𝑖𝑘𝑥
𝑑𝐴𝑥
𝑑𝑦

1
𝑘𝜇 − 𝑘𝑧

𝑑𝐴𝑧
𝑑𝑦

1
𝑘𝜇 = 0,

𝑖𝜖𝑘𝐴𝑧 − (𝑘𝑧𝐴𝑥 + 𝑖𝑘𝑥𝐴𝑧)
𝑘𝑥
𝑘𝜇 + 𝑖𝑑

2𝐴𝑧
𝑑𝑦2

1
𝑘𝜇 = 0.

The second equation, up to an insignificant constant, allows finding a linear relationship between 𝐴𝑥
and 𝐴𝑧:

𝐴𝑧 = −
𝑖𝑘𝑥
𝑘𝑧

𝐴𝑥. (4)

As a result, two equations that differ only by a constant factor turn out to be nontrivial. Therefore, in
the layer, Maxwell’s equations are reduced to the equation

𝑑2𝐴𝑥
𝑑𝑦2 + (𝜀𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧)𝐴𝑥 = 0 (5)

and equations that allow calculating 𝐴𝑧 and ⃗𝐵 from the known 𝐴𝑥.
At the waveguide boundary, the modes must satisfy the condition of a wall with ideal conductivity:
⃗𝑛 × ⃗𝐸 = 0.
At the boundary 𝑥 = 0, 𝐿𝑥, these conditions yield:

𝐸𝑦 = 𝐸𝑧 = 0.

For SLE modes, the component 𝐸𝑦 is identically zero, so the condition 𝐸𝑧 = 0 remains valid. We
took the sine in (2) for 𝐸𝑧 so that this condition is always satisfied at 𝑥 = 0. At 𝑥 = 𝐿𝑥, we obtain the
condition sin(𝑘𝑥𝐿𝑥) = 0, from which suitable values of 𝑘𝑥 are determined as

𝑘𝑥 =
𝜋𝑛
𝐿𝑥

, 𝑛 ∈ ℕ. (6)
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Figure 2. Dispersion curve for a test waveguide with two layers (𝜖0 = 1, 𝜖2 = 1, 𝜇 = 1, 𝐿𝑥 = 1, 𝐿𝑦 = 2).

At the boundary 𝑦 = 0, 𝐿𝑦, the conditions of ideal conductivity yield:

𝐸𝑥 = 𝐸𝑧 = 0.

Since 𝐴𝑥 and 𝐴𝑦 are linearly related in layers, this condition reduces to the Dirichlet condition on 𝐴𝑥:

𝐴𝑥(0) = 𝐴𝑥(𝐿𝑦) = 0.

At the boundary of two layers 𝑦 = 𝑀, the requirement of continuity of 𝐸𝑥, 𝐸𝑧 and 𝐻𝑥, 𝐻𝑧 is to be
satisfied.
The continuity of 𝐸𝑥 indicates the continuity of 𝐴𝑥. The coefficient in Eq. (4), relating 𝐴𝑧 and 𝐴𝑥,

does not depend on the filling, so the continuity of 𝐴𝑥 implies the continuity of 𝐴𝑧, and, consequently,
of 𝐸𝑧.
Maxwell’s equations (3) yield

𝑖𝑘𝜇𝐵𝑥 = −𝑑𝐴𝑧
𝑑𝑦 , 𝑖𝑘𝜇𝐵𝑧 =

𝑑𝐴𝑥
𝑑𝑦 .

From this it is clear that the continuity of 𝐻𝑥, 𝐻𝑧 is equivalent to the continuity of 1
𝜇
𝐴′𝑥.

As a test example, we consider a waveguide of rectangular cross-section 𝐿𝑥 × 𝐿𝑦 with two layers:
for 𝑦 < 𝐿𝑦/2 let 𝜖 = 𝜖1, and for 𝑦 > 𝐿𝑦/2 let 𝜖 = 𝜖0 (see Fig. 1). We consider 𝜇 to have a constant value.
According to the discussed above, such a waveguide has a family of SLE modes (2), the parameters

of which at a given frequency 𝜔 are determined as follows. The number 𝑘𝑥 is given by Eq. (6). The
number 𝑘𝑧 is the eigenvalue of the problem:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑑2𝐴𝑥
𝑑𝑦2 + (𝜀𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧)𝐴𝑥 = 0,

[𝐴𝑥] = [
𝑑𝐴𝑥
𝑑𝑦 ] = 0, 𝑦 =

𝐿𝑦
2 ,

𝐴𝑥(0) = 𝐴𝑥(𝐿𝑦) = 0.

(7)



Kroytor, O. K. et al. On the problem of normal modes of a waveguide 401

This problem comprises Eq. (5), the boundary conditions and the matching conditions found above.
From the eigenfunction 𝐴𝑥 we can calculate 𝐴𝑧 using Eq. (4), from them we determine ⃗𝐵, and thus
determine all the quantities involved in Eq. (2).
For further tests, we are interested in the dependence of the eigenvalues 𝑘𝑧 of the problem (7) on

𝑘 = 𝜔/𝑐.
The solution of (7) for 𝑦 < 𝐿𝑦/2 is

𝐴𝑥 = 𝑎 sin(√𝜀1𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝑦).

The solution of (7) for 𝑦 > 𝐿𝑦/2 is

𝐴𝑥 = 𝑏 sin(√𝜀0𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧(𝐿𝑦 − 𝑦)). (8)

The choice of sines ensures that the boundary conditions are satisfied. For 𝑦 = 𝐿𝑦/2 we have

𝑎 sin(√𝜀1𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝐿𝑦/2) = 𝑏 sin(√𝜀0𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝐿𝑦/2)

and
𝑎√𝜀1𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧 cos(√𝜀1𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝐿𝑦/2) =

− 𝑏√𝜀0𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧 cos(√𝜀0𝜇𝑘2 − 𝑘2𝑥 − 𝑘2𝑧𝐿𝑦/2).

Thus, 𝑘𝑧 is the root of the determinant of this homogeneous system of linear equations.

5. Results
The calculation result is shown in Fig. 2 as solid lines. Their unexpected discontinuity occurs because
in Eq. (8) the sine transforms into the hyperbolic sine. We added the second piece of the program,
in which the sine is replaced with the hyperbolic sine. The resulting continuation of the dispersion
curves is shown in Fig. 2 with dotted line.
Thus, the conjugation method allows finding a family of normal modes of the test waveguide.

These modes are neither TE nor TMmodes, so they are often called hybrid modes. The considered
example proves that hybrid modes exist. This circumstance makes it a very important test for all
kinds of calculations of dispersion curves of waveguides, since it is the hybridization of modes that
introduces non-self-conjugation into the known approaches to calculating modes.

6. Discussion
Without the decomposition theorem, the normal waveguide mode problem (1) does not decompose
into two scalar problems and, thus, does not reduce to any type of problem studied above. It should
be noted that the problem (1) contains two parameters, 𝑘 = 𝜔/𝑐 and 𝛾, and we must choose one of
them as the spectral parameter.
In the early 1990s, in the first works on calculating normal waveguide modes [6], the frequency

was used as the spectral parameter. This resulted in a self-adjoint spectral problem with respect to
𝑘, which could be solved relatively successfully using the software that was available in the early
1990s. The key difficulty at that time was constructing a basis for the Galerkin method that satisfies
the condition div �⃗� = 0.
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This approach was soon abandoned in favor of an approach in which 𝛾 is considered as a spectral
parameter, and the frequency 𝜔 is considered given [7–11]. With this approach, the problem (1) is
reduced to the study of the spectrum of a non-self-adjoint operator pencil that is quadratic with
respect to the spectral parameter 𝛾. By analogy with the scalar case, it is necessary to prove the
completeness of the system of normal modes. However, the conditions under which Keldysh [12–15]
proved the completeness of the root vectors of the quadratic operator pencil are not satisfied in all
possible notations of the problem of waveguide normal modes. For the first time, the completeness
of the system of root vectors of a waveguide with piecewise constant filling was substantiated in the
papers by Yu.G. Smirnov [16–19], for an arbitrary filling in [9, 20–22]. This in turn made it possible to
substantiate the formulation of partial radiation conditions. The basis property of the system of root
vectors of a waveguide could be substantiated only for the axially symmetric case [23, 24].

Even greater difficulties are offered by the numerical calculation of normal modes. The application
of the Galerkinmethod, as well as any other truncationmethod, leads to the study of a non-self-adjoint
matrix pencil. Numerical methods for calculating its spectrum are very whimsical. In a number of
works [8, 10, 11], algorithms built into, for example, MatLab were used according to the “black box”
principle. In such computer experiments, the dispersion curve turned out to be non-monotonic, real
eigenvalues suddenly went into the complex domain, etc. Generally speaking, all these phenomena
are inherent in the spectral theory of non-self-adjoint matrices. However, the physical meaning of
these phenomena raises many questions.
Over the past 30 years since the publication [6], the situation has changed radically. It seemed

then that new methods for approximate calculation of the spectrum of non-self-adjoint matrices
would appear in the near future, which would solve the difficulties noted above. However, instead,
computer algebra methods came into use, which allow constructing Galerkin method bases that
satisfy certain properties. This renewed the interest in the idea of Ref. [6]. The choice of frequency
as a spectral parameter has a simple physical background. There is an obvious connection between
the modes travelling along the waveguide axis and the standing modes of a cylindrical resonator.
Having studied it, we obtained a method for constructing a dispersion curve, which requires solving
the spectral problem in a cylindrical resonator, i.e., a classical self-adjoint problem. This approach
was implemented as a program for the Sage computer algebra system and presented in Ref. [25].

To test this program, we considered a waveguide in which the insert occupies the lower half (see
Fig. 1, 𝜖0 = 1, 𝜖1 = 0.1, 𝐿𝑥 = 1, 𝐿𝑦 = 2). It turned out that for the lower modes, the points found in our
program lie on the analytical curve with graphical accuracy even with a very small number of basis
elements taken into account (three for each direction).

7. Conclusion
Using a self-adjoint formulation of the problemof normalwaveguidemodes eliminates the occurrence
of artifacts associated with the appearance of a small imaginary additive to the eigenvalues. We
implemented this approach for a rectangular waveguidewith rectangular inserts in the Sage computer
algebra system. Tests on SLE modes of layered waveguides showed that our program copes well with
calculating the points of the dispersion curve corresponding to the hybrid modes of the waveguide.
On the other hand, the approach based on a non-self-adjoint formulation gives important results

from a theoretical point of view on the completeness of the system of normal modes and, therefore,
allows us to justify the partial conditions of Sveshnikov radiation. At themoment, only a combination
of two approaches allows us to bring our knowledge of the vector model of the waveguide closer to
the well-studied scalar one.
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Задача о нормальных модах волновода
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Аннотация. Рассмотрены различные подходы к вычислению нормальных мод закрытого волновода. Дан
обзор литературы, проведено сравнение двух формулировок этой задачи. Показано, что использова-
ние самосопряжённой постановки задачи о нормальных модах волновода исключает возникновение
артефактов, связанных с появлением малой мнимой добавки у собственных значений. Представлена
реализация этого подхода для волновода прямоугольного сечения с прямоугольными вставками в систе-
ме компьютерной алгебры Sage и протестирована на гибридных модах слоистых волноводов. Тесты
показали, что наша программа прекрасно справляется с вычислением точек дисперсионной кривой,
отвечающих гибридным модам волновода.

Ключевые слова: поляризованное электромагнитное излучение, нормальные моды волновода,
спектральная задача теории волновода, дисперсионная кривая волновода
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Abstract. The problem of summation of Fourier series in finite form is formulated in the weak sense, which
allows one to consider this problem uniformly both for classically convergent and for divergent series. For
series with polynomial Fourier coefficients 𝑎𝑛, 𝑏𝑛 ∈ ℝ[𝑛], it is proved that the sum of a Fourier series can be
represented as a linear combination of 1, 𝛿(𝑥), cot 𝑥

2
and their derivatives. It is shown that this representation

can be found in a finite number of steps. For series with rational Fourier coefficients 𝑎𝑛, 𝑏𝑛 ∈ ℝ(𝑛), it is shown
that the sum of such a series is always a solution of a linear differential equation with constant coefficients
whose right-hand side is a linear combination of 1, 𝛿(𝑥), cot 𝑥

2
and their derivatives. Thus, the issue of summing

a Fourier series with rational coefficients is reduced to the classical problem of the theory of integration in
elementary functions.

Key words and phrases: mathematical physics, Fourier series, elementary functions
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1. Introduction
The problem of summing a functional series in elementary functions naturally arises when solving
problems in mathematical physics [1–6]. If desired, even d’Alembert’s method of solving the wave
equation can be considered as a method of summing a Fourier series [7, 8]. Frequently, results on
summation in the final form arose as surprising side effects, for example, when accelerating the
convergence of series by A.N. Krylov’s method [9–12]. However, the authors of the past avoided
considering divergent series, the summation of which, as it seemed then, could yield anything [13,
p. 641], [14, Ch. 12, Sect. 4].

With the advent of the theory of generalized functions [15], a reliable basis for considering divergent
functional series arose. The surprising fact is that divergent series are usually summed up in a finite
formmuch more easily than convergent ones, and, moreover, the summation of convergent series in
a finite form is conveniently reduced to the summation of divergent series. In this paper we illustrate
this statement using the example of one-dimensional Fourier series. The possibility of interpreting
Krylov’s method in terms of generalized functions was mentioned in [16, p. 32].
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2. Statement of the Problem
Definition 1. A periodic function is called piecewise elementary if its period can be divided into

a finite number of segments, on each of which an elementary expression in the Liouville sense can
be specified for it.

We understand the equality between the sum of a Fourier series and a piecewise elementary
function in theweak sense [15], which allows a further uniform consideration of the series summation
in elementary functions separate from the issue of its pointwise convergence.

Definition 2. The Fourier series

𝑢 =
𝑎0
2 +

∞
∑
𝑛=1

𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥, (1)

is called a piecewise elementary function 𝑣 in the strong sense if the equality

𝑎0
2 +

∞
∑
𝑛=1

𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥 = 𝑣 (2)

is satisfied at almost all points of the real axis.

Definition 3. The Fourier series (1) is said to be a piecewise elementary function 𝑣 in the weak
sense if the equality

𝑎0
2

𝜋

∫
𝑥=−𝜋

𝑤𝑑𝑥 +
∞
∑
𝑛=1

𝑎𝑛

𝜋

∫
𝑥=−𝜋

cos𝑛𝑥𝑤𝑑𝑥 + 𝑏𝑛

𝜋

∫
𝑥=−𝜋

sin𝑛𝑥𝑤𝑑𝑥 =

𝜋

∫
𝑥=−𝜋

𝑣𝑤𝑑𝑥 (3)

is true on any smooth function 𝑤 with period 2𝜋.

The Fourier coefficients of a smooth function 𝑤 converge to zero faster than any power of 𝑛, so the
numerical series on the left in Eq. (3) always converges. If this does not lead to misunderstandings,
instead of Eq. (3) we will write Eq. (2), implying that it is satisfied in the weak sense.

Example 1. For example, by virtue of the classical Dirichlet theorem, the series

∞
∑
𝑛=1

sin𝑛𝑥
𝑛

converges at all points of the interval 0 < 𝑥 < 2𝜋 and its sum is equal to 𝜋−𝑥
2

. Therefore, this series is
not only piecewise elementary, but also piecewise polynomial in the strong sense (Def. 2).

Example 2. Although the series
∞
∑
𝑛=1

sin𝑛𝑥

diverges by Euler’s test, the equality

∞
∑
𝑛=1

𝜋

∫
𝑥=−𝜋

sin𝑛𝑥 ⋅ 𝑤𝑑𝑥 = v.p.

𝜋

∫
𝑥=−𝜋

1
2 cot 𝑥2 ⋅ 𝑤𝑑𝑥 (4)
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is true for all smooth 𝑤 with period 2𝜋. The integrand has a pole at zero, so we specify that the
integral is understood in the sense of the Cauchy principal value. Therefore, this series, diverging in
the classical sense, is also a piecewise elementary function in the weak sense (Def. 3). In this case,
we consider the equality

∞
∑
𝑛=1

sin𝑛𝑥 = 1
2 cot 𝑥2

only as a short notation for Eq. (4).

Based on Definitions 1 and 3, we formulate the problem under consideration.
Problem 1. The coefficients of the Fourier series 𝑎𝑛, 𝑏𝑛 are given as rational functions of number 𝑛:

𝑎𝑛, 𝑏𝑛 ∈ ℝ(𝑛).

It is required to find out whether this series is a piecewise elementary function and, if the answer is
affirmative, indicate this function.

3. Summation of series with polynomial coefficients
Problem 1 is solved very simply for the polynomial case when 𝑎𝑛 and 𝑏𝑛 ∈ ℝ[𝑛]. However, this
interesting case escaped the attention of authors of the 19th century, since in this case the general
term of the Fourier series does not tend to zero, and therefore the series diverges. This difficulty is
removed in Definition 3.
Indeed, let

𝑎𝑛 =
𝑀
∑
𝑚=0

𝛼𝑚𝑛𝑚, 𝑏𝑛 =
𝑀
∑
𝑚=0

𝛽𝑚𝑛𝑚,

then the Fourier series under consideration can be rewritten as

𝑢 =
𝑎0
2 +

𝑀
∑
𝑚=0

𝛼𝑚
∞
∑
𝑛=1

𝑛𝑚 cos𝑛𝑥 +
𝑀
∑
𝑚=0

𝛽𝑚
∞
∑
𝑛=1

𝑛𝑚 sin𝑛𝑥.

The series that arise here are derivatives of the two main series

𝑠(𝑥) =
∞
∑
𝑛=1

sin𝑛𝑥

and

𝑐(𝑥) =
∞
∑
𝑛=1

cos𝑛𝑥.

For example,
∞
∑
𝑛=1

𝑛2𝑚 cos𝑛𝑥 = (−1)𝑚𝐷2𝑚𝑐(𝑥).

We understand series in the sense of Definition 3, therefore

𝑠(𝑥) =
∞
∑
𝑛=1

sin𝑛𝑥 = 1
2 cot 𝑥2

and

𝑐(𝑥) =
∞
∑
𝑛=1

cos𝑛𝑥 = −12 + 𝜋𝛿(𝑥)

for −𝜋 < 𝑥 < 𝜋.
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Theorem 1. If 𝑎𝑛, 𝑏𝑛 ∈ ℝ[𝑛], then the sum of the Fourier series (1) can be represented as a linear
combination of 1, 𝛿(𝑥), cot 𝑥

2
and their derivatives, this representation can be found in a finite number of

steps.

4. Summation of series with rational coefficients
Let us now turn to the solution of Problem 1 in the case when 𝑎𝑛, 𝑏𝑛 ∈ ℝ(𝑛). Differentiation of
𝑎𝑛 cos𝑛𝑥 and 𝑏𝑛 sin𝑥 reduces to multiplication by ±𝑛 and permutation of sine and cosine. Therefore,
there always exists a linear differential operator 𝐿 such that

𝐿[𝑢] =
∞
∑
𝑛=1

𝐴𝑛 cos𝑛𝑥 + 𝐵𝑛 sin𝑛𝑥, 𝐴𝑛, 𝐵𝑛 ∈ ℝ[𝑛]. (5)

We will say that the operator 𝐿 annihilates the denominator of the Fourier coefficients of the original
series, and 𝐴𝑛 and 𝐵𝑛 are the Fourier coefficients obtained after the annihilation. The divergent
series in the right-hand side of Eq. (5) has polynomial coefficients and is summed as described in the
previous Section.

Example 3. Consider the Fourier series

𝑢 =
∞
∑
𝑛=1

sin𝑛𝑥
1 + 𝑛2 .

We have

(−𝐷2 + 1)𝑢 =
∞
∑
𝑛=1

sin𝑛𝑥 = 1
2 cot 𝑥2 .

By Theorem 1, Problem 1 is reduced to the following problem.
Problem 2. A linear differential operator 𝐿 and a linear combination 𝑓 of functions 1, 𝛿(𝑥), cot 𝑥

2
and their derivatives are given. It is required to find out whether the equation

𝐿[𝑢] = 𝑓

has a solution in piecewise elementary functions.
Since the coefficients of the operator 𝐿 are constant, the general solution of the equation 𝐿[𝑢] = 𝑓

can be written in quadratures using the method of variation of constants. Quadratures containing
the 𝛿-function and its derivative are always taken.

Theorem 2. If the given series converges and after annihilation the coefficient 𝐴𝑛 is an even function of
𝑛, and the coefficient 𝐵𝑛 is an odd function of 𝑛, then Problem 1 is solvable.

Numerous examples illustrating this theorem were considered in classical studies of accelerating
the summation of Fourier series [9, 10]. In the general case, the solution 𝐿[𝑢] = 𝑓 will contain
quadratures of the form

∫𝑥𝑝𝑒𝜆𝑥𝐷𝑞 cot 𝑥2 𝑑𝑥.

The conditions found in Liouville theory [17] underwhich integrals of this type are taken in elementary
functions provide sufficient conditions for the solvability of Problem 1. Thus, Problem 1 is reduced
to the classical problem of computer algebra [18].



410 Modeling and Simulation DCM&ACS. 2024, 32 (4), 406–413

Example 4. Returning to Example 3, we see that 𝑢 is a solution of the linear differential equation

𝑢″ − 𝑢 = −12 cot 𝑥2

whose general solution is given by the quadrature

𝑢 = 𝑒−𝑥
4 ∫𝑒𝑥 cot 𝑥2 𝑑𝑥 −

𝑒𝑥
4 ∫𝑒−𝑥 cot 𝑥2 𝑑𝑥.

Thus, the solution of Problem 1 for the series from Example 3 is reduced to the study of the
elementariness of this expression.

5. Results
The sum of the Fourier series

𝑢 =
𝑎0
2 +

∞
∑
𝑛=1

𝑎𝑛 cos𝑛𝑥 + 𝑏𝑛 sin𝑛𝑥,

whose coefficients are rational functions of 𝑛, is always a solution of some linear differential equation

𝐿[𝑢] = 𝑓,

whose right-hand side is the sum of a divergent Fourier series with polynomial coefficients. This
series can always be represented as a linear combination of 1, 𝛿(𝑥), cot 𝑥

2
and their derivatives, so the

original series can be represented as a quadrature of piecewise elementary functions. The conditions
under which these quadratures are taken in elementary functions provide sufficient conditions for
the summation of the Fourier series in piecewise elementary functions.

6. Discussion
In this paper, we propose a simple approach to summation of a certain class of trigonometric series.
Its distinctive feature is the term-by-term differentiation of Fourier series, which inevitably leads
to the appearance of divergent series. We believe that working with them can serve as the basis
for symbolic algorithms for summation of eigenfunction series, and significantly supplement the
generally accepted methods for summation, see [19, 20]. From the point of view of computer algebra,
the approach under consideration allows us to establish a connection between the problem of
summation of a certain class of series and the classical problemof integration in elementary functions.
This is achieved by adding the Dirac 𝛿-function and other distributions to the set of elementary
functions.

7. Conclusions
The transition from convergent to divergent series using an annihilation operator allows us to divide
the problem of summing a convergent Fourier series into two simpler ones: summing a series with
polynomial coefficients, which is solved explicitly, and integrating LDEs with constant coefficients.
The development of an algorithm for constructing an annihilation operator for a given Fourier series
with rational coefficients and its implementation in computer algebra systems will allow a wide class
of Fourier series to be summed in a finite form.
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Thus, the transition to summation of Fourier series in the weak sense allows reducing the problem
of summation of series in a finite form (Problem 1) to calculating integrals of elementary functions
in this form, i.e., a classic problem of computer algebra.
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Аннотация. Задача о суммировании рядов Фурье в конечном виде сформулирована в слабом смысле, что
позволяет единообразно рассматривать эту задачу как для сходящихся в классическом смысле рядов,
так и для расходящихся. Для рядов c полиномиальными коэффициентами Фурье 𝑎𝑛, 𝑏𝑛 ∈ ℝ[𝑛] доказано,
что сумма ряда Фурье может быть представлена как линейная комбинация 1, 𝛿(𝑥), cot 𝑥

2
и их производ-

ных. Показано, что это представление может быть найдено за конечное число действий. Для рядов
c рациональными коэффициентами Фурье 𝑎𝑛, 𝑏𝑛 ∈ ℝ(𝑛) показано, что сумма такого ряда всегда является
решением линейного дифференциального уравнения с постоянными коэффициентами, правая часть
которого является линейной комбинацией 1, 𝛿(𝑥), cot 𝑥

2
и их производных. Тем самым вопрос о сум-

мировании рядов Фурье с рациональными коэффициентами сведен к классическому вопросу теории
интегрирования в элементарных функциях.

Ключевые слова: математическая физика, ряды Фурье, элементарные функции
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Solving a two-point second-order LODE problem
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Abstract. Earlier we developed a stable fast numerical algorithm for solving ordinary differential equations
of the first order. The method based on the Chebyshev collocation allows solving both initial value problems
and problems with a fixed condition at an arbitrary point of the interval with equal success. The algorithm
for solving the boundary value problem practically implements a single-pass analogue of the shooting method
traditionally used in such cases. In this paper, we extend the developed algorithm to the class of linear ODEs of
the second order. Active use of the method of integrating factors and the d’Alembert method allows us to reduce
the method for solving second-order equations to a sequence of solutions of a pair of first-order equations. The
general solution of the initial or boundary value problem for an inhomogeneous equation of the second order is
represented as a sum of basic solutions with unknown constant coefficients. This approach ensures numerical
stability, clarity, and simplicity of the algorithm.

Key words and phrases: linear ordinary differential equation of the second order, stable method, Chebyshev
collocation method, d’Alembert method, integrating factor
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1. Introduction
The paper studies a method for solving linear ordinary differential equations (ODEs) of the second
order using integrating factors [1–3]. The method of integrating factors in combination with the
Chebyshev collocation method [4] was previously applied by the authors to solve first-order ODEs
(of general form) [5]. Moreover, the Chebyshev collocation method was successfully applied by
the authors to solve second-order linear ODEs (LODEs) using both differentiation matrices [6] and
integrationmatrices [7]. K.P. Lovetskiy et al. developed and applied amodified Chebyshev collocation
method, which turned out to be not only more reliable, but also significantly more efficient compared
to previous versions of the collocation method and other Runge–Kutta-type methods (see [5–9]) or
shooting method [10].
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At the first stage of the two-stage modified method proposed by the authors, when expanding the
approximate solution in Chebyshev polynomials (of the first or second kind), the corresponding
special Gauss–Chebyshev–Lobatto grids are used, on which the search for a part of the coefficients
of the approximate general solution of the ODE is reduced to solving non-degenerate and well-
conditioned (with diagonal matrices) System of Linear Algebraic Equations (SLAE). At the second
stage, the solution is refined by using correctly formulated initial (or boundary) conditions. In this
case, the SLAE with a positive definite diagonal matrix is solved first, and then the low-dimensional
(one- or two-dimensional) SLAE is solved with respect to the first coefficients of the expansion of
the solution in Chebyshev polynomials. The method allows solving with equal efficiency both initial
problems and problems with conditions at arbitrary points, previously solved, e.g., by the shooting
method, which thus loses its relevance.
Thus, we propose a constructive algorithm for approximate numerical solution of a wide class of

LODEs. At the same time, the stage of the algorithm, consisting of solving the SLAE with a diagonal
matrix, actually does not require computational costs, because it is reduced to a set of a small number
of the simplest computational procedures. And only at the final stage, comprising the calculation
of the first pair of coefficients of the expansion of the final particular solution, it is necessary to
solve two-dimensional linear algebraic systems of equations determined by the initial or boundary
conditions.
The method has proven itself to be perfect in solving one-point problems for first-order ODEs

(see [5, 8, 9]). The application of the modified Chebyshev collocation method to solving second-order
ODEs has also demonstrated high efficiency. We solve two-point problems for second-order linear
ODEs using [11] the two-stage Chebyshev collocation method. The first stage is devoted to finding
an approximate solution to the ODE in the form of a Chebyshev polynomial [12] with undetermined
first coefficients. At the second stage, the first coefficients (if they exist) are found by solving a 2 × 2
SLAE [5–7, 13]. The first stage can be implemented in several not entirely equivalent ways [14]. Ref. [6]
presents the Chebyshev collocationmethod for obtaining a solution to a second order LODE using the
Chebyshev differentiation matrix [15]. The paper [7] implements the Chebyshev collocation method
for obtaining a solution to a second order LODE using the Chebyshev antidifferentiation matrix. The
authors noted that constructing a general (complete) solution from the individual partial solutions
of the LODE obtained in this way seems to be a computationally complex task. At the same time,
using an intermediate method that makes use of integrating factors to reduce the LODE to the form
of a total derivative allows one to obtain general (complete) solutions of the second-order LODEmore
efficiently.

In the present article we seek approximate solutions of linear second-order ODEs of a rather general
form

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 0, (1)

by the Chebyshev collocation method

2. Methods and algorithms
Let us consider step-by-step the methods for calculating contributions to the complete solution of
a second order LODE. In each specific case, the solution of the original problem is divided into two
stages. At the first stage, we find out the conditions that the coefficients of the second-order equations
under studymust satisfy, allowing us to reduce the search for the first of a pair of linearly independent
solutions of a second-order linear equation to the solution of a first-order equation.
It turns out that such conditions can be determined at least for
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– linear ordinary differential equations with constant coefficients;
– exact linear ordinary differential equations;
– linear equations reducible to a total differential form by means of integrating factors.
In the case of a homogeneous equation with constant non-zero coefficients 𝑎, 𝑏, 𝑐 linearly

independent solutions of such an ODE can be found directly using the characteristic equation [16, 17].
In the worst case, i.e., when the discriminant 𝑏2 − 4𝑎𝑐 is equal to zero, at least one of the solutions is
easily determined.
In this case, the corresponding homogeneous equation takes the form

𝑎𝑦″(𝑥) + 𝑏𝑦′(𝑥) + 𝑏2
4𝑎𝑦(𝑥) = 0,

from which it follows that the characteristic equation allows finding only one solution

𝑦1(𝑥) = 𝑒
−𝑏
2𝑎

𝑥.

If the coefficient functions depend continuously on the argument, a theoretical study of the
conditions for reducing the second order LODE to the form of a full derivative of the first-order LODE
is given below, in Section 3. The conditions that the coefficients of the inhomogeneous equation must
satisfy for the possible construction of the potential are investigated. When sufficient conditions are
met, a particular solution of the homogeneous first order LODE is constructed, which becomes the
first necessary basic solution of the main nonhomogeneous second order LODE.
After obtaining the first linearly independent solution 𝑦1(𝑡) of the second order LODE, at the next

step, using several known algorithms [16–19], one can find the second linearly independent solution
𝑦2(𝑡) and, consequently, the general solution. The most general and convenient method for finding
the second solution numerically is the order reduction method [19, 20] (d’Alembert reduction).
Let one solution 𝑦1(𝑡) of the linear homogeneous equation of the second order (1) be known and it

is required to find the second linearly independent solution 𝑦2(𝑡), thereby constructing a fundamental
system of solutions of the inhomogeneous equation [16, 19]. For the brevity of presenting themethod,

we introduce the notation 𝑝(𝑥) = 𝑏(𝑥)
𝑎(𝑥)

, 𝑞(𝑥) = 𝑐(𝑥)
𝑎(𝑥)

, 𝑔(𝑥) =
−𝑓(𝑥)
𝑎(𝑥)

.

Equation (1) takes the form
𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑔(𝑥).

When the solution 𝑦1(𝑡) of the homogeneous equation

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0, (2)

is found, we find another linear independent solution of the nonhomogeneous equation in the form
of a product of the first solution 𝑦1(𝑥) and an unknown function 𝑣(𝑥):

𝑦(𝑥) = 𝑦1(𝑥)𝑣(𝑥).

The search for the solution in the form of a product of the known solution 𝑦1(𝑥) of the homogeneous
equation (2) and a non-constant function 𝑣(𝑥) is explained by the fact that such a product is guaranteed
to be a function linearly independent of 𝑦1(𝑥)𝑦 and thus restricts the search for 𝑦(𝑥) to a one-
dimensional subspace of the space of solutions of our ODE that is not covered by 𝑦1(𝑥).
Actually, such an approach allows finding a general solution to an inhomogeneous equation.

Namely, substituting 𝑦1(𝑥)𝑣(𝑥) into 𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑔(𝑥), and taking into account that 𝑦1(𝑡) is
a solution to the homogeneous equation, we obtain a nonhomogeneous equation with respect to the
unknown derivative of the desired function 𝑣′(𝑥):

𝑦1𝑣″ + (2𝑦′1 + 𝑝(𝑥)𝑦1)𝑣′ = 𝑔(𝑥).
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As a result, for calculating the factor 𝑣(𝑥) in the second solution (assuming, that 𝑦1(𝑥) ≠ 0) we
obtain a differential equation of the first order with respect to 𝑣′(𝑥)

𝑣″ + (2
𝑦′1(𝑥)
𝑦1(𝑥)

+ 𝑝(𝑥)) 𝑣′ =
𝑔(𝑥)
𝑦1(𝑥)

. (3)

Applying the technique of solving nonhomogeneous ordinary differential equations of the first
order, based on integrating factors and approved in Refs. [5, 21], we get the desired solution

𝑣′(𝑥) = 𝑉(𝑥) [𝐶1 +∫
𝑥

𝑥0

𝑔(𝑡)
𝑦1(𝑡)𝑉(𝑡)

𝑑𝑡] , (4)

where, considering that the solution passes through a certain point 𝑥0, the following notation is
introduced:

𝑉(𝑥) = [
𝑦′1(𝑥0)
𝑦1(𝑥)

]
2
exp [∫

𝑥

𝑥0
𝑝(𝑡)𝑑𝑡] .

By integrating the ODE (4), we calculate the desired function 𝑣(𝑥) and become able to determine
the solution of the nonhomogeneous equation by substituting into 𝑦(𝑥) = 𝑦1(𝑥)𝑣(𝑥). Hence, the
general solution of the nonhomogeneous ODE (1) takes the form

𝑦(𝑥) = 𝑦1(𝑥) [𝐶2 + 𝐶1∫
𝑥

𝑥0
𝑉(𝑡)𝑑𝑡 +∫

𝑥

𝑥0
𝑉(𝑡)𝑑𝑡∫

𝑥

𝑥0

𝑔(𝑧)
𝑦1(𝑧)𝑉(𝑧)

𝑑𝑧] . (5)

Finally, we obtained the complete (two-parametric family) solution of the inhomogeneous LODE.
If it is necessary to solve a Cauchy problem of a boundary value problem with Eq. (1), we apply the
second stage of the modified Chebyshev collocation method to calculate the constants 𝐶1 and 𝐶2.
The technique of finding the first coefficients of expansion of the desired solutions in Chebyshev

polynomials is described in enough detail in our papers [6, 7, 13] for all kinds of “boundary” conditions:
the Dirichlet, Neuman, and Robin ones.

3. The search for the first solution by reducing a linear ODE to the total
derivative form

We consider the nonhomogeneous linear ODE of the second order with coefficients depending on
the independent variable:

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 0. (6)

This equation is exact, if there exists such function 𝑢(𝑥, 𝑦, 𝑦′), that

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 𝑑𝑢
𝑑𝑥 . (7)

We want to reduce the search for a solution of the linear second-order ODE to the search for
a solution of a linear first-order ODE and, therefore, restrict ourselves to a particular case when

𝑢 = 𝐴(𝑥)𝑦′ + 𝐵(𝑥)𝑦 + 𝐹(𝑥). (8)

By substituting expression (8) for 𝑢 into Eq. (7), we obtain equality in the form

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 𝐴(𝑥)𝑦″ + (𝐴′(𝑥) + 𝐵(𝑥))𝑦′ + 𝐵′(𝑥)𝑦 + 𝐹′.



418 Modeling and Simulation DCM&ACS. 2024, 32 (4), 414–424

It will be valid for any smooth 𝑦(𝑥) then and only then, when the coefficients of the expressions in
the left-hand side and in the right-hand side of the equality coincide:

𝐴(𝑥) = 𝑎(𝑥);

𝐴′(𝑥) + 𝐵(𝑥) = 𝑏(𝑥);

𝐵′(𝑥) = 𝑐(𝑥);

𝐹′(𝑥) = 𝑓(𝑥).

This system of four equations allows unambiguous determination of 𝐴(𝑥), 𝐵(𝑥), (𝑥) from the
coefficients of linear ODE (6):

𝐴(𝑥) = 𝑎(𝑥);

𝐵(𝑥) = 𝑏(𝑥) − 𝑎′(𝑥);

𝐹(𝑥) = ∫𝑓(𝑥)𝑑𝑥,

provided that one more condition is fulfilled,

𝑐(𝑥) = (𝑏(𝑥) − 𝑎′(𝑥))′,

which, therefore, is a necessary and sufficient condition for the possibility to represent the linear
ODE (6) in the form (7) with linear potential (8). Hence, the following theorem is valid.

Theorem 3. The linear ODE (6) is exact and has a linear potential

𝑎(𝑥)𝑦″ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 𝑑
𝑑𝑥(𝐴(𝑥)𝑦

′ + 𝐵(𝑥)𝑦 + 𝐹(𝑥)),

when and only when the coefficients of the linear ODE (6) satisfy the condition

𝑐(𝑥) = (𝑏(𝑥) − 𝑎′(𝑥))′

and the potential has the form

𝑢(𝑥, 𝑦, 𝑦′) ≡ 𝑎(𝑥)𝑦′ + (𝑏(𝑥) − 𝑎′(𝑥))𝑦 +∫𝑓(𝑥)𝑑𝑥 = const. (9)

Corollary 1. The linear homogeneous ODE

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 = 0 (10)

is exact and has linear potential

𝑎(𝑥)𝑦″ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 = 𝑑
𝑑𝑥(𝐴(𝑥)𝑦

′ + 𝐵(𝑥)𝑦),

then and only then, when the coefficients of the linear ODE (6) satisfy the condition

𝑐(𝑥) = (𝑏(𝑥) − 𝑎′(𝑥))′. (11)

If for a certain second-order equation of the form (6) the condition (11) is fulfilled, then the search
for one of its solutions can be reduced to a search for a solution of the linear first-order ODE with an
arbitrary constant const

𝐴𝑦′ + 𝐵𝑦 + 𝐹 = const.
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Any solution 𝑦𝑝𝑎𝑟𝑡(𝑥) of the linear first-order ODE (8) at any value of the constant const is at the
same time a solution to the initial equation (10).
Knowing one solution of the linear homogeneous equation of the second order (10), one can find

its other linear independent solution using the d’Alembert method.
We have implemented checking of Eq. (8) fulfilment and searching for integral (9) in Sage as

function lsolve.
Example 1. Consider a LODE

𝑦″ + 𝑥𝑦′ + 𝑦 + cos𝑥 = 0.

The application of
sage: lsolve(diff(y, x, 2)+x*diff(y, x)+y+cos(x))

returns
𝑥 + sin𝑥 + 𝑦′.

Thus, the integration of the initial second-order equation is analytically reduced to the integration
of the first order LODE

𝑥 + sin𝑥 + 𝑦′ = const.

Now let us assume that Eq. (6) is not exact. In this case it is possible to try searching for an
integrating factor 𝜇(𝑥) such that the equation

𝜇(𝑥)𝑎(𝑥)𝑦″𝑥𝑥 + 𝜇(𝑥)𝑏(𝑥)𝑦′𝑥 + 𝜇(𝑥)𝑐(𝑥)𝑦 + 𝜇(𝑥)𝑓(𝑥) = 0 (12)

would be exact.

Theorem 4. After introducing the factor 𝜇(𝑥) LODE (6) becomes exact and possesses a linear potential

𝜇(𝑥) ⋅ (𝑎(𝑥)𝑦″ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 + 𝑓(𝑥)) = 𝑑
𝑑𝑥 (𝐴(𝑥)𝑦

′ + 𝐵(𝑥)𝑦 + 𝐹(𝑥))

then and only then, when the coefficients in the LODE (10) satisfy the condition

𝜇(𝑥)𝑐(𝑥) = (𝜇(𝑥)𝑏(𝑥) − (𝜇(𝑥)𝑎(𝑥))′)
′
. (13)

In this case the potential has the form

𝑢(𝑥, 𝑦, 𝑦′) ≡ 𝜇(𝑥)𝑎(𝑥)𝑦′ + (𝜇(𝑥)𝑏(𝑥) − (𝜇(𝑥)𝑎(𝑥))′)𝑦 +∫𝜇(𝑥)𝑓(𝑥)𝑑𝑥 = const. (14)

Any potential solution at any value of the constant is a solution to Eq. (12).

Having one solution of the linear inhomogeneous second-order equation (12) it is possible to find
its other linearly independent solution, using the d’Alembert algorithm.
Equation (13) is a homogeneous linear ODE of the second order with respect to 𝜇(𝑥). If the initial

linear ODE is also homogeneous, then it is possible to formulate a very simple method to find the
factor.

Corollary 2. If the linear ODE (12) is homogeneous (𝑓(𝑥) = 0) and its coefficients satisfy the relation

𝑏′(𝑥)𝑎(𝑥) − 𝑎′(𝑥)𝑏(𝑥) − 𝑐(𝑥)𝑎(𝑥) = 0 (15)

then the linear ODE (12) has an integrating factor

𝜇(𝑥) = 1
𝑎(𝑥)

. (16)
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In this case, the potential for the initial linear second-order ODE is given by the linear ODE of the
first order

𝑢(𝑥, 𝑦, 𝑦′) ≡ 𝑦′(𝑥) + 𝑏(𝑥)
𝑎(𝑥)

𝑦(𝑥) = const. (17)

Proof. By Theorem 2, in order to reduce a second-order LODE to a first-order LODE it is sufficient
to find the factor 𝜇(𝑥) from Eq. (13). Substitution of expression (16) into it leads to relation (15). To
determine the coefficients of potential (14) at 𝑓(𝑥) = 0 we have:

𝐴 = 𝜇𝑎 = 1;

𝐵 = 𝜇𝑏 − (𝜇𝑎)′ = 𝑏
𝑎 ;

𝐹 = 𝜇𝑐 − (𝜇𝑏)′ + (𝜇𝑎)″ = 𝑐
𝑎 − (𝑏𝑎)

′
= 0.

Any solution of potential (17) at any value of the constant is a solution to Eq. (12).
Having one solution of the linear homogeneous solution of the second order (12), it is possible to

find its another linearly independent solution by using the d’Alembert method.
We implemented the checking of the search for the factor in Sage within the function lsolve

mentioned above. This function checks the fulfilment of condition (15). In the case of success, it
divides the LODE by 𝑎(𝑥) and finds the first-order LODE by the methods described in Corollary 1. In
the case of failure, the system tries to integrate Eq. (13).

Example 2. Consider a LODE
(𝑥2 + 1)(𝑦′ + 𝑥𝑦)′ = 0.

The application of
sage: lsolve((x^2+3)*diff(diff(y, x)+x*y, x))

returns
𝑦′ + 𝑥𝑦.

Thus, the integration of the initial second-order equation is analytically reduced to the integration
of the first order LODE

𝑦′ + 𝑥𝑦 = const.

Example 3. Consider the LODE
𝑦″ + 𝑦 + sin𝑥 = 0.

Our function
sage: lsolve(diff(y, x, 2)+y+sin(x))

returns a family of factors of this equation:

𝐾1 sin𝑥 + 𝐾2 cos𝑥.

It is possible to take any element of this family: the query
sage: lsolve((diff(y, x, 2)+y+sin(x))*sin(x))

returns the LODE of the first order

sin𝑥𝑦′ + 𝑥
2 − cos𝑥 − sin 2𝑥

4 = const.
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4. Results
Previously, the authors proposed a method for finding a solution to a non-homogeneous linear
ordinary differential equation of the second order using a modified Chebyshev collocation method
using spectral (Chebyshev) matrices of differentiation and anti-differentiation [6, 7]. In this paper,
a method for finding a solution to a second-order LODE is implemented by reducing it to the form of
a total derivative either directly or using an integrating factor.
The modified Chebyshev collocation method allows one to obtain a complete system of linearly

independent solutions to a linear ordinary differential equation of the second order using the
d’Alembert method based on one known existing solution and to construct a general solution to
a two-point problem for the corresponding second-order LODE in the case where it exists. In this case,
the problem of the existence of a solution to a two-point problem for the corresponding second-order
LODE is reduced to the problem of the existence of a solution to a two-dimensional system of linear
algebraic equations for the first two coefficients in the expansion of the desired solution to the original
problem in Chebyshev polynomials using the collocation method on the Chebyshev–Gauss–Lobatto
grid.

5. Discussion
The D’Alembert method allows us to derive Eq. (3), the solution of which using integrating factors
gives us the factor 𝑣(𝑥) of the general solution 𝑦1(𝑥)𝑣(𝑥) of the inhomogeneous equation. As in the
previous case, the numerical solution of Eq. (3) with respect to 𝑣′(𝑥) is carried out approximately
using the Chebyshev collocation method [5, 7]. Integrating expression (4), we obtain 𝑣(𝑥) in the form
of an interpolation polynomial. Substituting the obtained expression into the product 𝑦1(𝑥)𝑣(𝑥), we
obtain the general solution of the inhomogeneous ODE of the second order in the form (5).
The coefficients 𝐶1, 𝐶2 in the general solution formula are further determined based on the initial

or boundary conditions defining the initial or boundary value problem for a second-order differential
inhomogeneous equation. In the case of the Cauchy problem, the coefficients are always uniquely
determined [16, 17]. In the case where a boundary value problem is considered, the system of
resulting equations may have an infinite number of solutions, have no solutions, or have a unique
solution. This is determined by the coincidence or difference of the ranks of the proper and extended
matrices of the SLAE depending on the “boundary conditions”. Thus, if a two-point boundary value
problem has a solution, we obtain its approximate solution using the proposed approach—reducing
the LODE to the total derivative form.

6. Conclusion
The paper considers an approach to solving linear inhomogeneous second-order ODEs based on
the d’Alembert method of order reduction. The method allows, given one solution 𝑦1(𝑥) of the
complementary homogeneous equation, calculating both the general solution of the homogeneous
equation and the general solution of the inhomogeneous equation. The method for obtaining the
first solution of the homogeneous linear differential equation remains a difficult problem within this
approach.
We have formulated the conditions for reducing the second-order LODE to the form of a total

derivative of the solution using the Chebyshev collocation method. In cases where reduction to
the form of a total derivative is not immediately possible, we assume, in the future, the use of
a numerical method for solving a second-order equation using the method of integrating factors
based on the Chebyshev collocation [7] to obtain the first solution of the accompanying first solution
of the homogeneous equation.
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The paper proposes an algorithm for obtaining the first basic solution of a complementary
homogeneous ODE in cases of an equation with constant coefficients, an exact linear ordinary
differential equation, or an equation that can be reduced to the form of a total differential using
integrating factors. At the first step of the algorithm, the fulfillment of the conditions of belonging
to exact equations or the possibility of finding such an integrating factor with which it is possible
to reduce the equation to an exact one is checked. When the conditions set out in the corollaries
to Theorems 1 and 2 are met, it is possible to construct a potential for a homogeneous equation—a
first-order ODE. The solution to the potential equation can be found numerically [5, 21] using the
efficient and stable Chebyshev collocation method. It is this solution to the homogeneous equation
that is used further in the D’Alembert algorithm as the first known solution 𝑦1(𝑥) of a second-order
ODE.
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Аннотация. В предыдущих работах мы разработали устойчивый быстрый численный алгоритм для
решения обыкновенных дифференциальных уравнений первого порядка. Метод, основанный на
чебышевской коллокации, позволяет одинаково успешно решать как начальные задачи, так и с фикси-
рованным условием в произвольной точке интервала. Алгоритм решения краевой задачи практически
реализует однопроходный аналог традиционно применяющегося в таких случаях метода стрельбы
(Shooting method). В настоящей работе мы расширяем разработанный алгоритм на класс линейных ОДУ
второго порядка. Активное использование метода интегрирующих множителей и метода Даламбера
позволяет свести метод решения уравнений второго порядка к последовательности решений пары урав-
нений первого порядка. Общее решение начальной или краевой задачи для неоднородного уравнения
2-го порядка представляется в виде суммы базисных решений с неизвестными постоянными коэф-
фициентами. Такой подход позволяет обеспечить численную устойчивость, наглядность и простоту
алгоритма.

Ключевые слова: линейное обыкновенное дифференциальное уравнение второго порядка, устойчивый
метод, метод чебышевской коллокации, метод Даламбера, интегрирующий множитель
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1. Introduction
The problem to find a real solution of nonlinear system

𝐹(𝑥) = 0, 𝑥 = (𝑥1, 𝑥2,… , 𝑥𝑛)𝑇 ∈ 𝑅𝑛 (1)

has many applications in sciences and engineering [1–19]. In general, the root (zero) of equation (1)
cannot be computed exactly. Most of the numerical methods used for solving this problem are
iterative ones. Recently, many high-order iterative methods are presented in literature, see [1–9, 14,
17, 19] and references therein. Some methods [7, 8] of multiplication and division of two vectors,
understood component-wise, are used. Let 𝑎 = (𝑎1, 𝑎2,… , 𝑎𝑛)𝑇 ∈ 𝑅𝑛 and 𝑏 = (𝑏1, 𝑏2,… , 𝑏𝑛)𝑇 ∈ 𝑅𝑛.
Then

𝑎 ⋅ 𝑏 = (𝑎1𝑏1, 𝑎2𝑏2,… , 𝑎𝑛𝑏𝑛)𝑇 ∈ 𝑅𝑛, (2)
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𝑎
𝑏 = (

𝑎1
𝑏1
, 𝑎2𝑏2

,… ,
𝑎𝑛
𝑏𝑛
)
𝑇
∈ 𝑅𝑛. (3)

The direct consequence of (2) is
𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎. (4)

If 𝑎 = 𝑏 then (2) and (3) can be written as

𝑎2 = 𝑎 ⋅ 𝑎 = (𝑎21, 𝑎22,… , 𝑎2𝑛)
𝑇 ∈ 𝑅𝑛,

1 = (1, 1,… , 1)
𝑇
∈ 𝑅𝑛.

The purpose of this paper is to construct higher-order iterative methods in 𝑅𝑛 with multiplication
and division rules (2) and (3). For obtaining the numerical solutions of the equation (1) we often use
the two-step and three-step iterative methods as shown below:

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑦𝑘 − ̄𝑇𝑘𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘) or 𝑥𝑘+1 = 𝑥𝑘 − 𝑇𝑘𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),
(5)

and

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 − ̄𝑇𝑘𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − �̄�𝑘𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘).

(6)

Here ̄𝑇𝑘 and �̄�𝑘 are iteration parameters to be determined properly. The convergence order of
iterations (5) and (6) we denote by 𝑝 and 𝜌 = 𝑝 + 𝑞 respectively. We use 𝐶″- convergence order [2]
based on nonlinear residual:

‖𝐹(𝑥𝑘+1)‖
‖𝐹(𝑥𝑘)‖𝜍

= const

or
𝐹(𝑥𝑘+1) = 𝑂(ℎ𝜍), ℎ = 𝐹(𝑥𝑘).

In our previous papers [11, 14] we find the sufficient convergence conditions in term of parameters
̄𝑇𝑘 and �̄�𝑘:

̄𝑇𝑘 = 𝐼 + 𝑂(ℎ), (7a)
̄𝑇𝑘 = 𝐼 + 2𝛩𝑘 + 𝑂(ℎ2), (7b)
̄𝑇𝑘 = 𝐼 + 2𝛩𝑘 + 3𝑑𝑘 + 5𝛩2

𝑘 + 𝑂(ℎ3), (7c)

and

�̄�𝑘 = 𝐼 + 𝑂(ℎ), (8a)

�̄�𝑘 = 𝐼 + 2𝛩𝑘 + 𝑂(ℎ2), (8b)

�̄�𝑘 = 𝐼 + 2𝛩𝑘 + 3𝑑𝑘 + 6𝛩2
𝑘 + 𝑂(ℎ3), (8c)

where

𝛩𝑘 =
1
2𝐹

′(𝑥𝑘)−1𝐹′′(𝑥𝑘)𝜉𝑘,

𝑑𝑘 = −16𝐹
′(𝑥𝑘)−1𝐹′′′(𝑥𝑘)𝜉2𝑘,

𝜉𝑘 = 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘).

(9)
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Table 1
Summarizing the results of [11]

𝑝 ̄𝑇𝑘 𝑞 �̄�𝑘

3 (7a) 1 (8a)

4 (7b) 2 (8b)

5 (7c) 3 (8c)

Table 2
Summarizing the results of [14]

𝜌 = 𝑝 + 𝑞 ̄𝑇𝑘 �̄�𝑘

5 (7a) (8b)

(7b) (8a)

6
(7b) (8b)

(7c) (8a)

(7a) (8c)

7 (7b) (8c)

(7c) (8b)

8 (7c) (8c)

Summarizing the results of [11, 14], we present in Tables 1, 2 the convergence orders 𝑝 and 𝜌 of
iterations (5) and (6) respectively.
It is worth noting that the convergence of iterations (5) and (6) was proved under the following

condition
1
2𝐹

′(𝑥𝑘)−1𝐹′′(𝑥𝑘)𝛩𝑘𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘) = 𝛩2
𝑘 + 𝑂(ℎ3), (10)

which holds true due to permutation properties of 𝑞-derivatives (𝑞 ≥ 1) [20]. This paper is organized
in five sections. Section 2 is devoted to constructing fourth-order two-step iterations and family of
parametric two-step iterations. Extensions of some well known scalar methods with fourth order of
convergence to solve systems of nonlinear equations are also discussed in this section. In Section 3,
new two-parametric family of sixth, seventh, and eighth-order three-point iterative methods are
constructed. Computational efficiency of the developed iterations is discussed in Section 4. In
Section 5, we describe the outcomes of numerical experiments to confirm the theoretical analysis
and made a comparison of some methods. Finally, we close with conclusions.

2. Construction of new iterativemethods
First, we consider the following two-step iterations:

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑥𝑘 −𝛺𝑘,
(11)

where
𝛺𝑘 = (𝑎𝐹′(𝑥𝑘) + 𝑏𝐹′(𝜂𝑘) + 𝑐𝐹′(𝑦𝑘))

−1(𝛼𝐹(𝑦𝑘) + 𝛽𝐹(𝑥𝑘) + 𝛾𝐹(𝑤𝑘)), (12)

𝑤𝑘 = 𝑥𝑘 + 𝜉𝑘, 𝜂𝑘 = 𝑥𝑘 −
2
3
𝜉𝑘 and 𝑎 + 𝑏 + 𝑐 ≠ 0, 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾 are real constants. The convergence of

our iteration (11) is established.

Theorem 5. The convergence order of iteration (11) is equal to four, iff

𝑏 = 3
2(1 − 2𝛾)(1 − 4𝛾), 𝑎 = 1 − 2𝛾 − 𝑏, 𝑐 = 2𝛾,

𝛽 = 1 − 2𝛾, 𝛼 = 1 − 5𝛾 − 4
3𝑏.

(13)
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Proof. The Taylor expansions of 𝐹′(𝑦𝑘) and 𝐹′(𝜂𝑘) at point 𝑥𝑘 give

𝐹′(𝑦𝑘) = 𝐹′(𝑥𝑘)(𝐼 − 2𝛩𝑘 − 3𝑑𝑘) + 𝑂(ℎ3),

𝐹′(𝜂𝑘) = 𝐹′(𝑥𝑘)(𝐼 −
4
3 (𝛩𝑘 + 𝑑𝑘) + 𝑂(ℎ3).

Hence, we have

𝑎𝐹′(𝑥𝑘) + 𝑏𝐹′(𝜂𝑘) + 𝑐𝐹′(𝑦𝑘) = 𝐹′(𝑥𝑘)((𝑎 + 𝑏 + 𝑐)𝐼 − (43𝑏(𝛩𝑘 + 𝑑𝑘) + 𝑐(2𝛩𝑘 + 3𝑑𝑘))) + 𝑂(ℎ3).

From this we get

(𝑎𝐹′(𝑥𝑘) + 𝑏𝐹′(𝜂𝑘) + 𝑐𝐹′(𝑦𝑘))
−1 = 1

𝑎 + 𝑏 + 𝑐(𝐼 +
1

𝑎 + 𝑏 + 𝑐((2𝑐 +
4
3𝑏)𝛩𝑘 +

+ (43𝑏 + 3𝑐)𝑑𝑘) +
1

(𝑎 + 𝑏 + 𝑐)2 (
16
9 𝑏

2 + 4𝑐 + 16
3 𝑏𝑐)𝛩

2
𝑘)𝐹′(𝑥𝑘)−1 + 𝑂(ℎ3).

Similarly, using Taylor expansions of 𝐹(𝑦𝑘) and 𝐹(𝑤𝑘), we get

𝐹′(𝑥𝑘)−1(𝛼𝐹(𝑦𝑘) + 𝛽𝐹(𝑥𝑘) + 𝛾𝐹(𝑤𝑘)) = ((𝛽 + 2𝛾)𝐼 + (𝛼 + 𝛾)𝛩𝑘 + (𝛼 − 𝛾)𝑑𝑘)𝜉𝑘 + 𝑂(ℎ4).

Hence,𝛺𝑘 given by (12) can be rewritten as

𝛺𝑘 =
1

𝑎 + 𝑏 + 𝑐((𝛽 + 2𝛾)𝐼 + (
𝛽 + 2𝛾
𝑎 + 𝑏 + 𝑐(2𝑐 +

4
3𝑏) + 𝛼 + 𝛾)𝛩𝑘 + (𝛼 − 𝛾 +

𝛽 + 2𝛾
𝑎 + 𝑏 + 𝑐(3𝑐 +

4
3𝑏))𝑑𝑘 +

+ (
𝛽 + 2𝛾

(𝑎 + 𝑏 + 𝑐)2 (
16
9 𝑏

2 + 4𝑐 + 16
3 𝑏𝑐) +

𝛼 + 𝛾
𝑎 + 𝑏 + 𝑐(2𝑐 +

4
3𝑏))𝛩

2
𝑘)𝜉𝑘 + 𝑂(ℎ3).

We find the unknown coefficients in (11) such that [11, 14]

𝛺𝑘 = (𝐼 + 𝛩𝑘 + 𝑑𝑘 + 2𝛩2
𝑘)𝜉𝑘.

This condition gives us

𝑎 + 𝑏 + 𝑐 = 1, 𝛽 + 2𝛾 = 1, 2𝑐 + 4
3𝑏 + 𝛼 + 𝛾 = 1,

𝛼 − 𝛾 + 3𝑐 + 4
3𝑏 = 1, 16

9 𝑏
2 + 4𝑐 + 16

3 𝑏𝑐 + (𝛼 + 𝛾)(2𝑐 + 4
3𝑏) = 2.

(14)

The solution of system (14) is (13). �

Thus, the iteration (11) becomes as:

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑥𝑘 −𝛺𝑘(𝛾),
(15)

where

𝛺𝑘(𝛾) = ((1 − 2𝛾 − 𝑏)𝐹′(𝑥𝑘) + 𝑏𝐹′(𝜂𝑘) + 2𝛾𝐹′(𝑦𝑘))
−1
((1 − 5𝛾 − 4

3𝑏)𝐹(𝑦𝑘)

+ (1 − 2𝛾)𝐹(𝑥𝑘) + 𝛾𝐹(𝑤𝑘)), 𝑏 = 3
2 (1 − 2𝛾)(1 − 4𝛾),

̄𝑇𝑘 =
𝛺𝑘(𝛾)
𝛩𝑘𝜉𝑘

. (16)

This family includes some well known methods as particular cases. We consider the particular cases
of family (15):
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1. Let 𝛾 = 1
2
. Then by (13) we get 𝑎 = 𝑏 = 𝛽 = 0, 𝑐 = 1, 𝛼 = − 3

2
and (15) leads to

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑥𝑘 − 𝐹′(𝑦𝑘)−1( −
3
2𝐹(𝑦𝑘) +

1
2𝐹(𝑤𝑘)),

which is the first iteration obtained by Su in [9].
2. Let 𝛾 = 0. Then by (13) we get 𝛽 = 1, 𝑐 = 0, 𝑏 = 3

2
, 𝑎 = − 1

2
, 𝛼 = −1 and (15) leads to

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑥𝑘 − (12𝐹
′(𝑥𝑘) −

3
2𝐹

′(𝑦𝑘))
−1
(𝐹(𝑦𝑘) − 𝐹(𝑥𝑘)),

which is the second iteration obtained by Su in [9].
3. Let 𝛾 = 1

4
. Then by (13) we get 𝑎 = 𝑐 = 𝛽 = 1

2
, 𝑏 = 0, 𝛼 = − 1

4
and (15) leads to

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑥𝑘 − (𝐹′(𝑥𝑘) + 𝐹′(𝑦𝑘))
−1
(𝐹(𝑥𝑘) +

1
2𝐹(𝑤𝑘) −

1
2𝐹(𝑦𝑘)).

The following lemma plays key role in constructing high-order iterations.

Lemma 1. The 𝛩𝑘 given by (9) is equal to

𝛩𝑘 =
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

+ 𝑂(ℎ2). (17)

Proof. The Taylor expansion of 𝐹(𝑦𝑘) at point 𝑥𝑘 gives

𝐹(𝑦𝑘) =
1
2𝐹

″(𝑥𝑘)𝜉2𝑘 −
1
6𝐹

‴(𝑥𝑘)𝜉3𝑘 + 𝑂(ℎ4).

Then
𝐹(𝑥𝑘)−1𝐹(𝑦𝑘) = (𝛩𝑘 + 𝑑𝑘)𝜉𝑘 = 𝛩𝑘𝜉𝑘 + 𝑂(ℎ3),

and thereby using (10) we obtain

𝐹′(𝑥𝑘)−1𝐹′′(𝑥𝑘)𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘) = 𝐹′(𝑥𝑘)−1𝐹′′(𝑥𝑘)𝛩𝑘𝜉𝑘 + 𝑂(ℎ3)

= 2𝛩2
𝑘 + 𝑂(ℎ3).

(18)

On the other hand, the left-hand side of (18) can be described as:

𝐹′(𝑥𝑘)−1𝐹′′(𝑥𝑘)𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘)
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

= 2𝛩𝑘
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

. (19)

From (18) and (19) we reach (17). �

Note that the same definition (17) for 𝛩𝑘 was used in the scalar equation case [11]. In ℝ𝑛 with
operations (2) and (3) the iteration parameters ̄𝑇𝑘 and �̄�𝑘 turn out to be determined as vectors, that
permit essentially simplification of implementation algorithms as compared with other existing
methods with same order of convergence.
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Theorem 6. The two-step iteration (5) has a third, fourth and fifth-order convergence if and only if the
parameter ̄𝑇𝑘 satisfies

̄𝑇𝑘 = 1 + 𝑂(ℎ), (20a)
̄𝑇𝑘 = 1 + 2𝛩𝑘 + 𝑂(ℎ2), (20b)
̄𝑇𝑘𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘) = {1 + 𝛩2

𝑘}𝐹′(𝑦𝑘)−1𝐹(𝑦𝑘), (20c)

where 𝛩𝑘 =
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

, 1 = (1, 1,… , 1)𝑇 ∈ ℝ𝑛.

Proof. In [21] was shown that the fourth order convergence condition [12] is equivalent to:

̄𝑇𝑘 = 1 + 𝛩𝑘 + 2𝛩2
𝑘 + 𝑂(ℎ3). (21)

Using (17), (21) and
̄𝑇𝑘 =

𝑇𝑘 − 𝐼
𝛩𝑘

,

we obtain
̄𝑇𝑘 = 1 + 2𝛩𝑘 + 𝑂(ℎ2).

Analogously, using (20c) we obtain 𝐹(𝑥𝑘+1) = 𝑂(ℎ5). �

Using the expansion

1
1 − 𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥3 +… , ‖𝑥‖ = max

𝑖
|𝑥𝑖| < 1, 𝑥 ∈ ℝ𝑛,

it is easy to show that ̄𝑇𝑘 given by formula

̄𝑇𝑘 =
1 + 𝑎𝛩𝑘 + 𝑏𝛩2

𝑘
1 + (𝑎 − 2)𝛩𝑘 + 𝑑𝛩2

𝑘
, 𝑎, 𝑏, 𝑑 ∈ ℝ, 𝛩𝑘 =

𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

, (22)

satisfies the conditions (20a) and (20b). In this case, the two-step iteration with (22) can be written as:

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑦𝑘 −
𝐹(𝑥𝑘)2 + 𝑎𝐹(𝑥𝑘)𝐹(𝑦𝑘) + 𝑏𝐹(𝑦𝑘)2

𝐹(𝑥𝑘)2 + (𝑎 − 2)𝐹(𝑥𝑘)𝐹(𝑦𝑘) + 𝑑𝐹(𝑦𝑘)2
𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘), 𝑎, 𝑏, 𝑑 ∈ ℝ.

(23)

Thus, we have obtained another family of fourth-order iterations (23). Now we consider some
particular cases of this family.
1. Let 𝑏 = 𝑑 = 0. Then (23) leads to

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑦𝑘 −
1 + 𝑎𝛩𝑘

1 + (𝑎 − 2)𝛩𝑘
𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘), 𝑎 ∈ ℝ.

This is a generalization of King’s method for the system (1).
2. Let 𝑎 = 𝑏 = 0, 𝑑 = 1. Then (23) leads to

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑦𝑘 −
1

(1 − 𝛩𝑘)2
𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘), 𝑎 ∈ ℝ,

which is a generalization of King and Traub’s method for the system (1).
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3. Let 𝑎 = 1, 𝑏 = −1, 𝑑 = 0. Then (23) leads to

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑦𝑘 −
1 + 𝛩𝑘 − 𝛩2

𝑘
1 − 𝛩𝑘

𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘),

which is a generalization of Maheshwari’s method for the system (1).
Note that similar extension of King’s, King and Traub’s and Chun’s methods are suggested in [20].
According to the definition given in [20], the family of iteration (23) is the optimal fourth-order one.
Similarly, one can construct the generalization of all known fourth-order methods for system (1).
Analogously, the following theorem is proved:

Theorem 7. The convergence order of two-step iterations (5) equal to five, if ̄𝑇𝑘 satisfies

̄𝑇𝑘 = (𝑑𝐼 + 𝛼𝑡𝑘 + 𝛽𝑡2𝑘)−1(𝑎𝐼 + 𝑏𝑡𝑘 + 𝑐𝑡2𝑘), (24)

where

𝑎 =
(3𝛼 − 26𝛽 + 13𝑐)

5 , 𝑏 =
(𝛼 + 18𝛽 − 14𝑐)

5

𝑑 =
(4𝑐 − 13𝛽 − 𝛼)

5 , 𝛼 + 𝛽 + 𝑐 ≠ 0, 𝛼, 𝛽, 𝑐 ∈ 𝑅.
(25)

Proof. Using the formula (18) and

𝑡𝑘 = 𝐹′(𝑥𝑘)−1𝐹′(𝑦𝑘) = 𝐼 − 2𝛩𝑘 − 3𝑑𝑘 + 𝑂(ℎ3), 𝑠𝑘 = 𝐹′(𝑦𝑘)−1𝐹′(𝑥𝑘),

one can easily shown that (24) satisfies (7c) under (25). �

We consider some special case of (24), (25).

1. Let 𝑐 = 𝛽 = 0. Then by (25) we get 𝑎 = 3𝛼
5
, 𝑏 = −𝛼

5
, 𝑑 = 3𝛼

5
. Substituting these values into (24)

we obtain
̄𝑇𝑘 = (5𝑡𝑘 − 𝐼)−1(3𝐼 + 𝑡𝑘),

which is obtained byWang in [6]. Note that his result is a generalization of method Ham and
Chun (HC5) constructed for the scalar equation case [5].

2. Let 𝛼 = 𝛽 = 0. Then by (25) we get 𝑎 = 13𝑐
5
, 𝑏 = − 14𝑐

5
, 𝑑 = 4𝑐

5
. Substituting these values into (24)

we obtain
̄𝑇𝑘 =

13
4 𝐼 −

7
2 𝑡𝑘 +

5
4𝑡

2
𝑘,

which coincides with result [14, 18].
The formula (24) can be rewritten also in term of 𝑠𝑘 as:

̄𝑇𝑘 = (𝛽𝐼 + 𝛼𝑠𝑘 + 𝑑𝑠2𝑘)−1(𝑐𝐼 + 𝑏𝑠𝑘 + 𝑎𝑠2𝑘),

which includes choices of Cordero et. al. [1] as particular cases.
Now we consider the following two-step iterations

𝑦𝑘 = 𝑥𝑘 − ̄𝑎𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘), ̄𝑎 ∈ 𝑅, ̄𝑎 ≠ 0,

𝑧𝑘 = 𝑦𝑘 − ̄𝑇𝑘𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘).
(26)

For iteration (26), the following result holds:
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Theorem 8. The convergence order of the family of iterations (26) equal to four (five, when ̄𝑎 = 1 ) if ̄𝑇𝑘
is given by

̄𝑇𝑘 = 1 + ( ̄𝑎 + 1)�̄�𝑘 + ( ̄𝑎2 + 2 ̄𝑎 + 2)�̄�2
𝑘 + ( ̄𝑎2 + ̄𝑎 + 1)𝑑𝑘, (27)

where
�̄�𝑘 =

1
̄𝑎2 (

𝐹(𝑦𝑘) + 𝐹(𝑤𝑘)
2𝐹(𝑥𝑘)

− 1) , (28)

𝑑𝑘 =
1
̄𝑎2 (

𝐹(𝑦𝑘) − 𝐹(𝑤𝑘)
2 ̄𝑎𝐹(𝑥𝑘)

+ 1) , (29)

𝑤𝑘 = 𝑥𝑘 + ̄𝑎𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘).

Proof. As in proof of lemma (1), it is easy to show that

𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

= (1 − ̄𝑎)1 + ̄𝑎2�̄�𝑘 + ̄𝑎3𝑑𝑘 + 𝑂(ℎ3),

𝐹(𝑤𝑘)
𝐹(𝑥𝑘)

= (1 + ̄𝑎)1 + ̄𝑎2�̄�𝑘 − ̄𝑎3𝑑𝑘 + 𝑂(ℎ3).
(30)

From (30) we find �̄�𝑘 and 𝑑𝑘 and obtain (28), (29) with accuracy 𝑂(ℎ3). So fourth order (fifth order
when ̄𝑎 = 1) convergence condition [14] is satisfied for (27) with (28), (29). �

The adaptation of formula (27) in 𝑅𝑛 with operations of multiplication and division of vectors
extremely easily realized by (28), (29).
Note that in (26) only one inverse of 𝐹′(𝑥𝑘) is required, whereas in the iteration (5) with ̄𝑇𝑘 defined

by (20c) two inverses of 𝐹′(𝑥𝑘) and 𝐹′(𝑦𝑘) are required.

3. The three-stepmethods
Now consider three-step iterations

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝜙𝑘(𝑥𝑘, 𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − �̄�𝑘𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘).
(31)

Here 𝑧𝑘 = 𝜙𝑘(𝑥𝑘, 𝑦𝑘) is the iteration function of order 𝑝 ≥ 2.

Theorem 9. The methods (31) have order of convergence 𝑝 + 1, 𝑝 + 2, 𝑝 + 3 if and only if the parameter
�̄�𝑘 satisfies

�̄�𝑘 = 1 + 𝑂(ℎ), (32a)

�̄�𝑘 = 1 + 2𝛩𝑘 + 𝑂(ℎ2), (32b)

�̄�𝑘𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘) = {1 + 2𝛩2
𝑘}𝐹′(𝑦𝑘)−1𝐹(𝑧𝑘), (32c)

respectively. The proof of this theorem is the same as Theorem 7 thus we omit it here. By virtue of
Theorem 2 in [14] the iterations (31) has order of convergence 𝑝 + 3 if and only if �̄�𝑘 satisfies (see
also Table 1).

�̄�𝑘 = 𝐼 + 2𝛩𝑘 + 3𝑑𝑘 + 6𝛩2
𝑘 + 𝑂(ℎ3). (33)
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Using Taylor expansions of 𝐹′(𝑦𝑘) and 𝐹′(𝑦𝑘)−1 one can easily show that (33) equivalent to:

�̄�𝑘 = 𝐹′(𝑦𝑘)−1𝐹′(𝑥𝑘) + 2𝛩2
𝑘 + 𝑂(ℎ3), 𝛩𝑘 =

𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

.

Then by (4) we get

�̄�𝑘𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘) = 𝐹′(𝑦𝑘)−1𝐹(𝑧𝑘) + 2𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘)𝛩2
𝑘 + 𝑂(ℎ3)

= 𝐹′(𝑦𝑘)−1(1 + 2𝛩2
𝑘)𝐹(𝑧𝑘) + 𝑂(ℎ3),

in which we used 𝐹′(𝑥𝑘)−1 = 𝐹′(𝑦𝑘)−1 + 𝑂(ℎ).
Thus, we obtain 𝑝 + 3 order three-step iterations

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝜙𝑝(𝑥𝑘, 𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2(
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)
2
)𝐹′(𝑦𝑘)−1𝐹(𝑧𝑘).

(34)

If we use ̄𝑇𝑘 given by (24), (25) in (34) we obtain a family of eighth-order three-step iterations:

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 − (𝑑𝐼 + 𝛼𝑡𝑘 + 𝛽𝑡2𝑘)−1(𝑎𝐼 + 𝑏𝑡𝑘 + 𝑐𝑡2𝑘)𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2(
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)
2
)𝐹′(𝑦𝑘)−1𝐹(𝑧𝑘),

(35)

where 𝑎, 𝑏 and 𝑑 are given by (25). Besides of (31), we can consider the family of three-step iterations:

𝑦𝑘 = 𝑥𝑘 − ̄𝑎𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘), ̄𝑎 ∈ 𝑅, ̄𝑎 ≠ 0,

𝑧𝑘 = 𝑦𝑘 − ̄𝑇𝑘𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − �̄�𝑘𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘).

(36)

For method (36) holds true:

Theorem 10. The convergence order of the family of iterations (36) equal to seven (eight, when ̄𝑎 = 1 ) if
̄𝑇𝑘 is given by (27) and

�̄�𝑘 = 1 + 2�̄�𝑘 + 6�̄�2
𝑘 + 3𝑑𝑘. (37)

where 𝛩𝑘 and 𝑑𝑘 are given by (28) and (29) respectively.

Proof. By Theorem 8 we prove that 𝐹(𝑧𝑘) = 𝑂(ℎ𝑝), 𝑝 = 4 in case ̄𝑎 ≠ 1 and 𝑝 = 5 in case ̄𝑎 = 1.
The 𝑝 + 3 order of convergence condition (33) of (36) is realized as (37). So the convergence order of
iterations equals to seven (eight, when ̄𝑎 = 1). �

The combination of (15), (23), (20), (24), (27)–(29) and (32) (or Theorem 5–8 with Theorem 9, 10)
gives us a wide set of iterative methods with convergence order 𝜌 (see Table 3). Below we list only the
most effective methods of them.

– The fifth-order methods:

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘);

(38)
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Table 3
Iterative methods with convergence order 𝜌

𝜌 ̄𝑇𝑘 �̄�𝑘 𝜌 ̄𝑇𝑘 �̄�𝑘 𝜌 ̄𝑇𝑘 �̄�𝑘 𝜌 ̄𝑇𝑘 �̄�𝑘

5

(20a) (32b)

6

(20a) (32c)

7

(16) (32c)

8

(20c) (32c)

(20b) (32a) (20b) (32b) (20b) (32c) (24) (32c)

(16) (32a) (22) (32b) (22) (32c) (27) (32c)
𝑎 = 1

(22) (32a) (27) (32b) (27) (32c) (7c) (8c)
𝑎 ≠ 1 𝑎 ≠ 1

(27) (32a) (16) (32b) (20c) (32b)
𝑎 = 0

(7c) (32a) (24) (32b)

(24) (32a) (27) (32b)
𝑎 = 1

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 − (1 + 2
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘),

(39)

and

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑥𝑘 − (1 +
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘).

(40)

– The sixth order methods:

𝑦𝑘 =𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 =𝑥𝑘 −𝛺𝑘(𝛾),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘).

(41)

Note that the iteration (2.19) in [8] is a particular case of (41) when 𝛾 = 0.

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 −
𝐹(𝑥𝑘)2 + 2𝐹(𝑥𝑘)𝐹(𝑦𝑘) + 𝑐𝐹(𝑦𝑘)2

𝐹(𝑥𝑘)2 + (𝑎 − 2)𝐹(𝑥𝑘)𝐹(𝑦𝑘) + 𝑑𝐹(𝑦𝑘)2
𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘), 𝑎, 𝑐, 𝑑 ∈ ℝ,

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘).

(42)
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Most easy case of (42) is obtained when 𝑎 = 2, 𝑐 = 𝑑 = 0. Another sixth-order iteration obtained
from (34) is

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2(
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)
2
)𝐹′(𝑦𝑘)−1𝐹(𝑧𝑘),

(43)

because of ̄𝜏𝑘 = 1 in (43) and 𝐹(𝑧𝑘) = 𝑂(ℎ3) (see Table 2).

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 − (1 + (
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)
2
)𝐹′(𝑦𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘).

(44)

– The seventh order methods:

𝑦𝑘 =𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 =𝑥𝑘 −𝛺𝑘(𝛾),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2(
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)2)𝐹′(𝑦𝑘)−1𝐹(𝑧𝑘).

(45)

Note that when 𝛾 = 1/2, the iteration (45) converted to iteration (2.18) given in [8].

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 −
𝐹(𝑥𝑘)2 + 2𝐹(𝑥𝑘)𝐹(𝑦𝑘) + 𝑐𝐹(𝑦𝑘)2

𝐹(𝑥𝑘)2 + (𝑎 − 2)𝐹(𝑥𝑘)𝐹(𝑦𝑘) + 𝑑𝐹(𝑦𝑘)2
𝐹′(𝑥𝑘)−1𝐹(𝑦𝑘), 𝑎, 𝑐, 𝑑 ∈ ℝ,

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2(
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)
2
)𝐹′(𝑦𝑘)−1𝐹(𝑧𝑘),

(46)

and

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 − (1 + (
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)
2
)𝐹′(𝑦𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)𝐹′(𝑥𝑘)−1𝐹(𝑧𝑘).

(47)

– The eighth order methods:

𝑦𝑘 = 𝑥𝑘 − 𝐹′(𝑥𝑘)−1𝐹(𝑥𝑘),

𝑧𝑘 = 𝑦𝑘 − (1 + (
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)
2
)𝐹′(𝑦𝑘)−1𝐹(𝑦𝑘),

𝑥𝑘+1 = 𝑧𝑘 − (1 + 2(
𝐹(𝑦𝑘)
𝐹(𝑥𝑘)

)
2
)𝐹′(𝑦𝑘)−1𝐹(𝑧𝑘),

(48)

and method (36) with ̄𝑎 = 1.
Note that in (36) only one inverse of 𝐹′(𝑥𝑘) is required, whereas in other three-step iterations (44),
(47), (48), (35) with seventh and eighth-order of convergence two inverses of 𝐹′(𝑥𝑘) and 𝐹′(𝑦𝑘) are
required.
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Remark 1. Using the generating function method [13] one can easily show that the following
replacements

1 + 2𝛩𝑘 ⇒
1 + 𝑎1𝛩𝑘 + 𝑏1𝛩2

𝑘
1 + (𝑎1 − 2)𝛩𝑘 + 𝑐1𝛩2

𝑘
, 𝑎1, 𝑏1, 𝑐1 ∈ 𝑅,

1 + 𝛩2
𝑘 ⇒

1 + 𝑎2𝛩𝑘 + 𝑏2𝛩2
𝑘

1 + 𝑎2𝛩𝑘 + (𝑏2 − 1)𝛩2
𝑘
, 𝑎2, 𝑏2 ∈ 𝑅,

1 + 2𝛩2
𝑘 ⇒

1 + 𝑎3𝛩𝑘 + 𝑏3𝛩2
𝑘

1 + 𝑎3𝛩𝑘 + (𝑏3 − 2)𝛩2
𝑘
, 𝑎3, 𝑏3 ∈ 𝑅,

in the above mentionedmethods are also possible and in this case the convergence order maintained.
In this way, we obtain multi-parametric families of iterations.

Note that in [3] the three-step iterations (3), (4), (5) were considered. The original idea is to have
the weight functions 𝑄1 and 𝑄2 chosen in such a way that the method will be of order higher than
4. But this was not successful as the numerical experiments will show. If we use the operations (2)
and (3) in [3] then 𝑄1 and 𝑄2 satisfy the conditions (20) and (32). So their method indeed has a sixth
order convergence. It should be also pointed out that in [10] another definition of division of vectors
was introduced and the extensions of some iterations in multidimensional case were considered by
means of matrix 𝑋 such that 𝑋𝑎 = 𝑏 i.e. 𝑎

X
−→ 𝑏. But find such matrix 𝑋 is not easy task.

4. Computational efficiency
In practice, a method is considered computationally efficient if it has higher convergence order
and low computational cost. The computational efficiency index of iterative technique is calculated
by [15]

𝐸 = 𝑝
1
𝐶 ,

where 𝑝 is order of convergence and 𝐶 = 𝑑 + 𝑜𝑝 stands for the total computational cost per iteration,
𝑑 is the number of function evaluations and 𝑜𝑝 is the number of products and quotients per iteration.
We discuss the computational efficiency of the proposed methods and made comparisons between
these and existing methods of similar nature. We denote by 𝐶𝑖 and 𝐸𝑖 the total cost and efficiency
index for 𝑖-th method. The 𝐸𝑖 of the presented iterative methods is given in Table 4.
From Table 4, we see that the iterative method (36) has higher efficiency index. Specific property

of our proposed methods is that they are much easier to implement as compared to other methods.
In fact, each step of our methods requires to solve only one linear system. So passing from 𝑥𝑘 to 𝑥𝑘+1
is realized by solving three linear systems all together. While all other methods of order 𝑝 = 5, 6, 7, 8
require to solve at least seven or eight linear systems [14, 16]. It makes the algorithms computationally
more efficient. Thus, our methods are more simple and guarantee high computational efficiency as
compared to other same order existing iterative techniques.

5. Results and discussion
The numerical experiments are carried out to confirm the theoretical results obtained in the previous
sections. To get this aim, we consider several test problems, some of them are from real-life problems,
e.g., Lane-Emden type equation and 2D Bratu problem.
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Table 4
Comparison of computational efficiency

№ methods 𝑝 𝐶𝑖 𝐸𝑖

1 (38) 5 𝐶1 =
1
3
𝑛3 + 3𝑛2 + 17

3
𝑛 51/𝐶1

2 (39) 5 𝐶2 =
1
3
𝑛3 + 4𝑛2 + 17

3
𝑛 51/𝐶2

3 (40) 5 𝐶3 =
1
3
𝑛3 + 4𝑛2 + 14

3
𝑛 51/𝐶3

4 (41), 𝛾 = 0 6 𝐶4 =
1
3
𝑛3 + 5𝑛2 + 16

3
𝑛 61/𝐶4

5 (42), a=2 6 𝐶5 =
1
3
𝑛3 + 4𝑛2 + 17

3
𝑛 61/𝐶5

𝑐 = 𝑑 = 0

6 (43) 6 𝐶6 =
2
3
𝑛3 + 5𝑛2 + 13

3
𝑛 61/𝐶6

7 (44) 6 𝐶11 =
1
3
𝑛3 + 4𝑛2 + 14

3
𝑛 61/𝐶11

8 (45) 7 𝐶7 =
2
3
𝑛3 + 5𝑛2 + 16

3
𝑛 71/𝐶7

9 (46) 7 𝐶8 =
1
3
𝑛3 + 5𝑛2 + 16

3
𝑛 71/𝐶8

10 (47) 7 𝐶9 =
1
3
𝑛3 + 5𝑛2 + 16

3
𝑛 71/𝐶9

11 (48) 8 𝐶10 =
2
3
𝑛3 + 5𝑛2 + 13

3
𝑛 81/𝐶10

12 (36) 8 𝐶12 =
1
3
𝑛3 + 4𝑛2 + 17

3
𝑛 81/𝐶12

The experiments were made with an Intel Core processor i5-4590, with a CPU of 3.30 GHz and
4096 MB of RAMmemory. For comparison, we consider the proposed 𝜌-order methods (𝜌 = 5, 6, 7, 8)
and methods proposed in [17], [19], [18] and [14], namely, 𝑇1, PM7, NLM8, and ZMO8, respectively.
We also consider the sixth and seventh order methods (2.18) and (2.19) in [8]. In Tables 5–8, we give
the error between two consecutive iterations ‖𝑥𝑘 − 𝑥𝑘−1‖, computational order of convergence 𝜌𝑐
(see [17, 19]) is given by

𝜌𝑐 =
ln(‖𝑥𝑘+1 − 𝑥𝑘‖/‖𝑥𝑘 − 𝑥𝑘−1‖)
ln(‖𝑥𝑘 − 𝑥𝑘−1‖/‖𝑥𝑘−1 − 𝑥𝑘−2‖)

.

In addition, we include the elapsed CPU time (in seconds) in these tables. For each case, the
following stopping criterion is used to terminate the iterations:

‖𝑥𝑘 − 𝑥𝑘−1‖2 ≤ 10−150.

Example 1. As a first example, we have taken the following small system (see [8]):

𝑥(1)𝑥(2) + 𝑥(3)(𝑥(2) + 𝑥(4)) = 2,

𝑥(1)𝑥(3) + 𝑥(2)(𝑥(1) + 𝑥(4)) = 1,

𝑥(1)𝑥(4) + 𝑥(3)(𝑥(1) + 𝑥(2)) = 3,

𝑥(3)𝑥(2) + 𝑥(1)(𝑥(2) + 𝑥(4)) = 1.

The initial vector is 𝑥0 = {−4,−3, −6, −6}𝑇 for the solution 𝑥∗ = {−1.04, 0.26, −1.64, −1.64}𝑇.
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Table 5
Comparison of methods for Example 1

Methods 𝑘 ‖𝑥𝑘 − 𝑥𝑘−1‖ 𝜌𝑐 e-time

(38) 4 0.9003e-321 4.99 0.9486

(39) 4 0.1245e-342 4.99 0.9656

(40) 4 0.1983e-306 4.99 1.2112

SSK5 [22] 4 0.3751e-433 4.99 1.2507

𝑇1 [17] 4 0.4856e-591 4.99 1.2586

(41), 𝛾 = 1/2 4 0.4756e-801 5.99 1.6553

(41), 𝛾 = 0 [8] 4 0.1132e-714 5.99 1.3688

(42), a=2 4 0.7142e-602 5.99 1.1804

𝑐 = 𝑑 = 0

(43) 4 0.7623e-634 5.99 1.3362

(44) 4 0.4561e-711 5.99 1.2558

(45), 𝛾 = 0 4 0.2456e-1002 6.99 1.4639

(45), 𝛾 = 1/2 [8] 4 0.3452e-1220 6.99 1.1154

(46), a=2 4 0.1138e-1009 6.99 1.0325

𝑐 = 𝑑 = 0

(47) 4 0.1988e-1179 6.99 1.7041

PM7 [19] 4 0.7145e-1051 6.99 1.9620

(48) 4 0.9001e-2007 7.99 1.5592

(36) 4 0.8124e-4832 7.99 1.1801

NLM8 [18] 4 0.4356e-2089 7.99 1.7416

ZMO8 [14] 4 0.9140e-1991 7.99 1.1874

Example 2. Consider a system with 20 equations (see [6, 19]):

𝑥(𝑖) − cos (2𝑥(𝑖) −
4
∑
𝑗=1

𝑥(𝑗)) = 0,

𝑖 = 1, 2,… , 20.

The solution of this system is 𝑥∗ = {0.5149, 0.5149,… , 0.5149}𝑇. We choose the initial approximation
𝑥0 = {1, 1,… , 1}𝑇 for obtaining the solution 𝑥∗.

Example 3. We consider the singular boundary value problem (SBVP) [23]:

𝑢″(𝑥) + 2
𝑥𝑢

′(𝑥) + sin𝑢(𝑥) = 0, 𝑢(0) = 1, 𝑢′(0) = 0.
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Table 6
Comparison of methods for Example 2

Methods 𝑘 ‖𝑥𝑘 − 𝑥𝑘−1‖ 𝜌𝑐 e-time

(38) 4 0.6894e-589 4.99 15.838

(39) 4 0.2611e-306 4.99 15.837

(40) 4 0.6894e-589 4.99 15.791

SSK5 [22] 4 0.5781e-568 4.99 23.215

𝑇1 [17] 4 0.4856e-591 4.99 24.622

(41), 𝛾 = 1/2 4 0.1374e-1121 5.99 12.036

(41), 𝛾 = 0 [8] 4 0.7735e-1156 5.99 12.823

(42), a=2 4 0.8521e-1107 5.99 11.022

𝑐 = 𝑑 = 0

(43) 4 0.9195e-1225 5.99 15.005

(44) 4 0.9353e-1292 5.99 12.828

(45), 𝛾 = 0 4 0.3459e-2153 6.99 16.432

(45), 𝛾 = 1/2 [8] 4 0.5977e-2102 6.99 18.955

(46), a=2 4 0.9521e-2080 6.99 11.885

𝑐 = 𝑑 = 0

(47) 4 0.1142e-2181 6.99 11.891

PM7 [19] 4 0.4326e-2298 6.99 37.862

(48) 4 0.1717e-3730 7.99 8.9289

(36) 4 0.7355e-4562 8.00 8.1871

NLM8 [18] 4 0.7145e-4451 7.99 26.246

ZMO8 [14] 4 0.9784e-4962 7.99 26.384

After applying finite difference formulas the problem is reduced to a system of 𝑛 − 1 nonlinear
equations with 𝑛 − 1 unknowns:

𝑢𝑘−1 − 2𝑢𝑘 + 𝑢𝑘+1
ℎ2 + 1

𝑥𝑘
(
𝑢𝑘−1 − 𝑢𝑘+1

ℎ ) + sin𝑢𝑘 = 0, 𝑘 = 1, 2, 3,…𝑛 − 1.

We set 𝑛 = 101 and take the initial guess 𝑢0 = (0.2, 0.2,… , 0.2)𝑇.

Example 4. We consider the 2D Bratu problem [19]:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝜆𝑒ᵆ = 0,

𝛺 ∶ {(𝑥, 𝑦) ∈ 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1},

𝑢 = 0 on 𝜕𝛺,

where 𝑢 = 𝑢(𝑥, 𝑦).
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Table 7
Comparison of methods for Example 3

Methods 𝑘 ‖𝑥𝑘 − 𝑥𝑘−1‖ 𝜌𝑐 e-time

(38) 4 0.6894e-419 4.99 33.349

(39) 4 0.2611e-400 4.99 33.353

(40) 4 0.6894e-409 4.99 32.975

SSK5 [22] 4 0.7561e-457 4.99 42.121

𝑇1 [17] 4 0.8245e-492 4.99 41.714

(41), 𝛾 = 1/2 4 0.2456e-1007 5.99 64.782

(41), 𝛾 = 0 [8] 4 0.4781e-1089 5.99 64.209

(42), a=2 4 0.8521e-1107 5.99 29.247

𝑐 = 𝑑 = 0

(43) 4 0.2145e-1059 5.99 43.619

(44) 4 0.9353e-1020 5.99 61.839

(45) 4 0.3785e-1992 6.99 62.167

(45), 𝛾 = 1/2 [8] 4 0.5977e-1988 6.99 61.453

(46), a=2 4 0.9521e-1997 6.99 59.098

𝑐 = 𝑑 = 0

(47) 4 0.1142e-1999 6.99 59.917

PM7 [19] 4 0.1756e-2001 6.99 101.86

(48) 4 0.1717e-2650 7.99 63.181

(36) 4 0.2751e-5821 8.00 58.567

NLM8 [18] 4 0.1457e-2775 7.99 120.09

ZMO8 [14] 4 0.6789e-2811 7.99 121.55

Applying the finite-difference formulas the problem is reduced to the nonlinear systems:

𝑢𝑖,𝑗+1 − 4𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗−1 + 𝑢𝑖−1,𝑗 + ℎ2𝜆𝑒ᵆ𝑖,𝑗 = 0,

where 𝑢𝑖,𝑗 is 𝑢 at (𝑥𝑖, 𝑦𝑗) and 1 ≤ 𝑖, 𝑗 ≤ 𝑁. For obtaining a large nonlinear system
of size 100 × 100, we take 𝑁 = 11 and 𝜆 = 0.1. The initial vector is 𝑢0 =
0.1(sin(𝜋𝑥1) sin(𝜋𝑦1), sin(𝜋𝑥2) sin(𝜋𝑦2),… , sin(𝜋𝑥10) sin(𝜋𝑦10))

𝑇 for the nonlinear system.
As can be observed from the Tables 5–8, the performance of the proposed methods is better than

that of existingmethods in terms of accuracy and CPU time. The comparison for considered problems
shows that our method (36) is the fastest as compared to the other methods. The main reason is that
for method (36) the inverse of 𝐹′ is used only once in per iteration.
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Table 8
Comparison of methods for Example 4

Methods 𝑘 ‖𝑥𝑘 − 𝑥𝑘−1‖ 𝜌𝑐 e-time

(38) 4 0.4215e-655 4.99 50.452

(39) 4 0.7653e-696 4.99 50.955

(40) 4 0.4579e-678 4.99 49.857

SSK5 [22] 4 0.1658e-622 4.99 60.921

𝑇1 [17] 4 0.4901e-602 4.99 62.103

(41), 𝛾 = 1/2 4 0.2145e-812 5.99 83.325

(41), 𝛾 = 0 [8] 4 0.3457e-805 5.99 111.35

(42), a=2 4 0.9114e-833 5.99 57.112

𝑐 = 𝑑 = 0

(43) 4 0.1342e-799 5.99 82.717

(44) 4 0.2456e-843 5.99 83.840

(45), 𝛾 = 0 4 0.4589e-1411 6.99 82.105

(45), 𝛾 = 1/2 [8] 4 0.9756e-1543 6.99 81.535

(46), a=2 4 0.7946e-1611 6.99 81.397

𝑐 = 𝑑 = 0

(47) 4 0.6789e-1589 6.99 81.912

PM7 [19] 4 0.1456e-1566 6.99 123.82

(48) 4 0.8599e-2316 7.99 85.183

(36) 4 0.6981e-2712 7.99 81.127

NLM8 [18] 4 0.7895e-2178 7.99 143.08

ZCO8 [14] 4 0.4879e-2002 7.99 143.66

Conclusions
The main contributions of this paper are:

– We propose new fourth and fifth order two-step methods for solving the system of nonlinear
equations in 𝑅𝑛 with the operations of multiplication and division of vectors.

– We extend the well-known two-point optimal fourth-order methods that designed for solving
nonlinear equations to the systems of nonlinear equations. These are unexpected and elegant
results.

– We also proposed 𝑝 (5 ≤ 𝑝 ≤ 8)- order three-step iterative methods for solving the systems of
nonlinear equations. These families of methods include some known methods as particular
cases. Moreover, if we use generating function methods in these methods we obtain multi-
parametric families of iterative methods.
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– The proposed methods (exception of (35)) are simple and require solving three linear systems,
whereas the existing methods of the same order convergence require to solve at least seven
or eight linear systems. Moreover, they based on a multiplicity of vector by vector, instead of
matrix-vector multiplication that inherent in other methods. Both these two factors make our
algorithms computationally efficient and in principle new approach to construct higher order
iterations.

– To illustrate the high efficiency and accuracy of the proposed methods, the numerical
experiments are carried out on both academic and real world problems. Finally, based on
numerical results, one can conclude that our methods are the most efficient and fastest than
the existing ones of similar nature.
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Разработка и адаптация итерационных методов высшего
порядка в 𝑅𝑛 с конкретными правилами
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Аннотация. В данной работе мы предлагаем двухшаговые итерационные методы четвёртого и пятого
порядков для решения систем нелинейных уравнений в 𝑅𝑛 с использованием операций векторного
умножения и деления. Некоторые из предложенных оптимальных методов четвёртого порядка рассмат-
риваются как расширение известныхметодов, разработанныхисключительно для решения нелинейных
уравнений. Мы также разработали трёхточечные итерационные методы 𝑝-порядка (5 ≤ 𝑝 ≤ 8) для реше-
ния систем нелинейных уравнений, которые включают некоторые известные итерации как частные
случаи. Проведён расчёт и сравнение вычислительной эффективности новыхметодов. Представлены ре-
зультаты численных экспериментов для подтверждения теоретических выводов относительно порядка
сходимости и вычислительной эффективности. Сравнительный анализ демонстрирует превосходство
разработанных численных методов.

Ключевые слова: нелинейные системы, методы типа Ньютона, порядок сходимости, вычислительная
эффективность, трёхшаговая итерация
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Abstract. Superconducting properties of twisted tri-layer graphene (TTG) are studied within the scope of the
chiral model based on using the unitary matrix 𝑈 ∈ 𝑆𝑈(2) as an order parameter. To check the superconductor
behavior of this system, the interaction with the external magnetic field 𝐵0 oriented along the graphene sheets is
switched on and the internal magnetic intensity in the center is calculated as the function of the twisting angle.
Vanishing of this function, due to the Meissner effect, being the important feature of the superconductivity, the
corresponding dependence of the magic twisting angle on 𝐵0 is calculated. The unusual effect of re-entrant
superconductivity for large values of 𝐵0 is discussed.
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1. Introduction
It should be noticed that since the discovery of mono-atomic carbon layers called graphenes [1,
2] this material attracted high attention of researchers due to its extraordinary properties
concerning magnetism, stiffness and considerable electric and thermal conductivity [3, 4]. The
important connection was revealed with other graphene-based materials: Fullerenes [5] and carbon
nanotubes [6]. A very simple explanation of these unusual properties of graphenewas suggested in [7],
where the idea of massless Dirac-like excitations of honeycomb carbon lattice was discussed, the
latter one being considered as a superposition of two triangular sublattices. The further development
of this idea was realized in [8, 9].
The unprecedented raise of interest has emerged to graphene-based materials and especially

to moiré super-lattice patterns, this fact being motivated by their unconventional characteristics.
In particular, specific magic-angle systems constructed by stacking two or three graphene layers
twisted relative to each other have shown superconducting behavior [10–18]. However, these
systems exhibit superconducting properties also for the very strong external magnetic fields (up to
10 T) [19], and therefore the standard superconductivity model by J. Bardeen, L. Cooper, J. Schrieffer
and N. Bogoliubov [20] appears to be non suitable for the explanation of this fact. Thus, the
superconductivity in TTG is likely to be driven by a mechanism that results in non-spin-singlet
Cooper pairs. Nevertheless, it can be shown that the phenomenological approach based on the
Landau theory of phase transitions [21] and on the corresponding chiral model of graphene suggested
earlier [8] seems to be well suitable for the description of TTG.
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This work is licensed under a Creative Commons “Attribution-NonCommercial 4.0 International” license.

http://journals.rudn.ru/miph
https://elibrary.ru/dfmuxx
https://elibrary.ru/dfmuxx
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en


446 Physics and Astronomy DCM&ACS. 2024, 32 (4), 445–451

2. Lagrangian density for the chiral model of graphene
In accordance with the hexagonal structure of the graphene mono-atomic carbon lattice, the three
valence electrons of the atom form strong covalent bonds with the neighbours, but the forth electron
belongs to the so-called hybridized state and appears to be “free”. Thus, let us combine scalar 𝑎0
and 3-vector a fields corresponding to the 𝑠-orbital and the 𝑝-orbital states of the “free” electron,
respectively, into the unitary matrix 𝑈 ∈ 𝑆𝑈(2) serving as the order parameter in our model:

𝑈 = 𝑎0 𝜏0 + 𝚤 a ⋅ 𝝉. (1)

Here 𝜏0 is the unit 2 × 2-matrix and 𝝉 stands for the three Pauli matrices, with the subsidiary
𝑆𝑈(2)-condition being imposed: 𝑎20 + a2 = 1 . To describe a single graphene sheet, one can use the
Lagrangian density of the sigma-model form:

ℒ = −14𝐼 Sp(𝑙𝜇𝑙
𝜇) − 1

2𝜆
2a2, (2)

involving the so-called left chiral current 𝑙𝜇 = 𝑈+𝜕𝜇𝑈 and the coordinates 𝑥𝑖, 𝑖 = 1, 2, 3 and the time
𝑥0 = 𝑐𝑡 derivatives. Comparing the Lagrangian density (2) with that of the Landau–Lifshitz theory [22]
corresponding to the quasi-classical long-wave approximation to the Heisenberg ferromagnetic
model, one can interpret the parameter 𝐼 in (2) as the exchange energy between carbon atoms (per
spacing). The equations of motion corresponding to (2) admit the kink-like or the domain-wall
solution [8]:

𝑈 = exp(𝚤 ̂𝑛𝛩), ̂𝑛 = n ⋅ 𝝉, 𝛩 = 2 arctan exp(−𝑧/ℓ0); (3)

describing the electrons distribution in an ideal graphene plane oriented along the unit vector n and
orthogonal to the 𝑧-axis. The configuration 3 contains the characteristic length ℓ0 = 𝐼1/2/𝜆, which
can be identified with the diameter of the carbon atom ℓ0 = 0.26 nm.
It is worth while to underline that the interaction with an external electromagnetic field can be

included via extending the derivatives in accordance with the gauge invariance principle:

𝜕𝜇 ⇒ 𝐷𝜇 − 𝚤𝑒0𝐴𝜇[𝜏3, 𝑈],

where 𝑒0, 𝜏3,𝐴𝜇 denote the electromagnetic coupling constant, the charge operator and the 4-potential,
respectively. In particular case of the interaction with the uniform magnetic field oriented along the
𝑦-axis the Lagrangian density reads:

ℒ = −14𝐼 Sp(𝑙𝜇𝑙
𝜇) − 1

2𝜆
2a2 − B2

8𝜋 , (4)

where
𝐿𝜇 = 𝑈+𝐷𝜇𝑈, B = (0, 𝐵, 0), 𝐵 = 𝐴′(𝑧), 𝐴(𝑧) = 𝐴1, 𝐵(±∞) = 𝐵0 = 𝑐𝑜𝑛𝑠𝑡.

The unitary matrix 𝑈 for the TTG configuration has the form:

𝑈 = 𝑈1𝑈0𝑈2, 𝑈1 = exp(𝚤 ̂𝑛𝑗𝛩𝑗), 𝛩𝑗 = 𝛩𝑗(𝑧), ̂𝑛𝑗 = n𝑗 ⋅ 𝝉; (5)

n1 = (cos(𝛼/2), sin(𝛼/2), 0), n2 = (cos(𝛼/2), − sin(𝛼/2), 0), n0 = (1, 0, 0), (6)

with the vector a being defined as follows:

a = −(𝚤/2)𝑡𝑟(𝝉𝑈).
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Here 𝑗 = 0, 1, 2 is the number of the correspondent sheet.
In accordance with (4), (5) and (6) the Lagrangian density takes the form:

ℒ = −𝐼[𝑆 + cos(𝛼/2)𝛩′
0(𝛩′

1 + 𝛩′
2) + 𝛩′

1𝛩′
2 (sin

2𝛩0 + cos𝛼 cos2𝛩0)]

− 𝐼𝑒20𝐴2(1 − 𝑃 − 𝑄 + 𝑅) − (𝜆)2/2(𝑋 + 𝑌 + 𝑍) − 𝐴′2/(8𝜋);

where the following denotations are used:

𝑆 = (𝛩′2
1 + 𝛩′2

2 + 𝛩′2
0 )/2,

𝑃 = 2 sin2(𝛼/2) sin2𝛩0 sin 2𝛩1 sin 2𝛩2,

𝑄 = cos 2𝛩0 cos 2(𝛩1 − 𝛩2),

𝑅 = cos(𝛼/2) sin 2𝛩0 sin 2(𝛩1 + 𝛩2),

𝑋 = cos2𝛩0[sin
2(𝛩1 + 𝛩2) − sin2(𝛼/2) sin 2𝛩1 sin 2𝛩2 + sin2 𝛼 sin2𝛩1 sin

2𝛩2],

𝑌 = sin2𝛩0[sin
2(𝛼/2) + cos2(𝛼/2) cos2(𝛩1 + 𝛩2)],

𝑍 = cos(𝛼/2) sin 2𝛩0 sin(𝛩1 + 𝛩2)[cos𝛩1 cos𝛩2 − cos𝛼 sin𝛩1 sin𝛩2].

The boundary conditions read:

𝛩𝑗(−∞) = 𝜋, 𝛩𝑗(+∞) = 0, (7)

and central phases are chosen equal: 𝛩0(0) = 𝛩1(−2𝑙) = 𝛩2(2𝑙) = 𝜋/2, where 2𝑙 stands for the distance
between the sheets.

3. Asymptotic structure of solutions to the equations of motion
At large 𝑧 → ±∞ one can put tan𝛩𝑗 = 𝑢𝑗 → 0 with the discrete symmetry being 𝑢1 = 𝑢2 = 𝑢. The
asymptotic Lagrangian density

ℒ = −(𝐼/2)[𝑢′0 + 2 cos(𝛼/2)𝑢′]2 − [𝑢0 + 2 cos(𝛼/2)𝑢]2 (2𝐼𝑒20𝐴2 + 𝜆2/2),

where 𝐴 ≈ 𝐵0𝑧, admits the symmetry 𝑢0 ↔ 2𝑢 cos(𝛼/2), with the solution being derived through the
substitution 𝑢−1 = sinh𝑤, 𝑢0 = 𝑢 cos(𝛼/2). The asymptotic estimation reads:

𝑢 = 2 exp(−𝑒0𝐵0𝑧2). (8)

As a result, for the vector potential 𝐴 = 𝐵0𝑧 + 𝑎(𝑧), where 𝑎′(∞) = 0, one finds the equation:

𝑎″
4𝜋 = 128 𝐼 𝑒20𝐵0𝑧(1 + cos𝛼) exp(−2𝑒0𝐵0𝑧2)

with the evident solution:

𝐴′ = 𝐵0 − 128𝜋𝐼 𝑒0(1 + cos𝛼) exp(−2𝑒0𝐵0𝑧2),

𝐴 = 𝐵0𝑧 − 128𝜋𝐼 𝑒0(1 + cos𝛼)

𝑧

∫
0

exp(−2𝑒0𝐵0𝑧2) 𝑑𝑧, (9)

where the anti-symmetric property of the vector potential found later was taken into account.
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Now let us investigate the behavior of our system at small 𝑧, where one can put due to (7) the
Lagrangian density for the vector potential taking the form:

ℒ = −2𝐼 𝑒20𝐴2 − 𝐴′2/(8𝜋).

The corresponding equation of motion reads:

𝐴″ − 16𝜋𝐼 𝑒20𝐴 = 0

and admits the evident solution:
𝐴 = 𝐶 sinh(𝑘 𝑧), (10)

where 𝐶 is an arbitrary constant and 𝑘2 = 16𝜋𝐼 𝑒20. Taking the derivative, it is not difficult to find the
magnetic intensity 𝐵 = 𝐴′ = 𝑘𝐶 cosh(𝑘 𝑧).
Now, to fix the value of the constant 𝐶 in (10), let us perform the smooth matching of the

expressions (3), (9) and (10) at some intermediate point 𝑧 = ̄𝑙. However, to simplify this operation, let
us introduce some denotations:

𝑦 = 𝑘𝐶/𝐵0, 𝑥2 = 2 𝑒0𝐵0 ̄𝑙2, 𝛬 = 16(1 + cos𝛼) exp(−𝑥2);

𝛤 = 8𝜋𝐼 𝑒0/𝐵0, 𝜉 =
sinh(𝑥√2𝛤)

𝑥√2𝛤
, 𝜂 = cosh(𝑥√2𝛤).

Also the special representation for the error function is used [23]:

1
𝑥

𝑥

∫
0

exp(−𝑠2) 𝑑 𝑠 = 𝜋1/2
2𝑥 erf(𝑥) = (1 + 𝑔) exp(−𝑥2); 𝑔 =

𝑖∞
∑
𝑛=1

2𝑛 𝑥2𝑛

(2𝑛 + 1)!!
.

As a result, one obtains the following system of equations

𝜉 𝑦 = 1 − 𝛤𝛬(1 + 𝑔), (11)

𝜂 𝑦 = 1 − 𝛤𝛬.

Now it is worth while to stress that, in accordance with the Meissner effect [20], our system reveals
superconducting properties if the relative magnetic field 𝑦 vanishes in the central domain. Let
us first recall some information about graphene properties [24]. For numerical illustration of the
twist effect one can use the following parameters of the chiral model: the spacing 𝑎 = 0.287 nm,
the exchange energy between atoms 𝐸0 = 2.9 eV with the value 𝐼 = 𝐸0/𝑎 = 1.619 nN, the coupling
constant 𝑒0 = 𝑒/(ℏ𝑐), with −𝑒 being the electron charge, the value 𝐼 𝑒0 = 0.246 T being known as the
effective (internal) “magnetic” intensity in graphene, the distance between the sheets 2𝑙 = 0.34 nm.
Taking into account that for standard graphene experiments

𝑥2 ≪ 1, 𝑔 ≪ 1, 𝛤 = (8𝜋)246/𝐵0(𝑚𝑇) ≫ 1, 𝛼 ≈ 𝜋 − 𝜁, 𝜁 ≪ 1, 𝛬 ≈ 8𝜁2;

one concludes that small values of 𝑦 can be provided by so-called “magic” values of twisting angle:

𝜁(𝑟𝑎𝑑) ≈ (8𝛤)−1/2.

It should be noted that the other possible magic twisting angle can be obtained through the reflection
𝛼 ⇒ 𝜋 − 𝛼, which leaves the moiré super-lattice invariant.
Let us now discuss, in view of (11), the case of strong magnetic fields, when the quantity 𝛤(1 + 𝑔)

retains large values. This fact implies the so-called re-entrant superconductivity. Experimental
verification of this effect can be found in [19], the peculiar symmetry properties of TTG system being
underlined earlier in connection with the boundary conditions (7).



Rybakov, Y. P., Umar,M. Superconductivity and special symmetry 449

4. Results and Discussions
In our paper the Landau phase transitions method is applied to the twisted tri-layer graphene
model, the order parameter being the unitary matrix, depending on the twisting angle 𝛼. The
superconductivity property of the TTGmodel is proven for the special “magic” twisting angle, the
cases of small and large external magnetic fields being considered.

5. Conclusions
The superconducting properties of the TTG configuration were studied within the framework of the
chiral graphene model suggested in [8]. The product-ansatz being used for the description of the TTG
system, the Lagrangian density and the asymptotic solutions to the equations of motion at small and
large distances were found. Using the anti-symmetric behavior of the vector potential and matching
these solutions at some intermediate point, a pair of algebraic equations for the magnetic field in
the central domain and the twisting angle were obtained. Finally, in view of the Meissner effect,
the correlation between the magic angle and the external magnetic intensity was established. The
important effect of the re-entrant superconductivity was mentioned for the case of strong magnetic
fields.
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Сверхпроводимость и особая симметрия скрученного
трехслойного графена в киральной модели
Ю. П. Рыбаков, М. Умар

Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская
Федерация

Аннотация. Сверхпроводящие свойства скрученного трёхслойного графена изучаются в рамках кираль-
ноймодели, основаннойна использовании унитарнойматрицы𝑈 ∈ 𝑆𝑈(2) в качестве параметра порядка.
Для проверки сверхпроводящего поведения этой системы включается взаимодействие с внешним
магнитным полем 𝐵0, ориентированным вдоль листа графена, и вычисляется внутренняя магнитная на-
пряжённость в центре как функция угла закручивания. Обращение этой функции в нуль, вследствие
эффекта Мейсснера, являющегося важной особенностью сверхпроводимости, вычисляется соответству-
ющая зависимость магического угла закручивания от 𝐵0. Обсуждается необычный эффект возвратной
сверхпроводимости при больших значениях 𝐵0.
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