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Abstract. The article presents the results of the evaluation of quartiles of scientific conferences presented by
leading rating agencies. The estimates are based on the use of three methods of multivariate statistical analysis:
linear regression, discriminant analysis and neural networks. A training sample was used for evaluation,
including the following factors: age and frequency of the conference, number of participants and number of
reports, publication activity of the conference organizers, citation of reports. As a result of the study, the linear
regression model confirmed the correctness of the quartiles exposed for 77% of conferences, while the methods
of neural networks and discriminant analysis gave similar results, confirming the correctness of the quartiles
exposed for 81 and 85% of conferences, respectively.

Key words and phrases: evaluation of quartiles of scientific conferences, discriminant analysis, neural networks,
linear regression

1. Introduction

As it is known [1], quartile (quarter) is a category of scientific publications, which is determined
by bibliometric indicators reflecting, first of all, the level of citation, that is, the relevance of the
publication by the scientific community. And if the procedure for assigning quartiles to scientific
journals has long been developed and successfully applied in practice [2–5]. In addition, many
metrics have been introduced to assess the impact of journals, such as impact factor, 5-year impact
factor, immediacy index, and impact factor without self cites, median impact factor, aggregate impact
factor and others [6]. At the same time, this issue remains the subject of research for scientific
conferences [7–11]. Some rating agencies have already begun to rank scientific conferences without
disclosing the details of this procedure. For example, there is a CORE conference ranking [12],
a CCF conference ranking [13], and a Microsoft Academic conference ranking (has been deleted) [14].
The disadvantages of the first two ratings are that they are expert, regional and do not fully disclose
the procedure for ranking conferences. They also rank only computer science conferences.
Researchers use various methods to compile new conference rankings, such as correlation analy-

sis [7, 15], statistical analysis [15, 16], calculation of indicators similar to journal ones [9], graph and
tree analysis [8, 17], regression analysis [11, 16]. Many of these studies involved the use of several
of the listed methods. There were also works devoted to the search for methods for predicting the
rating of a conference or predicting the impact of works presented at a particular conference [18].
Machine learning was used for these purposes [19, 20]. Therefore, this study is devoted to compar-
ing two popular methods for predicting conference rankings, and I also included in the study such
a statistical method as discriminant analysis, which is essentially a mathematical prerequisite for
machine learning.
We managed to find data on some conferences via the Internet, including their quartiles and

a number of other indicators, which will be discussed below. As a result, we received a training
sample from 23 conferences, on the basis of which we will try to assess the adequacy of the quartiles
exposed using threemethods ofmultidimensional statistical analysis: linear regression, discriminant
analysis and neural networks.

© Ermolayeva A.M., 2024
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2. Training sample

Let’s introduce the notation:
– 𝑌 is a random variable (r.v.), taking the values 1, 2, 3 or 4 is the quartile of a scientific conference;
– 𝑋1 is a non–negative r.v., which takes values from a set of real numbers is the average citation of

conference materials (the number of citations per report over the 10 years from 2011 to 2020);
– 𝑋2 is an integer positive r.v. is the number of conference participants;
– 𝑋3 is an integer positive r.v. is the number of reports at the conference;
– 𝑋4 is an integer positive r.v. is the number of participants who submitted more than one report;
– 𝑋5 is an integer value that takes two values: 0 or 1 is an indicator of the publication activity of

the conference organizers (1 — if the organizers submitted a report to the conference and 0 —
otherwise);

– 𝑋6 is a non–negative r.v., which takes values from a set of real numbers is an indicator of the
publication activity of the conference organizers, equal to the average citation of scientific
publications per conference organizer.

The table 1 shows a training sample of the values of r.v. 𝑌, 𝑋1–𝑋6, compiled from the materials of
the websites [21–23].

3. Linear regressionmodel

Based on the data presented in the table 1, we will build a linear regression model reflecting the
dependence of 𝑌 on the factors listed above. We will carry out the construction using the SPSS
statistical package.
At the beginning, we will estimate the degree of linear dependence of 𝑌 on factors from 𝑋1 to 𝑋6

by constructing a Pearson pair correlation matrix. The study showed that a significant relationship
is observed between 𝑌 and factors 𝑋1, 𝑋2, 𝑋3 (table 2). The 𝑋4–𝑋6 factors have little effect on the 𝑌
values, so we will not take them into account in the future. At the same time, a strong relationship is
observed between factors 𝑋2 and 𝑋3. To avoid the negative impact of multicollinearity, we excluded
factor 𝑋3 from consideration and construct a two-factor regression model 𝑌(𝑋1, 𝑋2).
As a result, the equation is obtained (see the table 3):

𝑌 = −0.049 ⋅ 𝑋1 + 0.012 ⋅ 𝑋2 + 2.237. (1)

Note that table 3 shows not only the absolute values of the coefficients of the model, but also
the results of checking their significance using the T-criterion. According to the data from the last
column of the table, all coefficients are significant with a significance level not exceeding 10−3. In
the second column of the table, estimates of the standard deviation 𝜎𝑗 of the coefficients of the model
are calculated, as well as their values after standardization. According to these data, a change in the
𝑗-th coefficient of the model by one 𝜎𝑗 entails a change in 𝑌 by approximately 0.62𝜎𝑗 downward for the
coefficient at 𝑋1 and by 0.517𝜎𝑗 upward for the coefficient at 𝑋2.
According to the data presented in the table 4, the constructed model reflects by 85.1% the real

dependence of the quartile on the citation of materials and the number of conference participants.
At the same time, 72.4% of the 𝑌 variation in our model is due to the variability of factors 𝑋1 and 𝑋2.
The model itself is significant at a significance level not exceeding 10−3 (see the table 5).
There i s no autocorrelation of residues in the constructed model, because the Durbin–Watson

statistics, equal to 1.722 (see the table 4), falls into the interval (𝑑ᵆ; 4−𝑑ᵆ), where 𝑑ᵆ = 1.33 (according
to the table of critical values for the significance level 𝛼 = 0.05).

The absence of auto-correlation of the residuals in combinationwith the condition of independence
of the observational results actually means that the conditions of the Gauss–Markov theorem are
fulfilled, on the basis of which it is true.

Statement 1. Model (1) is a model with minimal variance among all linear models of a fixed level
of significance 𝛼.

Let’s determine the estimate of the variance of the errors of the model (1). To do this, first solve the
question of the normality of the residuals. We will check the normality using the Frosini criterion [24].
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Table 1
Training sample

Number 𝑌 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6
1 1 55.20 55 146 2 1 36.17

2 1 37.85 58 126 8 0 32.50

3 1 25.62 79 153 3 1 9.33

4 2 18.93 74 139 9 0 16.21

5 2 16.38 48 132 0 1 7.17

6 2 14.39 95 143 6 1 12.21

7 2 7.06 31 48 5 0 8.83

8 2 7.03 30 87 0 1 15.83

9 2 6.87 59 105 8 0 17.32

10 2 6.46 33 94 9 1 16.58

11 2 6.04 30 78 0 0 4.83

12 2 5.95 31 66 1 0 23.21

13 3 5.34 26 33 0 1 8.50

14 2 3.69 25 48 0 1 10.51

15 3 3.42 17 34 0 1 10.67

16 3 3.39 13 26 2 0 18.67

17 4 3.20 95 255 9 1 22.37

18 2 3.07 52 100 5 1 25.87

19 4 2.48 110 301 5 0 14.83

20 4 2.42 157 345 0 1 20.17

21 4 2.04 99 282 8 0 16.71

22 4 1.89 135 380 7 1 25.60

23 4 1.76 169 382 2 1 10.50

Table 2
Pearson Pair Correlation Matrix

𝑌 𝑋1 𝑋2 𝑋3
𝑌 1 −0.678 0.588 0.666

𝑋1 −0.678 1 −0.114 −0.141

𝑋2 0.588 −0.114 1 0.959

𝑋3 0.666 −0.141 0.959 1
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Table 3
Coefficients

Model Non-standard Standard error Standard 𝑡 Signific.

Constant 2.237 0.246 9.082 0.000

𝑋1 −0.049 0.009 −0.62 −5.244 0.000

𝑋2 0.012 0.003 0.517 4.377 0.000

Table 4
Summary for the model

Model 𝑅 𝑅2 Adjust. 𝑅2 Standard estim. error Durbin–Watson

1 0.851 0.724 0.697 0.572 1.722

Table 5
Analysis of variance

Model Sum of squar Degr. of freed. Stand. deviat. F Signific.

Regression 17.196 2 8.598 26.283 0.000

Residual 6.543 20 0.327

Total 23.739 22

To do this, you need to calculate the statistics:

𝐵𝑛 =
1
√𝑛

𝑛
∑
𝑖=1

|||𝛷(𝑧𝑖) −
𝑖 − 0.5
𝑛

||| , (2)

where 𝑧𝑖 =
𝑥𝑖 − 𝑥
𝑠 ; 𝑥 = 1

𝑛

𝑛
∑
𝑖=1

𝑥𝑖; 𝑠2 =
1
𝑛

𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑥)2; 𝛷(𝑧𝑖) is the distribution function 𝑁(0, 1).

The results of the calculations are presented in the table 6.
Fixing the significance level 𝛼 = 0.01 and considering that 𝐶cr(0.01) = 0.341 [24], we obtain:

𝐵𝑛 = 0.306 < 𝐶cr(0.01) = 0.341. (3)

Therefore, the residuals are distributed normally.
And finally, considering that the variance estimate 𝜎2 is determined by the formula:

𝜎2 = 1
𝑛 − (𝑝 + 1)

(𝑌 − 𝑌∗)𝑇(𝑌 − 𝑌∗) (4)

and is equal in our case to 0.327 (see the last column of the table 6), we come to the following result.

Statement 2. The model of linear regression of quartiles of scientific conferences, based on the
data presented in the table 1, has the form:

𝑌 = −0.049 ⋅ 𝑋1 + 0.012 ⋅ 𝑋2 + 2.237 + 𝜖, (5)

where 𝜖 is the r.v. having a normal distribution with parameters𝑚 = 0 and 𝜎 = 0.57.
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Table 6
Calculation of 𝐵𝑛 statistics

Num. Y 𝑋1 𝑋2 𝑌∗ 𝑌 − 𝑌∗ 𝐹(𝑍𝑖) 𝐵(𝑖) (𝑌 − 𝑌∗)∗∗2

1 1 25.620 79.000 1.930 −0.930 0.040 0.018 0.864

2 2 3.070 52.000 2.711 −0.711 0.090 0.025 0.505

3 2 14.390 95.000 2.672 −0.672 0.102 0.007 0.451

4 2 6.870 59.000 2.608 −0.608 0.125 0.027 0.370

5 2 3.69 25 2.356 −0.356 0.250 0.054 0.127

6 2 5.95 31 2.317 −0.317 0.274 0.035 0.101

7 2 6.46 33 2.316 −0.316 0.274 0.009 0.100

8 2 6.04 30 2.301 −0.301 0.284 0.042 0.091

9 2 7.06 31 2.263 −0.263 0.309 0.061 0.069

10 2 7.03 30 2.253 −0.253 0.316 0.097 0.064

11 2 18.93 74 2.197 −0.197 0.359 0.097 0.039

12 4 1.76 169 4.179 −0.179 0.370 0.130 0.032

13 1 37.85 58 1.078 −0.078 0.440 0.103 0.006

14 2 16.38 48 2.010 −0.010 0.494 0.093 0.000

15 4 2.42 157 4.002 −0.002 0.500 0.130 0.000

16 4 1.89 135 3.764 0.236 0.670 0.004 0.056

17 4 2.48 110 3.435 0.565 0.857 0.140 0.319

18 4 2.04 99 3.325 0.675 0.898 0.137 0.456

19 3 5.34 26 2.287 0.713 0.910 0.106 0.508

20 3 3.42 17 2.273 0.727 0.915 0.067 0.528

21 3 3.39 13 2.227 0.773 0.928 0.037 0.598

22 4 3.20 95 3.220 0.780 0.929 0.006 0.608

23 1 55.20 55 0.192 0.808 0.936 0.043 0.653

𝑆𝑢𝑚 = 1,467 6,543

𝐵(𝑛) = 0,306 0,327

𝐶cr(0, 01)= 0,341

Further, based on the data for the three “new” conferences, we obtained the predicted values of
their quartiles using the model 1 (see the table 7).
As we can see from the results presented in the table 7, conferences numbered 24 and 25 should

be assigned the 1st and 2nd quartiles, respectively. With conference number 26, the picture is not so
clear, because the predicted value of 𝑌 lies approximately in the middle between numbers 3 and 4,
which suggests that this conference should be assigned the 4th quartile with a probability of 0.55 or
the 3rd quartile with a probability of 0.45.
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Table 7
The results of the calculation of the predicted quartile values

Num. Quartile (forecast. signif-
icant.) 𝑌

Citation 𝑋1 Quantity participants 𝑋2

24 1.0323 38.30 56

25 2.23101 5.51 22

26 3.55425 2.75 121

4. Discriminant analysis

Discriminant analysis is a classification method, the purpose of which is to divide the objects of
observation into classes according to the values of the effective feature, depending on a number of
controlled factors [24]. In our case, the effective feature is the quartile, and the controlled factors are
the citation of the conference materials and the number of its participants. Our further goal is to
classify new conferences using discriminant analysis, the data for which are presented in the table 7,
based on the training sample presented in the table 1. To solve this problem, we still use the SPSS
statistical package.
First of all, we pay attention to the data shown in the table 8. This table shows the results of

checking the significance of differences in the average values of discriminant functions in data groups
corresponding to factors 𝑋1 and 𝑋2 using theWilkes’ Lambda criterion. In our case, the significance
levels for each factor do not exceed 0.05, which proves the existence of discriminating features of
these factors and confirms the possibility of their use for discriminant analysis.

Table 8
The criterion of equality of group averages

Function Wilkes’
Lambda

𝐹 Degr. of free-
dom 1

Degr. of free-
dom 2

Sgn.

𝑋1 0.190 26.972 3 19 0.000

𝑋2 0.232 20.913 3 19 0.000

According to the data presented in the table 9, the first discriminant function takes into account
67.5% of the variance of the effective feature, and the correlation between the training sample data and
the data obtained by the model is 0.918, which is a fairly high indicator. For the second discriminant
function, these indicators are 32.5% and 0.849, respectively. The significance of discriminant functions
was assessed using theWilkes’ Lambda criterion. According to the results presented in the table 10,
the significance of both discriminant functions does not exceed 0.05.

Table 9
Eigenvalues

Function Proper.
value

% of var. ex-
plained

Cumulative % Canonical cor-
rel.

𝑋1 5.378𝑎 67.5 67.5 0.918

𝑋2 2.586𝑎 32.5 100.0 0.849

According to the table 10, we obtain the following expressions for discriminant functions:

𝐷1(𝑋1, 𝑋2) = 0.141 ⋅ 𝑋1 − 0.028 ⋅ 𝑋2 + 0.352, (6)

𝐷2(𝑋1, 𝑋2) = 0.083 ⋅ 𝑋1 + 0.034 ⋅ 𝑋2 − 3.100. (7)
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Table 10
Non-normalized coefficients of canonical discriminant functions

Function 1 2

𝑋1 0.141 0.083

𝑋2 −0.028 0.034

(Constant) 0.352 −3.100

Statement 3. Discriminant functions (6) and (7) are significant at the significance level 𝛼 = 0.01.

Proof. We will evaluate the significance of discriminant functions using the Wilkes’ Lambda
criterion [25], according to which it is necessary to calculate statistics:

𝜒2𝑘(𝑚𝑘) = −(𝑛 − ((𝑝 + 𝑔)/2 − 1) ln𝛬𝑘, 𝑘 = 1, 2,… , (8)

where 𝛬1 =
1

1 + 𝜆1
⋅ 1
1 + 𝜆2

, 𝛬2 =
1

1 + 𝜆2
, 𝑝 = 2 is the number of discriminant features; 𝑔 = 4 is

number of groups𝑚1 = 𝑝 + 𝑔;𝑚2 = 𝑝 is number of degrees of freedom.
The calculation results are presented in the table 11.

Table 11
Lambda –Wilkes Statistics

Function 𝛬𝑘 𝜒2𝑘 𝑚𝑘

1 0.044 59.470 6

2 0.279 24.265 2

It is known [25] that statistics 𝜒2𝑘(𝑚𝑘) have a 𝜒2 distribution with𝑚𝑘 degrees of freedom. Fixing
𝛼 = 0.01 and considering that (1 − 𝛼) are quantiles 𝜒2 are distributions with degrees of freedom
𝑚1 = 6 and𝑚2 = 2 are 16.8 and 9.21, respectively, we arrive at the following result:
1) since 59.470 > 16.8, the hypothesis of the significance of the discriminant function (6) is accepted;
2) since 24.265 > 9.21, the hypothesis of the significance of the discriminant function (7) is accepted.
Thus, the statement is proved. �

The results of the analysis are presented in the table 12. As a result, quartiles 1, 2 and 4 were
assigned to the “new” conferences, respectively. At the same time, quartiles were predicted for
conferences numbered 24 and 26 with probabilities of 1 and 0.996. For conference number 25, the
picture was not so unambiguous. It was predicted the second quartile with a probability of 0.673, or
the 3𝑟𝑑 quartile with a probability of 0.327.
In addition, the quartiles of conferences from the training sample were recalculated. As a re-

sult, conferences with numbers 3, 13, 15 and 16 received new quartile values. The quartiles of the
remaining conferences, amounting to 82.6%, were found to be correct.

5. Neural network

To solve the classification problem, a neural network called a multilayer perceptron is best suited [26].
Typically, a network consists of one input layer, one or more hidden layers, and one output layer.
Each layer consists of several neurons. The neuron processes its inputs and generates one output
value, which is transmitted to the neurons in the subsequent layer. Each neuron in the input layer
represents the values of one predictor from the vector 𝑥 = (𝑥1, 𝑥2). In our case, 𝑥1 and 𝑥2 are the
citation and the number of participants in the scientific conference.
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Table 12
Classification results

Num. Actual group 1st most likely
predicted group

Group proba-
bility

2nd most likely
predicted group

Group proba-
bility

1 1 1 1.000 2 0.000

2 1 1 1.000 2 0.000

3 1 2** 0.524 1 0.473

4 2 2 0.983 3 0.011

5 2 2 0.951 3 0.048

6 2 2 0.828 4 0.166

7 2 2 0.785 3 0.215

8 2 2 0.777 3 0.223

9 2 2 0.927 3 0.069

10 2 2 0.791 3 0.209

11 2 2 0.760 3 0.240

12 2 2 0.767 3 0.233

13 3 2** 0.710 3 0.290

14 2 2 0.667 3 0.333

15 3 2** 0.572 3 0.428

16 3 2** 0.524 3 0.476

17 4 4 0.786 2 0.210

18 2 2 0.868 3 0.128

19 4 4 0.981 2 0.019

20 4 4 1.000 2 0.000

21 4 4 0.905 2 0.094

22 4 4 1.000 2 0.000

23 4 4 1.000 2 0.000

24 not grouped 1 1.000 2 0.000

25 not grouped 2 0.673 3 0.327

26 not grouped 4 0.996 2 0.004

To build the network, we use the “neural networks” section of the SPSS package, in whichwe specify
the quartile of the conference as the dependent variable, and the citation and number of participants
as the covariant, and set the data division into three subsets: training, control and verification in
a ratio of 20 ∶ 3 ∶ 3. We set the network architecture manually, fixing the presence of one hidden
layer with four neurons. We select the sigmoid as the activation function for the hidden and output
layers. Then we select the interactive type of training using the gradient descent method and set
the time and the rule for stopping the learning process. The network parameters are shown in the
figure 1, and its configuration is shown in the figure 3.
In the report presented in the figure 2, we pay attention to the lines “sum of squares error” and

“relative error” in the section “test sample”. The error values turned out to be 0.016 and 0.045. These
values are quite small, which indicates that the neural network is well trained.
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Figure 1. Network Parameters

Figure 2. Summary for the model

The predicted quartile values for both “new” conferences and conferences from the training sample
are contained in the fourth column of the table 13. Note that for “new” conferences, the quartiles
obtained using a neural network coincide with the quartiles obtained using discriminant analysis.
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Table 13
Quartile values

Num. The actual
quartile
value

The value of the
quartile according
to the regression
method

The quartile value
obtained by discrim-
inant analysis

The quartile value
predicted by the
neural network

1 1 1 1 1

2 1 1 1 2*

3 1 2* 2** 2*

4 2 2 2 2

5 2 2 2 2

6 2 3* 2 2

7 2 2 2 2

8 2 2 2 2

9 2 2 2 2

10 2 2 2 2*

11 2 2 2 2*

12 2 2 2 2*

13 3 2* 2** 3

14 2 2 2 2

15 3 3 2** 3

16 3 3 2** 3

17 4 4 4 4

18 2 3* 2 2

19 4 3* 4 4

20 4 4 4 4

21 4 3* 4 4

22 4 4 4 4

23 4 4 4 4

24 1 1 1 1

25 2 2 2 2

26 4 4 4 4

Num. discrep. 6 4 5

of % matches 76.92 84.61 80.77
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Figure 3. Neural Network configuration

6. Conclusion

As a result of the conducted research, we calculated quartiles of scientific conferences using three
different methods. The results of the calculations are shown in the table 13. The quartiles marked
with asterisks do not match those that were put up by rating agencies and which we called actual.

The last row of the table 13 shows the percentage of matches of the actual quantiles and quartiles
calculated using the appropriate method. As we can see, the best indicator is for the discriminant
analysis (4 discrepancies). In second place, with a difference of one conference, is the neural network.
In third place is the linear regression method, which revealed 6 discrepancies.
Funding: The publication has been prepared with the support of the RUDN University Strategic Academic Leadership Program.
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Статистические методы оценки квартилей научных конференций
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Аннотация. В статье представлены результаты оценки квартилей научных конференций, выставлен-
ных ведущими рейтинговыми агентствами. Оценки получены на основе применения трёх методов
многомерного статистического анализа: линейной регрессии, дискриминантного анализа и нейрон-
ных сетей. Для оценки использовалась обучающая выборка, включающая следующие факторы: возраст
и периодичность конференции, количество участников и количество докладов, публикационная актив-
ность организаторов конференции, цитируемость докладов. В результате проведённого исследования
линейная регрессионная модель подтвердила верность выставленных квартилей для 77% конферен-
ций, в то время как методы нейронных сетей и дискриминантного анализа дали близкие результаты,
подтвердив верность выставленных квартилей для 81 и 85% конференций соответственно.
Ключевые слова: оценка квартилей научных конференций, дискриминантный анализ, нейронные сети,
линейная регрессия
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Abstract. This work is the second part of a large bibliographic review of active queue management algorithms of
the Random Early Detection (RED) family, presented in the scientific press from 1993 to 2023. This part provides
data on algorithms published from 2006 to 2015.
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1. Introduction

This work is the second part of the brief bibliographic review of algorithms of the Random Early
Detection (RED) family, compiled according to the dates of publication of scientific works (articles
and conference proceedings) in which the algorithms in question were presented to the public. The
first part was presented in [1].
The authors do not claim that the prepared review includes all existing algorithms, but is the most

complete of those published previously, since it includes bibliographic data on 240 algorithms.
The characteristics of the RED algorithm are the following:
– The algorithm is extremely simple.
– The algorithm is designed to use as few computing resources as possible.
– The main computational complexity comes from calculating the reset (drop) function.
– Due to the use of a moving average in the algorithm, RED handles burst traffic well.
– In TCP/IP networks, the RED algorithm helps eliminate the global synchronization problem. It

occurs when multiple sources operating over the same congested network segment experience
packet loss. As a consequence, these sources simultaneously reduce the speed and then (also
simultaneously) gradually increase it, which leads to new congestion, packet loss and repetition
of the entire procedure. The network state periodically changes from idle to overloaded.

– RED allows to avoid global synchronization by selectively destroying packets from specific
sources.

The mathematical model of RED-type algorithms is quite complex, so it is extremely problematic
to substantiate the influence of different elements of the algorithm on the quality of its work.

The key disadvantage of RED, whichmany experts report, is the lack of a strict algorithm for setting
RED parameters [2]. The RED parameters set:

– thresholds;
– reset (drop) function form;
– buffer size.

Changing some parameters immediately affects others.
Modifications of the RED algorithm consisted, as a rule, either in changing the number and/or

value of thresholds (multiple thresholds to define different functions on different segments may be
used for this purpose), or in changing the type of drop function (a single linear function was replaced
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by several linear or nonlinear ones, or combinations of linear and nonlinear functions, in order to
obtain the behavior as desired under the default configuration), or in replacing the average queue size
�̂� by the current (instant) queue size 𝑞, either in the simultaneous use of the average �̂� and current 𝑞
queue lengths, or in the dynamic change of one or several parameters (threshold values 𝑄min and
𝑄max, maximum drop probability 𝑝max) depending on control parameters (queue size, incoming rate,
rate of queue size change), or in the use of methods of fuzzy logic, Q-learning, neural networks to
determine the optimal algorithm parameter values.
The changes also affected whether the new algorithm was being developed to manage a single

incoming traffic flow or multiple incoming flows with different priorities.
Since quite a lot of similar functions can be specified (withminimal effort), and there is no adequate

mathematical model yet, research to improve RED will continue indefinitely.
The review is structured as follows. Section 2 provides a brief description of the RED algorithm.

Each subsequent section is dedicated to one year, and it presents algorithms of the RED family,
scientific publications (articles in scientific journals, conference proceedings, technical reports, etc.)
on which were presented this year. In Section 13 the authors discussed the results and the future
research directions are highlighted.

2. The classic RED algorithm

In 1993 the classical Random Early detection (RED) algorithm was introduced in [3].
The classic RED algorithm is a queueing discipline with two thresholds (𝑄min and 𝑄max) and a low-

pass filter to calculate the average queue size �̂� [3]:

�̂�𝑘+1 = (1 − 𝑤𝑞)�̂�𝑘 + 𝑤𝑞�̂�𝑘, 𝑘 = 0, 1, 2,… , (1)

where 𝑤𝑞, 0 < 𝑤𝑞 < 1 is a weight coefficient of the exponentially weighted moving-average and
determines the time constant of the low-pass filter. As said in [3] REDmonitors the average queue size
and drops (or marks when used in conjunction with ECN) packets based on statistical probabilities
𝑝(�̂�):

𝑝(�̂�) =
⎧
⎪
⎨
⎪
⎩

0, 0 ⩽ �̂� < 𝑄min,

�̂� − 𝑄𝑚𝑖𝑛
𝑄max − 𝑄min

𝑝max, 𝑄min ⩽ �̂� < 𝑄max,

1, �̂� ⩾ 𝑄max,

(2)

where 𝑝max is the fixed maximum value of drop (marking) probability if the threshold 𝑄max is
overcome.
The principles of RED work:
– RED tracks the average queue size and dropped packets based on statistical probability;
– RED can also use ECNmark tracking;
– if the buffer is almost empty, then all packets are passed through as normal;
– as the queue begins to grow, the probability of packets being dropped also begins to increase;
– when the buffer is completely full, the probability becomes one and all incoming packets are

discarded;
– we can say that when a router’s buffer fullness exceeds some threshold value, the probability of

dropping an incoming packet depends on the extent to which this threshold value is exceeded.
Analysis and criticism of proposed AQM algorithm are presented in the works [2, 4–9].
Suggestions for tuning and optimizing the key parameters of the algorithm are proposed in the

following works [10–21]. The implementation of RED in the Next Generation Passive Optical Network
(NG-PON) was presented in [22].

3. 2006

The State Dependent Random Early Detection (SDRED) algorithm [23] to improve delay and jitter
performances by adjusting such RED parameters the maximum threshold 𝑄max and queue weight 𝑤𝑞
to four different levels according to queue status.
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In [24] the new Active Queue Management algorithm for 3G Radio Network Controllers, called
Time-to-live based RED (TTLRED), was introduced and compared with three other AQMmechanisms:
RED [3], ARED [25] and Packet Discard Prevention Counter (PDPC) [26]. Two version of TTLRED were
given. The first one is TTLRED for incoming packets, where the averaged queue size in the Gentle
RED algorithm [27] was replaced with a packet lifetime and the drop counter was also modified (only
every 𝑁-th packet can be dropped even if the 𝑄max is exceeded. The second version is TTLRED for
buffered packets, where packets were given a random dropping (or marking) time while entering the
PDCP buffer.
In Nonlinear RED (NLRED) algorithm [28] in order to make the packet dropping function more

flexible (packet dropping becomes gentler than RED at light traffic load but more aggressive at heavy
load) it was proposed to replace the linear packet dropping function in RED [3] by a judicially designed
nonlinear quadratic function and the rest of the original RED remained unchanged. The other works
on NLRED are [29], where the optimal 3-rd order polynomial packet dropping function for NLRED in
the presence of self-similar traffic was presented, and [30], where the comparative analysis of NLRED
with other queueing mechanisms was made.

In order to improve the bandwidth fairness of classic RED [3] in [31] the new AQM algorithm called
Bandwidth-Fair RED (BF-RED) was proposed. This algorithm, according to the authors, guarantees
the bandwidth fairness by controlling the throughput of high bandwidth flows to protect the rest of
the traffics when the router tends to be congested. The main idea of BF-RED algorithm is to evaluate
the bandwidth usage by monitoring the queue length and to increase the drop probability for the
high bandwidth flows when the bandwidth of the router is not enough.
In [32] the new AQM algorithm, Hybrid Random Early Detection (HRED), combining the more

effective elements of such algorithms as BLUE [33, 34] and the proportional controller [35] with RED
core by extending RED with a second probability parameter to provide stability under steady load,
was proposed. HREDmaps instantaneous queue length to a drop probability, automatically adjusting
the slope and intercept of the mapping function to account for changes in traffic load and to keep
queue length within the desired operating range.

Themodified version of Adaptive RED [25], namedRefinedAdaptive RED (Re-ARED),was introduced
in [36]. This algorithm rearranges queue size near the specified target queue size.

The another version of Adaptive RED [25] was Stabilized ARED (SARED) algorithm, proposed in [37].
In this algorithm the Exponential Weighted Moving Average (EWMA) of the instantaneous queue size
from ARED was modified by using two different queue weights in order to hold queue stable and
closer to target area.
Pre-estimation RED (PERED) algorithm was proposed in [38] as a new adaptive RED algorithm,

which adjusts the RED parameters based on the previous estimation to gain better performance.
DiffServPERED (versionofRERED forDifferentiated Service (DiffServ) network) adjust theparameters
not only according to the estimation made by PERED, but also based on the priorities of service
subscribers.
In [39] the Queue Variation Adaptive RED (QVARED) algorithm, based on the variation of a queue

per hour in order to be responded to bursty traffic more actively, was presented. This algorithm
enhanced link efficiency and dynamically dropped packets due to have high throughput in case of
bursty traffic.
The novel server-based congestion control algorithm, called SF-RED [40], was designed to provide

inter-server fairness service in a simple and scalable manner by using multiple virtual RED queues,
which are differently parameterized and are maintained in a single physical FIFO (First In First Out)
queue.
The robust two-timescale simultaneous perturbation stochastic approximation algorithm with

deterministic perturbation sequences for optimization of RED parameters was proposed in [41] and
named Optimized RED (O-RED).

4. 2007

Another modification of the ARED algorithm [25], depending on changing the maximum dropping
probability 𝑝max by calculating the dropping probability at every arrival on the basis of a linear
equation that reflects the slope of the drop probability — mean queue length and traffic load
characteristics, was presented in [42]. The variation of the maximum probability in the proposed
algorithm depends on the incoming arrival rate and the current average mean queue length. The
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slope of the curve of the drop probability function is varied according to the variation of incoming
arrival rate.
Adaptive Virtual Queue RED (AVQRED), described in [43, 44], was designed as modification of

VQ-RED (VQRED) [45] for satellite networks. The AVQRED algorithm constructs a virtual queue and
feeds the virtual queue sizes to the RED algorithm instead of feeding the weighted average queue
sizes to it. AVQRED reshapes the incoming traffic according to the desired link utilization, so the RED
parameters 𝑤𝑞 and 𝑝max are no longer in the algorithm because their functionalities are replaced by
the desired link utilization.

In order to provide QoS in a multi-rateWLAN, where the throughput of every wireless node should
be independent of other nodes’transmission cost (defined as the channel usage time), the Temporal
Fair RED (TFRED) algorithm was introduced in [46] to address the congestion, efficiency, and fairness
problems inWLAN (wireless local area network) by setting different drop probabilities for each flow
going through the access point.
Fuzzy control RED (FCRED or FconRED) algorithm [47] was developed to overcome the drawbacks

of the original RED by using a fuzzy controller to adjust the maximum drop probability 𝑝max to
stabilize the average queue length around the target queue length.
The new policy which favors packets with higher distance from source was introduced in [48] and

named as Distance-Dependent RED (DDRED). The idea of DDRED is to eliminate packets having
consumed fewer physical resources and thus coming from sources nearer to the congested router.
By eliminating such packets, retransmission will be faster.
The new algorithm, Stochastic RED (StoRED), based on stochastic fair queuing and classic RED,

was proposed in [49]. StoRED tries to enforce inter-flow fairness by distinguishing the active flows
into a limited number of groups stochastically based on the bandwidth share obtained by flows. The
algorithm tunes the packet dropping probability in such a way that the packets of the flowwith higher
transmission rate will more likely be dropped than flows with lower rate. For unresponsive flows
(UDP flows) the modification of StoRED, named StoRED+, was given.
The modification of Adaptive RED (ARED) [25, 50], based on the multiplicative-increase

multiplicative-decrease (MIMD) approach instead of additive-increasemultiplicative-decrease (AIMD)
policy and therefore named MIMD ARED, was described in [51].
In [52] the new RED algorithm named Preferential Dynamic Threshold RED (PDT-RED) and its

optimized version OPDT-RED were proposed. These algorithms dynamically adjusted values of 𝑄min
and 𝑄max thresholds by taking into account packets priority (all incoming packets are divided into
several types with assigned priorities, packets with higher priority are dropped (marked) with a lower
probability) and unused buffer space.
The idea of using neural networks for early congestion prediction (a prediction tool to determine

the future values of the queue size (based on current and previous values of the queue length) and
the necessity of packets to be dropped (marked) if the predicted queue size goes beyond the targeted
value) is at the heart of the Neural Networks RED (NN-RED) algorithm [53].

The Dual RED algorithm for active congestion control specific for the handover trafficwas proposed
in [54]. The proposed mechanism is called Dual RED, because when the handover is finished the
original RED (oRED) is used unchanged and an addon RED (aRED) is only used temporarily during
a handover to handle the handed-over traffic. The structure of Dual RED in some way is similar to
RIO [55].
In [56] the novel method using stochastic learning automata and thus named Learning automata

RED (LARED) was introduced. In LARED the RED thresholds 𝑄min and 𝑄max in order to guarantee the
target value of the delay are dynamically adjusted.

In [57] the authors put forward a fuzzy self-tuning PD-RED algorithm that uses a fuzzy controller to
regulate the Proportional Derivative (PD) controller’s parameters in real-time, which allows to gain
rapid response and keep the queue length within the target values.

5. 2008

The linear model of Gentle RED (GRED) [27], named GRED Linear, was presented in [58]. The discrete-
time queuing model of GRED algorithm was constructed and analyzed the performance of a single
queue node. It was proposed to decreases linearly the packet arrival probability value in order to
control congestion. The comparison of GRED Linear with other versions of RED algorithm was
conducted in [59].
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The improved RED algorithm named Enhanced RED (ERED,EnRED) based on congestion detection
and congestion avoidance was introduced in [60]. In order to adapt RED parameters to the dynamic
changes of network in the practical application it was proposed to combine the current queue length
𝑄 and the average queue length �̂� to a single parameter �̂� by using the weight 𝑤𝑞.
In [61] it was proposed to use a fuzzy logic (FL) controller technique based on the traditional RED

algorithm to discover the congested router buffer as soon as the congestion occurs in the network.
The new algorithm was named as Fuzzy-logic Controller-based RED (FConRED). This algorithm uses
the average queue length and the packet loss rate as input linguistic variables and produces the packet
dropping probability as a single output linguistic variable.
The new version of Modified RED (MRED) [62], named Progressive RED (PRED), was introduced

in [63]. PRED not only adopts the instantaneous queue size to adjust the threshold 𝑄max dynamically
to make adaptive response toward the instantaneous network condition, but also regulates the
packet dropping probability non-linearly and progressively to adapt to various network conditions by
comparing the instantaneous queue size with the progressive maximum queue threshold parameters.
The Kohonen-RED (KRED) algorithm, based on Kohonen neural network model, was described

in [64]. It was proposed to compute the value of 𝑝max parameter by using a Kohonen neural network.
In [65] two multiple RED routers algorithms of congestion control for two layers’ network were

suggested. The first algorithm — fair AQM algorithm, which extends the classic RED algorithm to
edge routers and core routers, implements fair link capacities of edge routers. The second algorithm
(more precisely, two versions of the algorithm) — unequal AQM algorithm tries to control the link
capacities for the accessed edge routers and implements unequal link capacities of edge routers, but
requires the core routers to have multi-queues buffers. Two versions of unequal AQM algorithm for
the core router are considered: if the number of queues equals that of accessing edge routers and if
the number of queues is far smaller than that of accessing edge routers.

In [66] the Autonomous RED (AURED) algorithm allowing a complete autonomous 𝑝max adjustment
process by tuning the packet drop probability according to the performance variation between two
consecutive sampling periods was proposed.

6. 2009

Two new version of classic RED— Barrier optimized RED (B-RED) and Penalty optimized RED (P-RED)
were introduced in [67] as obtained by barrier (Barrier optimized RED) and the penalty (Penalty
optimized RED) function approaches solutions to probabilistic constrained optimization problem
by assuming a nonlinear relationship between the RED average queue length and its parameters as
the variables of the optimization problem. The proof of convergence of proposed B-RED and P-RED
algorithms to RED was given in [68].
In [69] the new active queue management algorithm, Effective RED (ERED), was presented. The

aim of ERED was to reduce packet loss rates in a simple and scalable manner by changing 𝑄min and
𝑄max thresholds and by controlling instantaneous queue size 𝑄 together with average queue size �̂�.
Also it was proposed to control average queue size �̂� when connections immediately reduce their
sending rate in the case of no congestion. The performance evaluation and comparison of ERED
with some other Active Queue Management algorithms was presented in [70].

The idea of using hazard rate function for estimation of RED packet drop probabilities was proposed
in [71] and the new algorithm was named Hazard rate estimated RED (HERED). The usage of hazard
rate function for a packet dropping function allows to make packet dropping gentler at light traffic
load but more aggressive at heavy load.
The Priority Self-adaptive RED (PSRED) algorithm designed for Ad hoc networks with flows with

different priorities was introduced in [72, 73]. The aim of the algorithm is to establish a balance
between the queue length and the packet loss probability by self-adapting the values of 𝑝max.
The mechanism for RED parameters (thresholds 𝑄min and 𝑄max, maximum drop probability 𝑝max

and queue weight 𝑤𝑞) simple, scalable and systematic tuning in response to changing network
conditions (traffic load, link capacity and round-trip time), named as Auto-Parameterization RED
(APRED), was proposed in [74]. This algorithm based on nonlinear dynamic model of TCP behavior
which was developed by using fluid-flow and stochastic differential equation analysis.
The packet dropping algorithm, based on a self-tuning proportional and Integral feedback

controller, which considers not only the average queue length at the current time point, but also
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the past queue lengths during a round-trip time to smooth the impact caused by short-lived traffic
dynamics, was introduced in [75] and named Self-tuning Proportional and Integral RED (SPI-RED).

Themodified version of RED algorithm [3], calledMulti RED (MRED), which was proposed in [76] as
an effective way to reduce packet loss rates in the internet by computing the packet drop probability
based on described heuristic method and enabling bandwidth allocation over a single link to different
types of traffics.
The enhanced version of classic RED, named Light-weight Flow information RED (LwFRED), was

designed in [77] for improving the fairness of RED aided by light-weight flow information. The basic
idea of LwFRED was to classify flows into groups (like in [49] but in a different way) and adjust the
dropping probability of each group according to its behavior.
The robust AQM algorithm for wireless Ad hoc networks was proposed in [78] and named Adhoc

Hazard RED (AHRED). In order to prevent congestion which behaves rapidly according to the density
of traffic load the described algorithm uses a packet drop probability function based on Weibull
model of a hazard rate function (the conditional probability that a system will fail instantaneously
some time alter time 𝑡 given that it has survived up to time 𝑡).

7. 2010

In [79] the new version of RED algorithmmechanism for congestion avoidance in wired networks
based on a learning-automata-like (LAL) philosophy and therefore named learning-automata-like
RED (LALRED) was introduced. The main aim of LALRED was to optimize the value of the average
queue size used as a control parameter for congestion avoidance and to consequently reduce the total
loss of packets at the queue. It was achieved by stationing a LAL algorithm at the gateways and by
discretizing the drop probabilities. The application of LALRED for optical networks was presented
in [80].
The Fuzzy Q-learning RED (FQL-RED) algorithm based on Adaptive RED (ARED) [25] and Fuzzy

RED [81, 82] was proposed in [83]. This algorithm uses a Q-learning method enhanced with a fuzzy
inference system in order to ensure RED with self-adaptation and improved performance.

In [84] the novel autonomous Proportional andDifferential REDalgorithm (NPD-RED)was proposed
as an extension of RED for the TCP/RED dynamic time-delayed model in wired network and
wired–wireless network routers. NPD-RED is based on a self-tuning feedback proportional and
differential controller, which not only considers the instantaneous queue length at the current time
point, but also takes into consideration the ratio of the current differential error signal to the buffer
size. Also the new probability packet dropping function, based on changes in the instantaneous
queue and the differential in queue length, is introduced.

The novel version of RIO-C (RED with In/Out and Couple queue) [85], named RIO Based On Priority
and Fair (PFRIO), was presented in [86]. The main change was made in the calculation of average
queue length in RIO-C algorithm to decrease the influence of the number of low drop-precedence
packet on high drop precedence packet by introducing the new parameter, whichmakes the influence
change dynamically in accordance to the number of packets.

In [87] the a discrete-time dynamical model of TCP and UDP congestion control at the hosts coupled
with RED active queuemanagement at the routers, named TCP-UDP-RED, for controlling bifurcations
and chaos in the internet congestion control system for Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) network was proposed.
The Robust RED (RRED) algorithm to improve the TCP throughput against Low-rate Denial-of-

Service (LDoS) attacks was presented in [88]. The basic idea behind the RRED was to detect and filter
out attack packets (by using the proposed new detection algorithm) before a normal RED algorithm
was applied to incoming flows.

The new active queue management algorithm for Assured Forwarding (AF) services guaranteeing
minimum bandwidth provided based on RIO algorithm [55] andWeighted Fair Queuing (WFQ) was
introduced in [89]. In the proposed scheme, the control functions for RIO andWFQ are enhanced
under the assumption that they are used for input (RIO) and output (WFQ) queue management.
In [90] the novel algorithm called RIO based on Fractional Exponent Coupling (RIO-FEC), based on

RIO-C ((RED with In/Out and Coupled queue)) and RIO-D (RED with In/Out and Decoupled queues)
algorithms [85] was proposed. The novelty of RIO-FEC lies with the fact that a controllable scheme
for determining the coupling level among virtual queues was introduced by expressing the coupling
level as a polynomial function with a fractional exponent as the power of the polynomial.
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8. 2011

The new modification of the ARED algorithm [25] was introduced in the [91] and named Self-tuning
RED (St-RED). In the proposed algorithm the appropriate value of the parameter 𝑝max was dynamically
obtained based on history information of both 𝑝max and the average queue size in a some period
of time. Also the parameter 𝑤𝑞 was properly chosen according to a linear stability condition of the
average queue length.
The modified version of RIO-C [85] algorithm with only change in calculation of average queue

length was proposed in [92] and namedWeighted-queue-length RIO-C (WRIO).WRIO realizes relative
discrimination of different drop precedence, and improves link utilization, especially for the networks
with TCP traffics.
The improved RED algorithm with sinusoidal packet-marking probability and dynamic weight

(SW-RED) was introduced in [93]. The proposed algorithm dynamically adjusts the average queue
weight and packet drop probability, making it smaller when approaching to 𝑄min, and greater when
close to 𝑄max.
Another version of the ARED algorithm [25], New Adaptive RED (NARED), was presented in [94].

In NARED the packet drop probability function is nonlinear smoothed by using the membership
function of the ascend demi-cauchy of fuzzy distribution in order to make the speed of growth of
packet loss rate relatively slow near 𝑄min threshold and relatively faster near the 𝑄max threshold. Also
for adapting to the changes of network environment the parameter 𝑝max is dynamically adjusted by
the length of average queue.
In [95] the new approach to modify ARED algorithm [25] in order to maintain the instantaneous

queue length in the buffer and estimate the packet dropping probability was developed. The proposed
algorithm named as Hazard rate based Heuristic ARED (HHA) because the original ARED packet
drop function was extended by using the random probabilityWeibull distribution with a non-linear
hazard rate (instantaneous failure rate) function.
In [96] the hop-to-hop controlled hierarchical multicast congestion control mechanism combining

RED [3] (the ability to keep low delay while pursuit larger throughput, but also the strong sensitivity
to parameters) and hop-to-hop (HTH) algorithm (the ability to rapidly respond to congestion and
effectively improve throughput as well as utilization of link, but the need to use too much router
resources in case of many streams) was introduced and analyzed.
TheWeighted RED (WTRED) algorithm for congestion handling in TCP networks and increasing

network performance by dynamically adjusting RED’s maximum threshold, minimum threshold and
weight parameters (based on the actual buffer size) was proposed in [97].

The novel adaptive version of Gentle RED (GRED) [27] was proposed in [98] and named Adaptive
GRED (AGRED). Adaptive GRED detects congestion at router buffers in an preliminary stage, and
enhances the parameters setting of the 𝑄max threshold and the probability 𝑝max. The performance
analysis of AGRED and comparison with RED [3] and (GRED) [27] was conducted in [99], the
comparison with GRED-Linear [58] was made in [59].

In order to deal with RED such problems as sensitivity to traffic load and parameters configuration
and the variety of the equilibrium queue length because of congestion degree and parameter settings
the improved RED (named IRED) algorithm was presented in [100]. The proposed algorithm uses
auto-tuning proportional integral (PI) probability as an adaptation mechanism designed to adjust the
maximum packet drop probability 𝑝max for stable average queue length.
The modification of GRED [27] and NLRED [28] was proposed in [101] and named Modified RED

(MRED). It is quite similar to GRED except that the linear packet dropping function was replaced by
a nonlinear (quadratic) function as in NLRED algorithm.

9. 2012

The new per user AQM policy designed for blind network optimization, named the User Random
Early Drop (URED) algorithm, which is a modification of the Flow RED (FRED) [102] and enforces fair
resource allocation among users (tunnels), was introduced and evaluated in [103].

TheModified RandomEarly Detection (ModRED) algorithmwas presented in [104]. It was proposed
to restrict the TCP transmission window with the flow control window instead of the congestion
control window, thus controlling the transmission window with a finer granularity.

For the purpose of countering slow start that causes rapid increase in load of the bottleneck router,
the Harsh RED (HRED) algorithm was proposed in [105]. By taking advantage of well-defined TCP
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slowstart behavior, the HRED queue average was made to cross HREDminimum threshold 𝑄min on
a timely manner in order to start “a count-down” for actual HRED dropping by setting the HRED
parameters 𝑤𝑞 and 𝑝max to a very large value compared with the recommended values for RED [3].
The evaluation and comparison of HRED with other AQM algorithms was conducted in [106].

The novel algorithm to achieve bandwidth fairness of RED with packet size consideration, named
Bandwidth fair considering packet size RED (BF-PS-RED) as modification of BF-RED algorithm [31],
was proposed in [107]. BF-PS-RED gathers packet size information (in order to the compensate
unfairness resulted from the packet size difference ) and uses it for adjusting the maximum drop
probability 𝑝max of a high throughput flow together with drop-weight.
The modification of Refined Adaptive RED (Re-ARED) [36] algorithm, named Fast Adapting RED

(FARED), was presented in [108]. This algorithm efficiently varies the maximum drop probability
𝑝max to improve the overall performance of the network/ FARED algorithm retains the target range as
specified in Re-ARED algorithm [36] but modifies the upper bound and lower bound for parameters 𝛼
and 𝛽 respectively.
The modification of ARED [25] and Re-ARED [36] algorithms, named Cautious Adaptive Random

Early Detection (CARED) algorithm that dynamically varies maximum drop probability 𝑝max either
conservatively or aggressively based on the level of traffic load to improve the overall performance of
the network, was proposed in [109]. The detailed study of the proposed CARED algorithm was carried
out in [110].

10. 2013

The new version of RED algorithm, named Velocity RED (VRED) and based on using the queue length
growth velocity in order to measure the congestion level in router, was introduced in [111]. VRED
triggers the drop probability according to proposed metric. The usage of the queue length growth
velocity, according to the authors, leads to fast reaction and hence improves the network performance
because the packet dropping becomes gentler at light traffic load but more aggressive at heavy traffic.

In [112] thenovel RED-based active queuemanagement algorithm, calledFull InformationFeedback
RED (FIF-RED). This algorithm for packet drop probability function not only considers the average
queue length �̂� but also takes into account the growth rate of the instantaneous queue length.
The new version of RED algorithm, based on ideas of Robust RED [88] and designed to defend

against DoS attacks by using the flows trust values for identification and dropping ofmalicious packets,
was introduced in [113] and named as RED with Flow Trust (RED-FT).
The new AQM algorithm, with minimal changes to the classic RED algorithm, for providing the

effective solution to avoid congestion collapse of network services by introducing new threshold
𝑈𝑡ℎ (Upper Threshold) and for better use of buffer space, was presented in [114] and named Upper
threshold RED (URED).
The newmodification of Gentle RED (GRED) [27] algorithm, designed or early stage congestion

detection at the router buffer and named Dynamic Gentle Random Early Detection (DGRED), was
introduced in [115]. The proposed DGRED algorithm depends on the stability of the average queue
length at a specific level between 𝑄min and dynamically changing 𝑄max thresholds values. Also the
dynamical threshold 2𝑄max is introduced. The simulation based performance evaluation of DGRED
and comparison with several Active Queue Management algorithms for computer network was
conducted in [116].
In [117] the packet correlated RED (PCRED) algorithm was proposed in order to forward the video

packets in an efficient way by properly utilizing the unused bits of the differential service (DS) field of
the IP header and providing some heuristic information for packet early discarding.
The version of RED algorithm with two nonlinear quadratic drop probability functions instead of

a single linear function was introduced in [118].
The new robust RED algorithm, based on ideas of ARED [25], NLRED [28] and Re-ARED [36]

algorithms and named Adaptive Nonlinear RED (ANLRED), was presented in [119]. This algorithm
minimizes the parameter sensitivity of RED by making minimal algorithmic modifications without
introducing some new parameters for better performance. ANLRED varies 𝑝max adaptively based on
the change in average queue length �̂�.
The new version of RED, named Modified RED (MDRED), was introduced in [120]. In the proposed

algorithm the queue between minimum threshold 𝑄min and maximum threshold 𝑄max was virtually
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divided into smaller subparts and calculation of packet drop probability was based on the average
queue size �̂�.

11. 2014

The extension of Gentle RED (GRED) algorithm [27], depending on a fuzzy logic systemwhich reduces
the large dependency on parameter settings, was proposed in [121] and named Fuzzy Logic Controller
of Gentle Random Early Detection (GREDFL). The proposed algorithm uses the average queue length
and the delay rate as input linguistic variables for a fuzzy logic system. The utilized fuzzy logic system
produces a single output that represents a packet dropping probability, which in turn control and
prevent congestion in early stage.
The new technique for network congestion avoidance and control, based on Balanced RED

algorithm (BRED) [122, 123], was presented in [124] and named Neural Network Dynamic Balanced
RED (NN-DBRED) because of using time delay line neural network as system’s core to detect and
separate adaptive and non-adaptive flows and also limit receive rate from them, to provide fairness
between flows and avoid occurring congestion and buffer overflow.
The new enhanced algorithm, based on URED [114], was proposed in [125] to reduce parameter

sensitivity and to improve the network performance in a congested networks by introducing a new
threshold (the upper threshold) for better use of buffer space and to queue more packets which
reduces packet drops. This algorithm was named Upper Threshold RED (UT-RED).
In [126] the Modified Gaussian Function based RED (MGF-RED) algorithm was introduced. The

Modified Gaussian function was used for calculating the likelihood of packet drop as the average
queue length increases the minimum threshold.
The new version of classic RED algorithm [3] with a modified weighted moving average ased on

a difference equation (a recursive equation) was proposed in [127]. It was shown that Depending on
a particular optimality criterion, the proper values of the modified weightedmoving average function
can be chosen.

Themodification of REDwith new congestionmetric (to forecast when the queuewill be overloaded
and to use for dynamically setting of REDparameters) based on the rate ofwhich the queue is occupied,
was considered in [128] and named QRTRED.
Two versions (Modified1 and Modified2) of Modified RED for stabilized queue (MRED-QS) were

presented in [129]. In both versions the probability drop function was changed from linear to non-
linear: logarithmic function for Modified1 version and exponential function for Modified2 version.

The newRED algorithm, named RandomEarly Dynamic Detection (REDD), was proposed in [130] in
order to identify and control congestion and to enhance RED’s performance in regards tomean queue
length and packets waiting time. In the REDD the maximum threshold 𝑄max position is adaptively
changed depending of values of average queue length �̂�. The comparison of REDD with Adaptive
GRED (AGRED) [98] and GRED-Linear [58] was conducted in [59].
In order to provide better congestion control over the network while maintaining the advantage of

RED the new algorithm called Enhanced Random Early Detection (ENRED) was proposed in [131].
The algorithm depends on enhancement of the average queue size on a way that limits queue size to
minimize the delay and packet loss rate as compared to RED queue by introducing the new parameter
— target queue (the difference between the current queue size and the average of the maximum
threshold 𝑄max and minimum threshold 𝑄min).

In [132] the new RED-based AQM algorithmwith modified probability drop function was presented,
it was named Curvilinear Random Early Detection (CLRED). Instead of RED single linear function the
two-segment (a quadratic and a linear) dropping function was proposed.

As the modification of the RIO-C algorithm [85] the Improved nonlinear RIO-C (INRIO-C) algorithm
was proposed in [133]. This algorithm takes nonlinear characteristics between the average length of
the queue and packets loss probability into consideration, and proposes piecewise smooth discarding
functions. The algorithm adopts coupled approach to calculate the virtual queue, and sets priorities
for different discarding threshold.
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12. 2015

The new version of RED with better fairness in dropping packets, promoting the real-time data
transfers by considering the initial occupancy of queue and frame admission control based on this
information, was considered in [134] and called fairRED.

Themodified version of LALRED algorithm [79], based on the concept of a Learning Automata-Like
(LAL) mechanism, was introduced in [135] and named Efficient LALRED (ELALRED). ELALRED
algorithm was designed for congestion avoidance in wired networks by optimizing the value of the
average queue size �̂�.
The version of RED algorithm less biased against the User Datagram Protocol (UDP) packets was

proposed in [136]. It was found out by authors that modification of the maximum threshold 𝑄max and
the final drop probability gives a considerable reduction in the UDP packet drop for a relatively lesser
reduce in the TCP throughput.
The modified version of the Fair RED (FRED) algorithm [137], named Enhancement Fair RED

(EFRED), was proposed in [138]. In EFRED the FRED probability drop function was modified and
replaced by the hazard rate function.

The new version of RED with nonlinear cubic probability drop function was presented in [139] and
named as Adaptive Sigmoid RED (ASRED).
The modified version of Cautious Adaptive RED (CARED) algorithm [109], designed for

Heterogeneous network and based on fuzzy logic ideas, was developed in [140] and called as Fuzzy
Cautious Adaptive RED (Fuzzy–CARED). In this algorithm the value of maximum drop probability
𝑝max is cautiously increased and decreased based on current traffic load after detecting congestion in
the network.

13. Conclusions

The presented bibliographical chronological review of active control algorithms of the RED family is
the most complete both in terms of the number of algorithms reviewed (more than two hundred)
and in terms of the number of scientific publications analyzed and presented. This review will be
useful to researchers in the field of the congestion control.
Active queue management algorithms of the RED family are not something new for the authors of

this work, as evidenced by the publications presented below [141–149].
In the future, the authors plan not only to classify the considered algorithms based on the

classification criteria presented in [141, 150, 151], but also to review and classify other active queue
management algorithms.
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Abstract. In this paper, we study the effect of using theMetropolis–Hastings algorithm for sampling the integrand
on the accuracy of calculating the value of the integral with the use of shallow neural network. In addition,
a hybrid method for sampling the integrand is proposed, in which part of the training sample is generated by
applying the Metropolis–Hastings algorithm, and the other part includes points of a uniform grid. Numerical
experiments show that when integrating in high-dimensional domains, sampling of integrands both by the
Metropolis–Hastings algorithm and by a hybrid method is more efficient with respect to the use of a uniform
grid.

Key words and phrases: Shallow Neural Network, Numerical Integration, Metropolis–Hastings Algorithm

1. Introduction

In the recent study [1], an algorithm for numerical integration was proposed based on the use of
a neural network with one hidden layer. In this approach, the neural network approximates the
integrand function within a bounded region that includes the integration domain. A training the
neural network may certainly require a significant amount of time and computational resources.
However, when the training is completed, the neural network architecture allows for the analytical
integration of the approximated integrand. Furthermore, the integral of the neural network’s function
can be computed in any other subregion without the need for retraining. Thus, the neural network
integration approach is efficient for tasks where it is necessary to repeatedly calculate the integral of
the same function in different regions.
The neural network training is the main challenge of an integrand approximation. During

supervised learning training data plays a significant role, and consequently an approach to their
sampling. In the paper [1], a uniform grid-based discretization of the domain was used as the function
sampling method. However, this approach is inefficient for integrands with significant variations in
certain subregions.
In this article, the impact of using the Metropolis–Hastings algorithm for shape-based sampling of

an integrand on the integration accuracy is considered. A hybrid approach for forming the training
dataset is proposed, in which a portion of the training dataset (with a relative volume fraction denoted
as 𝜌) is generated using the Metropolis–Hastings algorithm, while the other part includes nodes of
a uniform grid.
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2. The neural networkmethod of approximate integration

In many areas of science and engineering there is a need for approximate calculation of an integral
for a given continuous real function 𝑓 ∶ ℝ𝑛 → ℝ over a region 𝑆

𝐼[𝑓] = ∫
𝑆
𝑓(x)𝑑x. (1)

According to the universal approximation theorem [2] and Theorem 2 in [1], any function 𝑓(x)
as defined above can be approximated arbitrarily accurately using a shallow (single hidden layer)
neural network 𝑓(x) with a logistic sigmoid activation function (3). This network can be analytically
integrated within a bounded convex region 𝑆.
The mathematical expression for such a neural network can be represented by the formula:

𝑓(x) = 𝑏(2) +W𝑇
2𝜎(b(1) +W1x) = 𝑏(2) +

𝑘
∑
𝑗=1

𝑤(2)
𝑗 𝜎 (𝑏(1)𝑗 +

𝑛
∑
𝑖=1

𝑤(1)
𝑖𝑗 𝑥𝑖) , (2)

where:

– W1 andW2 areweightmatrices for the first and second layers of the neural network, respectively;
– b(1) and 𝑏(2) are the bias vectors for the first and second layers of the neural network, respectively;
– x is an 𝑛-dimensional vector of input values for the function 𝑓;
– 𝜎 is the logistic sigmoid function:

𝜎(𝑧) = 1
1 + 𝑒−𝑧 . (3)

The logistic sigmoid function and its antiderivatives are expressed in terms of polylogarithmic
functions Li𝑚 of different orders𝑚: Li0:

Li0(𝑧) = − 1
1 − 𝑧−1 . (4)

In particular, the sigmoid function itself is expressed in terms of the zeroth-order polylogarithm

𝜎(𝑧) = 1
1 + 𝑒−𝑧 = −Li0(−𝑒𝑧). (5)

Note that the representation of each subsequent antiderivative 𝜎(𝑧) increases the order of the
polylogarithm by one. This representation of the sigmoid function allows us to integrate 𝑓(x) in
accordance with Theorem 2 from [1].
The integration region 𝑆 can be extended to ̃𝑆 such that 𝑆 ⊆ ̃𝑆 and 𝑓(x) = 0 for x ∈ ̃𝑆 ∖ 𝑆. ̃𝑆 is an

𝑛-dimensional hyperrectangle in ℝ𝑛, specifically ̃𝑆 = [𝛼1, 𝛽1] × [𝛼2, 𝛽2] ×⋯ × [𝛼𝑛, 𝛽𝑛].
Thus, expression for the neural network integral ̂𝐼(𝑓, 𝜶, 𝜷) is defined as:

̂𝐼(𝑓, 𝜶, 𝜷) = 𝐼[𝑓] = 𝑏2
𝑛
∏
𝑖=1

(𝛽𝑖 − 𝛼𝑖) +
𝑘
∑
𝑗=1

𝑤(2)
𝑗 [

𝑛
∏
𝑖=1

(𝛽𝑖 − 𝛼𝑖) +
𝛷𝑗

∏𝑛
𝑖=1𝑤

(1)
𝑖𝑗

] , (6)

where 𝛷𝑗 is defined as:

𝛷𝑗 =
2𝑛

∑
𝑟=1

𝜉𝑟Li𝑛 (− exp [−𝑏(1)𝑗 −
𝑛
∑
𝑖=1

𝑤(1)
𝑖𝑗 ℓ𝑖,𝑟]) . (7)

Here, 𝜉𝑟 is the sign in front of the 𝑟-th term of the sigmoid integration, and ℓ𝑖,𝑟 represents the
corresponding integration limit for the 𝑖-th dimension. These limits are defined by:

𝜉𝑟 =
𝑛
∏
𝑑=1

(−1)⌊𝑟/2𝑛−𝑑⌋, (8)
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ℓ𝑖,𝑟 = {
𝛼𝑖, if ⌊𝑟/2𝑛−𝑖⌋ is even,
𝛽𝑖, otherwise.

(9)

It is worth noting that an alternative to polylogarithmic functions can be the Fermi–Dirac integral:

𝐹𝑛x =
1

𝛤(𝑛 + 1)
∫

∞

0

𝑡𝑛
𝑒𝑡−𝑥 + 1𝑑𝑡, (10)

which is related to the polylogarithm as:

𝐹𝑛x = −Li𝑛+1(−𝑒𝑥). (11)

Then the function (7) takes on a new form:

𝛷𝑗 =
2𝑛

∑
𝑟=1

−𝜉𝑟𝐹𝑛−1 (−𝑏
(1)
𝑗 −

𝑛
∑
𝑖=1

𝑤(1)
𝑖𝑗 ℓ𝑖,𝑟) . (12)

This alternative representation can be useful when the weight coefficients 𝑤(1)
𝑖𝑗 and biases 𝑏(1)𝑗

acquire large values due to training, causing potential data type overflow issues. However, the
effectiveness of this depends on the specific implementation of the Fermi–Dirac integral calculation.

3. Sampling of integrand

The main difficulty of the considered integration approach lies in the neural network training that
approximates the integrand. In other words, the main problem is to calculate the weight matrices
W1,W2, and biases b(1), 𝑏(2) to achieve the minimum value of the objective function. A successful
solution to a supervised learning problem depends on several factors, the most important one is the
generation of a training dataset.
The training set, denoted as 𝐷 = {(x, 𝑓(x)) | x ∈ 𝑆𝑁 ⊂ ̃𝑆} (where 𝑆𝑁 is an 𝑁-element finite subset of
̃𝑆), includes the argument vector x and the corresponding function values 𝑓(x). In other words, the

training set results from sampling the integrand.
In [1], a uniform grid of nodes is used as the training dataset, which leads to insufficiently accurate

approximation for families of integrands with sharp value changes in certain subregions, hence
resulting in unsatisfactory integration results. In particular, there would be insufficient learning
points in regions where the shape of the function is drastically sharp for instance for functions with
explicitly pronounced peaks. This case is illustrated in the figure 1b.
In this research, a hybrid approach is proposed for forming the training dataset, where a part of

the training data 𝐷𝑀𝐻 is generated using the Metropolis–Hastings algorithm [3] and [4], which allows
sampling any probability distribution function. Another part of the dataset 𝐷𝑈𝐺 consists of nodes
from a uniform grid. As a result both data sets united to the final training set 𝐷 = 𝐷𝑀𝐻 ∪ 𝐷𝑈𝐺.
The Metropolis–Hastings algorithm is based on constructing a converging Markov chain, where

each iteration involves generating a new random point x from an auxiliary distribution, followed by
decidingwhether to accept or reject this point, using information about the value of the integrand𝑓(x).
Applying such an approach to functions with a narrow and high peak will increase the point density
in areas where the function value increases, thereby improving both the integrand approximation
and integration accuracy. Examples of point generation using the hybrid method and the Metropolis–
Hastings algorithm are shown in figures 1d and 1c, respectively.
The main challenge in applying the Metropolis–Hastings algorithm lies in the absence of

a universally efficient approach to determine the algorithm’s parameters. Additionally, it is necessary
to establish the number of points to generate using the Metropolis–Hastings algorithm relative to the
total number of points for effective integrand approximation. This paper empirically investigates
the impact of parameter determination and the proportion of points generated by the Metropolis–
Hastings algorithm on the integration results.
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(a) An example of a corner peak function
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(b) Example of uniform grid sampling
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(c) Example of sampling using the Metropolis–Hastings
algorithm
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(d) Example of hybrid sampling at 𝜌 = 0.5
(“50 to 50”)

Figure 1. Different ways to sample a function with a clearly defined peak with fixed parameters 𝑐1 = 0.0146162197 and
𝑐2 = 299.985384

4. Implementation and testing

4.1. Implementation

The implementation of the approach was carried out in the Python programming language within the
ML/DL ecosystem in the computational component called jhub2 [5] using the Keras [6] and mpmath
[7] Python libraries.
The number of neurons in the hidden layer of the network was determined according to the

expression:

𝑘 = ⌊(log10(𝑁))
−𝐾1 𝐾2𝑁

(𝑛 + 2)⌋
, (13)

where 𝐾1 = 4.33 and 𝐾2 = 16 [1], 𝑁 is the number of elements in the sample.
The mean squared error (MSE) was used as the objective function:

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑
𝑖=1

(𝑓𝑖 − ̂𝑓𝑖)
2
. (14)
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The neural network was trained using the Levenberg–Marquardt backpropagation algorithm [8],
[9] for 5000 epochs. The Levenberg–Marquardt method is one of the fastest and has high convergence
for small-sized neural networks [10]. For the neural network training 90% of the total number of
points 𝐷 were used, with the remaining 10% used for validation.

The inputs and outputs of the neural network were transformed into the range [𝑑min, 𝑑max] through
Min-Max normalization [11]. After the training process, based on the obtained weight coefficientsW1,
W2, and biases b(1), 𝑏(2) related to the normalized function 𝑓′, the integral is calculated according to
formula (6). The integration limits 𝜶 and 𝜷must be scaled to 𝜶′ and 𝜷′ according to the transformation
of the neural network arguments. Then, according to formula (6), a scaled value of the integral
̂𝐼(𝑓′, 𝜶′, 𝜷′) is obtained. To obtain the integral ̂𝐼(𝑓, 𝜶, 𝜷), it is necessary to rescale ̂𝐼(𝑓′, 𝜶′, 𝜷′) according
to the expression:

̂𝐼(𝑓, 𝜶, 𝜷) =
𝑉( ̃𝑆)(𝑓max − 𝑓min)
𝑉(𝑆′)(𝑑max − 𝑑min)

̂𝐼(𝑓′, 𝜶′, 𝜷′) + (𝑓min −
𝑓max − 𝑓min
𝑑max − 𝑑min

𝑑min)𝑉( ̃𝑆).

Here 𝑓max and 𝑓min are the maximum and minimum values of the function in the training set
𝐷, and 𝑉( ̃𝑆) and 𝑉(𝑆′) are hypervolumes of the integration domain ̃𝑆 before and 𝑆′ after the scale
transformation, respectively, and since the latter are hyperrectangles, the volumes are:

𝑉( ̃𝑆) =
𝑛
∏
𝑖=1

(𝛽𝑖 − 𝛼𝑖) , (15)

𝑉(𝑆′) =
𝑛
∏
𝑖=1

(𝛽′𝑖 − 𝛼′𝑖) . (16)

In further calculations, 𝑑max = 1, and 𝑑min = −1.
The accuracy of integration is assessed by determining the number of correct digits (CD) in the

approximate value of the integral obtained using the neural network:

𝐶𝐷(𝐼, ̂𝐼) = − log10
|||
𝐼 − ̂𝐼
𝐼

||| . (17)

4.2. Functions for testing

The testing of the hybrid sampling was performed on three classes of integrands, 𝑓1, 𝑓2, 𝑓3, defined
within the unit cube [0, 1]𝑛. All three classes of parameterized functions were taken from a set of
functions for testing multidimensional integration algorithms compiled by Alan Genz [12]:
Oscillatory function:

𝑓1(𝑥) = cos (2𝜋𝑢1 +
𝑛
∑
𝑖=1

𝑐𝑖𝑥𝑖) . (18)

Corner Peak function:

𝑓2(𝑥) = (1 +
𝑛
∑
𝑖=1

𝑐𝑖𝑥𝑖)
−(𝑛+1)

. (19)

Continuous function:

𝑓3(𝑥) = exp (−
𝑛
∑
𝑖=1

𝑐𝑖|𝑥𝑖 − 𝑢𝑖|) . (20)

Here, 𝑢𝑖 are shift parameters, with values uniformly randomly distributed in the interval [0, 1]. The
vector of parameters c can be used to control the complexity of integration. It is determined for each
family of functions 𝑓𝑗 separately:

c = (
ℎ𝑗

𝑛𝑒𝑗 ∑𝑛
𝑖=1 𝑐

′
𝑖
) 𝒄′, (21)

where 𝒄′ is a vector of size 𝑛, with its components uniformly randomly distributed in the range [0, 1].
The values of ℎ𝑗 and 𝑒𝑗 are fixed for each class of functions and are presented in the table 1.
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Table 1
Values of integration complexity parameters

𝑛 Parameters 𝑓1 𝑓2 𝑓3
𝑛 = 2 ℎ𝑗 100 600 100

𝑒𝑗 1 1 1

𝑛 = 6 ℎ𝑗 300 1000 200

𝑒𝑗 1.75 1.75 1.75

4.3. Testing of the hybrid approach

Each class of integrands (18)–(20) was investigated in two spatial dimensions, 𝑛 = 2 and 6, with
a corresponding number of points 𝑁 = 103, 104, and 105. The results of the computations are
illustrated in the figure 2.
Each point on the graph corresponds to the average value of 20 approximate integrals with varying

parameters 𝑢 and 𝑐. For 𝑁 = 105, the number of computed integrals was reduced from 20 to 5 due to
the lengthy neural network training.
For functions with a clear peak, the proposed method of defining the training set increases the

accuracy of integration compared to training on the nodes of a uniform grid, for any number of
points generated by the Metropolis–Hastings algorithm. On the other hand, a value of 𝜌 near 1 can
deteriorate the function approximation due to a lack of points near the small function values, thereby
reducing integration accuracy. In the case of oscillatory and continuous functions, applying hybrid
sampling does not significantly increase accuracy when 𝑛 = 2. Furthermore, for large 𝜌 values of 0.9
and 1.0, integration accuracy significantly decreases compared to training on the nodes of a uniform
grid. However, for the case when 𝑛 = 6, integration accuracy increases when 𝜌 is set to 0.2 and 0.7
for the oscillatory function, and 0.1 and 0.2 for the continuous function, relative to 𝜌 = 0.
It is worth noting that for functions with a clear peak, with a small number of points (𝑁 = 103)

and 𝑛 = 2, increasing 𝜌 the accuracy is rising by 2 digits. However, for the oscillatory function, the
situation is reversed with increasing 𝜌, accuracy decreases from 4 to 2 digits. In the case of the
continuous function, for most 𝜌 values, accuracy remains nearly unchanged, but for large 𝜌 values,
the average CD value decreases significantly due to the low number or complete absence of points
in the training set, which are nodes of the uniform grid. A similar trend of decreasing integration
accuracy for large 𝜌 values is also observed for the oscillatory function when 𝑛 = 6. However, for the
function with a clear peak, the behavior of the average CD as a function of 𝜌 remains the same for
small 𝑁 values.

With an increase in the value of 𝑁, accuracy increases for almost all 𝜌 values, mirroring the change
in CD, but less abruptly. It is important to note that the use of the Metropolis–Hastings algorithm for
generating the training set reduces computational costs. In particular, for a function with a clear
peak, the accuracy at 𝜌 = 0.8 and 𝑁 = 103 is comparable to the result at 𝜌 = 0 and 𝑁 = 105. A similar
effect exists for other function classes, but only for 𝑛 = 6. The choice of the optimal value of 𝜌 remains
an open question.
In general, the dependence of accuracy on the proportion of points may not be monotonic since

it is determined by the nature of the function itself and the training set derived from this nature.
Furthermore, neural network training also depends on weight initialization. Therefore, the non-
monotonicity has a statistical nature and is dependent on the type of integrands. An assessment
of statistical divergence requires a much larger volume of computations and could be discussed in
a separate study.

5. Conclusion

In the context of this study, it was found that the application of the Metropolis–Hastings algorithm
improves the accuracy of the neural network integration compared to using a uniform grid of nodes.
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(a) Results for the oscillatory function in two-dimensional space
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(b) Results for the oscillatory function in six-dimensional space
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(c) Results for the corner peak function in two-dimensional space
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(d) Results for the corner peak function in six-dimensional space
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(e) Results for the continuous function in two-dimensional space
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(f) Results for the continuous function in six-dimensional space

Figure 2. Results of the validation of hybrid sampling for functions (18)–(20). Each curve represents𝑁. Each point on the
graphs is the average value of 20 approximate integrals at a given 𝜌. For large values of𝑁 = 105, the number of trials was

reduced to 5 due to the lengthy training time
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Thus, a hybridmethod for creating a training dataset has been proposed and tested. Part of the dataset
is generated based on the function’s values using the aforementioned algorithm, while another part
includes nodes of a uniform grid within the function’s domain and their corresponding values. To
characterize the hybridmethod, the concept of the relative proportion of the sample volume, denoted
as 𝜌, obtained through pseudo-random generation, was introduced. The relationship between the
accuracy of approximate integration and this parameter was investigated.
The testing was performed on three families of functions with two and six variables, proposed for

testing integral computation methods. It was shown that the best results, on average, were obtained
when 𝜌 ranged from 0.1 to 0.3. It’s also worth noting the improvement in results using the hybrid
approach for higher dimensions, denoted as 𝑛, and a larger number of points, denoted as 𝑁.
Neural network integration appears promising in certain classes of problems, as the analytical

formula for its integration as a function of integration domain parameters allows storing the integral
form of the function and analytically computing an approximate value in any subdomain without the
need for retraining the network. This work demonstrated that sampling using methods to generate
points based on the values of integrands in combination with uniform grid nodes can improve the
results of approximate integration by a neural network. Nevertheless, the choice of the optimal ratio
of the first set of points to the second in the training dataset remains an open question.
Acknowledgments: The authors express their gratitude to the HybriLIT heterogeneous computing platform team for the
opportunity to perform calculations in an ecosystem for machine learning, deep learning and data analysis problems. The
authors thank Dr. Jan Buśa for valuable comments while reading the manuscript.
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Аннотация. В настоящей работе исследуется применение алгоритма Метрополиса–Гастингса при фор-
мировании обучающей выборки для нейросетевой аппроксимации подынтегральной функции и его
влияние на точность вычисления значения интеграла. Предложен гибридный способ формирования
обучающего множества, в рамках которого часть выборки генерируется посредством применения алго-
ритма Метрополиса–Гастингса, а другая часть включает в себя узлы равномерной сетки. Численные
эксперименты показывают, что при интегрировании в областях больших размерностей предложенный
способ является более эффективным относительно узлов равномерной сетки.
Ключевые слова: нейронная сеть, приближенное интегрирование, алгоритмМетрополиса–Гастингса



Discrete& Continuous Models
& Applied Computational Science
ISSN 2658-7149 (Online), 2658-4670 (Print)

2024, 32 (1) 48–60
http://journals.rudn.ru/miph

Research article
UDC 519.65:519.217
PACS 07.05.Tp, 02.70.−c
DOI: 10.22363/2658-4670-2024-32-1-48-60 EDN: HEYUGO

Solving the eikonal equation by the FSMmethod in Julia language
Christina A. Stepa1, Arseny V. Fedorov1, Migran N. Gevorkyan1,
Anna V. Korolkova1, Dmitry S. Kulyabov1, 2
1 RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
2 Joint Institute for Nuclear Research, 6 Joliot-Curie St, Dubna, 141980, Russian Federation

(received: December 15, 2023; revised: January 25, 2024; accepted: February 14, 2024)

Abstract. There are two main approaches to the numerical solution of the eikonal equation: reducing it to
a system of ODES (method of characteristics) and constructing specialized methods for the numerical solution of
this equation in the form of a partial differential equation. The latter approach includes the FSM (Fast sweeping
method) method. It is reasonable to assume that a specialized method should have greater versatility. The
purpose of this work is to evaluate the applicability of the FSMmethod for constructing beams and fronts. The
implementation of the FSMmethod in the Eikonal library of the Julia programming language was used. The
method was used for numerical simulation of spherical lenses by Maxwell, Luneburg and Eaton. These lenses
were chosen because their optical properties have been well studied. A special case of flat lenses was chosen
as the easiest to visualize and interpret the results. The results of the calculations are presented in the form
of images of fronts and rays for each of the lenses. From the analysis of the obtained images, it is concluded
that the FSMmethod is well suited for constructing electromagnetic wave fronts. An attempt to visualize ray
trajectories based on the results of his work encounters a number of difficulties and in some cases gives an
incorrect visual picture.

Key words and phrases: eikonal equation, geometric optics, wave optics, Julia language, Fast Sweeping Method

1. Introduction

In this article, we use the FSM (Fast Sweeping Method) method to solve the Eikonal equation using
the example of three classical lenses: Luneburg, Maxwell and Eaton. These examples illustrate the
limitations of the FSMmethod—it does a good job of calculating wave fronts, but is poorly applicable
for calculating the trajectory of rays.
To model lenses, we use the Julia language and the Eikonal library, which implements the FSM

method. The simulation results are visualized using the Mackie.jl library. Schematic illustrations are
created using a separate vector graphics language, Asymptote.

1.1. Structure of the article

The paper consists of an introduction, a theoretical part, a description of the FSM (Fast sweeping
method) [1–5], a description of implementation this method, a visualisation and discussion of the
results.
In the theoretical part, the eikonal equation in Cartesian coordinate system is given, and the

spherical lenses used for numerical experiments are schematically described.
In the next part, the numerical scheme of the FSM method with detailed formulas for the two-

dimensional case is described, and its advantages and disadvantages compared to the feature method
are briefly analyzed. Below is a brief description of the Eikonal library [6] for the Julia language [7]
and a description of the program we have written that implements a numerical experiment.
In the final part, images of fronts and rays are presented, the results are analysed and conclusions

are made about the advantages and disadvantages of the FSMmethod concerning the visualisation of
the calculations.

© Stepa C. A., Fedorov A.V., Gevorkyan M.N., Korolkova A.V., Kulyabov D. S., 2024
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1.2. Designations and agreements

For the purposes of this paper, we have followed standard notation, centred on the classic
monograph [8]. All vector quantities are in bold, e.g., the position of a point 𝑋 is denoted as
x = (𝑥1, 𝑥2, 𝑥3)𝑇 = (𝑥, 𝑦, 𝑧)𝑇. All vectors are considered columns and their components are numbered
with upper indices. The eikonal function is denoted as 𝑢(x), the refractive index is denoted as 𝑛(x).

2. Eikonal equation

Previously, the authors in thepaper [9] gave a detailed derivation of the eikonal equation for curvilinear
coordinates, and in the paper [5] the characteristics method was considered. In this paper, however,
we use the FSMmethod, which uses a rectangular grid, so the eikonal equation must be written in
Cartesian coordinates.
We will consider the two-dimensional case of the eikonal equation in Cartesian coordinates with

a boundary condition:

{
(𝜕𝑢𝜕𝑥)

2
+ (𝜕𝑢𝜕𝑦 )

2
= 𝑛2(𝑥, 𝑦),

𝑢(𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ 𝛤 ⊂ ℝ2.
(1)

By specifying the points of the set 𝛤, the position of the radiation source and the boundary of the
medium are specified. Written in this form, the eikonal equation is a nonlinear boundary value
problem for the hyperbolic partial derivative equation.
Two approaches to the numerical solution of the eikonal equation can be distinguished:
– transformation to a system of ordinary differential equations (a system of Hamilton equations)

by the method of characteristics [10, 11], and then applying one of numerous methods for the
numerical solution of such equations;

– approach to the problem as a stationary boundary value problem: development of an efficient
numerical algorithm for solving the system of nonlinear equations obtained by discretization
(this type of methods includes, for example, the fast marching method).

In this paper, we focus on a method called FSM (Fast Sweeping Method). The authors do not know
the standard translation of the name of this method, so the abbreviation FSM is used throughout the
text.

Themethodwas proposed in 2000 [1]. The basic idea of themethod is to use Godunov’s counter-flow
difference scheme and Gauss–Zeidel iterative scheme with variable order of passing the mesh nodes.
A detailed description of the numerical scheme is given in the Section 4.
FSM is simple to implement and requires a finite number of iterations. The complexity of the

algorithm is 𝑂(𝑁) for 𝑁 grid points. The number of iterations is independent of the number of grid
nodes (of the grid size). The FSMmethod can be extended to the general case of the Hamilton–Jacobi
equation.

3. Luneburg, Maxwell and Eaton lenses

3.1. General description of the lenses

Consider a lens, which is a sphere with centre at point 𝑋0 and radius vector X0. The source of
electromagnetic waves is placed at a point with radius vector x0.
It should be emphasised immediately that the method used for the numerical solution of the

eikonal equation entails a different mathematical description of the electromagnetic wave.
– When using the method of characteristics, it is natural to interpret the radiation in the form

of rays. Each ray in this case is a solution of the ODE system for given initial values of the
generalised coordinates x and impulses p. The initial values of the coordinates x0 specify the
position of the source, i.e., the beginning of the ray, and the initial values of the impulses p0
specify the direction of the ray.

– The FSMmethod uses the wave interpretation of optics and assumes that the eikonal function
𝑢(x) is initially defined at each point in space, or more precisely at each grid point (see section 4).



50 DCM&ACS. 2024, 32 (1) 48–60

The location of the source is given by the boundary condition 𝑢(x0) = 0 of the system (1), where
x0 is the radius vector of the points belonging to the source.

Figures 1 and 2 show lenses that receive electromagnetic radiation from a point source (figure 1)
and a flat extended source (figure 2). The radiation in the figures is represented as rays, but in the
FSMmethod there is no way to explicitly specify the direction and source of the rays, as it is assumed
that the radiation is already present at every point in the region under consideration. This causes
certain difficulties when it is necessary to visualise exactly the ray optical pattern.

𝑛0 = 𝑐𝑜𝑛𝑠𝑡

𝑅

X0

𝑛(𝑟)
x0

ray

𝛽

Figure 1. Lens with a point source

𝑛0 = 𝑐𝑜𝑛𝑠𝑡, 𝛽 = 0

𝑅

X0

𝑛(𝑟)

Figure 2. Lens with a flat light source

The refractive index outside the lens is constant and equal to 𝑛0, while inside the lens it is a function
of the distance from the centre of the lens to the current point 𝑛(𝑟), where 𝑟 = ‖x − X0‖. To simplify
the calculations, the centre of the lens should be placed at the origin. This especially simplifies the
solution of the problem in cylindrical and spherical coordinates.

Itmay be convenient to define the location of a point source relative to the lens. Then its coordinates
are determined by the lens radius 𝑅, the distance from the lens to the source 𝑑, and the angle 𝜃, which
is set off in a counterclockwise direction in the right-hand coordinate system, as shown in the figure 3.
Then the radius of the source vector is given by the parametric equation of a circle with radius 𝑅 + 𝑑

x0 = X0 + (𝑑 + 𝑅)(cos 𝜃, sin 𝜃)𝑇.

In particular, if the source lies on the lens as shown in the figure 4, its coordinates are given by the
radius vector

x0 = X0 + 𝑅(cos 𝜃, sin 𝜃)𝑇.

x0

X0

𝜃

Figure 3. The location of the point source is given
relative to the lens

x0

X0

𝜃

Figure 4. The point source is placed on the lens

The numerical scheme of the FSMmethod does not require to know the derivatives of the refractive
index function 𝑛(x), which can be considered as an advantage of this method over the characteristic
method.
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3.2. Luneburg lens

A Luneburg lens [8, 12] is a spherical lens of radius 𝑅 centred at the point (𝑋0, 𝑌0, 𝑍0) with a refractive
index of the following form

𝑛(𝑟) = {𝑛0√2− ( 𝑟𝑅)
2
, 𝑟 ⩽ 𝑅,

𝑛0, 𝑟 > 𝑅,
(2)

where in Cartesian coordinates 𝑟(𝑥, 𝑦, 𝑧) = √(𝑥 − 𝑋0)2 + (𝑦 − 𝑌0)2 + (𝑧 − 𝑍0)2 is the distance from the
centre of the lens to an arbitrary point (𝑥, 𝑦, 𝑧). It follows from the formula that the coefficient 𝑛
varies continuously from 𝑛0√2 to 𝑛0 starting from the centre of the lens and ending at its boundary.
For calculations it is more convenient to rewrite the expression for 𝑟 in index form:

𝑟(𝑥1, 𝑥2, 𝑥3) = √(𝑥1 − 𝑋1
0)2 + (𝑥2 − 𝑋2

0)2 + (𝑥3 − 𝑋3
0)2 =

√√√

√

3
∑
𝑖=1
(𝑥𝑖 − 𝑋 𝑖

0)2.

3.3. Maxwell lens

Maxwell’s lens [8, 13] is also a spherical lens of radius 𝑅 centred at the point X0 with a refractive index
of the following kind:

𝑛(𝑟) =
⎧

⎨
⎩

𝑛0

1 + ( 𝑟𝑅)
2 , 𝑟 ⩽ 𝑅,

𝑛0, 𝑟 > 𝑅.
(3)

Figure 5 plots the change in refractive index for Maxwell and Luneburg lenses as a function of the
radius of the point vector.

𝑟

𝑛(𝑟)

𝑅

Luneburg

Maxwell

Figure 5. Refractive index of the Luneburg lens and the Maxwell lens

3.4. Eaton Lens

In the flat case, Eaton’s lens [14] is a disc formed by two circles with radii 𝑅 and 2𝑅, which is shown
in the diagram of the lens in the figure 6

𝑛(𝑟) = {𝑛0√
2𝑅
𝑟 − 1, 𝑟 ∈ [𝑅, 2𝑅],

𝑛0, 𝑟 ∉ [𝑅, 2𝑅].
(4)

3.5. Source location

The optical properties of lenses are clearly shown by placing the radiation source at a specific point.
– For a Luneburg lens, the point source is usually placed on the surface of the lens so that the

outgoing rays passing through the lens are parallel to each other, as shown in the figure 7.
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X0

R 2R

Figure 6. The scheme of the Eaton lens

– For Maxwell lenses, a point source is also placed on the surface of the lens. In this case, the
outgoing rays are focused and converge at a point diametrical to the source, as shown in the
figure 8.

– For the Eaton lens, the source is placed inside a sphere (circle) of small diameter 𝑅. In this case,
all radiation does not extend beyond the lens and the rays are focused at a point symmetrical
about the centre of the lens, as shown in the figure 9.
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Figure 7. Luneburg lens
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Figure 8. Maxwell lens
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Figure 9. Eaton lens

The ray paths in figures 7, 8, and 9 are calculated using the characteristic [5] method.
If we consider the above source configuration, some regions of space will be completely free of rays.

For an Eaton lens, all rays will be enclosed inside the large circle of the lens. For the Luneburg and
Maxwell lenses, the areas where rays can pass through are shown by the hatching in the figures 10
and 11. No ray can penetrate the white colour regions.
The figures 10 and 11 are only schemes that conventionally show the areas where rays are present

and absent. However, the ray paths are not shown inside the lens.

X0x0

Figure 10. Luneburg lens

X0x0

Figure 11. Maxwell lens
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4. Fast sweepingmethod

4.1. FSM for two-dimensional eikonal equation

Let us proceed to the description of the numerical scheme. Let us divide the whole integration region
into discrete nodes using the rectangular grid shown in the figure 12, where

– along the axis 𝑂𝑥 we have 𝐼 partition points 𝑥1 < 𝑥2 < 𝑥3 < … < 𝑥𝐼−1 < 𝑥𝐼,
– along the 𝑂𝑦-axis, we have 𝐽 partition points 𝑦1 < 𝑦2 < 𝑦3 < … < 𝑦𝐽−1 < 𝑦𝐽.
The grid will consist of 𝐼 × 𝐽 nodes with coordinates (𝑥𝑖, 𝑦𝑗), where 𝑖 = 1,… , 𝐼, and 𝑗 = 1,… , 𝐽.
Assume that the partitioning is chosen such that the grid spacing ℎ is the same for both axes. The

grid function 𝑢𝑖𝑗 approximates the function 𝑢(𝑥, 𝑦) at the grid nodes, i.e., 𝑢𝑖𝑗 ≈ 𝑢(𝑥𝑖, 𝑦𝑗) and only at
the point (𝑥0, 𝑦0) does exact equality hold (figure 13).

O 𝑥1 𝑥𝐼

𝑦1

𝑦𝐽

𝑥𝑖

𝑦𝑗

Figure 12. Different grid points of partitioning
of the integration domain

𝑢𝑖𝑗
𝑢𝑖−1,𝑗

𝑢𝑖,𝑗+1

𝑢𝑖+1,𝑗

𝑢𝑖,𝑗−1

Figure 13. Numerical scheme template. ᵆ𝑖𝑗 are the grid
functions

All grid points can be divided into three groups, which are highlighted in the figure 12 with different
colours:
1. The internal grid points with indices 𝑖 = 2,… , 𝐼 − 1 and 𝑗 = 2,… , 𝐽 − 1 are shown in black in the

diagram 12.
2. Points of the four grid boundaries with the indices

– left boundary: 𝑖 = 1, 𝑗 = 2,… , 𝐽 − 1,
– right boundary: 𝑖 = 𝐼, 𝑗 = 2,… , 𝐽 − 1,
– lower boundary 𝑖 = 2,… , 𝐼 − 1, 𝑗 = 1,
– upper boundary 𝑖 = 2,… , 𝐼 − 1, 𝑗 = 𝐽,

are shown in blue in the diagram 12.
3. Corner points with the following fixed indices:

– lower left corner point 𝑖 = 1, 𝑗 = 1,
– upper left corner point 𝑖 = 1, 𝑗 = 𝐽,
– lower right corner point 𝑖 = 𝐼, 𝑗 = 1,
– upper right corner point 𝑖 = 𝐼, 𝑗 = 𝐽,

are marked in red in the diagram 12.
Let’s move on to presenting the algorithm. The Godunov’ scheme (counter-current difference

scheme) is used as the sampling scheme for the interior points of the domain. Let us introduce the
following notations:

𝑢𝑥𝑚𝑖𝑛 = min(𝑢𝑖−1,𝑗, 𝑢𝑖+1,𝑗), 𝑢𝑦𝑚𝑖𝑛 = min(𝑢𝑖,𝑗−1, 𝑢𝑖,𝑗+1), 𝑛𝑖𝑗 = 𝑛(𝑥𝑖, 𝑦𝑗),

and also an indicator function:
(𝑥)+ = {

𝑥, 𝑥 > 0,
0, 𝑥 ⩽ 0.

To initialise the calculations, first of all, it is necessary to set the values of the grid function 𝑢𝑖𝑗 = 0
on the boundary 𝛤. These values will remain unchanged in the subsequent calculations. For all
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other points of the grid function 𝑢𝑖𝑗, it is necessary to assign sufficiently large positive values, which
it obviously cannot reach. During the operation of the numerical scheme these values will be
recalculated.
The computational process consists of four sweeps of the entire rectangular region. Each such

sweep is two nested loops, where the indices are run in the following order:
– 𝑖 = 1,… , 𝐼 and 𝑗 = 1,… , 𝐽— direct order,
– 𝑖 = 𝐼,… , 1 and 𝑗 = 1,… , 𝐽—mixed order,
– 𝑖 = 𝐼,… , 1 and 𝑗 = 𝐽,… , 1— reverse order,
– 𝑖 = 1,… , 𝐼 and 𝑗 = 𝐽,… , 1—mixed order.

At each step, we should solve a nonlinear equation whose coefficients for each group of points will
change slightly.
Group I Points 𝑖 = 2,… , 𝐼 − 1 and 𝑗 = 2,… , 𝐽 − 1

[(𝑢𝑖𝑗 − 𝑢𝑥𝑚𝑖𝑛)+]2 + [(𝑢𝑖𝑗 − 𝑢𝑦𝑚𝑖𝑛)+]2 = 𝑛2𝑖𝑗ℎ2

Group II The following points belong to this group:
– left boundary: 𝑖 = 1, 𝑗 = 2,… , 𝐽 − 1:

[(𝑢1𝑗 − 𝑢2𝑗)+]2 + [(𝑢1𝑗 − 𝑢𝑦𝑚𝑖𝑛)+]2 = 𝑛21𝑗ℎ2,

– right boundary: 𝑖 = 𝐼, 𝑗 = 2,… , 𝐽 − 1:

[(𝑢𝐼𝑗 − 𝑢𝐼−1,𝑗)+]2 + [(𝑢𝐼𝑗 − 𝑢𝑦𝑚𝑖𝑛)+]2 = 𝑛2𝐼𝑗ℎ2,

– lower boundary 𝑖 = 2,… , 𝐼 − 1, 𝑗 = 1:

[(𝑢𝑖1 − 𝑢𝑥𝑚𝑖𝑛)+]2 + [(𝑢𝑖1 − 𝑢𝑖2)+]2 = 𝑛2𝑖1ℎ2,

– upper boundary 𝑖 = 2,… , 𝐼 − 1, 𝑗 = 𝐽:

[(𝑢𝑖𝐽 − 𝑢𝑥𝑚𝑖𝑛)+]2 + [(𝑢𝑖𝐽 − 𝑢𝑖,𝐽−1)+]2 = 𝑛2𝑖𝐽ℎ2.

Group III The following points belong to this group:
– left lower corner point 𝑖 = 1, 𝑗 = 1:

[(𝑢11 − 𝑢21)+]2 + [(𝑢11 − 𝑢12)+]2 = 𝑛211ℎ2,

– upper left corner point 𝑖 = 1, 𝑗 = 𝐽:

[(𝑢1𝐽 − 𝑢2𝐽)+]2 + [(𝑢1𝐽 − 𝑢1,𝐽−1)+]2 = 𝑛21𝐽ℎ2,

– lower right corner point 𝑖 = 𝐼, 𝑗 = 1:

[(𝑢𝐼1 − 𝑢𝐼−1,1)+]2 + [(𝑢𝐼1 − 𝑢𝐼2)+]2 = 𝑛2𝐼1ℎ2,

– upper right corner point 𝑖 = 𝐼, 𝑗 = 𝐽:

[(𝑢𝐼𝐽 − 𝑢𝐼−1,𝐽)+]2 + [(𝑢𝐼𝐽 − 𝑢𝐼,𝐽−1)+]2 = 𝑛2𝐼𝐽ℎ2.

Each of these equations differs only in the numerical coefficients and has the following form:

[(𝑥 − 𝑎)+]2 + [(𝑥 − 𝑏)+]2 = 𝑛2𝑖𝑗ℎ2.

It can be reduced to a quadratic equation and the solution can be written as

𝑥 =
⎧

⎨
⎩

min(𝑎, 𝑏) + 𝑛𝑖𝑗ℎ, |𝑎 − 𝑏| ⩾ 𝑛𝑖𝑗ℎ,

𝑎 + 𝑏 +√2𝑛2𝑖𝑗ℎ2 − (𝑎 − 𝑏)2

2 , |𝑎 − 𝑏| < 𝑛𝑖𝑗ℎ.
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4.2. FSM calculation in Julia language

For numerical modelling of lenses using the FSMmethod, we used the Eikonal [6] package for the
Julia [15, 16] programming language. The Eikonal package is a small library that implements the
Fast Sweeping and Fast Marching methods. The package is registered in the official Julia package
repository and can be installed using standard methods.
Both methods are implemented for arbitrary dimensionality and their source code can fit in

a single source file. For such a small package, the documentation is quite detailed and allows you to
understand the functionality of the package relatively quickly. There is also a set of tests, which can
also serve as illustrative examples.

Let’s consider the use of the Eikonal library to compute fronts in the case of Maxwell and Luneburg
planar lenses. In addition to this library, we will use our Lenses module described above, and also
SVector package.
First of all, let’s import all the necessary modules. We read the source code of the Lenses module

using include and then add it to the common namespace using using. Import modules from the
official repository using using.
include("../src/lense.jl")

# We use the FSM method implemented in the Eikonal library
using Eikonal
using StaticArrays: SVector
using .Lenses
We need a parametric equation of the circle that returns the coordinates as integers, because the

Eikonal module uses an integer grid. We define it as a one-line function. Using the syntax of a dot
with an operator or function (e.g. .+) allows you to apply the function and operator to all elements of
an array or tuple at once.
circle_xy(center, R, φ) = round.(Int, center .+ (R*cos(φ), R*sin(φ)))

We define the required parameters in the form of constants. Each constant is provided with
a documentation line, so no additional comments are needed. The lens type is selected using the
select_lense function from the Lenses module, which allows you to choose which lens to calculate
for right at the beginning of the program.
const centre = (500, 500)
"Lens radius"
const R = 300
"Refractive index"
const n₀ = 1.0
"Position of the source relative to the lens"
const source = circle_xy(center, R, π)
"Lens type"
const LENSE = select_lense(length(ARGS)>=1 ? ARGS[1] : "")(R, n₀,

SVector(center..., 0.0))↪

"To draw rays or not"
const RAYS = true

Next, we set the grid size (𝐼, 𝐽) for the approximating function 𝑢𝑖𝑗, initialise the method using the
function FastSweeping and initialise the array v, which in this library denotes the values of the
refractive index 𝑛𝑖𝑗 in the grid nodes. To calculate the values of 𝑛𝑖𝑗 we use the function n from Lenses.
const tsize = (1000, 1000)

fsm = FastSweeping(Float64, tsize)

for x=1:tsize[1], y=1:tsize[2]
fsm.v[x, y] = Lenses.n(SVector(x, y, 0.0), LENSE)

end
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At the next step we start the calculations. The function init! allows you to set the boundary values,
which in our case consist of a single point - the ray source. The result of calculations will be written
in the attribute fsm.t, in our notations it is the approximating grid function 𝑢𝑖𝑗.

println("Sweeping")
sweep!(fsm, verbose=false)

After obtaining the computational results, it remains to visualise the fronts and rays. We use the
Makie library, while the Eikonal examples use the Plots library. We create images, axes on it, lens
contour as a circle and display it on the coordinate plane. The source is visualised as a point. The
fronts are visualised trivially, using the function contour!, which displays level lines for a function
from two variables 𝑢𝑖𝑗. The coordinate arrays 𝑥 and 𝑦may not be passed to it, as they are the same as
the indices 𝑖 and 𝑗 since we have defined an integer grid.

fig01 = Figure(size=(500, 500))
ax01 = Axis(fig01[1, 1])

# Contour of the lens as a circle
const lense_contour = Circle(Point2(center .|> Float64), R)

# Draw the contour of the lens
lines!(ax01, lense_contour, color=:blue)

# Source as a point
scatter!(ax01, source..., color=:red)

# Wavefront as contours of a function from two variables u(x, y)
contour!(ax01, fsm.t, levels=100)

Visualising rays is not such a trivial task anymore. The author of the Eikonal library has provided
the ray function, which calculates ray points using the fastest gradient descent method. To use it,
you need to specify the end point of the ray. The ray source will be selected as the ray origin.

for θ = pi/6:0.025:pi/3
pos = circle_xy(source, min(tsize...) - min(source...), θ)
r1 = ray(fsm.t, pos)
lines!(ax01, r1, color=:green)

end
end

It should be noted that the ray function is unstable, because often its execution is accompanied by
an exit beyond the fsm.t array boundaries, even if the ray end point is specified inside the rectangular
area.
The result of the visualisation is shown in the figures 14 and 15. It should be noted here that in the

case of the Maxwell lens, the application of the ray function gives rise to the following problem.
Rays emanating from a source on the surface of the lens must focus to a point (focus) located on

the diametrically opposite side of the lens from the source and can only exit the lens after passing
that point, as shown in the figure 16. So, when modelling electromagnetic radiation in the form of
rays, only rays that have passed the lens and left the point of focus can exist outside the lens. It should
be specified that we consider a beam of rays coming out of a point source at an angle in the interval
(−𝜋/2, 𝜋/2).

Since the FSMmethod approximates the eikonal function 𝑢(x) at each grid point, electromagnetic
radiation will be present everywhere outside the lens in this modelling, as can be seen from the
image of the fronts. Therefore, if you set the ray parameter pos to a point outside the lens surface
when calling the ray function, the rays will be drawn incorrectly, as shown in the figure 18.

It is possible to obtain a conventionally correct image by specifying as the final position only those
grid points that lie exclusively on the surface of the lens.
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Figure 15. Fronts for the Maxwell lens
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Figure 16. Correct image of the rays of Maxwell lens
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Figure 17. Conditionally correct image of rays of Maxwell lens
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Figure 18. Error image of rays of Maxwell lens modeled by FSMmethod
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5. Discussion

When solving the eikonal equation by the method of characteristics, it is reduced to a system of ODEs.
Each solution of the system gives the trajectory of one ray. To obtain a beam of rays, it is necessary
to repeatedly solve the obtained ODE system, changing each time the initial values. It can be said
that this approach corresponds more to geometrical optics than to wave optics. It is not possible to
calculate the points of wave fronts directly by the method of characteristics and requires additional
manipulation with the coordinates of the points of the ray trajectory.
In contrast, the FSM method works directly with the Eikonal equation and does not require its

transformation into any other form. It also does not require calculations of the derivatives of the
refractive index function 𝑛(x). The result of the method are approximated values of the function 𝑢(x)
for all grid points. Having these values, it is rather easy to visualize fronts by depicting level lines,
but the visualization of rays has the problems described above.
Another feature of the FSMmethod is the fact that the electromagnetic field is initially assumed to

be present at every point in the modeled region. As shown in figures 10 and 11 when interpreting
electromagnetic radiation as rays, there are regions where the radiation does not penetrate.

6. Conclusion

The application of the FSM method for the numerical solution of the eikonal equation has been
considered on the example of three well-studied lenses. The following points can be emphasized as
advantages of the FSMmethod.

– It is not necessary to convert the eikonal equation to any other form.
– It is not necessary to find the derivatives of the refractive index function 𝑛(x).
– Electromagnetic wave fronts can be constructed directly from the numerical solution.
Difficulties in ray construction and inconsistency with geometrical optics may be pointed out as

a disadvantage, which was mentioned in the Discussion section 5.
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Решение уравнения эйконала методом FSM на языке Julia
К. А. Штепа1, А. В. Фёдоров1, М. Н. Геворкян1, А. В. Королькова1, Д. С. Кулябов1, 2

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация
2 Объединённый институт ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская Федерация

Аннотация. Существует два основных подхода к численному решению уравнения эйконала: сведение
его к системе ОДУ (метод характеристик) и конструирование специализированных методов для чис-
ленного решения данного уравнения в виде дифференциального уравнения в частных производных.
К последнему подходу относится метод FSM (Fast sweeping method). Резонно предположить, что спе-
циализированный метод должен обладать большей универсальностью. Цель данной работы — оценка
применимости метода FSM для построения лучей и фронтов. Использовалась реализация метода FSM
в библиотеке Eikonal языка программирования Julia. Метод применялся для численного моделирования
сферических линз Максвелла, Люнеберга и Итона. Данные линзы были выбраны так как их оптические
свойства хорошо изучены. Был выбран частный случай плоских линз, как наиболее простых для визу-
ализации и интерпретации результатов. Результаты вычислений представлены в виде изображений
фронтов и лучей для каждой из линз. Из анализа полученных изображений сделан вывод, что метод
FSM хорошо подходит для построения фронтов электромагнитных волн. Попытка же по результатам его
работы визуализировать траектории лучей наталкивается на ряд трудностей и в некоторых случаях
дает неправильную визуальную картину.
Ключевые слова: уравнение эйконала, геометрическая оптика, волновая оптика, Julia language, FSM
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Abstract. The analysis of trajectory dynamics and the solution of optimization problems using computer meth-
ods are relevant areas of research in dynamic population-migration models. In this paper, four-dimensional
dynamic models describing the processes of competition and migration in ecosystems are studied. Firstly, we
consider a modification of the “two competitors—two migration areas” model, which takes into account uniform
intraspecific and interspecific competition in two populations as well as non-uniform bidirectional migration in
both populations. Secondly, we consider a modification of the “two competitors—two migration areas” model,
in which intraspecific competition is uniform and interspecific competition and bidirectional migration are
non-uniform. For these two types of models, the study is carried out taking into account the variability of pa-
rameters. The problems of searching for model parameters based on the implementation of two optimality
criteria are solved. The first criterion of optimality is associated with the fulfillment of such a condition for the
coexistence of populations, which in mathematical form is the integral maximization of the functions product
characterizing the populations densities. The second criterion of optimality involves checking the assumption
of the such a four-dimensional positive vector existence, which will be a state of equilibrium. The algorithms de-
veloped on the basis of the first and second optimality criteria using the differential evolution method result
in optimal sets of parameters for the studied population-migration models. The obtained sets of parameters
are used to find positive equilibrium states and analyze trajectory dynamics. Using the method of constructing
self-consistent one-step models and an automated stochastization procedure, the transition to the stochastic
case is performed. The structural description and the possibility of analyzing two types of population-migration
stochastic models are provided by obtaining Fokker–Planck equations and Langevin equations with correspond-
ing coefficients. Algorithms for generating trajectories of the Wiener process, multipoint distributions and
modifications of the Runge–Kutta method are used. A series of computational experiments is carried out using
a specialized software package whose capabilities allow for the construction and analysis of dynamic models
of high dimension, taking into account the evaluation of the stochastics influence. The trajectory dynamics of
two types of population-migration models are investigated, and a comparative analysis of the results is carried
out both in the deterministic and stochastic cases. The results can be used in the modeling and optimization of
dynamic models in natural science.

Key words and phrases: one-step processes, population dynamics models, stochastic differential equations,
optimality criteria, differential evolution, stochastization, trajectory dynamics, computer modeling, software
package

1. Introduction

The study of mathematical models of population systems began to develop actively in the twenties
of the last century, thanks to the works of A. Lotka [1] and V. Volterra [2]. Currently, this direction
includes the wide class study of models taking into account various interactions between populations
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(See, for example, [3–6]). Significant progress in the study is achieved due to the analysis of the
dynamic stability models of ecological systems using the theory of differential equations, numerical
methods and optimization methods [3, 4, 7–9].
A four-dimensional model of two competing species with migration between two ranges, taking

into account the asymmetry coefficient, is considered in [10]. It is shown that the choice of the
migration area is carried out depending on the value of this coefficient. The coefficient of asymmetry
affects which of the habitats species migrate to first. Two-species Lotka–Volterra competition patch
model is studied in [11]. It’s shown that in the long time, either the competition exclusion holds that
one species becomes extinct, or the two species reach a coexistence equilibrium, and the outcome
of the competition is determined by the strength of the inter-specific competition and the dispersal
rates.
The transition to the non-deterministic case based on the design stochastic self-consistent models

(DSSM)method allows us to identify new qualitative properties of models and carry out a comparative
analysis [12–16] and in the other works. For various types of population models, the DSSMmethod is
used in [12, 17, 18]. In [18], a formalized description of the four-dimensionalmodel “two competitors—
twomigration areas” and itsmodifications are proposed, taking into account the casewhenpopulation
growth coefficients are different (non-uniform reproduction of species). Using the implementation of
the evolutionary algorithm, a set of parameters is obtained that ensure the coexistence of populations
in the conditions of competition between two species in the general area, taking into account the
migration of these species. Stochastization of the model “two competitors—two migration areas”
(under conditions of non-uniform species reproduction) is carried out on the basis of the method of
constructing self-consistent stochastic models. The dynamics of trajectories for deterministic and
stochastic cases is studied, a comparative analysis is performed.

This paper is a continuation of [18] and contains the construction and analysis of suchmodifications
of the model “two competitors—two migration areas”, which allows us to study the influence of non-
uniformmigration flows and the influence of non-uniform interspecific competition on the trajectory
dynamics both in the deterministic case and in the stochastic case.
In section 2 of this paper, we consider the construction of two modifications of the model “two

competitors—two migration areas” with bidirectional non-uniform migration (to two refuges), taking
into account the uniformity and non-uniformness of the interspecific competition coefficients. In
section 3, the search for model parameters is carried out using an evolutionary algorithm taking
into account different optimality criteria. In section 4, a study of the obtained deterministic four-
dimensional models is carried out, two-dimensional and three-dimensional projections of phase
portraits are constructed. In section 5, the transition to stochastic models “two competitors—two
migration areas” is made on the basis of the constructing self-consistent stochastic models method,
the dynamics of trajectories in the stochastic case is studied. The results of computer experiments
are presented and the interpretation of these results is given taking into account the comparison of
stochastic and deterministic models. The developed in Python [19] software package [20] is used to
study the models. Section 7 discusses the results.

2. Description of themodel modifications “two competitors—twomigration areas”
taking into account non-uniformmigration

Ref. [18] describes a general four-dimensional deterministic model, which takes into account
the influence of interspecific and intraspecific competition in two populations with bidirectional
migration of both populations, and the non-uniform growth of population reproduction.
We describe further such a model “two competitors—two migration areas”, for which the growth

of population reproduction, interspecific and intraspecific competition are uniform, and migration
is non-uniform. The specified model is given by a system of equations of the form

̇𝑥1 = 𝑎𝑥1 − 𝑝𝑥21 − 𝑟𝑥1𝑥3 + 𝛽𝑥2 − 𝛾𝑥1,

̇𝑥2 = 𝑎𝑥2 − 𝑝𝑥22 + 𝛾𝑥1 − 𝛽𝑥2,

̇𝑥3 = 𝑎𝑥3 − 𝑝𝑥23 − 𝑟𝑥1𝑥3 + 𝜀𝑥4 − 𝛿𝑥3,

̇𝑥4 = 𝑎𝑥4 − 𝑝𝑥24 + 𝛿𝑥3 − 𝜀𝑥4,

(1)

where the incoming values are explained in the table 1.
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Table 1
Variables and parameters of model (1)

Variable,
parameter

Explanation of the variable, parameter

𝑥1 the competing population density of the first species in the general area

𝑥2 population density of the first species in the first refuge

𝑥3 the competing population density of the second species in the general area

𝑥4 population density of the second species in the second refuge

𝑎 coefficient of natural growth

𝑟 coefficient of interspecific competition

𝑝 coefficient of intraspecific competition

𝛽 coefficient of migration of the first species from the general area to the first refuge

𝛾 coefficient of migration of the first species from the first refuge to the general area

𝛿 coefficient of migration of the second species from the general area to the second
refuge

𝜀 coefficient of migration of the second species from the second refuge to the general
area

Let’s move frommodel (1) to amodel that takes into account the non-uniformness of the coefficient
of interspecific competition 𝑟. We denote the estimated parameter of the competitive impact of the
second type on the first by 𝑝13. Accordingly, we denote the coefficient of the impact of the first type
on the second by 𝑝31. Thus we obtain a system of differential equations of the following form:

̇𝑥1 = 𝑎𝑥1 − 𝑝𝑥21 − 𝑝13𝑥1𝑥3 + 𝛽𝑥2 − 𝛾𝑥1,

̇𝑥2 = 𝑎𝑥2 − 𝑝𝑥22 + 𝛾𝑥1 − 𝛽𝑥2,

̇𝑥3 = 𝑎𝑥3 − 𝑝𝑥23 − 𝑝31𝑥1𝑥3 + 𝜀𝑥4 − 𝛿𝑥3,

̇𝑥4 = 𝑎𝑥4 − 𝑝𝑥24 + 𝛿𝑥3 − 𝜀𝑥4,

(2)

where 𝑎 is the coefficient of natural growth, 𝛽 is the coefficient of the first species migration from
the general area to the first refuge, 𝛾 is the coefficient of the first species migration from the first
refuge to the general area, 𝛿 is the coefficient of the second species migration from the general area
to the second refuge, 𝜀 is the coefficient of the second species migration from the second refuge to
the general area, 𝑝𝑖𝑗 (𝑖 ≠ 𝑗) are coefficients of interspecific competition.
In the future, we will search for optimal sets of parameters that ensure the coexistence of

species in the general area and the existence of species in refuges. In addition, we will carry out
a comparative analysis of the trajectory dynamics of models (1) and (2), taking into account the
considered initial conditions and optimal sets of parameters, as well as construct and study stochastic
models corresponding to (1) and (2).

3. Search for model parameters using differential evolution

We consider optimization problems associated with finding parameter sets that guarantee the
coexistence of all species in the general area and the existence of migratory species in refuges.
The sets of parameters to be searched correspond to stationary modes of the system. We use such
a numerical optimization method, which reduces to the implementation of the differential evolution
algorithm [21–23].
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In this paper we use two optimality criteria. The first optimality criterion is associated with
maximizing the integral of the product of functions characterizing population densities. The specified
maximization ensures the fulfillment of the selected condition for the coexistence of populations. It
should be noted that an algorithm of differential evolution is used to solve problem of maximizing the
integral, a program in Python is developed [18]. The second criterion of optimality involves checking
the assumption of the existence of a positive equilibrium state of the four-dimensional model [24].
Based on the use of the first and second criteria, algorithms are developed using the differential

evolution method. The algorithms are aimed at obtaining optimal sets of parameters of a four-
dimensional system, which makes it possible to find approximate values of the components of
the vector corresponding to a positive equilibrium state and to study the trajectory dynamics near
equilibrium states. It is important to note that these two types of algorithms are based on intelligent
search methods [25–27]. The implementation of these methods in the case under consideration
makes it possible to find the numerical values of the components of the positive equilibrium state
and identify such system parameters that provide the required properties of the equilibrium states.
In [18, 24], the implementation of algorithms for modifications of the system “two competitors—

two migration areas” is considered without taking into account the non-uniform competition and
migration. Here we consider more complex modifications with non-uniform bidirectional migration
of two populations. Table 2 shows the characteristics of models (1) and (2) taking into account the
first and second optimality criteria. The set of parameters obtained using the first optimality criterion
is denoted by 𝑖-I, 𝑖 = 1, 2. The set of parameters obtained using the second optimality criterion is
denoted by 𝑖-II, 𝑖 = 1, 2.

Table 2
Summary table of characteristics of models (1) and (2) under initial conditions (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7).

Equilibrium States Parameters

Model (1) with set 1-I

𝑥1 = 58.04, 𝑥2 = 90.75, 𝑥3 =
56.42, 𝑥4 = 91.04

𝑎 = 10.00, 𝑝 = 0.10, 𝑟 = 0.10, 𝛽 = 5.67, 𝛿 = 9.01, 𝛾 = 7.42,
𝜀 = 6.48

Model (1) with set 1-II

𝑥1 = 58.27, 𝑥2 = 90.79, 𝑥3 =
56.09, 𝑥4 = 91.17

𝑎 = 10.00, 𝑝 = 0.10, 𝑟 = 0.10, 𝛽 = 7.32, 𝛿 = 9.99, 𝛾 = 9.97,
𝜀 = 7.03

Model (2) with set 2-I-a

𝑥1 = 57.78, 𝑥2 = 90.46, 𝑥3 =
56.89, 𝑥4 = 90.70

𝑎 = 10.00, 𝑝 = 0.10, 𝑝13 = 0.50, 𝑝31 = 0.70, 𝛽 = 5.67, 𝛿 = 9.01,
𝛾 = 7.42, 𝜀 = 6.48

Model (2) with set 2-I-b

𝑥1 = 58.31, 𝑥2 = 90.39, 𝑥3 =
56.58, 𝑥4 = 90.71

𝑎 = 10.00, 𝑝 = 0.10, 𝑝13 = 0.70, 𝑝31 = 0.50, 𝛽 = 5.67, 𝛿 = 9.01,
𝛾 = 7.42, 𝜀 = 6.48

Model (2) with set 2-II-a

𝑥1 = 71.34, 𝑥2 = 98.80, 𝑥3 =
6.06, 𝑥4 = 43.60

𝑎 = 10.00, 𝑝 = 0.10, 𝑝13 = 0.50, 𝑝31 = 0.70, 𝛽 = 7.32, 𝛿 = 9.99,
𝛾 = 9.97, 𝜀 = 7.03

Model (2) with set 2-II-b

𝑥1 = 6.16, 𝑥2 = 41.57, 𝑥3 =
69.73, 𝑥4 = 99.63

𝑎 = 10.00, 𝑝 = 0.10, 𝑝13 = 0.70, 𝑝31 = 0.50, 𝛽 = 7.32, 𝛿 = 9.99,
𝛾 = 9.97, 𝜀 = 7.03

Table 2 presents the sets of parameters we use in the process of computer experiments related to
the analysis of the trajectory dynamics of models (1) and (2).
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4. Results of computational experiments and comparative analysis of trajectory
dynamics for deterministic models

This section presents the results of computational experiments for models (1) and (2), taking into
account the selected initial conditions and the found parameters. Figure 1 shows the trajectories of
the system (2) for the set of parameters 2-I-a in comparison with the corresponding trajectories of
the system (1) with the resulting set of parameters 1-I.
Figure 2 shows the trajectories of system (2) for the set of parameters 2-I-b in comparison with

the corresponding trajectories of system (1) with the resulting set of parameters 1-I. According to
figures 1, 2, the densities of the corresponding populations for models (1) and (2) are kept at the
same level for the selected time interval. Figure 3 shows the trajectories of system (1) with sets of
parameters 1-I and 1-II.
Figure 4 shows the trajectories of system (2) for a set of parameters 2-I-a in comparison with the

corresponding trajectories of system (2) with the resulting set of parameters 2-II-a.
Next, we will consider some projections of the phase portraits of model (2) on the plane and in

space. The projection of the phase portrait on the plane (𝑥1, 𝑥2) for the system (2) taking into account
𝑥3 = 56.89, 𝑥4 = 90.70 is shown in figure 5. The projection of the phase portrait in space (𝑥1, 𝑥2, 𝑥3)
taking into account 𝑥4 = 90.70 for the model (2) is shown in figure 6.
The presented analysis of models (1) and (2) is carried out with two sets of each model parameters

and is aimed at studying two modes of species coexistence for a state of equilibrium determined
by the method of differential evolution. In the future, we will study and analysis of the qualitative
properties of the models, taking into account the introduction of stochastics.

Figure 1. Trajectories of (1) and (2) at (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7) taking into account
the parameters sets 1-I and 2-I-a
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Figure 2. Trajectories of (1) and (2) at (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7) taking into account
the parameters sets 1-I and 2-I-b

Figure 3. Trajectories of (1) and (2) at (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7) taking into account
the parameters sets 1-I and 1-II
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Figure 4. Trajectories of (2) at (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7) taking into account
the parameters sets 2-I-a and 2-II-a

Figure 5. Projection of the phase portrait on the plane
(𝑥1, 𝑥2) for system (2)

at (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7),
𝑎 = 10.00, 𝑝 = 0.10, 𝑝13 = 0.10, 𝑝31 = 0.10, 𝛽 = 2.56,

𝛿 = 2.19, 𝛾 = 2.52, 𝜀 = 2.30

Figure 6. Projection of the phase portrait in the space
(𝑥1, 𝑥2, 𝑥3) for system (2)

at (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7),
𝑎 = 10.00, 𝑝 = 0.10, 𝑝13 = 0.10, 𝑝31 = 0.10, 𝛽 = 2.56,

𝛿 = 2.19, 𝛾 = 2.52, 𝜀 = 2.30

5. Modifications of the stochastic model “two competitors—twomigration areas”

To construct stochastic models corresponding to models (1) and (2), it is proposed to use the DSSM
method [12–16]. Using the software implementation of this method allows:
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(i) to construct a stochastic model of a dynamic system taking into account the description of
interactions;

(ii) to construct an appropriate deterministic model;
(iii) to obtain numerical solutions of ODEs and SDUs and graphical representations of solutions.

To describe a stochastic system, according to the DSSMmethod, it is enough to write the Fokker–
Planck equation. The coefficients of the Fokker–Planck equation for models (1) and (2) are obtained
using a software package and are presented respectively in figures 7, 8.

Figure 7. Coefficients of the Fokker–Planck equation for the model (1)

Figure 8. Coefficients of the Fokker–Planck equation for the model (2)

Graphs of the numerical solution for the deterministic and stochastic case taking into account the
sets of parameters 1-I and 2-I-a from the table 1 are shown in the (figures 9, 10). For the numerical
solution of ODE systems, we use a software implementation of standard four-order Runge–Kutta
methods. To solve the corresponding SDE, we use a specially developed library a detailed description
of which is contained in [13].
For sets of parameters 1-II, 2-I-a, 2-I-b, 2-II-a, numerical experiment shows that in the stochastic

case the trajectories fluctuate near deterministic trajectories, similar to the one shown in figures 9, 10
taking into account sets of parameters 1-I and 2-II-b respectively. In the next section, we present
a comparative analysis of the results obtained for models (1) and (2) with different sets of parameters.
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Figure 9. Trajectories of the system (1) and the corresponding stochastic system at
(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7) taking into account parameters set 1-I: 𝑎 = 10.00, 𝑝 = 0.10, 𝑟 = 0.10, 𝛽 = 5.67,

𝛿 = 9.00, 𝛾 = 7.42, 𝜀 = 6.48

Figure 10. Trajectories of the system (2) and the corresponding stochastic system at
(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) = (0.5, 0.5, 1, 7) taking into account parameters set 2-II-b: 𝑎 = 10.00, 𝑝 = 0.10, 𝑝13 = 0.70,

𝑝31 = 0.50, 𝛽 = 7.32, 𝛿 = 9.99, 𝛾 = 9.97, 𝜀 = 7.03
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6. Discussion of the results

Let us first consider the results of a computational experiment for the case of parameters 1-I and
parameters 2-I-a at 𝑝13 < 𝑝31. A comparative analysis of the trajectories’ behavior for models (1)
and (2) according to figure 1 shows that:

1) there is a co-existence of all species corresponding to the stationary regime in the general area,
as well as the existence of migratory species in refuges;

2) the non-uniformness of the interspecific competition coefficients affects the population density
𝑥3 in the general area, while the population density 𝑥3 of the model 2 decreases compared to
the population density 𝑥3 of the model 1.

Let us further consider the results for the case of parameters 1-I and 2-I-b at 𝑝13 > 𝑝31.
A comparative analysis of the solution trajectories of models (1) and (2) presented in figure 2 shows
that:

1) there is a coexistence of all species in the general area and the existence of migratory species in
refuges;

2) the population density 𝑥1 of the model (2) decreases compared to the population density 𝑥1 of
the model (1).

Figure 3 shows the trajectories of themodel (1) solutions taking into account parameters 1-I and 1-II
and two optimization methods. Figure 4 shows the trajectories of solutions for model (2) taking into
account the parameters 2-I-a and 2-II-a and two optimization methods. Comparison of trajectories
allows us to conclude that the choice of the first or second optimality criterion does not significantly
affect the population density both in the general area and in refuges. Computational experiments
show the consistency of the two selected optimality criteria (the trajectories have a similar character).
Taking into account the transition to the stochastic case using the Fokker–Planck equations

(figures 7, 8), computer experiments are carried out to identify trajectory dynamics. The results
are presented in figures 9, 10. Computer experiments show that the introduction of stochastics has
no effect on the behavior of systems described by the systems of equations (1) and (2). As in the
deterministic case, solutions of stochastic differential equations reach the stationary mode. In Fig. 9,
where the range from 0 to 10 corresponds to the change in population density 𝑥1 in the general area,
the fluctuating nature of the trajectory dynamics in the stochastic case is visually observed. In order
to observe such a character for the other variables, it is possible to choose an enlarged scale of the
drawing. For example, a fragment of the deterministic and stochastic trajectories of model (2) for
the population density 𝑥4 in the migration area, taking into account the enlarged scale, is shown in
figure 11.

Figure 11. Fragment of deterministic and stochastic trajectories for model (2) with parameters set 2-II-b

Stochastic modeling revealed the similar nature of the trajectories of models (1) and (2) with the
considered sets of parameters, and the initial set of parameters is obtained taking into account the
conditions guaranteeing the coexistence of two populations in the general area and the positive
abundance of each species in refuges. Thus, with the considered sets of parameters of models (1)
and (2), it is sufficient to carry out a computational experiment only in the deterministic case to study
the trajectory dynamics.
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7. Conclusion

The paper presents a computer study of deterministic and stochastic models “two competitors—two
migration areas”. Computational experiments are based on the use of evolutionary algorithms and
optimization methods for finding parameters taking into account their variability. The optimization
problem is solved using the differential evolution method, which made it possible to find optimal
parameters for population-migration models. Approximate stable equilibrium states corresponding
to the obtained parameters are found for these models. The assessment of the changes influence in
the coefficients of interspecific competition on the trajectory dynamics of four-dimensional models
with non-uniformmigration flows in the deterministic case is considered.
In this paper, the transition to stochastic models of population dynamics, taking into account

competition andmigration, based on the DSSMmethod, is carried out. The stochastization algorithm
used made it possible to analyze the trajectory dynamics of stochastic models in comparison with
deterministic analogues. The analysis demonstrates a negligible effect of introducing stochastics
into deterministic models (1) and (2) taking into account the parameters and allows us to conclude
that the computational experiment is sufficient only in the deterministic case.

As directions for further research, we can indicate the construction of population-migrationmodels
of the form “𝑛 competitors—𝑛migration areas”, where 𝑛 > 2, as well as the study of multidimensional
stochastic models taking into account the effects of additive random perturbations of the equations
right-hand sides.
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Компьютерное исследование детерминированных и стохастических
моделей «два конкурента—два ареала миграции» с учетом
вариативности параметров
И. И. Васильева1, А. В. Демидова2, О. В. Дружинина3, О. Н. Масина1

1 Елецкий государственный университет им. И.А. Бунина, ул. Коммунаров, д. 28, Елец, 399770, Российская
Федерация
2 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация
3 Федеральный исследовательский центр «Информатика и управление» Российской академии наук,
ул. Вавилова, д. 44, корп. 2, Москва, 119333, Российская Федерация

Аннотация.Анализ траекторнойдинамикиирешение задач оптимизации сприменениемкомпьютерных
методов относится к актуальным направлениям исследования динамических популяционно-
миграционных моделей. В настоящей работе изучаются четырехмерные динамические модели,
описывающие процессы конкуренции и миграции в экосистемах. Во-первых, мы рассматриваем мо-
дификацию модели «два конкурента — два ареала миграции», в которой учитывается равномерная
внутривидовая и межвидовая конкуренция в двух популяциях, а также неравномерная двунаправлен-
ная миграция обеих популяций. Во-вторых, мы рассматриваем модификацию модели «два конкурента
— два ареала миграции», в которой внутривидовая конкуренция является равномерной, а межвидовая
конкуренция и двунаправленная миграция являются неравномерными. Для указанных двух типов мо-
делей исследование проводится с учетом вариативности параметров. Решены задачи поиска модельных
параметров на основе реализации двух критериев оптимальности. Первый критерий оптимальности
связан с выполнением такого условия сосуществования популяций, которое в математической форме
представляет собой максимизацию интеграла от произведения функций, характеризующих плотности
популяций. Второй критерий оптимальности включает в себя проверку предположения о существова-
нии такого четырехмерного положительного вектора, который будет являться состоянием равновесия.
Результатом работы алгоритмов, разработанных на основе первого и второго критериев оптимально-
сти с применением метода дифференциальной эволюции, являются оптимальные наборы параметров
изучаемых популяционно-миграционных моделей. Полученные наборы параметров используются для
нахождения положительных состояний равновесия и для анализа траекторной динамики. С помо-
щью метода построения самосогласованных одношаговых моделей и автоматизированной процедуры
стохастизации выполнен переход к стохастическому случаю. Структурное описание и возможность ана-
лиза двух типов популяционно-миграционных стохастических моделей обеспечиваются получением
уравнений Фоккера–Планка и уравнений в форме Ланжевена с соответствующими коэффициентами.
Использованы алгоритмы генерирования траекторий винеровского процесса и многоточечных рас-
пределений и модификации метода Рунге–Кутты. Проведена серия вычислительных экспериментов
с применением специализированного программного комплекса, возможности которого позволяют вы-
полнять построение и анализ динамических моделей высокой размерности с учетом оценки влияния
стохастики. Исследована траекторная динамика двух типов популяционно-миграционных моделей
и выполнен сравнительный анализ результатов как в детерминированном, так и в стохастическом
случае. Результаты могут найти применение в задачах моделирования и оптимизации динамических
моделей естествознания.
Ключевыеслова: одношаговыепроцессы,моделидинамикипопуляций, стохастическиедифференциаль-
ные уравнения, критерии оптимальности, дифференциальная эволюция, стохастизация, траекторная
динамика, компьютерное моделирование, программный комплекс
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Abstract. For one-dimensional inhomogeneous (with respect to the spatial variable) linear parabolic equations,
a combined approach is used, dividing the original problem into two subproblems. The first of them is an
inhomogeneous one-dimensional Poisson problem with Dirichlet–Robin boundary conditions, the search for
a solution of which is based on the Chebyshev collocation method. The method was developed based on
previously published algorithms for solving ordinary differential equations, in which the solution is sought in
the form of an expansion in Chebyshev polynomials of the 1st kind on Gauss–Lobatto grids, which allows the use
of discrete orthogonality of polynomials. This approach turns out to be very economical and stable compared to
traditional methods, which often lead to the solution of poorly defined systems of linear algebraic equations. In
the described approach, the successful use of integration matrices allows complete elimination of the need to
deal with ill-conditioned matrices.

The second, homogeneous problem of thermal conductivity is solved by the method of separation of variables.
In this case, finding the expansion coefficients of the desired solution in the complete set of solutions to the
corresponding Sturm–Liouville problem is reduced to calculating integrals of known functions. A simple
technique for constructing Chebyshev interpolants of integrands allows to calculate the integrals by summing
interpolation coefficients.

Key words and phrases: initial boundary problems, pseudo spectral collocation method, Chebyshev polynomials,
Gauss–Lobatto sets, numerical stability, separation of variables

1. Introduction

Many important physics problems that involve two or more independent variables are solved using
mathematical models that include partial differential equations, not limited to models based on
ordinary differential equations. Models of this kind also include the description of heat propagation in
solids using the heat equation with various boundary and initial conditions. An important method for
solving partial differential equations known as the separation of variables method will be discussed
below. Its essential feature is the reduction of the original partial differential equation to a system of
simpler ordinary differential equations, which can be successfully solved based on given initial or
boundary conditions.
The desired solution to a partial differential equation is expressed as an infinite series, which is

the sum of solutions of individual ordinary differential equations. In many cases, it is convenient to
represent the required solutions in the form of a series of sines, cosines, or polynomial functions, for
example Chebyshev polynomials. This approach allows an effective use of the collocation method –
a projection method for solving both integral and differential equations. Therefore, the first part of
the present paper is devoted to a discussion of the Chebyshev interpolation method for solving the
one-dimensional heat equation.
The Chebyshev collocation method has proven itself in solving a wide class of problems [1–5].

Particularly, in [6–9] its effectiveness was demonstrated in solving ODEs and problems of restoring
functions from known first- and second-order derivatives. In Ref. [10] stable spectral methods for
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solving the Poisson equation with Dirichlet–Dirichlet, Dirichlet–Neumann and Neumann–Neumann
boundary conditions were analyzed in detail. The present paper describes an algorithm for solving
the 1-D Poisson equation with Dirichlet–Robin boundary conditions. The algorithm is based on
the developed new method of spectral collocation and illustrates the effectiveness of the variable
separation method in solving inhomogeneous heat conduction problems.
Spectral methods have proven themselves to be excellent in solving homogeneous boundary value

problems for a wide class of partial differential equations using the method of separation of variables.
In cases of inhomogeneous problems, methods for separating variables are not directly applicable.
However, in this paper we show how the Chebyshev collocation method can be effectively applied in
a two-stage solution scheme for a certain class of inhomogeneous boundary value problems for a 1-D
linear parabolic equation.

2. Mathematical model of heat conduction

Thermal conductivity is the property of a material to conduct heat, which is assessed primarily from
the point of view of Fourier’s law of thermal conductivity. Heat conduction, also called diffusion, is the
direct microscopic exchange of kinetic energy of particles (such as molecules) or quasiparticles (such
as lattice waves) across a boundary between two systems. On amicroscopic scale, thermal conduction
occurs when hot, fast-moving, or vibrating atoms and molecules interact with neighboring atoms
and molecules, transferring some of their energy (heat) to those neighboring particles. In other
words, heat is transferred by conduction when neighboring atoms vibrate relative to each other or
when electrons move from one atom to another.
When an object has a different temperature than another body or its surroundings, heat flows

so that the body and surroundings reach the same temperature, at which point they are in thermal
equilibrium. This spontaneous transfer of heat always occurs from a region of high temperature
to another region of lower temperature, as postulated by the second law of thermodynamics.
Thermodynamic and mechanical heat transfer are calculated using the heat transfer coefficient
– the proportionality between heat flow and the thermodynamic driving force of heat flux. Heat
flux is a quantitative vector representation of the movement of heat through a surface [11]. In an
engineering context, the term “heat” is perceived as synonymous with thermal energy.
The heat conduction equation models diffusion processes [12], including thermal energy in solids,

solutes in liquids, and biological populations. We will consider the heat conduction equation
describing the temperature change in a one-dimensional rod of a finite length. Let us also consider
several possible types of boundary conditions that can be used when modeling temperature changes.
A commonly used method for solving the heat conduction equation is the complete separation

of variables method, which results in the solution of two ordinary differential equations generated
by the separation of variables method. To solve one of the emerging subproblems, a uniform
approach to solving the heat conduction equation for almost any of the frequently used (Dirichlet–
Neumann–Robin) sets of boundary conditions is considered. A technique is proposed for constructing
a general solution to the inhomogeneous Poisson equation – the heat conduction equation – regardless
of the type of boundary conditions. Concretization of the solution – the determination of a pair of
missing coefficients of expansion of the solution according to the selected polynomial basis occurs at
the second stage, considering the specified (distinct types and combinations) boundary conditions.

3. Inhomogeneous boundary value problems

Let us consider the solution of an inhomogeneous initial-boundary value problem for a one-
dimensional parabolic equation, including a time-independent inhomogeneous part of the equation
and time-independent boundary conditions.

Two-sided Dirichlet–Dirichlet conditions

𝑘𝜕
2𝑢
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑢
𝜕𝑡 (𝑥, 𝑡) = −𝐹(𝑥), 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑢(0, 𝑡) = 𝑢0, 𝑢(𝐿, 𝑡) = 𝑢1, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝐿.

(1)
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The boundary conditions of problem (1) mean that the left and right edges of the rod have different
constant temperatures due to ideal contact with heat baths having respectively temperatures 𝑢0
and 𝑢1.

Recall that a boundary value problem (BVP) is called inhomogeneous if either the partial differential
equation or the boundary conditions are inhomogeneous. The well-known method of separating
variables is not applicable to such inhomogeneous boundary value problems. However, in some
cases it is possible to change the variables in such a way that the inhomogeneous boundary value
problem transforms into two problems. One of which is a relatively simple inhomogeneous BVP for
an ordinary differential equation (ODE), and the other is a homogeneous BVP for a partial differential
equation (PDE).
Assume a function 𝐹(𝑥) to describe the intensity of heat generation inside the rod, 𝑢0 and 𝑢1 being

constant. Replacing the unknown 𝑢(𝑥, 𝑡) with a new variable by means of substitution 𝑢(𝑥, 𝑡) =
𝑣(𝑥, 𝑡) + 𝜓(𝑥), we reduce the solution of problem (1) to a subsequent solution of two subproblems:

Problem А, an inhomogeneous problem with two-sided Dirichlet–Dirichlet conditions.

𝑘𝜓″(𝑥) + 𝐹(𝑥) = 0, 𝜓(0) = 𝑢0, 𝜓(𝐿) = 𝑢1. (2)

Problem B, a homogeneous boundary value problem for a partial differential equation.

⎧
⎪

⎨
⎪
⎩

𝜕2𝑣
𝜕𝑥2 (𝑥, 𝑡) =

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡),

𝑣(0, 𝑡) = 0, 𝑣(𝐿, 𝑡) = 0,

𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥).

(3)

It is important to note that problem A is a simple one-dimensional Poisson problem — an ordinary
differential equation of the second order with given inhomogeneous boundary value Dirichlet
conditions. At the same time, this problem is a problem of restoring a function from its known second-order
derivative 𝐹(𝑥) with two additional conditions, in this case, the Dirichlet boundary conditions.
The second auxiliary subproblem B is a homogeneous BVP that can be solved based on the

traditional separation of variables method. The solution to the original problem (1) will be the
“sum” of the solutions to problems A and B.

Let us illustrate the considered approach to the analytical solution of the inhomogeneous boundary
value problem (1) using a pair of examples.

Example 1. Assume that 𝐹(𝑥) = 𝑟 = 𝑐𝑜𝑛𝑠𝑡 > 0. It is required to solve the problem (1) under the
following boundary and initial conditions for 𝐿 = 1:

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 𝑢0, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 1.

In our example, both the partial differential equation and the boundary condition at point 𝑥 = 1
are inhomogeneous. Let us perform the change of variables 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝜓(𝑥), then

𝜕2𝑢
𝜕𝑥2 (𝑥, 𝑡) =

𝜕2𝑣
𝜕𝑥2 (𝑥, 𝑡) + 𝜓″(𝑥) and 𝜕𝑢

𝜕𝑡 (𝑥, 𝑡) =
𝜕𝑣
𝜕𝑡 (𝑥, 𝑡).

We substitute these expressions into Eq. (1), so that the equation takes the form

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) + 𝑘𝜓″(𝑥) + 𝑟 = 𝜕𝑣

𝜕𝑡 (𝑥, 𝑡).

Let the function 𝜓 satisfy the equation

𝑘𝜓″(𝑥) + 𝑟 = 0 or 𝜓″(𝑥) = − 𝑟
𝑘 , (4)

with the boundary conditions
𝜓(0) = 0 and 𝜓(1) = 𝑢0. (5)
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Then for 𝑣(𝑥, 𝑡) we obtain a problem of solving the homogeneous parabolic equation

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡) = 0, (6)

with the boundary conditions
𝑣(0, 𝑡) = 0 and 𝑣(1, 𝑡) = 0 (7)

and the initial condition
𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥). (8)

Equation (4) is integrated two times, as a result of which we arrive at its solution in the general
form

𝜓(𝑥) = − 𝑟
2𝑘𝑥

2 + 𝑐1𝑥 + 𝑐2. (9)

Then to determine the constants 𝑐1 and 𝑐2, we use the boundary conditions

𝜓(0) = 0 and 𝜓(1) = 𝑢0,

distributed over the summands of the sought solution. Substituting these values into the general
solution (9), we calculate the values of constants 𝑐1 and 𝑐2:

𝑐2 = 0, 𝑐1 =
𝑟
2𝑘 + 𝑢0.

Therefore, the final partial solution of the Dirichlet–Dirichlet problem (4)–(5) for the simplest
Poisson equation (4) has the form:

𝜓(𝑥) = − 𝑟
2𝑘𝑥

2 + ( 𝑟2𝑘 + 𝑢0) 𝑥. (10)

From the initial condition 𝑢(𝑥, 0) = 𝑣(𝑥, 0)+𝜓(𝑥) it follows that 𝑣(𝑥, 0) = 𝑢(𝑥, 0)−𝜓(𝑥) = 𝑓(𝑥)−𝜓(𝑥).
Therefore, to determine 𝑣(𝑥, 𝑡), we solve a new boundary value problem

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) =

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡), 0 < 𝑥 < 1, 𝑡 > 0,

𝑣(0, 𝑡) = 0, 𝑣(1, 𝑡) = 0, 𝑡 > 0,

𝑣(𝑥, 0) = 𝑓(𝑥) + 𝑟
2𝑘𝑥

2 − ( 𝑟2𝑘 + 𝑢0) 𝑥, 0 < 𝑥 < 1,

(11)

using the method of separation of variables. This method yields a solution to this problem in the
form

𝑣(𝑥, 𝑡) =
∞
∑
𝑛=1

𝐴𝑛𝑒−𝑘𝑛
2𝜋2𝑡 sin𝑛𝜋𝑥, (12)

where the coefficients 𝐴𝑛 are calculated by the formula

𝐴𝑛 = 2∫
1

0
[𝑓(𝑥) + 𝑟

2𝑘𝑥
2 − ( 𝑟2𝑘 + 𝑢0) 𝑥] sin𝑛𝜋𝑥𝑑𝑥. (13)

As a result, the solution to the original problem (1) is obtained by summing the solutions 𝜓(𝑥) and
𝑣(𝑥, 𝑡) of the homogeneous boundary value problem (4)–(5) and the boundary value problem (11)

𝑢(𝑥, 𝑡) = − 𝑟
2𝑘𝑥

2 + ( 𝑟2𝑘 + 𝑢0) 𝑥 +
∞
∑
𝑛=1

𝐴𝑛𝑒−𝑘𝑛
2𝜋2𝑡 sin𝑛𝜋𝑥. (14)

Note that 𝑢(𝑥, 𝑡) → 𝜓(𝑥) as 𝑡 → ∞ in expression (14). That is why the function 𝜓(𝑥) as a part of the
solution of the heat conduction equation that does not change with time is called a steady solution.
Whereas the function 𝑣(𝑥, 𝑡) → 0 as 𝑡 → ∞ is therefore called a transition solution.
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The determination of the coefficients 𝐴𝑛 according to formula (13) can be implemented using the
integration technique based on the interpolation of the integrand with Chebyshev polynomials of the
first kind on Gauss–Lobatto grids [13].

Example 2. In the next example, we consider an approach to solving an inhomogeneous boundary
value problem when the Dirichlet condition is specified at the left end, i.e. the left end is in perfect
contact with the heat bath (welded or screwed to a massive holder having a constant temperature 𝑢0),
and at the right end of the interval the Robin condition is imposed, i.e. this end exchanges heat with
the environment at temperature 𝑢𝑚 (hangs freely in the environment). Robin boundary conditions
arise, e.g., when the ends are immersed in some liquid or gaseous medium. The initial temperature
distribution 𝑓(𝑥) along the rod length 0 < 𝑥 < 𝐿 is also assumed to be given.
In accordance with the decomposition method, it is proposed to represent the solution to this

inhomogeneous boundary value problem under given boundary and initial conditions

𝑘𝜕
2𝑢
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑢
𝜕𝑡 (𝑥, 𝑡) = −𝐹(𝑥), 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑢(0, 𝑡) = 𝑢0, 𝑢0 = 𝑐𝑜𝑛𝑠𝑡,
𝜕𝑢
𝜕𝑥
|||𝑥=𝐿

= −ℎ(𝑢(𝐿, 𝑡) − 𝑢𝑚), ℎ > 0 and 𝑢𝑚 = 𝑐𝑜𝑛𝑠𝑡,

𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝐿,

(15)

as a combination of two terms
𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝜓(𝑥), (16)

each of them being a solution to a separate boundary value problem, respectively:
Problem A2. The function of the spatial variable 𝜓(𝑥) is a solution to an inhomogeneous ordinary

differential equation with the Dirichlet boundary condition at the left end of the interval and the
Robin boundary condition at the right end, namely:

𝑘
𝜕2𝜓(𝑥)
𝜕𝑥2 (𝑥) + 𝐹(𝑥) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝜓(0) = 𝑢0, 𝑢0 = 𝑐𝑜𝑛𝑠𝑡,
𝜕𝜓
𝜕𝑥

|||𝑥=𝐿
+ ℎ𝜓(𝐿) = ℎ𝑢1, ℎ > 0 and 𝑢1 = 𝑐𝑜𝑛𝑠𝑡.

(17)

Problem B2. The second term, the function of two variables 𝑣(𝑥, 𝑡), is a solution to a homogeneous
boundary value problem with zero Dirichlet–Robin boundary conditions and given initial condition:

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑣(0, 𝑡) = 0,
𝜕𝑣
𝜕𝑥
|||𝑥=𝐿

+ ℎ𝑣(𝐿, 𝑡) = 0, ℎ > 0,

𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥), 0 < 𝑥 < 𝐿.

(18)

Let us consider sequentially the methods for solving each of these problems.

4. Solving Problem A2 by the Chebyshev collocationmethod

By analogy with the method of approximate solution of the Poisson problem with various boundary
conditions, such as the Dirichlet conditions on both ends of the interval 𝑢(𝑎) = 𝛼, 𝑢(𝑏) = 𝛽, Neumann–
Dirichlet condition 𝑢′(𝑎) = 𝛼, 𝑢(𝑏) = 𝛽, or Dirichlet–Neumann condition 𝑢(𝑎) = 𝛼, 𝑢′(𝑏) = 𝛽
thoroughly studied in Ref. [13], let us consider the solution of problem (17) based on the Chebyshev
collocation method and, therefore, polynomial interpolation of the solution.
The polynomial interpolation based on using the basis of Chebyshev polynomials, leads to

a necessity to formulate the problem in the interval [−1, 1] instead of the initial interval [𝑎, 𝑏]. In
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the new interval, the polynomial interpolant of the function 𝑦(𝑥) is specified in the form of a series
expansion 𝑦(𝑥) ∼ ∑𝑛

𝑘=0 𝑐𝑘𝑇𝑘(𝑥) in Chebyshev polynomials of the first kind 𝑇𝑘(𝑥) with the domain of
definition on the segment 𝑥 ∈ [−1, 1].

The transition 𝑥 ⇒ 𝑡 to new arguments, from 𝑥 ∈ [𝑎, 𝑏] to 𝑡 ∈ [−1, 1], is implemented using a linear
transformation

𝑡 = 2𝑥 − (𝑏 + 𝑎)
𝑏 − 𝑎

and, if necessary, the inverse transformation

𝑥 = 𝑡(𝑏 − 𝑎) + (𝑏 + 𝑎)
2 .

In this case, the values of the function, the integrals and derivatives are recalculated using the
formulas

𝑓(𝑥) ⇔ 𝑓 (𝑏 − 𝑎
2 𝑡 + 𝑏 + 𝑎

2 ) , 𝑥 ∈ [𝑎, 𝑏], 𝑡 ∈ [−1, 1],

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = ∫

1

−1
𝑓 (𝑏 − 𝑎

2 𝑡 + 𝑏 + 𝑎
2 ) 𝑑𝑥𝑑𝑡 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏], 𝑡 ∈ [−1, 1],

𝑑𝑥
𝑑𝑡 =

𝑏 − 𝑎
2 ,

𝑓′𝑥(𝑥) ⇔
𝑑𝑓
𝑑𝑡 (𝑡)/

𝑑𝑥
𝑑𝑡 , 𝑥 ∈ [𝑎, 𝑏], 𝑡 ∈ [−1, 1],

and [14] the upper estimate of the interpolation error has the form

|
|
|
𝑦(𝑥) −

𝑛
∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥)
|
|
|
≤ 1
2𝑛(𝑛 + 1)!

|||
𝑏 − 𝑎
2

|||
𝑛+1

max
𝜉∈[𝑎,𝑏]

||𝑦𝑛+1(𝜉)|| .

Thus, Chebyshev interpolation provides an almost optimal approximation in the sense of the 𝐿∞
norm and almost optimal to the 𝐿2 norm. In addition, the use of Gauss–Lobatto nodes as interpolation
nodes leads to optimal integration formulas.

As in Ref. [6], the method for approximate solution of problem (17) for a second-order ODE consists
of sequential solution of several subproblems.

1. calculation of spectral coefficients of polynomial Chebyshev interpolation of the second
derivative of the solution – the function of the right-hand side (17) on the Gaussian–Lobatto grid
– interpolation of 𝐹(𝑥) in the basis of Chebyshev polynomials of the first kind;

2. calculation of those coefficients of the desired solution (except for the first two) that are
determined from the differential conditions of the problem (allowing the solution to satisfy the
differential conditions) – multiplication of the inverse (with respect to the matrix of spectral
Chebyshev differentiation) matrix by the vector of interpolation coefficients;

3. additional determination of the first few coefficients of the solution based on boundary (or other
independent additional) conditions.

Let us represent the approximate solution in the form of a finite series of orthogonal Chebyshev
polynomials

𝑝(𝑥) =
𝑛
∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (19)

Let us differentiate function (19) twice. The expression for the second derivative has the form

𝑝″(𝑥) =
𝑛
∑
𝑘=0

𝑐𝑘𝑇″
𝑘 (𝑥) =

𝑛
∑
𝑘=0

𝑏𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (20)

Using recurrence relations satisfied by Chebyshev polynomials of the first kind and their
derivatives [5], [15] and equating the coefficients for identical polynomials in (20), we arrive [5]
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at the following dependence of the coefficients 𝑐𝑖, 𝑖 = 2, 3,… , 𝑛, 𝑏𝑘, 𝑘 = 0,… , 𝑛:

D+D+b = c (21)

where D+ is a generalized inverse matrix with respect to the Chebyshev differentiation matrix in the
spectral space [15], [16].

D+D+b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋮ 0 0 0 0
1 0 −12 0 0 ⋮ 0 0 0 0

0 1
4 0 −14 0 ⋮ 0 0 0 0

0 0 1
6 0 −16 ⋮ 0 0 0 0

0 0 0 1
8 0 ⋮ 0 0 0 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋯
0 0 0 0 0 ⋮ 0 −1/2

(𝑛−3)
0 0

0 0 0 0 0 ⋮ 1/2
(𝑛−2)

0 −1/2
(𝑛−2)

0

0 0 0 0 0 ⋮ 0 1/2
(𝑛−1)

0 −1/2
(𝑛−1)

0 0 0 0 0 ⋮ 0 0 1/2
𝑛

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏0
𝑏1
𝑏2
𝑏3
𝑏4
⋮

𝑏𝑛−3
𝑏𝑛−2
𝑏𝑛−1
𝑏𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐0
𝑐1
𝑐2
𝑐3
𝑐4
⋮

𝑐𝑛−3
𝑐𝑛−2
𝑐𝑛−1
𝑐𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)

Hence, the vector of coefficients {𝑐2, 𝑐3,… , 𝑐𝑛} is the result of double multiplication of a simple
tridiagonal matrix D+ (inverse of the differentiation matrix) by vector {𝑏0, 𝑏1,… , 𝑏𝑛}.
At the third stage of solving the problem, the first two coefficients of the expansion of the desired

solution in Chebyshev polynomials are determined.

5. Dirichlet–Robin boundary conditions

For a one-dimensional problem considered on the interval [−1, 1], the Dirichlet–Robin conditions
look as follows

𝛼𝑝(−1) = 𝑔(−1),
𝛽𝑝(1) + 𝛾𝑝′(1) = 𝑔(1).

(23)

Here 𝛼, 𝛽, 𝛾 are given constants. The sign in front of the term with the derivative at the right
boundary point is positive, since the outer normal to the domain of definition at the right boundary
point is directed to = ∞, i.e., in the positive direction.
Let us take into account that the derivatives of Chebyshev polynomials of the first kind are simply

expressed in terms of polynomials of the second kind:

𝑑𝑇𝑛
𝑑𝑥 = 𝑛𝑈𝑛−1,

and, in addition, the relations

𝑇𝑛(−1) = (−1)𝑛, 𝑇𝑛(1) = 1, 𝑈𝑛(−1) = (−1)𝑛(𝑛 + 1), 𝑈𝑛(1) = (𝑛 + 1),

are valid. In this case, the system of equations for calculating the unknown expansion coefficients of
the solution has the form

𝛼 (𝑐0 − 𝑐1 +
𝑛
∑
𝑘=2

𝑐𝑘(−1)𝑘) = 𝑔(−1),

𝛽 (𝑐0 + 𝑐1 +
𝑛
∑
𝑘=2

𝑐𝑘) + 𝛾 (𝑐1 +
𝑛
∑
𝑘=2

𝑐𝑘𝑘2) = 𝑔(1).
(24)
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Let us introduce the notation

𝛼(𝑐0 − 𝑐1) = 𝑔(−1) − 𝛼
𝑛
∑
𝑘=2

𝑐𝑘(−1)𝑘 ≡ 𝐺(−1),

𝛽(𝑐0 + 𝑐1) + 𝛾𝑐1 = 𝑔(1) − 𝛽
𝑛
∑
𝑘=2

𝑐𝑘 − 𝛾
𝑛
∑
𝑘=2

𝑐𝑘𝑘2 ≡ 𝐺(1),
(25)

or
𝛼(𝑐0 − 𝑐1) = 𝐺(−1),

𝛽𝑐0 + (𝛽 + 𝛾)𝑐1 = 𝐺(1).
(26)

Remove the brackets
𝛼𝑐0 − 𝛼𝑐1 = 𝐺(−1),

𝛽𝑐0 + 𝛽𝑐1 + 𝛾𝑐1 = 𝐺(1)
(27)

and multiply the first equation by 𝛽 and the second equation by 𝛼:

𝛽𝛼𝑐0 − 𝛽𝛼𝑐1 = 𝛽𝐺(−1),
𝛽𝛼𝑐0 + 𝛽𝛼𝑐1 + 𝛾𝛼𝑐1 = 𝛼𝐺(1).

(28)

To calculate the coefficient 𝑐1, subtract the first equation from the second one:

2𝛽𝛼𝑐1 + 𝛾𝛼𝑐1 = 𝛼𝐺(1) − 𝛽𝐺(−1), (29)

from which it follows that
𝑐1 =

𝛼𝐺(1) − 𝛽𝐺(−1)
𝛼(2𝛽 + 𝛾)

. (30)

To calculate the coefficient 𝑐0, we substitute the calculated value of 𝑐1 into the first equation (27):

𝑐0 =
𝐺(−1)
𝛼 + 𝑐1 =

𝐺(−1)
𝛼 +

𝛼𝐺(1) − 𝛽𝐺(−1)
𝛼(2𝛽 + 𝛾)

,

𝑐0 =
(𝛽 + 𝛾)𝐺(−1) + 𝛼𝐺(1)

𝛼(2𝛽 + 𝛾)
. (31)

6. Solving the problem B2. Method of separation of variables

Recall the formulation of problem (18). It is required to find a solution of the homogeneous boundary
value problem with zero Dirichlet–Robin conditions and a given initial condition:

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑣(0, 𝑡) = 0,
𝜕𝑣
𝜕𝑥
|||𝑥=𝐿

+ ℎ𝑣(𝐿, 𝑡) = 0, ℎ > 0,

𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥), 0 < 𝑥 < 𝐿.
where 𝑘 is the heat conductivity coefficient depending on the material properties.

The method of separation of variables yields a solution to this problem (see, e.g., [17]) in the form

𝑣(𝑥, 𝑡) =
∞
∑
𝑛=1

𝐴𝑛𝑒−𝑘𝜆𝑛𝑡 sin√𝜆𝑛𝐿𝑥, (32)
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where the coefficients 𝐴𝑛 are calculated as

𝐴𝑛 = 2∫
𝐿

0
[𝑓(𝑥) + 𝜓(𝑥)] sin√𝜆𝑛𝐿𝑥𝑑𝑥, (33)

where 𝜆𝑛 > 0 is the set of positive solutions of the equation√𝜆 = −ℎ tan(√𝜆𝐿), 𝑛 ∈ ℕ.
Finally, the solution of the initial problem 2 (15) is obtained by adding the solution 𝜓(𝑥) of

the boundary value problem (17) and the solution 𝑣(𝑥, 𝑡) of the homogeneous boundary value
problem (18):

𝑢(𝑥, 𝑡) = 𝜓(𝑥) +
∞
∑
𝑛=1

𝐴𝑛𝑒−𝑘𝜆𝑛𝑡 sin√𝜆𝑛𝐿𝑥. (34)

The determination of coefficients 𝐴𝑛 by formula (33) can be implemented using the technique of
integration based on the interpolation of the integrand by the Chebyshev polynomials of the first kind
on Gauss–Lobatto grids. In this case, the calculation of the coefficients 𝐴𝑛 reduces to elementary
summation of the weighted even coefficients of the interpolant.

7. Conclusion

Among the numerical algorithms for solving initial and boundary value problems for linear ODEs
of the first and second order, there are many methods that use the initial approximation (boundary
conditions) as the initially active condition that determines all further solution of the problem. These
are methods such as Euler, Adams–Bashforth, Runge–Kutta, etc. [18]. Other methods, based on
approximation of the solution using global functions [1–5], are based on the construction of systems
of equations that simultaneously include both initial (boundary) conditions and conditions that
specify the behavior of the derivatives of the desired solution.
The solution to the main inhomogeneous initial-boundary value problem for a one-dimensional

parabolic equation is presented in the form of a sequential solution of several subproblems. As
a method for solving one of the subproblems – an inhomogeneous ordinary differential equation
with Dirichlet–Robin boundary conditions – it is proposed to use the stable and efficient spectral
method of Chebyshev collocation.

Polynomial interpolation of the desired solution by Chebyshev polynomials is carried out in several
stages. At the first stage, a general solution is identified, i.e., a set of solutions that satisfies the
differential equation, but does not necessarily satisfy the initial (boundary) conditions. Considering
the initial (boundary) conditions is carried out at the last stage of solving the problem and reduces to
solving a linear equation with two unknown coefficients.

The search for a general solution to an inhomogeneous ODE reduces to multiplying the transposed
matrix of values of Chebyshev functions on the Gauss–Lobatto grid by the vector of the function values
that specifies the right-hand side of the original differential equation to determine the interpolation
coefficients for the expansion of the solution derivative. Next, multiplying the bi-diagonal integration
matrix [5], [15] by the vector of these coefficients leads to obtaining all the coefficients of the desired
solution, except for first ones. At the final stage, the use of the initial (boundary) condition makes it
possible to determine the first two coefficients of the polynomial expansion of the solution.
The solution of the second homogeneous subproblem is carried out by the traditional method

of separation of variables. In this case, to calculate the coefficients of expansion of the solution
according to the basis of the Sturm–Liouville problem, an effective and stable spectral method of
Chebyshev collocation is used. Thus, the authors expand the scope of applicability of the developed
2-stage Chebyshev collocation method.
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Применение метода коллокации Чебышева для решения граничных
задач теплопроводности
К. П. Ловецкий1, С. В. Сергеев1, Д. С. Кулябов1, 2, Л. А. Севастьянов1, 2

1 Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация
2 Объединённый институт ядерных исследований,
ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Российская Федерация

Аннотация. Для одномерных неоднородных (по пространственной переменной) линейных параболи-
ческих уравнений используется комбинированный подход, разбивающий исходную задачу на две
подзадачи. Первая из них – неоднородная одномерная задача Пуассона с граничными условиями
Дирихле–Робена, поиск решения которой основан на методе чебышевской коллокации. Метод раз-
работан на основе ранее опубликованных алгоритмов решения обыкновенных дифференциальных
уравнений, в которых решение ищется в виде разложения по полиномам Чебышева 1-го рода на сетках
Гаусса–Лобатто, что позволяет использовать дискретную ортогональность полиномов. Такой подход ока-
зывается весьма экономичными стабильнымпо сравнению с традиционнымиметодами, приводящими
к решению часто плохо определенных систем линейных алгебраических уравнений. В описываемом
подходе удачное применение матриц интегрирования позволяет вообще избавиться от необходимости
работы с плохо обусловленными матрицами.
Вторая, однородная задача теплопроводности решается методом разделения переменных. При этом

отыскание коэффициентов разложения искомого решения по полному набору решений соответству-
ющей задачиШтурма–Лиувилля сводится к вычислению интегралов от известных функций. Простая
методика построения чебышевских интерполянтов подынтегральных функций позволяет вычислять
интегралы суммированием интерполяционных коэффициентов.
Ключевые слова: начально-краевые задачи, псевдоспектральный метод коллокации, полиномы Чебыше-
ва, множества Гаусса–Лобатто, численная устойчивость, разделение переменных
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Abstract. The blockage of the propagation path is one of the major challenges preventing the deployment of
fifth-generation NewRadio systems in themillimeter-wave band. To address this issue, the Integrated Access and
Backhaul technology has been proposed as a cost-effective solution for increasing the density of access networks.
These systems are designed with the goal of avoiding blockages, leaving the question of providing quality-of-
service guarantees aside. However, the use of multi-hop transmission negatively impacts the end-to-end packet
latency. In this work, motivated by the need for latency reduction, we design a new link activation policy for
self-backhauled Integrated Access and Backhaul systems operating in half-duplexmode. The proposed approach
utilizes dynamic queue prioritization based on the number of packets that can be transmitted within a single
time slot, enabling more efficient use of resources. Our numerical results show that the proposed priority-based
algorithm performs better than existing link scheduling methods for typical system parameter values.

Key words and phrases: 5G, IAB, millimeter wave, half-duplex, link scheduling, network control

1. Introduction

The digitalization of many areas of human activity relies upon a communication system capable of
providing a wide range of services. The 5th generation (5G) mobile networks enable the provision
of different services including Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency
Communications (URLLC), and Massive Machine-Type Communications (mMTC).
The services provided by 5G networks require improvements in various performance indicators.

For example, eMBB needs to offer high throughput (up to 10 Gbps) and support high mobility devices
(up to 500 km/h). URLLC requires delay reduction down to one millisecond. Finally, for mMTC
services, the number of connected devices must be increased to up to 10million per square kilometer,
while also improving their energy efficiency [1].
In order to provision the required performance indicators in 5G, significant changes have been

made to the architecture and operations of the 5G core (5GC) and radio access networks (RAN). For
example, flexibility and adaptability in synchronization procedures, as well as the allocation and
splitting of bands into subcarriers, have been increased. Additionally, modulation, coding, and error
correction have been improved [2].
In addition to enhancing the RAN functionality, an important technical innovation of 5G is its

substantially expanded frequency range. This allows for higher throughput by allocating vast
bandwidth at high frequencies (greater than 24 GHz), while maintaining wide coverage through
the utilization of lower frequencies. It is worth noting though that communications in the new high-
frequency spectrum suffer from high propagation losses and require significant capital expenditures
for upgrading and expanding network hardware infrastructure. In particular, as the coverage area
of a base station is reduced due to propagation issues, network densification is necessary, which
involves increasing the number of access points (APs) per unit area.
One way to densify 5G networks is to utilize the Integrated Access and Backhaul (IAB) technology.

It employs relay nodes that are not wired connected to the core network as additional APs. The
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interference issues in the resulting multi-hop wireless network call for the half-duplex transmission,
meaning that no network node can receive and transmit data at the same time. In turn, a half-duplex
system requires an efficient link activation policy, which determines over which links data can be
transmitted at any given time.
In this paper, we aim to design a new link activation policy for 5G IAB networks that allows for

packet delay reduction and throughput maximization and can be employed in both centralized and
distributed manners. The rest of the paper is structured as follows. First, in Section 2, we discuss
the IAB technology and briefly overview the related work. Then, we formalize the model of an IAB
network in Section 3 and propose a new link activation policy in Section 4. Next, in Section 5, we
obtain realistic simulation parameters and numerically evaluate performance of the proposed policy
in comparison with well-known link activation algorithms. Conclusions are drawn in the last section.

2. Background and related work

To minimize capital expenditures in deploying dense 5G networks, the 3GPP (3rd Generation
Partnership Project) standardization body has proposed the IAB [3]. IAB allows to use relay nodes
that are not directly connected to the core network as relaying APs. As depicted in figure 1, there are
two types of APs in an IAB network: an IAB donor directly connected to the core network by a wired
link, and one or more IAB nodes which transmit traffic from or to the core network through the IAB
donor. The wireless links in the IAB network are divided into two types: access links between an
AP and a User Equipment (UE), and backhaul links between APs. Both types of links use a shared
time-frequency resource, as the name of the technology implies.

IAB donor

backhaul link

access link

BAP

SDAP

RLC

DU
MT

DU
MT

CU
DU

DU

DU MT

PDCP

MAC

PHY

Distributed Unit, DU

Central Unit, CU

Mobile-Termination, MT

User Equipment (UE)

IAB node

IAB node

Figure 1. The main components of the IAB network

The IAB technology is based on the distributed architecture of 5G networks. This architecture
separates the layers of the data transfer protocol stack between central and distributed units, as
shown in figure 1. A Distributed Unit (DU) implements Radio Link Control (RLC), Medium Access
Control (MAC), and Physical Layer (PHY). The DU is present at each AP and ensures the establishment,
maintenance, and termination of radio connections. The Central Unit (CU) implements Service Data
Adaptation Protocol (SDP) and Packet Data Convergence Protocol (PDCP). The CU is only present
in the donor and provides connection with the core network. Each IAB node contains a Mobile
Termination (MT). This component supports the Backhaul Adaptation Protocol (BAP), which forwards
data streams that travel through multiple IAB nodes to and from the IAB donor.
In the first IAB standardization document [3] released in 2018, the IAB network was defined as

a multi-hop wireless network with static APs and the ability of path selection. Also, the standard
provides a list of possible options for implementation. For example, either in-band or out-of-band
backhauling can be used. The use of time, frequency, or spatial multiplexing is permitted, as is end-
to-end or hop-by-hop automatic repeat request (ARQ). The resource allocation is not fully determined
by the standard, and has been explored in various research projects. For an extensive review, see [4].
As previously mentioned, the IAB standard allows the simultaneous operation of access and

backhaul links within the same frequency band. This reduces the downtime for the radio resources,



88 DCM&ACS. 2024, 32 (1) 86–98

but also increases interference [5]. Each transmitter interferes with all other active receivers in
the network, except the one it is communicating with. The high-frequency 5G spectrum allows for
directional transmission, reducing interference in many channels. Nevertheless, interference that
occurs during simultaneous reception and transmission remains significant [6].
To eliminate interference caused by simultaneous reception and transmission in the IAB network,

the standard [3] recommends using the half-duplex mode. This mode helps to reduce interference by
limiting the number of channels onwhich transmission occurs at any given time. More precisely, half-
duplexmode prevents any AP in the IAB network from receiving and transmitting data simultaneously.
Although the half-duplex mode limits the network throughput and increases delays, it is an effective
and simple way to reduce interference.

To efficiently implement half-duplex, it is essential to schedule transmission over links. This can be
done by dividing time into slots andmarking each link with 1 (ON) if it is allowed to transmit in the slot
and 0 (OFF) otherwise [7–10]. Such link scheduling permits to ensure that the half-duplex constraints
are met and to optimize selected performance metrics. For example, in [9] the link scheduling
algorithmmaximizes minimal user throughput, in [10] it optimizes the sum of user throughputs, and
in [7, 8, 11] it targets some convex function of user throughput (such as the sum of logarithms).
In [7–11] the link scheduling is performed by solving an optimization problem with the objective

function of throughput. On the other hand, constructing a queuing model of the studied network
allows to evaluate and optimize the delay [12, 13], as well as to prove the stability of the network under
some scheduling algorithms with any acceptable rates of incoming traffic [11, 14]. This approach was
used to derive a number of link scheduling algorithms for general multi-hop wireless networks with
interference, and in particular several throughput optimal greedy dynamic algorithms for efficient
centralized control of multi-hop networks, which choose a transmission mode based on the current
system state via argmin or argmax. Backpressure [15] is the most recognized throughput-oriented
algorithm for network control and can be utilized for link scheduling, routing or flow control problems
[11, 16–18]. While backpressure handles queue lengths, such algorithms as the largest weighted delay
first [19, 20], oldest cell first [21] and delay-based backpressure [22] use packet delays to specify the system
state. The latter is the delay-based version of backpressure and allows to reduce the maximum packet
delay in the original backpressure algorithm. The 𝛼-algorithm [23] is a modification of backpressure
aimed at reducing the total delay while remaining optimal in throughput. It uses a constant 𝛼 ⩾ 1 as
a per-component power in the backpressure algorithm to point up the longest queues. The 𝛼𝛽-algorithm
[24] algorithm aims to reduce the probability of buffer overflow and thus to provide shorter queue
lengths and smaller delays. The activation of a link in this algorithm depends on the lengths of all
queues that packets have passed before this link and will pass after.

The introduction of the IAB technology has revived interest in existing link scheduling methods for
multi-hop wireless networks, however they should be analysed and modified by taking into account
the specifics of IAB and the needs of 5G services. The present paper provides a step in this direction.

3. Model formalization

We consider a half-duplex IAB network where transmission takes place over either access or backhaul
links at any given time. Furthermore, a linkmaybe activated in either theuplink or downlinkdirection.
We assume that the throughput of each link is constant. Additionally, we assume that all data packets
traversing the network have the same size, and thus, in what follows, a packet is used as a unit of data.
We represent the considered IAB network as a directed graph consisting of four vertices as shown

in figure 2. The vertices represent the IAB donor (the circle), the IAB node (the square), the UEs
connected to the IAB donor (modeled as a single vertex and depicted by the left triangle), and the UEs
connected to the IAB node (also modeled by a single vertex, the right triangle). The edges correspond
to the communication links for direct wireless transmission. Inwhat followswe use the terms vertices
and nodes, as well as edges and links interchangeably.
The links are divided into uplink, which carry packets from UEs to the IAB donor, and downlink,

carrying data from the IAB donor to UEs. Furthermore, a link can be either backhaul, responsible for
data transmission between the IAB donor and node, or access, connecting UE nodes to their access
points, see figure 2.

Each link of the IAB network graph can be viewed as a server accompanied by a queue of unlimited
sizewhere packets awaiting transmission are stored. The system can thus be represented by a queuing
network depicted in figure 3. It consists of 𝐼 = 6 service nodes (or queues) with queues 1, 3 and 5
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corresponding to the downlink links, and 2, 4 and 6 – to the uplink. Queues 1 and 2 are coupled
with backhaul links, and the rest – with the access links. Packets departing queue 1 enter queue 3,
and packets departing queue 4 enter queue 2, which describes the two-hop transmission. Packets
departing queues 2, 3, 5, 6 leave the system. The set of all queues is denoted by ℐ.

IAB Donor

IAB
Node

UEs Access
links

Backhaul
links

4

23

15

UEs

6

Access
links

Figure 2. The considered IAB network as a directed graph
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−𝑓33(𝑘)

−𝑓22(𝑘)

Transmission modes
• 1
• 2
• 3, 5
• 4, 6
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• 3, 6

Figure 3. The queuing network corresponding to the modeled IAB network

The system is considered in discrete time indexed by 𝑘 = 0, 1, 2,… . We denote by 𝑎𝑖(𝑘) the number
of packets exogenously arriving to the 𝑖-th queue in time slot 𝑘 ⩾ 0. We have 𝑎2(𝑘) = 𝑎3(𝑘) = 0 for
all 𝑘 ⩾ 0, because packets entering queues 2 and 3 are first serviced in stations 4 and 1, respectively.
For each of the remaining queues 𝑖 ∈ ℐ0 = {1, 4, 5, 6} it is assumed that 𝑎𝑖(𝑘), 𝑘 ⩾ 0, are independent
and identically distributed (i.i.d.) random variables with finite first and second moments. We denote
the row vector of arrivals in time slot 𝑘 by a(𝑘) = (𝑎𝑖(𝑘))𝑖∈ℐ. The arrival rate to queue 𝑖 is equal to the
expectation of 𝑎𝑖(𝑘) and denoted by 𝜆𝑖 = 𝔼𝑎𝑖(𝑘).
We say that a packet is served when it is transmitted over a link, and that a queue is served (or

active) when the packets it holds are serviced. The service duration is assumed exactly one time slot.
Packets are served in batches. The maximum size of a batch that can be served in queue 𝑖 in one time
slot is fixed and denoted by 𝑐𝑖 ∈ ℕ. The column vector c = (𝑐𝑖)𝑖∈ℐ is called the link capacity vector. If
the number of packets in an active queue 𝑖 is fewer than 𝑐𝑖, then all packets in the queue are served
in the time slot, otherwise packets are taken for service according to the discipline First Come First
Served (FCFS), i.e., in the order of arrival.
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The IAB specifics impose constraints on simultaneous activation of queues. By a transmission
mode we understand a feasible combination of simultaneously active queues. Queues 𝑖 and 𝑗 such
that 𝑖 ∈ {1, 2} and 𝑗 ∈ {3, 4, 5, 6} and the queues 1 and 2, 3 and 4, and 5 and 6, pairwise cannot be
active in the same time slot due to the half-duplex constraints. Moreover, to maximize resource
utilization, we do not consider transmission modes that activate fewer queues than allowed by the
constraints. This results in the following transmission modes for the system: {1}, {2}, {3, 5}, {4, 6},
{4, 5}, {3, 6}. We denote the set of these transmission modes by 𝛩 and assume they are indexed by
𝑙=1,…, 𝐿, 𝐿 = |𝛩| = 6, in the above order.
To specify the connectivity corresponding to the transmission modes listed above, we define, for

each 𝜃 ∈ 𝛩, an 𝐼 × 𝐼matrix F with elements

𝑓𝑖,𝑗 =
⎧⎪
⎨⎪
⎩

1, if 𝑖 ∈ 𝜃, (𝑖, 𝑗) ∈ {(1, 3), (4, 2)},

−1, if 𝑖 ∈ 𝜃, 𝑗 = 𝑖, 𝑖 ∈ ℐ,

0, otherwise.

(1)

We denote the set of such matrices by ℱ and let them be ordered and indexed as in 𝛩. Since
there is a one-to-one correspondence between the sets ℱ and 𝛩, in what follows, we will specify
a transmission mode by either 𝜃 ∈ 𝛩 or F ∈ ℱ interchangeably.

We assume that in each time slot only one transmission mode can be applied by a controller. Thus,
in each time slot 𝑘, the system operates according to F(𝑘) ∈ ℱ.

Figure 4 shows the timing of events in a time slot 𝑘 ⩾ 0, by which we understand the time [𝑡𝑘, 𝑡𝑘+1),
where 𝛥 = 𝑡𝑘+1−𝑡𝑘 is a constant time slot duration. At the beginning of time slot 𝑘 the system assumes
a transmission mode F(𝑘) for the time slot. Then, the queues activated by F(𝑘) are served. Served
packets from queues 2, 3, 5 and 6 depart the system, and served packets from queues 1 and 4 move,
respectively, to queues 3 and 2. Then, before the end of time slot 𝑘, new packets arrive into the system
and join queues 1, 4, 5, 6. Thus, no packet can join and depart a queue in one time slot.

t

𝑡𝑘+1𝑡𝑘

time slot k

service of activated queues

state q(k)

transmission mode selection

exogenous arrivals

Figure 4. Timing of events in the considered model

Denote by q(𝑘) = (𝑞𝑖(𝑘))𝑖∈ℐ a row vector whose entry 𝑞𝑖(𝑘) is the number of packets in queue 𝑖 at the
beginning of time slot 𝑘. Let q(0) = 0 be a zero row vector of length 𝐼. Let a row vector s(𝑘) = (𝑠𝑖(𝑘))𝑖∈ℐ
with entries

𝑠𝑖(𝑘) = min(𝑐𝑖, 𝑞𝑖(𝑘)), 𝑖 ∈ ℐ, (2)
represent the number of packets that will be served in queue 𝑖 in time slot 𝑘 if the queue is active
in this slot. Now, vector q(𝑘 + 1) defining the system state in time slot 𝑘 + 1 relates to q(𝑘) and the
transmission mode F(𝑘) as

q(𝑘 + 1) = q(𝑘) + s(𝑘)F(𝑘) + a(𝑘), 𝑘 ⩾ 0. (3)
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In what follows, we also assume that the transmissionmode F(𝑘) ∈ ℱ chosen in time slot 𝑘 depends
only on the system state at time 𝑘 given by q(𝑘). A function 𝜋(q(𝑘)) = F(𝑘) will be referred to as the
link scheduling (or control) policy.

The capacity region of the system is defined as the set of all combinations of arrival rates (𝜆1, 𝜆4, 𝜆5,
𝜆6) such that there exists a control policy that provides a finite time-average number of packets in the
system operating with these rates as 𝑘 → ∞. Having a finite average number of packets in all queues
is considered as a network stability criterion. A control policy providing network stability for all sets
of arrival rates in the capacity region is called throughput optimal [25].
For the considered model, the network capacity region can be obtained as follows. Let 𝑝𝑙 be the

fraction of time when transmission mode 𝜃𝑙, 𝑙 = 1,… , 𝐿, is applied given some control policy 𝜋. Note
that∑𝐿

𝑙=1 𝑝𝑙 = 1 as only one transmission mode can be applied in each time slot. Now, the condition
for the system to have a finite average number the packets can be written as

𝜆6 ⩽ 𝑐6(𝑝4 + 𝑝6), 𝜆4 ⩽ 𝑐4(𝑝4 + 𝑝5),
𝜆5 ⩽ 𝑐5(𝑝3 + 𝑝5), 𝜆1 ⩽ 𝑐3(𝑝3 + 𝑝6).

(4)

By dividing each inequality by the capacity of the corresponding link and then summing up, we
obtain the capacity region of the system in the form

𝜆6
𝑐6

+ 𝜆4
𝑐4

+
𝜆5
𝑐5
+ 𝜆1
𝑐3

+ 2𝜆1
𝑐1

+ 2𝜆4
𝑐2

⩽ 2. (5)

As a key performance indicators we consider the average end-to-end delay𝐷 and the 99th percentile
of the end-to-end delay probability distribution, denoted by 𝑃99. The end-to-end delay is defined
for each packet that has departed the system as its sojourn time in the system. We also consider
such important aspects of every control policy as its throughput optimality and the control-induced
overhead.

4. Centralized and distributed priority-based link scheduling

The idea behind the proposed priority-based link scheduling algorithm is as follows. To chose the
transmission mode, we first prioritize the transmission modes according to whether the activated
thereby queues holdmore packets than can be served in one time slot. Then, among the transmission
modes with the highest priority, we choose the one providing transmission of the greatest number of
packets. This approach is similar to the P-TREE algorithm [26], which is a low-complexity scheduling
algorithm designed for the multi-hop tree-shaped networks with only uplink traffic.
Recall, that for F ∈ ℱ a diagonal entry 𝑓𝑖,𝑖 is −1 or 0 depending on whether queue 𝑖 is activated or

not in the transmission mode specified by F. In the proposed priority-based algorithm, in each time
slot 𝑘 we obtain a set of priority transmission modes ℱ∗(𝑘) by the following procedure consisting of
three steps:

1. Let the priority set ℱ∗(𝑘) include all transmission modes for which the maximum possible
number of packets is served in all active queues, i.e., let

ℱ∗(𝑘) ∶= {F ∈ ℱ ∶ 𝑠𝑖(𝑘)𝑓𝑖,𝑖 = 𝑐𝑖𝑓𝑖,𝑖 ∀𝑖 ∈ ℐ}. (6)

2. If after Step 1 the set ℱ∗(𝑘) is empty, then let it include all transmission modes for which the
maximum possible number of packets is served in at least one queue, i.e., let

ℱ∗(𝑘) ∶= {F ∈ ℱ ∶ 𝑓𝑖,𝑖=−1, 𝑠𝑖(𝑘) = 𝑐𝑖 for some 𝑖}. (7)

3. If the set ℱ∗(𝑘) is still empty, then let ℱ∗(𝑘) ∶= ℱ.

Now, among the transmission modes of set ℱ∗(𝑘) we choose the one that results in serving the
most packets in time slot 𝑘. Let diag(F) = (𝑓𝑖,𝑖)𝑖∈ℐ denote the column vector of diagonal elements of
matrix F. Since the number of packets served in time slot 𝑘under transmissionmode F is−s(𝑘)diag(F),
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the sought transmission mode is given by

𝜋𝑝𝑏(q(𝑘)) = argmin
F∈ℱ∗(𝑘)

s(𝑘)diag(F). (8)

The choice of a transmissionmode based on the current network state requires significant signaling.
Next, in this section we propose an approach to designing a policy for distributed link scheduling
whose performance is close to that of the centralized algorithm. The method is based on the use of
shadow queues introduced in [27] and then implemented for delay reduction in multi-hop networks in
[18]. We assign to each queue 𝑖 ∈ ℐ a shadow queue, which is a variable 𝑞𝑖(𝑘) such that the row vector
̃q(𝑘) = (𝑞𝑖(𝑘))𝑖∈ℐ evolves as

̃q(𝑘 + 1) = ̃q(𝑘) +min( ̃q(𝑘), c)F(𝑘) + ̃𝜆, 𝑘 ≥ 0, (9)

where min represents a per-component minimum. Here

̃𝜆 = ((1 + 𝜖1)𝜆1,… , (1 + 𝜖𝐼)𝜆𝐼), (10)

is a row vector in which 𝜖𝑖, 𝑖 ∈ ℐ, are positive constants such that ((1+𝜖𝑖)𝜆𝑖)𝑖∈ℐ0 belongs to the system’s
capacity region.
The dynamics of the shadow queues (9) differ from that of the actual queues q(𝑘) given by (3) in

the use of the fixed ̃𝜆 instead of the random disturbance a(𝑘) representing the actual numbers of
arrivals. Arrival rates 𝜆𝑖 and constants 𝜖𝑖 may not be integers, hence the components of ̃q(𝑘)may not
be integers either, unlike the components of q(𝑘).
As previously for the actual queues, we let ̃q(0) = 0. Then, to obtain q̃(𝑘 + 1) by (9), its value in

time slot 𝑘, ̃q(𝑘), is used in some given centralized control policy 𝜋𝑐 to select a transmission mode,
i.e., F(𝑘) = 𝜋𝑐( ̃q(𝑘)). The chosen transmission mode is then substituted in (9). Thus, transmission
mode selection does not depend on the actual network state and can be implemented in a distributed
manner, where all nodes locally use the same policy 𝜋𝑐 with the same fixed disturbance ̃𝜆 and obtain
the same controls, which they apply to the network. It was shown in [18] that such a control ensures
a finite average number of packets in all actual queues as long as the non-zero elements of (10) are
interior to the capacity region and the policy 𝜋𝑐 is throughput optimal.

5. Numerical results

Wenowproceed illustrating theperformanceof theproposed approach. Weassume that the capacities
of the backhaul links, downlink access links, and uplink access links are all pairwise equal. That is,
we let 𝑐1 = 𝑐2, 𝑐3 = 𝑐5, and 𝑐4 = 𝑐6. We also assume that IAB network is using the FR2 band with 200
MHz of bandwidth and a subcarrier spacing of 120 kHz, which corresponds to the NR numerology 3.
Thus, the number of primary resource blocks, 𝑁𝐵𝑊,𝜇

𝑃𝑅𝐵 , is equal to 132, and the symbol duration 𝑇𝜇
𝑠

is equal to 8.92 × 10−6. Additionally, the uplink and downlink overheads, as defined by [28], are
𝑂𝐻𝑈𝐿 = 0.1 for the uplink and 𝑂𝐻𝐷𝐿 = 0.1 for the downlink.

Weconsider three different scenarios, eachwith a different set of parameter values. In themaximum
UL/DL scenario, there are no hardware limitations for UEs in both the uplink or downlink directions.
In the limited UL scenario, the capabilities of UEs are limited in the uplink direction only. Finally, in
the limited UL/DL, UEs have limitations in both the uplink and downlink directions. Table 1 provides
the scenario-specific values for the parameters used in our analysis.
According to 3GPP [28] the data rates of the access links can be estimated as

𝐶𝑋[Mbps] = 10−6𝜈𝐿,𝑋𝑄𝑚,𝑋𝑓𝑅𝑋
12𝑁𝐵𝑊,𝜇

𝑃𝑅𝐵

𝑇𝜇
𝑠

(1 − 𝑂𝐻𝑋) , 𝑋 ∈ {𝑈𝐿,𝐷𝐿}. (11)

Let the time slot duration be 1 ms and let the packet size be 1500 bytes. Thus, to calculate, e.g., the
capacity of the downlink access link, 𝑐3 = 𝑐5, we first compute 𝐶𝐷𝐿 in Mbps by (11) and then convert
the value to packets per time slot as

𝑐𝐷𝐿 [pkts/ms] = 10−3(𝐶𝐷𝐿 [Mbps] × 106)/(8 × 1500), (12)

after which 𝑐𝐷𝐿 is rounded down to an integer and assigned to 𝑐3 = 𝑐5.
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Table 1
Scenario-specific UE parameters

Parameter Notation Maximum
UL/DL

Limited UL Limited
UL/DL

UL number of multiplexed
layers

𝜈𝐿,𝑈𝐿 4 2 1

DL number of multiplexed
layers

𝜈𝐿,𝐷𝐿 6 6 1

UL modulation order 𝑄𝑚,𝑈𝐿 6 4 4

DL modulation order 𝑄𝑚,𝐷𝐿 6 6 6

Scaling factor 𝑓 1 1 0.75

UL error coding rate 𝑅𝑈𝐿 948/1024 490/1024 490/1024

DL error coding rate 𝑅𝐷𝐿 948/1024 948/1024 438/1024

UL rate, Mbps 𝐶𝑈𝐿 3547 611 229

DL rate, Mbps 𝐶𝐷𝐿 4848 4848 280

Since backhaul links are characterized by a higher transmission power and hence a high-order
modulation scheme can be used, we take the backhaul link capacities one and a half times as large
as the access downlink capacities, i.e., 𝑐𝐵 = 1.5𝑐𝐷𝐿. Then 𝑐𝐵 is also rounded down to an integer and
assigned to 𝑐1 = 𝑐2. Thus, we obtain three vectors of link capacities c: (606, 606, 404, 295, 404, 295) for
maximum UL/DL, (606, 606, 404, 50, 404, 50) for limited UL, and (34, 34, 23, 19, 23, 19) for limited UL/DL.
Finally, by following the recommendations for traffic modeling in the standard [3], we assume

that the number of packets 𝑎𝑖(𝑘) arriving to queue 𝑖 ∈ ℐ0 in each time slot 𝑘 ⩾ 0 are i.i.d. random
variables distributed according to Poisson law with mean 𝜆𝑖.

We start by comparing the centralized algorithms discussed in Section 2, namely backpressure, delay-
based backpressure, 𝛼-algorithm and 𝛼𝛽-algorithm, with the centralized priority-based implementation
in terms of the average delay 𝐷 and the 99th delay percentile 𝑃99. For a convenient presentation of
results, we denote the uplink arrival rates from the donor- and node-associated UEs, respectively,
as 𝜆6 = 𝜆ULD and 𝜆4 = 𝜆ULN , and the downlink arrival rates to the donor- and node-associated UEs as
𝜆5 = 𝜆DLD and 𝜆1 = 𝜆DLN . In all presented figures, at each point, 50 simulation runs, each having 1000
time slots, were generated and then averaged to obtain 𝐷 and 𝑃99.
The comparison of the centralized schemes is shown in figure 5, where the arrival rates at each

AP are equal and the ratios of the downlink to uplink arrival rates are fixed to four, i.e., 𝜆DLN = 𝜆DLD =
4𝜆ULN = 4𝜆ULD . With such parameters, figure 5 shows 𝐷 and 𝑃99 as functions of the uplink arrival rates
for the three studied scenarios.
By analyzing the results in figure 5 we observe that the lowest average delay value is provided by

the proposed priority-based algorithm. The closest result is demonstrated by the backpressure and
𝛼-algorithm in the maximum UL/DL and limited UL/DL scenarios. In terms of the 99th percentile 𝑃99,
delay-based backpressure and 𝛼𝛽-algorithm show the best performance in maximum UL/DL and limited
UL/DL, whereas in limited UL the 𝛼𝛽-algorithm performs the best. Moreover, from figure 5 we can see
that the priority-based policy provides network stability wherever the throughput optimal policies do,
i.e., wherever it is possible.
We note that the qualitative behavior of all the algorithms in maximum UL/DL and limited UL/DL is

similar. The rationale is that the elements of the link capacity vectors in these scenarios are closely
proportional. Moreover, the ratios of the largest and smallest capacities therein are 2 and 1.8, while
this ratio in limited UL is 12.1. The range of link capacities’ values in limited UL is thus considerably
wider, and the performance ranking of control policies it yields is different.
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Figure 5. Performance evaluation of the centralized link activation policies in terms of the mean delay𝐷 (top) and
the 99th delay percentile 𝑃99 (bottom) vs. the uplink arrival rates 𝜆ULN = 𝜆ULD with 𝜆DLN /𝜆ULN = 𝜆DLD /𝜆ULD = 4.

Having identified the 𝛼𝛽 and priority-based algorithms as performing best in terms of the
99th percentile and average end-to-end delay, respectively, we now evaluate their distributed
implementations constructed using shadow queues. Recall, that a policy choosing the transmission
mode based on the shadow queue lengths ensures network stability as long as ̃𝜆 defined in (10) lies
within the capacity region. This means that a larger 𝜖 can cause instability at high arrival rates but
prevents it if the actual arrival rates increase slightly (no more than by 100𝜖%) while ̃𝜆 is fixed.
Similarly to figure 5, figure 6 shows the delay metrics 𝐷 (top) and 𝑃99 (bottom) as functions of the

arrival rates. Assuming that the system initially operates with some arrival rates 𝜆, shown in figure 6
by the solid vertical lines, we fix two sets of shadow arrival rates: ̃𝜆1 defined by (10) using 𝜖𝑖 = 0.1 for
all 𝑖 and indicated by the dashed vertical lines, and ̃𝜆2 defined using 𝜖𝑖 = 0.01 for all 𝑖 and shown by the
dotted vertical lines. Then, we let the actual arrival rates vary along the horizontal and evaluate the
system’s performance under the centralized control (the results shown by solid lines) and using the
shadow queues with the arrival rates ̃𝜆1 and ̃𝜆2 fixed previously (dashed and dotted lines, respectively).
Thus, to the right from the dashed and dotted vertical lines, the actual arrival rates are greater than
the corresponding shadow arrival rates ̃𝜆1 and ̃𝜆2, and to the left they are smaller.
As it could be expected, the shadow-queues-controlled network is stable when the actual arrival

rates are less than the shadow arrival rates. Additionally, we note that the delay performance is very
close to that in a network with centralized control. Interestingly, in the maximum UL/DL and limited
UL/DL scenarios the network is stable even if the actual arrival rates are slightly higher, than the
shadow arrival rates. We note that the priority-based algorithm maintains the system stable over
a wider range of real arrival rates than the 𝛼𝛽-algorithm.
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Figure 6. Performance evaluation of the distributed link activation policies in terms of the mean delay𝐷 (top) and
the 99th delay percentile 𝑃99 (bottom) vs. the uplink arrival rates 𝜆ULN = 𝜆ULD with 𝜆DLN /𝜆ULN = 𝜆DLD /𝜆ULD = 4.

6. Conclusions

In this paper, we considered the IAB technology enabling cost-effective deployment of dense 5G
networks operating in high frequency bands. Specifically, we concentrated on the half-duplex regime
and focused on link activation as a critical task for this type of networks. By identifying throughput
and delay as relevant performance criteria, we designed a priority-based link activation policy for 5G
IAB networks, which allows for packet delay reduction and throughput maximization. The proposed
policy can be implemented either by the network controller in a centralized way or in a distributed
manner by each network node using the proposed shadow queue mechanism.
By using a model of an IAB network with a basic topology consisting of one IAB donor, one IAB

node, and two groups of UEs we evaluated link activation policies for three scenarios, each with
different hardware capabilities. Performance of the proposed policy was compared numerically
to the well-known backpressure policy and its delay-oriented modifications. We have shown that
the centralized priority-based policy provides the lowest average end-to-end delay in the considered
simulation setup. It also outperforms some of the other studied policies in terms of the 99th delay
percentile and achieves stability in the entire capacity region.
Finally, our results also demonstrate that a distributed implementation using shadow queues leads

to approximately the same delays as the centralized implementation.
Funding: This paper has been supported by the Russian Science Foundation, project no. 23-79-10084, https://rscf.ru/
project/23-79-10084.
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Стратегия активации каналов для снижения задержки пакетов
в сетях интегрированного доступа и транзита 5G
А. А. Живцова, В. А. Бесчастный

Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

Аннотация. Блокировка путей распространения радиоволн является одним из основных препятствий
на пути развертывания сетей сотовой связи пятого поколения (Fifth Generation) Новое Радио (New
Radio) в диапазоне миллиметровых волн (30–100 ГГц). Возможным решением данной проблемы являет-
ся уплотнение сетей радиодоступа, однако оно связано высокими капитальными затратами операторов
связи. Экономически эффективное уплотнение может быть достигнуто с помощью технологии инте-
грированного доступа и транзита (Integrated Access and Backhaul), использующей ретрансляционные
узлы между абонентом и базовой станцией. Такие системы были разработаны главным образом для
борьбы с блокировками без учета показателей качества обслуживания (Quality of Service). При этом ис-
пользование ретрансляционных узлов отрицательно влияет на сквозную задержку пакета. В данной
работе предлагается новая стратегия активации каналов направленная на сокращение задержек в си-
стемах интегрированного доступа и транзита, учитывающая органичения полудуплексной передачи.
Предлагаемый подход основан на динамической приоритезации очередей на базе количества пакетов,
которые могут быть переданы в одном временно́м слоте. Результаты имитационного моделирования
с использованием реалистичных исходных данных показывают, что предлагаемый алгоритм обеспечи-
вает наименьшую среднюю задержку по сравнению с известными подходами для различных значений
нагрузки восходящей и нисходящей передачи.
Ключевые слова: 5G, интегрированный доступ и транзит, миллиметровые волны, полудуплекс, управле-
ние активацией каналов
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Abstract. The problem of finding equilibrium configurations of one-component charged particles, induced by
external electrostatic fields in planar systems, is a subject of active studies in fundamental as well in experimental
investigations. In this paper the results of numerical analysis of the equilibrium configurations of charged
particles (electrons), confined in a circular region by an infinite external potential at its boundary are presented.
Equilibrium configurations with minimal energy are searched by means of special calculation scheme. This
computational scheme consists of the following steps. First, the configuration of the system with the energy as
close as possible to the expected energy value in the ground equilibrium state is found using a model of stable
configurations. Next, classical Newtonian molecular dynamics is used using viscous friction to bring the system
into equilibrium with a minimum energy. With a sufficient number of runs, we obtain a stable configuration
with an energy value as close as possible to the global minimum energy value for the ground stable state for
a given number of particles. Our results demonstrate a significant efficiency of using the method of classical
molecular dynamics (MD) when using the interpolation formulas in comparison with algorithms based onMonte
Carlo methods and global optimization. This approach makes it possible to significantly increase the speed at
which an equilibrium configuration is reached for an arbitrarily chosen number of particles compared to the
Metropolis annealing simulation algorithm and other algorithms based on global optimization methods.

Key words and phrases: Thomson atom,Wigner crystal, molecular dynamics

1. Introduction

The question of how charged particles arrange themselves in a restricted planar geometry attracted
continuous attention for many decades (for a review see [1]). Modern technology allows us to study
such phenomena on the same scale, from Bose condensates with some thousand atoms to quantum
dots with a few electrons, providing rich information about specific features of correlation effects
in mesoscopic systems (see, for example, [2, 3]). However, finding the exact analytical equilibrium
charge distribution (the one that makes the body an equipotential) is not a simple problem. The
existence of the symmetry for considered system may simplify the task. Thomson was the first
to suggest an instructive solution for interacting electrons, reducing the 3D harmonic oscillator
confinement to a circular (2D) harmonic oscillator [4]. He developed an analytical approach, which
enables us to trace a self-organization for a small number of electrons (𝑛 < 10) in a family of rings
(shells) with a certain number of electrons in each shell.

Nowadays, many ideas and concepts introduced in condensed matter physics can be realized and
analyzed with high accuracy as a function of particle number and boundary properties. In fact,
nanotechnology gave rise to emergence of lateral quantum dots creation which properties where not
so obvious in ninetieth. Assuming a circular symmetry of such quantum dots, the first attempt to
understand the distribution of electrons in such confined systems were based on the Monte Carlo

© Nikonov E.G., Nazmitdinov R.G., Glukhovtsev P. I., 2024
This work is licensed under a Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by-nc/4.0/legalcode



100 DCM&ACS. 2024, 32 (1) 99–105

(MC) calculations for charged particles (ions and electrons) confined by 2D parabolic and hard-wall
potentials (see, e.g., [5–7]). The results of these calculations confirmed the predictions based on
the Thomson model for 𝑁 ≤ 52. The next step in the attempt to find the analytical description of
the distribution of charged particles in the disc geometry have been done in [8]. In this paper the
basic principles of self-organization of one-component charged particles, confined in disk have been
proposed. A system of equations was derived, which allows to determine equilibrium configurations
for an arbitrary, but finite, number of charged particles that are distributed over several rings. This
approach reduces significantly the computational effort in minimizing the energy of equilibrium
configurations and demonstrates a remarkable agreement with the values provided by molecular
dynamics calculations. This paper gave a new impetus to activity in finding the bridge between the
distribution of finite number of confined charged particles to their continuous limit (e.g., [9–15]).
From the analysis, based on MC and MD calculations for a relatively small number of charged

particles, it follows that the number of stable configurations grows very rapidly with the number of
particles. There are many local minima that have energies very close to the global minimum. These
metastable states with lower (or higher) symmetry are found with much higher probabilities than the
true ground state [9, 10]. This picture is akin to a liquid-solid transition, when a rapid cooling gives
rise to a glass-like disordered solid rather than a crystal with lower energy. Therefore, the description
of this phenomenon requires the development of various not only analytical approaches but as well
the effective numerical recipes with growing number of confined particles.
In this paper, we present a new approach for numerical-analytical analysis of the equilibrium

configurations of charged particles (say, electrons) confined in a disk geometry. Using a model of
stable configurations, which takes into account the interaction between shells of charged particles [8,
11], we obtain functional dependencies of the total number of particles of the system on the number
of rings and those of the energy of the equilibrium configuration on the total number of particles.
These dependencies make it possible to significantly simplify the search for the absolute minimum
of the system for a given total number of one component charged particles.

2. System description

The physical formulation of the problem can be as follows. A system of similarly charged particles
is given; they are located in a region with a cylindrical confining potential at the boundary. The
configurations of the particles are determined by the Hamiltonian, in which the potential energy
of the interparticle interaction dominates over the kinetic energy. It is necessary to find a stable
configuration of 𝑁 particles with the minimal energy inside the given region.
Thus, we consider two-dimensional system on a plane consisting of identically charged particles

with mutual Coulomb interaction in the confining disk potential with the radius 𝑅. The Hamiltonian
of such a system can be written as follows:

𝐻 =
𝑁
∑
𝑖=1

𝑉ext(𝑟𝑖) + 𝛼
𝑁
∑
𝑖,𝑗=1
𝑖<𝑗

1
|| ⃗r𝑖 − ⃗r𝑗||

+
𝑁
∑
𝑖=1

𝑇𝑖, (1)

where 𝑟𝑖 = || ⃗r𝑖|| is the distance to the center of the region bounded by the potential𝑉ext(𝑟), 𝛼 = 𝑒2/4𝜋𝜀0𝜀𝑟
is a quantity characterizing the interaction of charges in the medium, and 𝑇𝑖 is the particle kinetic
energy. The confining potential 𝑉ext(𝑟) is defined as follows:

𝑉ext(𝑟) = { 0, 𝑟 < 𝑅;
∞, 𝑟 ⩾ 𝑅.

(2)

To avoid a large number of metastable states (local minima), the system is considered at
temperatures that are close to zero; at these temperatures, the potential energy dominates over
the kinetic one. As a result, it is possible to rewrite the function of the total energy of the system (1)
as follows:

𝐻 =
𝑁
∑
𝑖=1

𝑉ext(𝑟𝑖) + 𝛼
𝑁
∑
𝑖,𝑗=1
𝑖<𝑗

1
|| ⃗r𝑖 − ⃗r𝑗||

. (3)
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The problem is to find a stable configuration of the particle inside the given region with the
minimally possible energy.
Using his model, Thomsom obtained equation (4) for analytical calculation of the coordinates of

particles in the equilibrium state for one ring

𝐸𝑛(𝑟) =
𝛼
2𝑟

𝑛−1
∑
𝑖=1

𝑛
∑

𝑗=𝑖+1

1
sin 𝜋

𝑛
(|𝑖 − 𝑗|)

=
𝛼𝑛𝑆𝑛
4𝑟 , (4)

𝑆𝑛 =
𝑛−1
∑
𝑖=1

1
sin 𝜋

𝑛
𝑘
.

Here, 𝐸𝑛(𝑟) is the Coulomb energy of 𝑛 particles with the charge 𝑒 uniformly distributed along
a circle with the radius 𝑟, 𝛼 = 𝑒2/4𝜋𝜀0𝜀𝑟 is the quantity characterizing the interaction of charged
particles in the medium. Without loss of generality, electrons with the charge 𝑒 are considered as
charged particles below. An original approach to the calculation of equilibrium configurations and
the corresponding energy was formulated in [8, 11]; in this approach, the interaction between shells
consisting of charged particles is also taken into account in addition to the energy of one ring (one
shell). As a result of solving the (5)

ℱ𝑖 = 0, 𝑖 = 2,… , 𝑝.

ℱ𝑖 = 𝑟2𝑖
𝑝
∑

𝑗=𝑖+1

𝑛𝑗𝐸 [(𝑟𝑗/𝑟𝑖)
2]

𝑟2𝑗 − 𝑟2𝑖
− 𝜋
8 𝑆𝑛𝑗 + 𝑟𝑖

𝑖−1
∑
𝑗=1

𝑛𝑗 (
𝑟𝑗𝐸 [(𝑟𝑖/𝑟𝑗)

2]

𝑟2𝑗 − 𝑟2𝑖
−
𝐾 [(𝑟𝑖/𝑟𝑗)

2]

𝑟𝑗
) . (5)

Here, 𝐾 = 𝑋−1(𝐸 = 𝑋1) are the complete elliptic integrals of the first (second) kind: 𝑋𝑝(𝑥) =
∫𝜋/2
0 𝑑𝑡(1 − 𝑥 sin2 𝑡)𝑝/2; 𝑟𝑖 is the value of the 𝑖th optimal radius for the given stable configuration of
charged particles; and 𝑛𝑖 is the number of particles in the 𝑖th shell.
As preliminary analysis showed, the solution of these equations makes it possible to significantly

reduce the amount of computational work by finding the state that is closest to the equilibrium
configuration. It is worth noting that this approach allows us to almost exactly determine both the
equilibrium configuration and the total energy of the equilibrium state for 𝑁 < 52.
In this paper, we develop a new approach and methods for calculating the coordinates of particles

and the energy of the equilibrium configuration for an arbitrary finite number of particles using the
obtained analytic dependencies of the distribution of particles and the energy of the equilibrium
configuration on the total number of particles in the system for 𝑁 < 1000.

3. Computational scheme

To further increase the efficiency and reduce the calculation time, the following modification of the
traditional approach based on the molecular dynamics method [16] is proposed in this paper.
The computational scheme consists of the following steps.
1. We use interpolation formulas (6) for calculation initial particle distribution

𝑁𝑖 (𝑁) = 𝑎𝑖𝑁
2
3 − 𝑏𝑖, (6)

𝑖 1 2 3 4 5 6
𝑎𝑖 2.7948 1.3439 1.1323 1.0127 0.9482 0.8517
𝑏𝑖 3.9444 7.2999 10.845 14.850 19.128 21.732

Formulas (6) were obtained by interpolating solutions [17, 18] to equations (3) of the equilibrium
configuration model [8, 11].

2. Using the initial distribution of particles inside the circular region obtained in the previous
step, we run ab initio calculations using Newtonian molecular dynamics. The dissipation of
energy for cooling the system upon reaching the ground state with a minimum of potential and
zero kinetic energy is modeled by adding to the equations of motion a viscous friction force
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proportional to the speed (7), which realizes the corresponding outflow of energy from the
system.

𝑚 ⃗r ′′
𝑖 = −∇𝑖𝑉 ( ⃗r𝑖) − 𝑏𝑓 ⃗r ′

𝑖 , ∀𝑖 ∈ {1, 2, 3,… ,𝑁} . (7)

Here 𝑉 (r⃗𝑖) = 𝑉ext(𝑟𝑖)+𝛼∑
𝑁
𝑖,𝑗=1
𝑖<𝑗

1
||r⃗𝑖−r⃗𝑗||

includes the external confining potential plus the Coulomb

terms, and the friction coefficient 𝑏𝑓 is the parameter controlling the quenching of velocities.
For calculations we used quenched velocity Verlet algorithm. Let at some moment of time 𝑡

the coordinates ⃗r𝑖(𝑡) and velocities v⃗𝑖(𝑡) of the particles be given, then at the moment of time
𝑡 + 𝛥𝑡, where 𝛥𝑡 is some fixed time step, we can obtain the coordinates ⃗r𝑖(𝑡 + 𝛥𝑡) and velocities
v⃗𝑖(𝑡 + 𝛥𝑡) using the following formulas (8), (9), (10).

⃗f𝑖(𝑡) = −∇𝑖𝑉 ( ⃗r𝑖(𝑡)) . (8)

⃗r𝑖(𝑡 + 𝛥𝑡) = ⃗r𝑖(𝑡) + v⃗𝑖(𝑡)∆𝑡 +
1
2 (f⃗𝑖(𝑡) − 𝑏𝑓v⃗𝑖(𝑡))𝛥𝑡2. (9)

v⃗𝑖(𝑡 + 𝛥𝑡) =
(2 − 𝑏𝑓𝛥𝑡) v⃗𝑖(𝑡) + (f⃗𝑖(𝑡) + f⃗𝑖(𝑡 + 𝛥𝑡)) 𝛥𝑡

2 + 𝑏𝑓𝛥𝑡
. (10)

This is the so-called quenched molecular dynamics method.
3. The final stage of calculations includes a fairly large sequence of runs of molecular dynamics

calculations described at the previous step, which is due to the existence of a number of
metastable states that exponentially increases with the number of particles near the point
of global minimum of energy.
In order to estimate the minimum number of runs 𝑁runs to obtain the ground state energy

value 𝐸min as close as possible to the global minimum, the following procedure is used. First,
a certain number of runs are performed depending on the number of particles in the system.
Then the probability of finding the minimum 𝑃(𝐸min < 𝐸val) is calculated. Then the estimate for
the minimum number of runs has the following form 𝑁runs = 1/𝑃(𝐸min < 𝐸val).

For a sufficiently large number of runs 𝑁runs, in accordance with the Central Limit Theorem, the
energy values of metastable states calculated in each run are distributed in accordance with the
Gaussian distribution. Typically, the value 𝐸avr−3𝜎 is used as 𝐸val. In this case, for a system consisting,
for example, of 1000 particles, 𝐸avr − 3𝜎 = 736980.1734 in reduced units (𝐸avr is an average value for
the general sample for all runs. And 𝜎 is the corresponding standard deviation.). At a given value of
𝐸val, the minimum number of runs 𝑁runs to obtain the global minimum energy must be greater than
741.

However, we use a different version of probability estimation and, accordingly, aminimumnumber
of runs to practically guarantee obtaining the minimum energy value. This value was obtained using
the asymptotic formula (11) for the minimum energy of the ground state, obtained by the authors [17,
18] based on an analysis of solutions to the equations of the equilibrium configuration model [8, 11].

𝐸𝑚𝑖𝑛(𝑁) =
𝜋
4 𝑁

2 − 𝜋
2 𝑁

3
2 +√

𝜋
2𝑁 (11)

In this case, the estimate for 𝐸val for 1000 particles will be equal to 736978.54, which is approximately
equal to 𝐸avr − 4𝜎. The corresponding minimum number of runs 𝑁runs to obtain the global minimum
energy must be greater than 25237. This value for the number of runs 𝑁runs looks more realistic for
the case of the initial configuration of particles distributed randomly within the disk.
As an initial approximation, the particle distribution obtained by solving equations of the model

of equilibrium configurations (5) for a certain number of rings is taken. After that, calculations are
started using the quenched molecular dynamics method under the condition of a gradual decrease in
the system temperature. When the zero temperature is reached, the calculations of the time evolution
of the system are considered to be completed, after which the energy of the resulting equilibrium
configuration of particles in the system is calculated.
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For example, for the above-mentioned systemof 1000 particles, we fixed the distribution of particles
on the outer ring in the initial configuration 𝑁1 = 276 in accordance with the formula (6). As a result,
we needed only 500 runs to obtain the minimum ground state energy equal to 736979.7283. The best
published value known to us is 736977.7079. This value can be obtained, according to our estimates,
for a number of runs no less than 25237 [14].

4. Conclusions

The effectiveness of the approach proposed in this article for calculating the global minimum energy
for the ground state of the above-mentioned systems of charged particles is based on the following
modifications of the traditional molecular dynamics method.
First, the initial configuration for molecular dynamics calculations was calculated using analytic

solutions of the equations of the equilibrium configurationmodel [8, 11]. Secondly, to cool the system,
energy dissipation was carried out due to viscous friction forces. For this purpose, the Verlet velocity
scheme with quenching was used. Finally, to estimate the number of molecular dynamics runs
with different initial conditions, we used an asymptotic formula [17, 18] for the ground state energy,
obtained from an analysis of solutions to the equations of the equilibrium configuration model [8,
11]. As a result, the computational efficiency in terms of computation time has increased by more
than two orders of magnitude.
The algorithms and programs developed by us can be used to numerically study the stability

of systems of charged particles in various fields of physics, chemistry, molecular biology, and
nanotechnology, including, for example, the study of nano-objects, such as quantum dots.
Funding: The work was supported within the framework of the Joint Institute for Nuclear Research project no. 05-6-1118-
2014/2023 with the use of resources of the HybriLIT heterogeneous cluster of the Laboratory of Information Technologies, Joint
Institute for Nuclear Research. Work by E.G.N. partially supported by the Basic Research Program of the National Research
University “Higher School of Economics”.
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Компьютерные исследования зависимости от числа частиц структуры
основного состояния двумерной системы заряженных частиц
ограниченных круговым потенциалом
Э. Г. Никонов1, 2, 3, Р. Г. Назмитдинов1, 2, П. И. Глуховцев2

1 Объединенный иститут ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская Федерация
2 Государственный университет «Дубна», ул. Университетская, д. 19, Дубна, 141980, Российская Федерация
3 Национальный исследовательский университет «Высшая школа экономики»,
ул. Таллинская, д. 34, Москва, 123458, Российская Федерация

Аннотация. Проблема нахождения равновесных конфигураций однокомпонентных заряженных частиц,
индуцированных внешними электростатическими полями в планарных системах, является предметом
активных исследований как в фундаментальных, так и в экспериментальных исследованиях. В данной
работе представлены результаты численного анализа равновесных конфигураций заряженных частиц
(электронов), удерживаемых в круговой области бесконечным внешним потенциалом на ее границе.
Равновесные конфигурации с минимальной энергией ищутся с помощью специальной схемы расчета.
Данная вычислительная схема состоит из следующих шагов. Сначала с помощью стационарной модели
находится конфигурация системы с энергией, максимально близкой к ожидаемому значению энергии
в основном состоянии равновесия. Далее используется классическая ньютоновская молекулярная дина-
мика с использованием вязкого трения, чтобы привести систему в равновесие с минимальной энергией.
При достаточном количестве прогонов мы получаем устойчивую конфигурацию со значением энергии,
максимально близким к глобальному минимальному значению энергии для основного устойчивого со-
стояния для заданного числа частиц. Наши результаты демонстрируют значительную эффективность
использования метода классической молекулярной динамики (МД) при использовании интерполя-
ционных формул по сравнению с алгоритмами, основанными на методах Монте-Карло и глобальной
оптимизации. Такой подход позволяет существенно повысить скорость достижения равновесной кон-
фигурации для произвольно выбранного числа частиц по сравнению с алгоритмом моделирования
отжига Метрополиса и другими алгоритмами, основанными на методах глобальной оптимизации.
Ключевые слова: атом Томсона, кристалл Вигнера, молекулярная динамика
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Abstract. Study of spherically symmetric time-periodic standing waves of the 𝜙4 model in a ball of finite radius
was carried out based on the numerical solution of a boundary value problem on a cylindrical surface for a wide
range of values of the oscillation period. The standing waves in a ball of finite radius can be considered as
an approximation of weakly radiating spherically symmetric oscillons in the 𝜙4 model. Stability analysis the
waves obtained is based on the calculation of the corresponding Floquet multipliers. In the paper, mathematical
formulation of the problem is given, the numerical approach is described, including the method of parallel
implementation of the calculation of Floquet multipliers on the computing resources of the HybriLIT platform
of the Multifunctional Information and Computing Complex of the Joint Institute for Nuclear Research (Dubna).
The results of the study of the space-time structure and bifurcation of coexisting standing waves of various types
are presented.

Key words and phrases: oscillons, numerical study, parallel computing

1. Introduction

We consider spherically symmetric standing waves in the 𝜙4 equation

𝛷𝑡𝑡 − 𝛥𝛷 − 𝛷 + 𝛷3 = 0, 𝛥 = 𝑑2

𝑑𝑟2 +
2
𝑟 . (1)

Equation (1) can be used as a model for a wide range of nonlinear wave processes within
various physical contexts. The localized long-lived pulsating states (pulsons, oscillons) in the three-
dimensional 𝜙4 theory are known since 1975 [1]. Subsequent computer simulations [2, 3] revealed
the formation of long-lived pulsating structures of large amplitude and nearly unchanging width, see
a fragment of such structure in figure 1. Renewed interest to oscillons is inspired by applications in
cosmology and high energy physics (see, i.e. [4–7]).
Due the permanent loss of energy to the second-harmonic radiation, the oscillons are not exactly

time-periodic. In contrast, the standing waves are periodic and can be determined as solutions
of a boundary-value problem on the cylindrical surface. In a recent paper [8], the standing waves
in a ball of large finite radius are considered as approximation of infinite-space weakly radiating
spherically symmetric oscillons in the 𝜙4 model. In the present contribution, we provide details of
the numerical approach and present results on the spatio-temporal structure and bifurcation of the
standing waves. We outline the numerical scheme that was utilised for that purpose as well as its
parallel computer implementation.

© ZemlyanayaE., BogolubskayaA., BashashinM., AlexeevaN., 2024
This work is licensed under a Creative Commons Attribution 4.0 International License
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Figure 1. A fragment of pulsating radial component of spherically symmetric solution of Eq. (1)

2. Mathematical problem and numerical approach

Let 𝜙 = 𝛷−𝛷0 where 𝛷(𝑟, 𝑡) is a spherically symmetric solution of equation (1) approaching 𝛷0 = −1
(one of two vacuum solutions) as 𝑟 → ∞. Thus, equation (1) takes a form:

𝜙𝑡𝑡 − 𝜙𝑟𝑟 −
2
𝑟 𝜙𝑟 + 2𝜙 − 3𝜙2 + 𝜙3 = 0. (2)

We are searching for solutions of the equation (2) satisfying the boundary conditions

𝜙𝑟(0, 𝑡) = 𝜙(𝑅, 𝑡) = 0, 𝜙(𝑟, 𝑇) = 𝜙(𝑟, 0). (3)

Letting 𝜏 = 𝑡/𝑇 and defining 𝜓(𝑟, 𝜏) = 𝜙(𝑟, 𝑡) yields

𝜓𝜏(𝑟, 𝜏) = 𝑇𝜙𝑡(𝑟, 𝑡), 𝜓𝜏𝜏(𝑟, 𝜏) = 𝑇2𝜙𝑡𝑡(𝑟, 𝑡).

Thus, a boundary-value problem in the two-dimensional domain [0, 1] × [0, 𝑅] takes a form:

𝜓𝑡𝑡 + 𝑇2 ⋅ [−𝜓𝑟𝑟 −
2
𝑟 𝜓𝑟 + 2𝜓 − 3𝜓2 + 𝜓3] = 0, (4)

𝜓𝑟(0, 𝑡) = 𝜓(𝑅, 𝑡) = 0, 𝜓(𝑟, 1) = 𝜓(𝑟, 0). (5)
For each value of𝑇 the boundary-value problem (4),(5) was solved bymeans of theNewtonian iteration
[9] with the 2nd order finite difference approximation for the derivatives. The 𝑡 and 𝑟 discrete steps
were taken to be 0.01 and 0.1, respectively.

Any solution of equation (4) can be characterised by its energy

𝐸 = 4𝜋∫
𝑅

0
(
𝜙2𝑡
2 +

𝜙2𝑟
2 + 𝜙2 − 𝜙3 +

𝜙4

4 ) 𝑟
2𝑑𝑟 (6)

and its corresponding frequency𝜔 = 2𝜋
𝑇
. If the solutionwith frequency𝜔 does not change appreciably

as 𝑅 is increased — in particular, if the energy (6) does not change — this standing wave provides
a fairly accurate approximation for the periodic solution in an infinite space.

Solutions of equation (4) were numerically continued in the parameter 𝑇 and the energy-frequency
diagram was constructed. Numerical continuation was organized as described in [10].
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To classify the stability of the resulting standing waves against spherically symmetric perturbations
we consider the linearised equation

𝑦𝑡𝑡 − 𝑦𝑟𝑟 −
2
𝑟 𝑦𝑟 − 𝑦 + 3(𝜙 − 1)2𝑦 = 0 (7)

with the boundary conditions 𝑦𝑟(0, 𝑡) = 𝑦(𝑅, 𝑡) = 0 [8]. Expanding 𝑦(𝑟, 𝑡) in Fourier sine series produces
a system of 2𝑁 ordinary differential equations for the coefficients:

̇𝑢𝑚 = 𝑣𝑚, ̇𝑣𝑚 + 𝐹 = 0. (8)

Here
𝐹 = (2 + 𝑘2𝑚)𝑢𝑚 − 3

𝑁
∑
𝑛=1

(𝐴𝑚−𝑛 − 𝐴𝑚+𝑛)𝑢𝑛 +
3
2

𝑁
∑
𝑛=1

(𝐴𝑚−𝑛 − 𝐴𝑚+𝑛)𝑢𝑛,

and 𝐴𝑛, 𝐵𝑛 are 𝑇-periodic functions of 𝑡:

𝐴𝑛(𝑡) =
2
𝑅 ∫

𝑅

0
𝜙(𝑟, 𝑡) cos(𝑘𝑛𝑟)𝑑𝑟, 𝐵𝑛(𝑡) =

2
𝑅 ∫

𝑅

0
𝜙2(𝑟, 𝑡) cos(𝑘𝑛𝑟)𝑑𝑟.

A set of 2𝑁 linearly independent solutions, evaluated numerically at 𝑡 = 𝑇, forms a monodromy
matrix of the system (8). The standing-wave solution 𝜙(𝑟, 𝑡) is deemed stable if all of its 2𝑁 eigenvalues
𝜇 of the monodromy matrix (Floquet multipliers) lie on the unit circle and unstable if there are
multipliers outside the circle, see example of stability and instability case at the figure 2.

-1 0 1

-1

0

1

(a)

Re

Re

-1 0 1

-1

0

1

(b)

Re

Re

Figure 2. Floquet multipliers at the (Re𝜇,Im𝜇) plane. Stability case (a) T=4.7206; instability case (b): T=5.025. Here 𝑅=100

The above numerical approach was implemented using the MATLAB ode45 function with the
tolerance value 10−7. A cubic spline interpolation was employed for the calculation of the 𝐴𝑚±𝑛(𝑡)
and 𝐵𝑚±𝑛(𝑡) coefficients at a set of 𝑡 points. With 𝑁=1000 Fourier harmonics, the calculation of the
Floquet multipliers for each individual value of 𝑇 takes about 48 hours and 24 hours on the HybriLIT
cluster and the Govorun supercomputer, respectively.
To speed up the computations, a parallel algorithm was implemented based on the parfor operator.

This produces an automated splitting of the solution of 2𝑁 Cauchy problems into available parallel
threads, or “workers”. The speedup of calculations in parallel mode can reach 20 times compared to
the single- thread calculations.

3. Numerical results and conclusions

It was pointed out in [8] that the energy-frequency dependence, 𝐸(𝜔), obtained by a numerical
continuation of solutions of equation (4) looks like a sequence of spikes triggered by the resonance
of frequencies of two coexisting solutions. Positions of the spikes are 𝑅-sensitive. It can be seen in
figure 3 where fragments of this diagram for 𝑅=100 and 𝑅=150 are shown.
The numerical study shows that the boundary value problem (4),(5) has a set of two coexisting

spherically symmetric standing wave solutions. They are shown in figure 4(a,b). The first one is
the Bessel-like wave without an explicitly localised in space core decaying in proportion to 𝑟−1 as
𝑟 → 𝑅) that branches off the zero solution, see figure 4a. The second type wave is characterised by an
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exponentially localised in space and pulsating in time core with a small- amplitude slowly decaying
in space second-harmonic tail as shown in figure 4b. The corresponding curves 𝜙(𝑟, 0) for both waves
are shown in figure 4c. Both solutions are shown at the point marked by the arrow in figure 4d:
𝜔 = 0.9802𝜔0, 𝐸=45.585. Figure 4d demonstrates structure of a resonance spike and interconnection
between the 𝐸(𝜔/𝜔0) branches of two types of waves. The Bessel-like branch extends to zero energy
(red dashed curve in figure 4d). Both slopes of the resonance spike (blue solid curves in figure 4d)
join the Bessel-like branch at points of period-doubling bifurcations.
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50
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200

(a)

/
0

E R=100

0.96 0.97 0.98 0.99 1
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/
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Figure 3. The energy-frequency diagram produced by numerical continuation of solutions of the boundary value problem (4),
(5) for the cases 𝑅=100 (a) and 𝑅=150 (b)
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Figure 4. Coexisting standing waves in a ball of radius 𝑅=150 at the point𝜔 = 0.9802𝜔0: the Bessel-like wave (a) and the wave
with exponentially localised pulsating core (b). (c): Curves 𝜙(0, 𝑟) for the waves of the first (blue solid) and the second type
(red dashed). (d): The 𝐸(𝜔/𝜔0) structure of the resonance spike region. The red dashed curve corresponds the Bessel-like

wave. The arrow marks the point where coexisting waves (a) and (b) are shown

Stability analysis of the Bessel waves against the spherically symmetric perturbations shows that
the Bessel waves are stable for low energy values starting from 𝐸=0 up to the bifurcation point at
their intersection with either slope of the resonance spike. As for the second type of exponentially
localised standing waves, the calculations in [8] show they have only short stability intervals between
𝜔=0.9428𝜔0 and 𝜔=0.9435𝜔0 inside the ball of radius 𝑅=40. In the case of a ball of larger radius, there
are sections of stable frequencies of greater width. Note that the Bessel-like curve in figure 4d (red
dashed) is stable for the values of 𝐸 below the intersection with the left slope of the spike at the point
𝜔 = 0.97952𝜔0, 𝐸=2879.3. All other solutions in figure 4d are found to be unstable.
It is important to emphasize that the curve 𝐸(𝜔) has a single minimum at 𝜔min = 0.967𝜔0 for all

values of the radius 𝑅 despite the fact that the number and the positions of the spikes are 𝑅-sensitive.
Thus, we can consider the energy curve at least in the neighbourhoods away from the spikes to be
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the approximation of the radius-independent envelope of the nearly-periodic oscillons in the infinite
space.
Funding: This study was supported by the JINR-NRF Scientific Cooperation Program.
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Численное исследование стоячих волн модели 𝜑4 в шаре конечного
радиуса
Е. В. Земляная1, 2, А. А. Боголюбская1, М. В. Башашин1, 2, Н. В. Алексеева3

1 Объединенный институт ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская Федерация
2 Государственный университет Дубна, ул. Университетская, д. 19, Дубна, 141980, Российская Федерация
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Аннотация. Проведено численное исследование сферически симметричных периодических по времени
стоячих волн модели 𝜙4 в шаре конечного радиуса на основе вычисления решений сформулированной
нелинейной краевой задачи на цилиндрической поверхности в широком диапазоне значений пери-
ода осцилляций и последующего анализа устойчивости полученных таким образом решений путем
расчета соответствующих множителей Флоке. При этом стоячие волны в шаре конечного радиуса мо-
гут рассматриваться как аппроксимацияя слабоизлучающих сферически-симметричных осциллонов
в модели 𝜙4. В работе описывается математическая постановка задачи и метод ее численного реше-
ния, обсуждается метод параллельной реализации расчета множителей Флоке на вычислительных
ресурсах платформы HybriLITМногофункционального информационно-вычислительного комплекса
Объединенного института ядерных исследований (Дубна). Представлены результаты по исследованию
пространственно-временной структуры и бифуркации сосуществующих стоячих волн различного типа.
Ключевые слова: ocциллоны, компьютерное моделирование, параллельные вычисления
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Abstract. The article discusses a mathematical model and a finite-difference scheme for the heating process of
an infinite plate. The disadvantages of using the classical parabolic heat equation for this case and the rationale
for using the hyperbolic heat equation are given. The relationship between the hyperbolic thermal conductivity
equation and the theory of equations with the retarded argument (delay equation) is shown. The considered
mixed equationhas 2 parts: parabolic andhyperbolic. Difference schemesuse an integro-interpolationmethod to
reduce errors. The problemwith a nonlinear thermal conductivity coefficient was chosen as the initial boundary-
value problem. The heat source in the parabolic part of the equation is equal to 0, and in the hyperbolic part
of the equation sharp heating begins. The initial boundary-value problem with boundary conditions of the
third kind in an infinite plate with nonlinear coefficients is formulated and numerically solved. An iterative
method for solving the problem is described. A visual graph of the solution results is presented. A theoretical
justification for the difference scheme is given. Also we consider the case of the nonlinear mixed equation of
the fourth order.

Key words and phrases: hyperbolic-parabolic equation, delay equations, initial boundary-value problem, finite
difference schemes, equations of the high order

1. Introduction

In theV.N. Khankhasaev’s paper [1–3], which is bound upwith the problem ofmathematical modeling
of the process of switching off the electric arc in the flue gas flow, variousmathematical models bound
up with the hyperbolic equation of thermal conductivity (obtained by generalization of the Fourier
hypothesis [4]) were studied both analytically and numerically. In course of investigations bound up
with the transfer processes in the case of high-intensity influence of the gas, the earlier hypotheses
presuming the proportionality of the flow density to the vector of the potential gradient, which are
based on the known physics laws, lead to an infinite rate of distribution of the perturbations, what
contradicts to fundamental laws of nature.
The set known physics laws constructed on basis of the given theory includes the following laws:
𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝜆 grad𝑇(𝑥, 𝑦, 𝑧, 𝑡) – the Fourier law; 𝜆 – thermal conductivity coefficient; 𝑞 – heat

flow density; 𝑇 – temperature;
𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝐷 grad𝐶(𝑥, 𝑦, 𝑧, 𝑡) – the Fick law;𝐷– diffusion coefficient; 𝑞 –flowdensity of diffusion;

𝐶 – concentration;
𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝐾 grad𝐻(𝑥, 𝑦, 𝑧, 𝑡) – the Darcy law; 𝐾 – filtering coefficient; 𝑞 – volume flow (or the

filtering rate); 𝐻 – pressure.
All these laws are written in the general form as follows:
𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝐴 grad𝑈(𝑥, 𝑦, 𝑧, 𝑡), i.e. the generalized law of transfer, where 𝐴 is the transfer

coefficient; 𝑞 is the flow density; 𝑈 is the potential.
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The differential equation of transfer obtained from the given generalized law has the following
form in the one-dimensional case:

𝜕𝑈
𝜕𝑡 = 𝑎𝜕

2𝑈
𝜕𝑥2 .

It is sufficient to differentiate the fundamental solution of this equation with respect to variable 𝑡
and tend the time to zero to see that the rate of transfer of the potential at the initial time moment
equals to infinity. The approximation of solid medium used in above laws and presuming the absence
of its internal molecular structure implies that it is possible to undertake a limit transition in the
integral laws of conservation for this medium, when the volume tends to zero. Such a limit transition
allows one to obtain the equation of energy conservation in the differential form. Meanwhile, this
procedure – from the viewpoint of contemporary physics – is incorrect because the environment is
known to be composed of molecules. The environment has a discrete internal structure.
In order to avoid this paradox J.C. Maxwell [5], C. Cattaneo [6], P. Vernotte [7], who worked within

the frames of the theory of thermal conductivity, based his reasoning on the molecular-kinetic
conception, used the hypothesis of finiteness of duration of molecular collisions and proceeded from
a new conception of the molecules’ length of free path, obtained a new law of thermal conductivity.
There appeared an additional addend 𝜏 𝜕𝑞

𝜕𝑡
in the law, which took account of the discreteness of the

environment’s molecular structure and was responsible for the inertial character of heat. In this
addend, is the relaxation time, i.e. the time of reaching some thermodynamic equilibrium between
the heat flow and the temperature gradient. This generalized law of transfer may be written in the
following form:

𝜏
𝜕𝑞
𝜕𝑡 + 𝑞 = −𝐴 grad𝑈. (1)

In the process of solving the differential equation obtained from this law, observed was the first-
kind discontinuity of the potential, which distributes from the source. Therefore, law (1) describes
the appearance of waves in case of some high-intensity influence, which leads to some local system’s
non-equilibrium. These effects are most frequently observed when a body is impacted with short
energy impulses, in shock waves or under high temperature gradients. The local equilibrium, which
is obvious in cases of application of earlier physics laws, is valid for the time moments (intervals),
which are in excess of the relaxation time. Therefore, classical transfer theories are valid, when the
rate of processes is substantially smaller than the rate of distribution of perturbations in the medium
under scrutiny [8, 9].

2. The relationship between the hyperbolic thermal conductivity equation and the
theory of equations with the retarded argument (delay equations)

To the end of inference of the transfer differential equation in the one-dimensional case we have
used the equation of thermal balance:

𝜕𝑞
𝜕𝑥 = −𝑔𝜕𝑈𝜕𝑡 . (2)

Having substituted (1) into (2), we obtain:

𝐴𝜕
2𝑈
𝜕𝑥2 + 𝜏

𝜕2𝑞
𝜕𝑥𝜕𝑡 = 𝑔𝜕𝑈𝜕𝑡 . (3)

Now, change the order of differentiation for the second addend in (3)

𝐴𝜕
2𝑈
𝜕𝑥2 + 𝜏 𝜕𝜕𝑡 (

𝜕𝑞
𝜕𝑥) = 𝑔𝜕𝑈𝜕𝑡 .

On account of (2) we obtain

𝐴𝜕
2𝑈
𝜕𝑥2 − 𝜏𝑔 𝜕𝜕𝑡 (

𝜕𝑈
𝜕𝑡 ) = 𝑔𝜕𝑈𝜕𝑡 .

Finally, we obtain the following:
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𝜏𝜕
2𝑈
𝜕𝑡2 + 𝜕𝑈

𝜕𝑡 = 𝐴
𝑔
𝜕2𝑈
𝜕𝑥2 . (4)

Equation (4) belongs to the class of linear hyperbolic partial differential equations because it
contains the second derivative with respect to time. If internal sources of perturbations are taken
into account, then equation (2) assumes the following form:

−𝑔𝜕𝑈𝜕𝑡 + 𝐹(𝑈) =
𝜕𝑞
𝜕𝑥 ,

Hence equation (4) writes as follows:

𝜏𝜕
2𝑈
𝜕𝑡2 + (1 − 𝜏

𝑔
𝑑𝐹
𝑑𝑈)

𝜕𝑈
𝜕𝑡 = 𝐴

𝑔
𝜕2𝑈
𝜕𝑥2 +

𝐹(𝑈)
𝑔 . (5)

Here 𝜕𝐹
𝜕𝑈 may have any sign.

While turning back to equation (1), one can see that −𝐴 grad𝑈 represents an expansion of the flow
into the Tailor series with respect to the powers of 𝜏, where taken are only the first two members of
the expansion. Hence if all the terms of the expansion are taken into account, then the series shall
have the following form:

𝑞 + 𝜏
𝜕𝑞
𝜕𝑡 +

𝜏2
2
𝜕2𝑞
𝜕𝑡2 + ... = −𝐴 grad𝑈. (6)

Having gathered the terms of series, we can rewrite expression (6) in the following form:

𝑞(𝑡 + 𝜏) = −𝐴 grad𝑈. (7)

Having replaced the variables 𝑡 + 𝜏 = 𝑡1 in (7), and, next, again transferring to variable t, we obtain:

𝑞(𝑡) = −𝐴 grad𝑈(𝑡 − 𝜏). (8)

The physics sense of expression (8) implies that the transfer process in the locally non-homogeneous
media possesses inertial properties: the system reacts to the influence not at the same time moment
but with a delay equal to the relaxation time 𝜏, i.e. the flow density retards from the gradient of
potential. From the technical viewpoint, expression (8), unlike that for (1), allows one to take account
of all the terms of the expansion with respect to 𝜏. While continuing the above inference technique
with the use of (8), one can easily obtain the following equation with the retarded (with respect to
time) argument[10–12]:

𝜕𝑈
𝜕𝑡 = 𝐴

𝑔
𝜕2𝑈(𝑥, 𝑡 − 𝜏)

𝜕𝑥2 .

Therefore, the linear hyperbolic thermal conductivity equation (5) represents the second, more
correct stage in the theory of mathematical modeling of heat transfer for the fast running processes
with high-intensity perturbations.
The investigation of thermal conductivity processes using the generalized Fourier law is most

relevant for rapidly occurring physical phenomena (for example, with nano- and fempto-second
laser pulses) in the study of high-intensity processes of heating bodies (plasma, laser processing of
materials, high-intensity heating of contact connections in electrical installations and etc.) [13, 14].

3. The nonlinear mixed equation of thermal conductivity

An unbounded plate is given in the form of an infinite strip, the size of which along the x axis is equal
to the segment [0, 𝑋], and the size along the y axis is equal to (−∞,∞). We consider the properties of
the plate along the y axis to be homogeneous and we will not mention y in the list of variables. The
initial temperature distribution in the plate is given by some function 𝑢(𝑥, 𝑇1) = 𝑢0(𝑥); at the plate
boundaries the temperature of the medium is constant. Heat exchange with the environment occurs
according toNewton’s law (boundary conditions of the third kind). The thermophysical characteristics
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𝑐𝑣, 𝜆, 𝜌, 𝛼, 𝑐 are specified – specific heat capacity, thermal conductivity coefficient, specific density,
heat transfer coefficient and heat output coefficient. It is required to find the temperature distribution
over the thickness of the plate, i.e. by variable 𝑥, at any time 𝑡 ∈ [𝑇1, 𝑇2]. The differential equation
and boundary conditions will then be written as:

𝑘(𝑥, 𝑡)𝑢𝑡𝑡 + 𝑐𝑣(𝑥, 𝑡) ⋅ 𝜌(𝑥, 𝑡)𝑢𝑡 = (𝜆(𝑢, 𝑥, 𝑡)𝑢𝑥)𝑥 + 𝑐(𝑥, 𝑡)𝑢 + 𝑓(𝑥, 𝑡). (9)

In the rectangular domain 𝐺 = [0, 𝑋]× [𝑇1, 𝑇2], 𝑇1 < 0 , 𝑇2 > 0. Furthermore, ∀(𝑥, 𝑡) ∈ 𝐺, 𝑘(𝑥, 𝑡) = 0,
𝑡 ≤ 0; 𝑘(𝑥, 𝑡) > 0, 𝑡 > 0; i.e. when 𝑡 ≤ 0 — the equation(1) is parabolic, and when 𝑡 > 0 — the
equation(1) is hyperbolic. Let us formulate the problem with the following experimental data [15].
The initial boundary-value problem. Find the temperature field in an infinite plate homogeneous

in variable 𝑦 with 𝑋 = 𝜋 and calculation time: 𝑇1 = −5, 𝑇2 = 20.
Initial condition and boundary conditions:

𝑢(𝑥, 𝑡)|𝑡=𝑇1 = 𝑢0(𝑥) = 10 sin(𝑥);

[∓𝜆(𝑢, 𝑥, 𝑡) 𝜕𝑢(𝑥, 𝑡)𝜕𝑥 + 𝛼0,𝐿(𝑥, 𝑡) 𝑢(𝑥, 𝑡)]
𝑥=0,𝐿

= {
𝑞0(𝑡),
𝑞𝐿(𝑡).

(10)

Coefficients: 𝑘(𝑥, 𝑡) = 0 for 𝑡 ≤ 0, 𝑘(𝑥, 𝑡) = 1 for 𝑡 > 0; 𝑐(𝑥, 𝑡) = 0; 𝜆(𝑢, 𝑥, 𝑡) = 0.5 ⋅ 𝑢2 + 2;
𝑐𝑣(𝑥, 𝑡) ⋅ 𝜌(𝑥, 𝑡) = 𝑎(𝑥, 𝑡) = 672; 𝑞0(𝑡) = 5; 𝑞𝐿(𝑡) = 10; 𝛼0(𝑥, 𝑡) = 3.5; 𝛼𝐿(𝑥, 𝑡) = 3.5.
Heat sources 𝑓(𝑥, 𝑡) change over time. In the parabolic part 𝑓(𝑥, 𝑡) = 𝑓1(𝑥, 𝑡) = 0 and in the

hyperbolic part 𝑓(𝑥, 𝑡) = 𝑓2(𝑥, 𝑡) = 100000 sin(𝑥) sin(𝑡).
In the quasi-linear scheme, the coefficients 𝜆 are calculated from the temperatures 𝑈𝑖,𝑗 of the

previous time layer 𝑗, while in the essentially non-linear scheme, which is being implemented now:

𝑘(𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)
𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

𝜏2 + 𝑎(𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

𝜏 =

= (𝜆 (𝑢𝑖+ 1
2
,𝑗+1, 𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)

𝑖+ 1
2

𝑢𝑖+1,𝑗+1 − 𝑢𝑖,𝑗+1
ℎ −

− 𝜆 (𝑢𝑖− 1
2
,𝑗+1, 𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)

𝑖− 1
2

𝑢𝑖,𝑗+1 − 𝑢𝑖−1,𝑗+1
ℎ ) 1ℎ+

+ 𝑐(𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)𝑢𝑖,𝑗+1 +∫
𝑡𝑗+1

𝑡𝑗

∫
𝑥𝑖+1/2

𝑥𝑖−1/2

𝑓(𝑥, 𝑡)𝑑𝑥𝑑𝑡. (11)

The coefficient 𝜆 is calculated as follows:

𝜆(𝑢𝑖± 1
2
,𝑗+1, 𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏) =

[𝜆(𝑢𝑖±1,𝑗, (𝑖 ± 1) ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏) + 𝜆(𝑢𝑖,𝑗, 𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)]
2 .

It is clear that the resulting system of equations is nonlinear, so to solve this system we will use
the simple iteration method. This method is as follows—at each time step we will determine the
temperature field until it stops changing with changes:

max
𝑖
|𝑢𝑖,𝑠+1 − 𝑢𝑖,𝑠|

max
𝑖
|𝑢𝑖,𝑠+1|

< 𝜖, (12)

where 𝑠 is the iteration number, 𝜖 is the calculation accuracy. When condition (12) is satisfied, then
𝑢𝑖,𝑠+1 = 𝑢𝑖,𝑗+1. The following can be considered as an initial approximation: 𝑢𝑖,𝑠=0 = 𝑢𝑖,𝑗.

It can be seen that the system (11) is already linear with respect to 𝑢𝑖,𝑠+1, which makes it possible to
use the sweep method and determine the unknown temperature field. But in this case the system is
solved until the temperature field ceases to differ [16]. In such a scheme, the volume of calculations
increases compared to a quasi-linear scheme, since at each time step it is necessary to solve the
system of difference equations by the sweepmethod not once, but 𝑠max times. However, the nonlinear
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scheme gives a smaller error in the numerical solution of the original problem (9), (10) than the
quasilinear one [17]. This is explained by the fact that the coefficients in the expressions for the
grid analogues of heat flows are calculated at the same time as the temperatures. To reduce the
error of a quasilinear scheme, the step size should be reduced, i.e., the number of time steps in the
considered interval should be increased. Therefore, in many cases it turns out to be more profitable,
even from the point of view of computer time costs, to use a nonlinear scheme and take larger time
steps, performing several iterations at each [18].

The fields of temperatures for the scrutinized process have been obtained at various timemoments
(fig.1) in the environment of Mathcad-15 having a comfortable graphic interface. Similar to the
works[19, 20] the following theorems is proved:

Theorem 1. Let function 𝑐(𝑥, 𝑡) < 0 is sufficiently large with respect to the modulus,

2𝑎 − |𝑘𝑡| ⩾ 𝛿 > 0.

Hence for any function 𝑓 ∈ 𝑊 1
2 (𝐺) there exists a unique solution 𝑢(𝑥, 𝑡) of the initial boundary-value

problem (9), (10) in space𝑊 2
2 (𝐺).

Figure 1. The result of the program solution

Theorem 2. Under the conditions of Theorem 1 the difference scheme (11) is stable, and
interpolations 𝑢𝜏ℎ(𝑥, 𝑡) of solutions of this difference scheme converge weakly in 𝑊 1

2 (𝐺) (when
ℎ → 0, 𝜏 → 0) to the solution 𝑢(𝑥, 𝑡) of initial boundary-value problem (9), (10) from space𝑊 2

2 (𝐺).

4. The nonlinear mixed equation of the fourth order

In bounded domain 𝐷 from 𝑅𝑛, consider the first boundary value problem for the fourth order
nonlinear mixed partial differential equation:

𝐿𝑢 ≡
𝑛+1
∑
𝑖=0

𝐿∗𝑖𝐴𝑖(𝑥, 𝑢, 𝑢𝑥1,… , 𝑢𝑥𝑛, 𝐾𝑢) = ℎ(𝑥), (13)

𝑢|𝛤 = 𝑓1(𝑥),
𝜕𝑢
𝜕𝜈 |𝛤/𝛤0 =

𝑛
∑
𝑖,𝑗=1

(𝑎𝑖,𝑗
𝜕𝑢
𝜕𝑥𝑖

𝜈𝑗)
|||𝛤/𝛤0

= 𝑓2(𝑥),

here: 𝐿∗ is an operator formally Lagrange conjugate to the operator 𝐿; 𝐿0 — identity operator; 𝐿𝑖 =
𝜕
𝜕𝑥𝑖

;
𝑖 = 1,… , 𝑛; 𝐿𝑛+1 — operator 𝐾 of the form:

𝐾𝑢 ≡
𝑛
∑
𝑖,𝑗=1

𝑎𝑖,𝑗(𝑥)𝑢𝑥𝑖,𝑥𝑗 +
𝑛
∑
𝑖=1
𝑏𝑖(𝑥)𝑢𝑥𝑖 + 𝑐(𝑥)𝑢

with sufficiently smooth coefficients, satisfying the inequality:

‖𝐾𝑢‖𝐿𝑚(𝐷) ⩾ 𝛼1‖𝑢‖𝑊1
𝑟 (𝐷), 𝛼1 > 0, 𝑚 ⩾ 2, 𝑟 ⩾ 2, (14)

for any functions 𝑢(𝑥) from 𝐶𝐾 the class of twice continuously differentiable functions vanishing on
the boundary 𝛤 of the domain 𝐷, 𝛤0 is the characteristic part of the boundary of 𝛤 for the operator 𝐾,
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→
𝜈 = (𝜈1,… , 𝜈𝑛) is the vector of the internal normal to 𝛤:

𝛤0 = {𝑥 ∈ 𝛤 ∶ (
𝑛
∑
𝑖,𝑗=1

𝑎𝑖,𝑗𝜈𝑖𝜈𝑗) (𝑥) = 0} . (15)

As the operator 𝐾, we can take the linear hyperbolic-parabolic heat conduction operator described
above in (9).
Lemma 1. For any function 𝑢(𝑥) from 𝐶𝐾 we derive inequality (14) with parameters 𝑚 = 2 and

𝑟 = 2 if the condition is met:
2𝑎 − |𝑘𝑡| ⩾ 𝛿 > 0. (16)

Lemma 2. For any function 𝑢(𝑥) from 𝐶𝐾, if condition (16) is met, the following inequality with
parameter𝑚 = 2 is deduced:

‖𝐾𝑢‖𝐿𝑚(𝐷) ⩾ 𝛼2
‖
‖‖
𝜕𝑢
𝜕𝑁

‖
‖‖𝐿2(𝛤)

. (17)

Let us define the Banach spaces𝐻+ and𝐻# with standards: ‖𝑢‖+ = ‖𝐾𝑢‖𝐿𝑚(𝐷); ‖𝑢‖⊕ = ‖𝐾𝑢‖𝐿𝑚(𝐷) +
‖𝑢‖𝑊1

𝑒 (𝐷), obtained by closing a set of functions from

𝐶𝐿 = (𝑢 ∈ 𝐶𝐾 ∶ 𝜕𝑢
𝜕𝑁

|||𝛤/𝛤0
= 0) .

From (14) it follows that these are indeed the norms and spaces𝐻+ and𝐻# are obviously separable.
With the help of the Clarkson’s inequalities is proved the next lemma.

Lemma 3. Spaces 𝐻+ and 𝐻# reflective.
From the embedding theorems for Sobolev spaces it follows that functions from the spaces 𝐻+

and 𝐻# vanish on the entire boundary of 𝛤. Equality (15) means that on 𝛤0 the derivative along
the conormal is the tangent derivative to the boundary 𝛤 and on functions from 𝐶𝐾 vanishes on 𝛤0,
therefore inequality (17) actually means

‖𝑢‖+ = ‖𝐾𝑢‖𝐿𝑚(𝐷) ⩾ 𝛼3
‖
‖‖
𝜕𝑢
𝜕𝑁

‖
‖‖𝐿2(𝛤/𝛤0)

.

After introducing a continuous trace operator based on inequality (17) of Lemma 2 on functions
from 𝐶𝐾 and extending it by continuity to the spaces 𝐻+ and 𝐻#, we find that for functions from 𝐻+
and 𝐻# the derivative with respect to the conormal vanishes in the space 𝐿2(𝛤/𝛤0).
Suppose that the functions 𝑓1(𝑥), 𝑓2(𝑥) admit continuation 𝑓(𝑥) inside the region 𝐷 from the space

𝑊 2
𝑚(𝐷) ∩ 𝑊 1

𝑘 (𝐷), where 𝑘 = max(𝑟, 𝑒). Then a collection of functions of the form 𝑢(𝑥) = 𝑧(𝑥) + 𝑓(𝑥),
where 𝑧(𝑥) from 𝐻+(𝐻#), forms the space 𝐻+(𝑓)[𝐻#(𝑓)].

Definition 1. Function 𝑢(𝑥) from 𝐻+(𝑓)[𝐻#(𝑓)] let’s call it a weak generalized solution to problem
(13) if the identity holds:

𝑛+1
∑
𝑖=0

∫
𝐷
𝐴𝑖(𝑥, 𝑢, 𝑢𝑥1,… , 𝑢𝑥𝑛), 𝐾𝑢)𝐿𝑖𝜈, 𝑑𝐷 =

𝑛+1
∑
𝑖=0

(𝐴𝑖(𝑥, 𝐿𝑖𝑢), 𝐿𝑖𝜈) = (ℎ, 𝜈),

∀𝜈(𝑥) ∈ 𝐶𝐿, 𝑗 = 0, 𝑛 + 1.

Definition 2. Function 𝑢(𝑥) from 𝐻+(𝑓)[𝐻#(𝑓)] we call a strong generalized solution to problem
(13) if there is a sequence of functions 𝑧𝑖(𝑥) ∈ 𝐶𝐿 such that

lim
𝑖→∞

‖𝑧𝑖 + 𝑓 − 𝑢‖+[⊕] = lim
𝑖→∞

‖𝐿(𝑧𝑖 + 𝑓) − ℎ‖−[⊖] = 0,

where𝐻−(𝐷)[𝐻⊖(𝐷)] are the negative spaces to𝐻+(𝑓)[𝐻#(𝑓)], constructed with respect to the Hilbert
space 𝐿2(𝐷).
Let us present a number of assumptions for various equations of the form (13), which essentially

mean conditions on the behavior of nonlinear functions 𝐴𝑖(𝑥, 𝜉𝑗), 𝑖, 𝑗 = 0, 𝑛 + 1, 𝜉 ∈ 𝑅𝑛+1.
1. Conditions of limitation and continuity: 𝐿 ∶ 𝐻+(𝑓) → 𝐻−(𝐷).
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The functions 𝐴𝑖(𝑥, 𝜉𝑗), 𝑖, 𝑗 = 0, 𝑛 + 1 satisfy the Caratheodory conditions, i.e. for almost all 𝑥
from 𝐷 are continuous in the set of variables 𝜉𝑗, for all values 𝜉𝑗 are measurable in 𝑥 and satisfy the
inequalities:

𝐴𝑖(𝑥, 𝜉𝑗) ⩽ 𝛼4 (𝑎(𝑥) +
𝑛+1
∑
𝑗=0

|𝜉𝑗|𝑝𝑖𝑗) ,

where 𝑝𝑖,𝑗 are selected indicators.
2. Condition for coercivity of the operator 𝐿𝑢. For any function 𝑢(𝑥) from 𝐻+(𝑓)[𝐻#(𝑓)] the

following inequality holds:

𝑛+1
∑
𝑖=0

(𝐴𝑖(𝑥, 𝐿𝑗𝑢), 𝐿𝑖𝑢) ⩽ 𝛼5‖𝑢‖𝑚+ − 𝛼6, 𝑗 = 0, 𝑛 + 1,

[
𝑛+1
∑
𝑖=0

(𝐴𝑖(𝑥, 𝐿𝑗𝑢), 𝐿𝑖𝑢) ⩽ 𝛼7(‖𝑢‖𝑚+ + ‖𝑢‖𝑒𝑊1
𝑒 (𝐷)

) − 𝛼8] .

3. Condition for the definiteness of the variation of the operator 𝐿𝑢. For any functions 𝑢(𝑥), 𝑣(𝑥)
from 𝐻+(𝑓)[𝐻#(𝑓)] the following inequality holds:

(𝐿𝑢 − 𝐿𝜈, 𝑢 − 𝜈) ⩾ 𝛼9‖𝑢 − 𝜈‖𝑚+ ,

[(𝐿𝑢 − 𝐿𝜈, 𝑢 − 𝜈) ⩾ 𝛼10(‖𝑢 − 𝜈‖𝑚+ + ‖𝑢 − 𝜈‖𝑒𝑊1
𝑒 (𝐷)

)].

Similar to the work of Dubinsky Yu.A. the following theorem is proved:
Theorem 3: If assumptions 1) – 3) are met, then the first boundary value problem (13) for any

function ℎ(𝑥) ∈ 𝐻−(𝐷)[𝐻⊖(𝐷)] is set correctly, the weak solution coincides with the strong one, i.e.
a mapping 𝐿𝑢 = ℎ(𝑥) ∈ 𝐻−(𝐷)[𝐻⊖(𝐷)] is a homeomorphism[21].

5. Conclusion

A program has been written to solve the mixed heat equation using the simple iteration method.
A calculation was carried out with similar boundary conditions. The results coincide with the results
of the first miscalculation.
There are other methods that have become widespread in practice for constructing an iterative

process for solving systems of nonlinear difference equations. For example, Newton’s method is
based on the linearization of equations and is usually used in the case when the dependences of the
coefficients on temperature are specified by analytical dependencies that can be differentiated. In
further work, this method will be used to solve essentially nonlinear equations of mixed type.
Along with numerous methods for solving inverse coefficient problems for linear and nonlinear

second order equations 𝐾(𝑢) = ℎ you can also use the one proposed by Yu.A. Dubinsky. approach
when this equation, which is generally unsolvable for an arbitrary right-hand side ℎ, is associated
with some 4th order equation 𝐾∗ 𝐾(𝑢) = 𝐾∗ℎ, which is always solvable. Then the equation 𝐾(𝑢) = ℎ
is solvable up to the kernel of the operator 𝐾∗.
This construction can also be considered as a technique for describing the range of values of

the mixed heat operator corresponding to an ill-posed problem with overdetermination. The
presence of these additional boundary conditions, taking into account the release of some of them
on the characteristic surfaces of the operator 𝐾(𝑢), is necessary for the numerical solution of the
well-posed Dirichlet problem for the equation 𝐾∗ 𝐾(𝑢) = 𝐾∗ℎ, if the operator 𝐾∗ 𝐾 implements
a homeomorphism.
Funding: The work was carried out with the financial support of the Russian Science Foundation grant No. 23-21-00269,
https://rscf.ru/project/23-21-00269.
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Численное решение нелинейного гиперболо-параболического
уравнения теплопроводности
В. Н. Ханхасаев1, 2, С. А. Баиров1
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2 Бурятский государственный университет имени Доржи Банзарова,
ул. Смолина, д. 24А, Улан-Удэ, 670000, Российская Федерация

Аннотация. В статье рассматривается математическая модель и конечно-разностная схема процесса
нагрева бесконечной пластины. Приводятся недостатки использования классического параболическо-
го уравнения теплопроводности для данного случая и обоснования для использования смешанного
уравнения. Показана связь гиперболического уравнения теплопроводности с теорией уравнений с запаз-
дывающим аргументом (уравнением с запаздыванием). В смешанном уравнении присутствуют 2 части:
параболическая и гиперболическая. В разностных схемах применяется интегро-интерполяционный
метод для уменьшения погрешностей. В качестве краевой задачи выбрана задача с нелинейным
коэфффициентом теплопроводности. Источник тепла в параболической части уравнения равен 0,
а в гиперболической части уравнения начинается резкий нагрев. Поставлена и численно решена
начально-краевая задача с краевыми условиями третьего рода в бесконечной пластине с линейны-
ми и с нелинейными коэффициентами. Описан итерационный метод для решения задачи. Представлен
наглядный график результатов решения. Дано теоретическое обоснование для разностной схемы. Также
рассмотрен случай нелинейного смешанного уравнения четвертого порядка.
Ключевые слова: гиперболо-параболическое уравнение, уравнения с запаздыванием, начально-краевая
задача, конечно-разностные схемы, уравнения высокого порядка
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On cyclotron damping of longitudinal wave
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Abstract. Average equations of motion of relativistic charged particles in the field of HF (high frequency) wave
packets are obtained in the range of cyclotron resonance in the case of strong LF (low frequency) electric
field. Strong electric field means that the characteristic velocity of the particle comparable with the electric
drift velocity (𝑣 ∼ 𝑣𝐸). It is shown that with taking into account the electric drift velocity, new mechanisms
of damping of longitudinal waves become possible. The effect of a strong electrostatic field on the resonant
interaction of relativistic particles with high-frequency waves, as well as the relativistic effect, on cyclotron
resonance for a longitudinal wave, is analyzed. The analytical solution of the averaged system of equations in
the quasi-relativistic approximation is analyzed, as well as a numerical experiment for the Langmuir wave under
the condition of cyclotron resonance in the case of a strong electric field.

Key words and phrases: Electric drift velocity, damping, relativistic charged particles, strong electric field,
longitudinal waves, high frequency wave packets, cyclotron resonance

1. Introduction

In the drift theory of the motion of charged particles in electromagnetic fields, two cases are
distinguished: a “weak” electric field, when the velocity of electric drift is 𝑉𝐸 ∼ 𝜀𝑉, and a “strong”
electric field, when 𝑉𝐸 ∼ 𝑉. Here 𝑉 is the characteristic velocity of the particle, 𝜀 is a small parameter
equal to the ratio of the gyroradius of the particle to the characteristic scale of inhomogeneity of
a strong magnetic field. The case of a strong electrostatic field is fraught with certain difficulties even
in the non-relativistic approximation [1]. In [1–4], a theory of the motion of charged particles in the
field of wave packets in crossed electric and magnetic fields was constructed taking into account
weakly relativistic effects.
In this paper, the interaction of cyclotron resonance for longitudinal waves propagating along

a strong magnetic field is considered. It is assumed that the rate of electric drift is small compared to
the speed of light in vacuum. Such a proposal is quite sufficient for solving many applied problems.
The equations ofmotion of an advertising charged particle averaged over fast oscillations are obtained,
taking into account the effects of quasi-stationary electric drift under the condition of cyclotron
resonance.

2. Basic equations

The motion of a particle with charge 𝑞 and rest mass𝑚 under the influence of HF (high frequency)
electromagnetic field ⃗𝐸∼, ⃗𝐵∼ and LF fields ⃗𝐸0, ⃗𝐵0 is described by the equations [1]

d ⃗𝑣
d𝑡

= 𝛼 ⃗𝐹 − 1
𝑐2 ⃗𝑣( ⃗𝑣′ ⋅ ⃗𝐹) + 𝛼[�⃗� ⋅ ⃗𝑣], (1)
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where ⃗𝐹0,𝑠 =
𝑞
𝑚

⃗𝐸0,𝑠, �⃗�0,𝑠 =
𝑞 ⃗𝐵0,𝑠
𝑚𝑐 , 𝛼 = 1 − 𝑣2

2𝑐2 ,
⃗𝐹 = ⃗𝐹0 +∑ ⃗𝐹𝑠, �⃗� = �⃗�0 +∑�⃗�𝑠, 𝑐 – the speed of light.

The velocity vector has the form

⃗𝑣′ = 𝑣|| ⃗𝑒1 + ⃗𝑣𝐸 + ⃗𝑣⟂( ⃗𝑒2 cos 𝜃0 + ⃗𝑒3 sin 𝜃0), (2)

where 𝛩0 is the gyrophase, ⃗𝑒1( ⃗𝑟, 𝑡) = ⃗𝐵0/𝐵0, ⃗𝑒2( ⃗𝑟, 𝑡), ⃗𝑒3( ⃗𝑟, 𝑡) are the unit vectors. ⃗𝑣𝐸 = 𝑐[ ⃗𝐸0 ⋅ ⃗𝑒1]/𝐵0 is the
electric drift velocity. The electromagnetic fields ⃗𝐸∼, ⃗𝐵∼, are considered in eikonal approximation as:

⃗𝐸𝑠 = ∑ ⃗ℰ𝑠𝑒𝑖𝛩𝑠 + 𝑐.𝑐., ⃗𝐵𝑠 = ∑ ⃗ℬ𝑠𝑒𝑖𝛩𝑠 + 𝑐.𝑐., 1 ⩽ 𝑠 ⩽ 𝑚. (3)

Here ⃗ℰ𝑠, ⃗ℬ𝑠 are slowly varying complex amplitudes and 𝛩𝑠 is the fast phase (eikonal) of the 𝑠𝑡ℎ wave
packets (𝑠 = 1, 2, 3, ...,𝑀).
Phases 𝛩𝑠 are considered as the independent variables which are described by the equations:

d𝛩𝑠
d𝑡

= 𝜔𝑠 +
d ⃗𝑟
d𝑡

⋅ ⃗𝑘𝑠 = 𝑣𝑠 +
𝑣⟂
2 ( ⃗𝑒_𝑒

𝑖𝛩0 + 𝑐.𝑐.) ⃗𝑘𝑠 + ⃗𝑘𝑠 ⃗𝑣𝐸. (4)

The quantities

𝜔𝑠( ⃗𝑟, 𝑡) = −
d𝛩𝑠
d𝑡

, ⃗𝑘𝑠( ⃗𝑟, 𝑡) = ∇𝛩𝑠, (5)

are the local frequency and the wave vector of the 𝑠𝑡ℎ wave packets, respectively.
Equations (1)–(4) together with Eq. (3) constitute a multi–periodic system, which can be simplified

by smoothing over fast and nonresonant phases [1].

3. Average equations

In the range of cyclotron resonance, the corresponding combination of the phases 𝛹res = 𝛩0 + 𝛩𝑠,
shold be corresponded as an “semifast” variable and an equation for resonant phases 𝛹res should
be added to the equations for slow dynamic variables of particles. Smoothed equations of motion
for a single particle interacting with the arbitrary 𝑠𝑡ℎ wave packet at the condition of the cyclotron
resonance 𝑣 + 𝜔 ≅ 0 have the form:

d�⃗�
d𝑡

= ⃗𝑣𝐸 + ⃗𝑒1𝑣|| ≡ �⃗�0, (6)

d𝑣||
d𝑡

= ⃗𝑣𝐸 ⃗𝑒′1 +
𝑣⟂
2 div ⃗𝑒1 + (𝛤 −

𝑣2||
𝑐2 )𝐹0|| −

− { 𝑖2𝑣⟂�⃗� + 𝑣⟂
2𝑐2 (𝐹𝑠|| + ⃗𝑒1[�⃗�𝑠1 ⃗𝑣𝐸]) ⃗𝑣𝐸 +

𝑣⟂𝑣||
2𝑐2

⃗𝐹𝑠} ⃗𝑒_𝑒𝑖𝜓res + 𝑐.𝑐., (7)

d𝑣⟂
d𝑡

= 𝑣⟂
2 (div ⃗𝑢0 − ( ⃗𝑒1( ⃗𝑒1∇) ⃗𝑢0)) +

𝑣⟂𝑣||
𝑐2 𝐹0|| +

+ {12𝛤 (
⃗𝐹𝑠 +

𝑖
𝜔𝑠

(𝑣||[ ⃗𝑘𝑠 ⃗𝐹𝑠] + 𝑖 [ ⃗𝑣𝐸[ ⃗𝑘𝑠 ⃗𝐹𝑠]])) −
1
2𝑐2 (𝑣

2
⟂ ⃗𝐹𝑠 + (�⃗�0𝐹𝑠) ⃗𝑣𝐸)} ⃗𝑒−𝑒𝑖𝜓res + 𝑐.𝑐., (8)

d𝜓res
d𝑡

= 𝜔0 + 𝑣 − 1
2 ⃗𝑒1 ⋅ 𝑟𝑜𝑡�⃗�0 −

𝑖
2 ⃗𝑒− ⋅ ⃗𝑒′+ −𝛺0

𝑣2𝐸
2𝑐2 +

⃗𝑘𝑠 ⋅ ⃗𝑣𝐸 +

+ { 𝑖
𝑣⟂

(12𝛤 (
⃗𝐹𝑠 +

𝑖
𝜔𝑠

(𝑣||[ ⃗𝑘𝑠, ⃗𝐹𝑠] + 𝑖 [ ⃗𝑣𝐸[ ⃗𝑘𝑠, ⃗𝐹𝑠]]))) −
𝑣⟂
2𝑐2 (

[ ⃗𝑒1, ⃗𝑘𝑠]
𝜔𝑠

+ 𝑖�⃗�0) ⃗𝐹 ⋅ ⃗𝑣𝐸} ⃗𝑒−𝑒𝑖𝜓res + 𝑐.𝑐., (9)
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where

𝜔0 = 𝛤𝛺0, 𝛤 = 1 −
𝑣2|| + 𝑣2⟂ + 𝑣2𝐸

2𝑐2 , 𝐹𝑠,0|| = ⃗𝐹𝑠,0 ⋅ ⃗𝑒1, 𝑘𝑠|| = ⃗𝑘𝑠 ⃗𝑒1,

𝑣𝑠 = −𝜔𝑠 + 𝑘𝑠||𝑣||, ⃗𝑒± = ⃗𝑒2 ± 𝑖 ⃗𝑒3, (...)′ = ( 𝜕𝜕𝑡 + 𝑣|| ⃗𝑒1 ⋅ ∇ + ⃗𝑣𝐸 ⋅ ∇) (...)

note, that Eqs. (6)–(9) take place only in the case of quasilongitudinal propagation of the wave with
respect to ⃗𝐵0.

4. Cyclotron resonance for a longitudinal wave

For simplicity let us consider Eqs. (6)–(9) in the case of the cyclotron resonance 𝛹res = 𝛩0 + 𝛩𝑠 for
a longitudinal wave ⃗ℰ𝑠|| ⃗𝑘𝑠|| ⃗𝐵0, 𝜓𝛤 = 𝜃0 − 𝜃𝑠, ⃗𝐵0 = 𝑐𝑜𝑛𝑠𝑡, ⃗𝐸0 = 𝑐𝑜𝑛𝑠𝑡, ⃗𝑘0 = 𝑐𝑜𝑛𝑠𝑡, ⃗ℰ𝑠 = ⃗ℰ𝑒𝑖𝛼, ⃗ℰ = (0, 0, ℰ).
Then

d�⃗�
d𝑡

= �⃗�0,
d𝑣||
d𝑡

= 𝑒ℰ𝑣𝐸𝑣⟂
2𝑚𝑒2 sin(𝜓𝑟 + 𝛼),

d𝑣⟂
d𝑡

=
𝑒ℰ𝑣𝐸𝑣||
2𝑚𝑒2 sin(𝜓𝑟 + 𝛼),

d𝜓𝑟
d𝑡

= 𝛺0 (𝛤 −
𝑣2𝐸
2𝑐2 ) + 𝜔 − 𝑘𝑣|| +

𝑣||𝑣𝐸
2𝑐2𝑣⟂

⋅ 𝑒ℰ𝑚 cos(𝜓𝛤 + 𝛼).
(10)

System (10) shows that the cyclotron resonance is possible, when the relativistic effects and the ⃗𝑣𝐸
drift velocity are taken into account, such a resonance is impossible in the case of a weak electric
field 𝑣 ≫ 𝑣𝐸. To explain physical mechanism of this resonance it is necessary to use a new system,
which is moving with a drift velocity. One can get the energy integral from Eqs. (10):

𝜘−2 = ( ́𝜉2𝜏2 + sin2 𝜉)−
1
2 , 𝜉 = 1

2 (𝛹𝑟 + 𝛼), (11)

where
𝜘−2 = 2𝑈

𝐻 + 𝑈,
1
𝜏2 = 2𝑈, 𝑈 =

𝑘𝑒ℰ𝑣0⟂𝑣𝐸
2𝑚𝑐2 ⋅ 𝑣0⟂

is an initial velocity of the transversal velocity 𝑣⟂, 𝐻 is the Hamilton function of the system (10).
If |𝜘| > 1, the particle is trapped by the wave and if |𝜘| < 1, the particle is untrapped by the wave.

The sign of 𝜘 is chosen to coincide with the sign of ́𝜉.
The equation (11) has the same formas the equation for resonant particles in the case of electrostatic

wave [2].
Then by standard methods [1–6] one can calculate the coefficient of cyclotron damping of the

longitudinal wave under consideration:

𝛾(𝑡) = 𝛾𝐿∑
𝑛

64
𝜋 ∫

1

0
𝑑𝒳{

−2𝜋𝑛 ⋅ sin ( 𝜋𝑛𝑡
𝒳𝑘𝜏

)

𝒳5𝑘2(1 − 𝑞2𝑛)(1 + 𝑞−2𝑛)
+

(2𝑛 + 1)𝜋2 sin ( (2𝑛+1)𝜋𝑡
𝒳𝑘𝜏

)

𝑘2(1 + 𝑞2𝑛+1)(1 + 𝑞−2𝑛−1)}
, (12)

where
𝑞 = exp (𝜋𝐾𝐾 ) , 𝐾 = 𝐾(𝜘)(1 − 𝜘2)

1
2 , 𝐾(𝜘) = 𝐹 (𝜋2 , 𝜘)

is the complete of elliptic integral of the first kind, 𝛾𝐿 is Landau damping coefficient.

5. Conclusion

Numerical solving the equation system with initial conditions and parameters match the ones in
works [7–11], Langmuir wave was selected with frequency in the range from 𝜔 = 1.38 × 109𝑠−1 to
2.39 × 1011𝑠−1 and girophase𝛺0 = 4.60 × 109𝑠−1 to 4.60 × 1011𝑠−1 with a wavelength of 𝜆 = 2.28 cm to
2.5 cm. The electric drift velocity between the values 𝑣𝐸 = 3.0 × 105 cm

s
and 5.0 × 108 cm

s
.

The results of the numerical solutions of the averaged equations for cyclotron resonance confirm
the possibility of cyclotron resonance in longitudinal wave in the case of a relativistic particle. The
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development of energy the graph in figure 1, shows the resonant leg with growth of energy (|𝜘| > 1),
which is unstable so the particle goes shortly out of resonance (|𝜘| < 1) with partly retention of the
gained energy.

Figure 1. The graphs show the behavior of the particle’s energy (bright green line), as well as the longitudinal and transverse
velocities of the particle along the 𝑥 axes (green and blue lines, respectively). The phase 𝜓𝑟 is shown in graph by red line.
The𝑋-axis for velocity, energy, and resonant phase has dimension 𝑡𝜔0. The 𝑌-axis for velocity has dimension 𝑣/𝑐 and for

energy has dimension 𝑣2/𝑐2
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О циклотронном затухании продольной волны
С. П. Карнилович1, К. П. Ловецкий1, Л. А. Севастьянов1, 2, С. Б. Страшнова1, Я. Н. Шаар1

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация
2 Объединённый институт ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская Федерация

Аннотация. Выведены усредненные уравнения движения для релятивистских заряженных частиц в ВЧ
поле (высокочастотных) волновых пакетов в диапазоне циклотронного резонанса в случае НЧ (низкоча-
стотного) сильного электрического поля, где сильное электрическое поле означает, что характерная
скорость частицы сравнима со скоростью электрического дрейфа (𝑣 ∼ 𝑣𝐸). Показано, что при учете ско-
рости электрического дрейфа становятся возможными новые механизмы затухания продольных волн.
Проведен анализ влияния сильного электростатического поля на резонансное взаимодействие реля-
тивистских частиц с высокочастотными волнами, а также влияние релятивизма на циклотронный
резонанс для продольной волны. Получено аналитическое решение усредненной системы уравнений
в квазирелятивистском приближении, а также проведен численный эксперимент для Ленгмюровской
волны в случае циклотронного резонанса с учетом сильного электрического поля.
Ключевые слова: Скорость электрического дрейфа, затухание, релятивистские заряженные частицы,
сильное электрическое поле, продольные волны, высокочастотные волновые пакеты, циклотронный
резонанс


