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Abstract. This work is the first part of a large bibliographic review of active queue
management algorithms of the Random Early Detection (RED) family, presented in
the scientific press from 1993 to 2023. The first part will provide data on algorithms
published from 1993 to 2005.

Key words and phrases: active queue management, AQM, random early detection,
RED, congestion control

1. Introduction

This work is a brief bibliographic review of algorithms of the Random Early
Detection (RED) family, compiled according to the dates of publication of
scientific works (articles and conference proceedings) in which the algorithms
in question were presented to the public.
The authors do not claim that the prepared review includes all existing

algorithms, but is the most complete of those published previously, since it
includes bibliographic data on 240 algorithms.
Let’s briefly talk about other reviews that were published earlier, in which

not only algorithms of the RED family were considered, but also other
algorithms for active queue management.
The first of these works can be considered the article [1] published in 1995,

although the term “active queue management (AQM) algorithms” was not
used in it. Instead the term “congestion control algorithms” was used.
In the survey [1] the packet dropping policies for asynchronous transfer

mode (ATM) and IP networks were discussed and compared in terms of
fairness.
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Another work [2], dated 1999, was the dissertation for the degree of Doctor
of Philosophy, in which existing AQM algorithms (and in particular algorithms
of the RED family) were analyzed, and ideas were formulated that allowed
the development of new algorithms.
The following survey [3], published in 2003, was devoted to the aspects

of congestion control with the emphasis on the active queue management.
The such AQM problems as parameter tuning, insensitivity to input traffic
load variation, mismatch between macroscopic and microscopic queue length
behaviour and their implications were summarized and discussed. The atten-
tion was also paid to topics that are still relevant and open today: fairness,
convergence and implementation complexity, interoperability and robustness,
stability, assumptions of network dynamics and link characteristics.
In the 2004 survey [4] the AQM algorithms for responsive and unresponsive

TCP flows and aggressive UDP flows were discussed and compared based on
the fairness criterion. Also the classification, based on this criterion, for AQM
schemes was proposed.
In the work [5], published in 2010, one of the authors of this review proposed

the classification of RED algorithms according to different criteria (for example,
the type of probability drop function, the type of queue function).
In the survey [6] published in 2013, the author tried to plot the development

trajectory of active control algorithms from the first Random Early Detection
(RED) algorithm in 1993 to the algorithms presented to the general public
in 2011. The algorithms were classified according to various criteria and the
general attributes of AQM schemes as well as the design approaches (for
example, heuristic, control-theoretic and deterministic optimization) were
presented.
In 2016 the comprehensive review of fairness-driven queue management algo-

rithms was presented in [7] with a new taxonomy of categorizing fairness-driven
queue management algorithms. The design approaches and key attributes
were discussed, compared and analyzed.
Among the works of the last three years in which various algorithms are

analyzed and compared, it is worth mentioning the following [8–10].
The review is structured as follows. The structure of the work is as follows.

Each section is dedicated to one year, and it presents algorithms of the
RED family, scientific publications (articles in scientific journals, conference
proceedings, technical reports, etc.) on which were presented this year. In
Section 12 the authors discussed the results and the future research directions
are highlighted.

2. 1993

This year, the work [11] was published in which the classical Random Early
detection (RED) algorithm was presented.
The classic RED (random early detection or random early discard or random

early drop) is a queueing discipline with two thresholds (Qmin and Qmax) and

a low-pass filter to calculate the average queue size Q̂ [11]:

Q̂k+1 = (1− wq)Q̂k + wqQ̂k, k = 0, 1, 2, . . . , (1)
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where wq, 0 < wq < 1 is a weight coefficient of the exponentially weighted
moving-average and determines the time constant of the low-pass filter. As
said in [11] RED monitors the average queue size and drops (or marks when

used in conjunction with ECN) packets based on statistical probabilities p(Q̂):

p(Q̂) =


0, 0 6 Q̂ < Qmin,

Q̂−Qmin

Qmax −Qmin

pmax, Qmin 6 Q̂ < Qmax,

1, Q̂ > Qmax,

(2)

pmax — the fixed maximum value of drop (marking) probability if the threshold
Qmax is overcome.
Analysis and criticism of proposed AQM algorithm are presented in the

works [12–18].
Suggestions for tuning and optimizing the key parameters of the algorithm

are proposed in the following works [19–30]. The implementation of RED
in the Next Generation Passive Optical Network (NG-PON) was presented
in [31].
Further modifications of the RED algorithm consisted, as a rule, either

in changing the number and/or value of thresholds, or in changing the type
of drop function (a single linear function was replaced by several linear or
nonlinear ones, or combinations of linear and nonlinear functions), or in

replacing the average queue size Q̂ by the current (instant) queue size q, either

in the simultaneous use of the average Q̂ and current q queue lengths, or
in the dynamic change of one or several parameters (threshold values Qmin

and Qmax, maximum drop probability pmax) depending on control parameters
(queue size, incoming rate, rate of queue size change), or in the use of methods
of fuzzy logic, Q-learning, neural networks to determine the optimal algorithm
parameter values.
The changes also affected whether the new algorithm was being developed

to manage a single incoming traffic flow or multiple incoming flows with
different priorities.

3. 1997

The development of RED for several flows — Fair RED [32] or Flow
RED [33] was introduced in 1997. It uses per-active-flow accounting to
impose on each flow a loss rate that depends on the flow’s buffer use.
The idea of adaptive active queue management algorithms which may

reduce loss rates for congested links was formulated in [34] (as Adaptive RED)
and further developed in [35]. The main idea was to adapt pmax of RED in
order to keep the average queue size between thresholds Qmin and Qmax.
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4. 1998

The first Recommendations on Queue Management and Congestion Avoid-
ance in the Internet was given in [36].
RIO (RED with In|Out) algorithm was introduced in [37]. The core of the

idea was to monitor the traffic of each user as it enters the network and tag
packets as either in or out based on their service allocation profiles, then at
each congested router, preferentially drop packets that are marked as being
out. RIO used the same drop mechanism as in RED but is configured with two
sets of parameters (pmax, Qmin and Qmax), one for in packets and one for out
packets. Among the other works devoted to modeling, performance analysis
and optimal tuning of the algorithm parameters, the following scientific
publications [38–41] should be mentioned.
The modifications of RIO algorithm — RIO-C (RED with In|Out and

Coupled Virtual Queues) and RIO-DC (RED with In|Out and Decoupled
Virtual Queues) are described in [42] and the comparison of these algorithms
with the algorithm WRED (1999) in terms of drop of packets is given in [43].
Fair-buffering random early detection (FB-RED) algorithm was presented

in [44] to solve the problem of unfairness among links. Although FB-RED
results in fairness among links, it however needs to track the information for
all the links.
The Fair RED algorithm, which relies on usage of buffer spaces by the

different flows (per-active flow accounting) to determine the drop rate of
the each flow, was presented in [45]. Although it achieves a fair drop rate
for different flows, it needs to track the state of each flow which results in
scalability problems similar to those in [44].

5. 1999

Weighted Random Early Detection (WRED) algorithm was introduced
by Cisco and the specification can be seen in [46] (or in Cisco IOS Quality
of Service Solutions Configuration Guide, Release 12.2 [47]) and was one of
the predominant AQM scheme implemented. The algorithm WRED is an
extension to RED and was designed to handle traffic of various priorities.
In this algorithm, for each type of traffic, its own sets (coinciding or not
coinciding) of control parameters are specified (threshold values Qmin and
Qmax, parameter pmax)). The modifications of WRED are Distributed WRED
(DWRED), which is the Cisco high-speed version of WRED [47], and Flow-
Based WRED (forces WRED to afford greater fairness to all flows on an
interface in regard to how packets are dropped) [47]. The other works on
WRED are [43, 48–52].
In [53] two versions of RIO algorithm were introduced: (r,RTT)-adaptive

RIO algorithm and dynamic RIO (DRIO) algorithm. In [54] DRIO was
applied to aggregated traffic instead of the individual flows as in [53].
In [55] to solve the scalability problem of FB-RED [44] and FRED [45] the

Stabilized RED (SRED) was introduced. SRED like RED discards packets
with a load-dependent probability when a buffer in a router seems congested
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and stabilizes the buffer occupation at a level independent of the number of
active connections by estimating the number of active connections (flows).
In [56, 57] Balanced RED (BRED) algorithm that drops packet preventively

in order to actively penalize the non-adaptive traffic that attempts to “steal”
buffer space, and therefore bandwidth from the adaptive traffic flows, was
presented.
In [58] Class-Based Threshold RED (CBT-RED) algorithm was presented

in order to reduce congestion in routers and to protect TCP from all UDP
flows while also ensuring acceptable throughput and latency for well-behaved
UDP flows. This algorithm sets the Qmin and Qmax thresholds according to
the traffic type and its priority.
A RED discard strategy for ATM networks (ATM-RED) was introduced

in [59].
In [60] the Refined RED (Re-RED) algorithm was proposed in order to

prevent buffer overflow at a gateway, the RED framework was refined in such
a way that the gateway can detect a transient congestion in a timely manner
and take actions to quench it when the queue is near full.
In [61] the idea of adaptive active queue management algorithms, started

in [34], was continued (Self Configuring RED). The dependence of the effec-
tiveness of RED on the appropriate parameterization of the RED queue was
shown. It was proved that there were no single set of RED parameters that
work well under different congestion scenarios. As a result the authors pro-
posed and experiment some adaptive RED gateways which self-parameterize
themselves based on the traffic mix.
In [62] the modification of RED probability drop function was proposed.

The linear drop function has been replaced by a parabolic one, so the new
algorithm is called Parabolic RED (PRED). This algorithm was implemented
in Cisco routers.

6. 2000

The Gentle RED algorithm (GRED), based on ideas from [59], was proposed
by Sally Floyd in [63] and the double maximum threshold parameter was in-
troduced in order to overcome the limitations of the RED algorithm. The
comparison of tail drop and active queue management RED and GRED algo-
rithms performance for bulk-data and Web-like Internet traffic was conducted
in [64]. In [65] the performance GRED (Gentle RED), DRED (Dynamic-
RED) [66] and SRED (Stabilized RED) [55] was analyzed. It was clarified
how the performance of AQM mechanisms (such steady state performance
measures as the average queue length and the packet loss probability) is
affected by a setting of control parameters. In [67] the discrete-time queu-
ing model of GRED algorithm was considered. The performance analysis
of GRED (as well as other active queue and passive queue management al-
gorithms) for multi-hop wireless relay networks was presented in [68]. The
gentle parameter of GRED was reconsidered in [69].
Weighted RED with Thresholds (WRT) as the development of Weighted

RED (WRED) [46] was introduced in [70] and compared with classicsl WRED
and RED In and Out (RIO) [37] algorithms.
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The Gentle RED algorithm with instantaneous queue size (GRED-I) (in-
stead of exponentially weighted average queue size as in GRED) was proposed
in [71].
The modification of RIO [37] algorithm called RI+O was presented in [72]

to reduce the effect of an inadequacy in the packet differentiation (between
high-profile flows and low-profile flows) RIO algorithm used in the Diff-Serv
routers.
The congestion algorithm that uses fuzzy logic based control theory (Fuzzy

RED) in order to achieve finer tuning for packet discarding behaviours for
individual flows and to provide better quality of service to different kinds
of traffic was introduced in [73]. The revised version of [73] is [74]. Fuzzy
logic based approach for more predictable congestion control implementation
within the DiffServ architecture was presented in [75, 76].
A Rate Based RED Mechanism (Rb-RED) that reduce the number of

RED parameters to only one was introduced in [77]. The basic idea of this
algorithm is that the packet drop probability was defined as a function of the
long-term average arrival rate.
The Double Slope RED (DSRED) as the active queue management scheme

for next generation networks (homogeneous TCP/IP networks) was described
in [78]. It was proposed to use the two segment drop function and three
thresholds instead of the single segment linear drop function with two thresh-
olds as in RED [11] and dynamically change the slope of the packet drop
probability curve based on the level of congestion in the buffer. The case of
heterogeneous networks and DSRED was considered in [79]. The other works
on DSRED are [80] and [81], where the influence of the way packets were cho-
sen to be dropped (end of the tail, head of the tail) on the response time was
investigated.
Random Early Adaptive Detection RED/ECN (READ) algorithm as an

adaptive queue management scheme for maintaining of high throughput and
low round-trip delays under dynamic traffic loads was introduced in [82].

7. 2001

The Adaptive RED (ARED) algorithm, based on ideas from [34] and [61],
was proposed by Sally Floyd, Ramakrishna Gummadi and Scott Shenker in [35].
Some algorithmic modifications, while leaving intact the basic Feng idea of
pmax adaption in order to keep the average queue size between thresholds Qmin

and Qmax, were made. The proposed version of RED algorithm, according
to the authors, removed the sensitivity to parameters that affect RED’s
performance and could reliably a specified target average queue length in
a wide variety of traffic scenarios. The main differences from the proposed
algorithm were the following:

1) pmax was adapted to keep the average queue size within a target range half
way between Qmin and Qmax;

2) pmax was adapted slowly, over time scales greater than a typical round-trip
time, and in small steps;

3) pmax was constrained to be within the range [0.01; 0.5];
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4) for pmax an additive-increase multiplicative-decrease (AIMD) policy was
used instead of multiplicative-increase and multiplicative-decrease (MIMD)
policy.

The tuning of ARED parameters was considered in [83–85]. The ARED
comparison with other algorithms was presented in [86–88].
Dynamic RED (DRED) algorithm, which randomly discards packets with

a load-dependent probability when a buffer in a router gets congested so
a router queue occupancy is stabilised at a level independent of the number
of active TCP connections, was introduced in [66]. The comparison of the
DRED algorithm with GRED [63] and [55] was carried out in the work [89].
The comparison of DRED algorithm with other algorithms that do not belong
to the RED family is presented in [90]. The analytical discrete-time queuing
models of DRED algorithm were developed in [91, 92].
The Modified RED (MRED) algorithm computing the packet drop proba-

bility based on the heuristic method was presented in [93]. MRED controls
queue by using packet loss information and link utilization history information
with small queue size. The simulation results presented by authors proved
MRED ability to improve fairness, throughput and delay.
The Least Recently Used Cache RED (LRU-RED) algorithm introduced

in [94] empowers the routers to contain high bandwidth flows at the time of
congestion. Also this algorithm lowers the drop probabilities of short-lived
flows and also of responsive high bandwidth flows.
In [95] the new version of RED algorithm — RED-PD (Random Early

Detection-Preferential Dropping) was proposed. This algorithm controls the
throughput of the high-bandwidth flows by using the packet drop history at the
router in order to detect these flows in times of congestion and preferentially
drop packets from them.

8. 2002

Rate-based RIO (Rb-RIO) algorithm [96] is an extension of Rate-based
RED [77] for traffic with different priority classes (MPEG video stream), so
the main idea of RIO [37] was used. The proposed algorithm was compared
with Drop-Tail and RED in terms of transport layer throughput, system
fairness, application layer throughput and video stream quality.
Extended drop slope random early detection (ExRED) [97] was proposed

in order to overcome such RED mechanism problems as low throughput
achievement and high number of consecutive drop. The main idea was to
modify the drop probability function as a second order polynomial function

of the average queue size Q̂ in order to keep packet drop rate increasing
smoothly but continue with a higher rate when the queue size is more closed

to the limit of buffer size (Q̂ > Qmax).
In order to improve fairness in high-speed networks the EASY RED al-

gorithm was developed in [98]. It was proposed to use the instantaneous
queue size and the single threshold Qmin instead of average queue size and
two thresholds (Qmin and Qmax) as in RED [11], also the drop probability was
defined as a constant when the instantaneous queue length is greater or equal
to Qmin.
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Multi-class RED (MRED) algorithm for several classes of traffic (each
traffic class may comprise a number of flows) was introduced in [99]. For each
class of traffic, its own set of RED parameters (maximum drop probability
and the minimum and maximum thresholds) were specified, which can either
coincide or differ.
In [100] for Active RED (ARED, AcRED) algorithm it was proposed to

use the heuristic method instead of static one for parameters setting.
In order to improve overall QoS support at the router by satisfying the

average performance requirements of incoming packets in terms of throughput
and delay in [101] the extension of Adaptive RED (ARED) [35] called
RED-Worcester was introduced. The RED-Worcester algorithm based on
queuing delays provides a moving target queue size instead of fixed target
queue size in ARED, so, when incoming traffic is mostly throughput-sensitive,
RED-Worcester tries to maintain a higher average queue to improve the
overall throughput, or, when incoming traffic is mostly delay-sensitive, RED-
Worcester tries to lower the average queue size to reduce the average queuing
delays.

9. 2003

In [102] the new version of Adaptive RED [34, 35], also called Adaptive
RED (A-RED), was introduced. It was proposed to adaptive vary not only
the maximum packet drop probability pmax (as in [34, 35]), but also the weight
coefficient of the exponentially weighted moving-average wq. As a result
the improvement in terms of packet loss rates and queue stability without
adversely affecting the link utilization was achieved.
In [103] the flow-based congestion control scheme, called RED with dual-

fairness metrics (DRED), was proposed in order to dissolve the unfairness
per flow and so provide a feasible QoS. DRED explicitly considers both the
instantaneous (the amount of network resources that each flow occupies at
the considered time) and the historical (the amount of network resources that
each flow has consumed up until the considered point of time) use of network
resources for the purpose of dissolving unfairness per flow within the same
class, and thereby improving the throughput of each flow.
In [104] the new version of Adaptive RED [35] scheme — Proportional

derivative RED controller (PD-RED), based on the proportional derivative
(PD) control principle, was introduced.
In [105] the new adaptive fuzzy-based control RED algorithm (AFRED)

was designed. This algorithm computes the packet drop probability according
to pre-configured fuzzy logic by using the instantaneous queue size as input
variable. The ability to dynamically readjust the fuzzy rule in order to make
AFRED itself extensively stable for many dynamic environments was also
introduced.
The new version of RIO (RED with In|Out) [37] with the ability of self-

configuring out-of-profile thresholds, called Adaptive-RIO (A-RIO), was
developed in [106]. The main objective of Adaptive-RIO was to increase
best-effort throughput by utilizing the available buffer spaces of the core
routers in DiffServ networks.
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The combination of the Adaptive RED (A-RED) algorithm [35] and the
RIO-C algorithm [42], suitable for building an Assured Forwarding (AF)
per-hop behaviour (PHB), was proposed in [107] for solving the following
tasks: the simplification of the configuration of DiffServ-enabled routers by
alleviating the parameter settings problem; the automatic translation a delay
parameter into a set of router parameters, the stabilization of the queue
occupation around a target value under heavy network load, irrespective of
traffic profile. The further study of the proposed algorithm was carried out
in [108].

10. 2004

Another version of the Adaptive RED algorithm [35], working with joint
co-operation between sources and network routers and therefore called Dy-
namically Adaptive RED (DARED), was presented in the work [109]. The aim
of this algorithm was to guarantee the distribution of the available network
resources to flows of different classes with different declared QoS requirements.
The Modified Random Early Detection (MRED) algorithm, designed to

provide better control over the burstiness level, was presented in [110]. The
proposed modification was that the drop function (probability) takes into

account not only the average queue size Q̂, but also the instantaneous queue
size Q (the incoming packet is dropped if Q̂ > Qmax and Q > Qmax).
The algorithm, called Priority Random Early Detection (PRED), was

described in [111] for different priority types of traffic, and for each type of
traffic, its own set of control parameters is set, which can dynamically change
values depending on network load.
The new AQM scheme, Short-lived Flow Friendly RED (SHRED), targeted

at providing better network performance for short-lived Web traffic, was
presented and analyzed in [112]. Using an edge hint to indicate the congestion
window size in each packet sent by the flow source or by an edge router,
SHRED preferentially drops packets from short-lived Web flows (flows with
small TCP windows) with a lower probability than packets from long-lived
flows (flows with large TCP windows). Thus SHRED protects short-lived
flows from low transmission rates, and provides fairer bandwidth allocation
among flows.
The development of Flow RED algorithm [33] — RED with Dynamic

Thresholds (RED-DT), was proposed in [113]. This algorithm dynamically
adapts queue parameters to achieve a more fair distribution of the link capacity.
In order to identify unresponsive and greedy flows, RED-DT maintains per-
flow state for active flows. Flow is considered to be active if it has at least
one packet in the queue. For each active flow, there is an entry in a flow

table that contains the instantaneous queue size Qi, average queue size Q̂i

and maximum drop probability pimax. Similar to RED, RED-DT maintains
minimum and maximum thresholds Qmin and Qmax, but these thresholds are
dynamically changed upon each packet arrival.
In [114] the modification of the classic Random Early Detection (RED)

algorithm [11] with hyperbolic drop function instead of linear one (RED) was
introduced.
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In [115, 116] two versions of Adaptive RIO algorithm [107] were presented:
ARIO-D (Adaptive RIO for Delay) and ARIO-L (Adaptive RIO for Loss).
The first algorithm (ARIO-D) takes specific average queue length range as
control target, keeps Qmax as constant and adaptively adjusts pmax for out-
packets to meet the expected steady state. The second algorithm (ARIO-L)
takes specific loss ratio range as control target, for out-packets keeps pmax as
constant and adaptively adjusts Qmax to meet the expected steady state.
The new RED scheme, called Loss Ratio Based RED (LRED), which

measures not only the queue size, but also the latest packet loss ratio, and uses
both these parameters in order to dynamically adjust packet drop probability,
was presented in [117]. The further development of this algorithm is presented
in [118].
The Class-Guided RED (CGRED) algorithm was introduced in [119]. In

CGRED the packet drop operation is developed into a class-differential one
by introducing a couple of class-specific adjusting decisions or guidelines: the
adjustment direction (whether to increase or decrease or just maintain the
RED drop probability) and the guiding probability (the intensity of the given
adjustment). Thus the RED packet drop probability calculated is considered
as a reference value and the guiding probability is considered as a limiting
bound for choosing the actual dropping probability.
The Proxy-RED algorithm [120] was proposed as a solution for reducing

the AQM overhead from the access point and as a development of ARED [34,
35]. The average queue size in Proxy-RED is calculated periodically but not
at the moment of each packet arrival as in RED [11] or ARED [34, 35]. Also
the modifications for drop probability function were made. The development
of Proxy RED was presented in [121].

11. 2005

In [122] the Exponential-RED (E-RED) AQM (Active Queue Management)
algorithm, as a decentralized network congestion control algorithm with
dynamic adaptations at both user ends and link ends, was presented. In
this algorithm the packet dropping probability was set as the exponential
function of the virtual queue length and the capacity of the virtual queue was
slightly smaller than the link capacity. E-RED was the first AQM schema
for which the ability to stabilize TCP-Reno for a general topology network
with heterogeneous delays has been proven. For a TCP-Reno network with
Exponential-RED control, a discrete-time dynamical feedback system model
with delay was studied in [123].
In order to maximize the throughput and to minimize the packet drop and

delay the new algorithm — Adaptive RED with Dynamic Threshold Adjust-
ment (ARDTA) was introduced in [124]. For this algorithm the thresholds
were dynamically modified by using an exact expression of average queue size
for a given burst size and number of nodes. The minimum threshold Qmin

was set by an expression for a given burst size, the maximum thresholds Qmax

was changed dynamically based on traffic conditions and buffer size with also
taking into account the burst size. The assumption was made that the maxi-
mum threshold Qmax would be reached when the instantaneous queue size was
equal to the maximum buffer size. The other work on this algorithm is [125].
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Piecewise Linear RED (PL-RED) [126] is the modification of Gentle RED
(GRED) [63]. In this algorithm the drop probability function was a piecewise
linear function with N = 5 segments.
The another variant of Gentle RED (GRED) [63] — Adaptive Exponential

RED (AERED), was also presented in [126], where the drop probability
function was an exponential function with parameter β depending on average
queue size and thresholds and p (the amount of concavity of an exponential
function).
The dynamic modification of Weighted RED (WRED) [46, 47] was proposed

in [127] and was called as Dynamic Weighted RED (DWRED). For this
algorithm the TCP Window-Aware Marker (TWAM) was introduced for
distribution of the resources available for the total traffic of an AF FEC
(Assured Forwarding Forward Equivalence class) among the individual AF
FEC flows in a fair manner. Based on TWAM the thresholds and pmax are
dynamically configured. So the proposed WRED configuration mechanism
responds to fluctuations in available resources, allowing the use of excessive
resources whenever they are available, in a way that achieves a bounded
average queuing delay for packets.
The Revised version of Adaptive RED [35] — RARED, was described

in [128]. To alleviate the effect of wq the RARED takes the input rate besides
queue occupancy into account to detect significant changes in the network’s
condition.
The multi-class signaling overload control algorithm (Signaling RED —

SiRED) for telecommunication switches as a modified version of WRED [46,
47] was proposed in [129]. SiRED measures the system load using queue
lengths.
The modification of RED [11], based on game theory, for Internet switching

with selfish users was presented in [130]. The new algorithm was called
as Preemptive RED (PRED). The main feature of PRED is extra drop
mechanism that drops an additional packet of the same user from the buffer
when its packet is dropped by RED in order to penalize users that do not
respond to congestion signals.
Subsidized RED (SubRED) algorithm, designed for short-lived (fragile)

flows (e.g. most HTTP flows) in order to keep the link utilization high while
reducing the average flow response time, was proposed in [131]. Subsidized
RED (SubRED) identifies short-lived flows that have recently lost packets
and/or are in their slow start phases, and protects them from being further
punished unnecessarily for a short duration of time (flow subsidy).
The burst-sensitive RED algorithm for GPRS links in a heterogeneous

mobile environment was presented in [132] and was called Burst-sensitive
RED (BSRED). The new parameter to the classic RED [11] was added— Burst
Threshold Bt, which represents the threshold of the number of consecutive
packets en-queued (Bp) without a packet de-queued. Thus the new rule was
added to the RED algorithm: on each packet’s arrival, if Bp > Bt, a packet
will be dropped, irrespective of the current queue length. In addition, Bp

is reset to zero only when there is a packet de-queued. That is, incoming
packets are continually dropped if there is no packet de-queued once Bp > Bt.
The nonlinear version of ARED [35] with nonlinear power packet dropping

probability function was proposed in [133] and called as POWer Adaptive
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Random Early Detection (POWARED). In order to enable POWARED to
cater for dynamics of bursty network traffic and intelligently differentiate
between levels of congestion occurred, the decrement or increment adjustment
was based on the ratio of deviation between current average queue size and
target queue size (steady-state queue size).
The virtual queue management approach, named Virtual Queue RED (VQ-

RED, VQRED) to address the fairness problems (downlink/uplink fairness
and fairness among flows in the same direction) was introduced in [134].
VQ-RED treats all the competing flows (uplink flows and downlink flows)
fairly through managing their corresponding virtual queues. It punishes the
arbitrary flows and gives more benefits to the weak flows. In this way it
guarantees the fairness among the flows.

12. Conclusions

The presented bibliographical chronological review of active control algo-
rithms of the RED family is the most complete both in terms of the number
of algorithms reviewed (more than two hundred) and in terms of the number
of scientific publications analyzed and presented. This review will be useful
to researchers in the field of the congestion control.
Active queue management algorithms of the RED family are not something

new for the authors of this work, as evidenced by the publications presented
below [5, 135–142].
In the future, the authors plan not only to classify the considered algorithms

based on the classification criteria presented in [5–7], but also to review and
classify other active queue management algorithms.
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Abstract. In this article, using the example of a multi-channel exponential queueing
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1. Introduction

Quite often, when constructing mathematical models of complex informa-
tion and computing systems, developers are faced with the problem of the
presence of a large number of similar elements in the system under study.
This is especially true for multi-threaded systems or systems with a large num-
ber of servicing devices [1–7]. If the functioning of the system has a complex
multivariate scenario, then the task of constructing a state space of a ran-
dom process modeling the system under study becomes impossible without
developing a special software product. In this article, using the example of
a multi-channel queuing system with reordering of requests [8, 9], an algo-
rithm will be developed for the automated construction of the state space
and transition intensity matrix.

2. System description

A multi-channel queuing system (QS) is considered with m service devices,
2 6 m < ∞ and a common storage device of limited capacity r. The system
receives a Poisson flow of requests of intensity λ. The service times on device j
are independent of each other, and also do not depend on the duration of
service on other devices and are distributed according to an exponential law
with the parameter µj, j = 1, . . . ,m. An application entering the system
when there are m+ r applications in it is lost.
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We will further assume that the devices are arranged in non-decreasing
order of service intensity: µ1 > · · · > µm and that a request that has the
ability to select a device selects the device with the lowest serial number. The
selection of applications from the storage occurs in accordance with the FIFO
discipline [10].
It is assumed that all applications upon entry into the system are assigned

a serial number. Moreover, if at the moment of completion of servicing of
a request with number n (n-request), servicing of at least one request with
a number less than n continues, the n-request is placed in the reordering
buffer (RB). Otherwise, request n leaves the system and all requests with
numbers differing by one, starting from n + 1 (if there are any in the RB),
leave the RB behind it. This assumption allows us to model the mechanism
for maintaining the order in which applications leave the system in accordance
with the order in which they arrive. Systems of this kind are called systems
with reordering of requests [8, 9].

3. Construction of a mathematical model

Let us assume that all applications in the system are numbered in accordance
with the order in which they were received, starting with one. Then the
stochastic behavior of the considered QS can be described by a homogeneous
Markov process X(t), t > 0, over the state space

xm =
m+r⋃
k=0

xm
k ,

xm
k =

{
(k, i1, . . . , im), ij = 0, k,

m∑
j=1

u(ij) = k,

in this case, if ijis > 0, then ij 6= is, j, s = 1,m
}
, k = 0,m− 1,

xm
k =

{
(k, i1, . . . , im), ij = 0,m, ij 6= is, j, s = 1,m

}
, k = m,m+ r,

where u(x) is the Heaviside function.
Here for some time t: X(t) = (k, i1, . . . , im), if there are k requests in

the system, k = 0, . . . ,m + r and device j is free if ij = 0. Otherwise, ij is
the serial number of the request served on device j, j = 1, . . . ,m.
In what follows, we will call the subset xm

k the k-th group of states. It’s
easy to see that

|xm
k | =

(m)k, k = 0,m,

m!, k = m,m+ r,

where (m)k is the number of placements from m to k.
Hence,

|xm| =
m∑
k=0

(m)k + rm! .
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It is obvious that as m increases, the dimension of the state space increases
rapidly. So when m > 5 and k > 10 it exceeds 103. Therefore, to construct
a matrix of transition intensities and solve a system of equilibrium equations,
it is necessary to develop an algorithm for constructing a space xm.

4. Algorithm for constructing the state space

Let Ys be a set of sequences of length s+ 1 of non-negative integers.

Definition 1. We will call the operator Lj the j-insertion operator defined
on the set Ys if for (i0, . . . , is) ∈ Ys

Lj(i0, i1, . . . , is) = (i0+1, i1, . . . , i−1,max{i1, . . . , is}+1, ij, . . . , is), j−1, s+ 1.

Next, let Ys,ν be the subset Ys of power ν, i.e. Ys,ν = {y1s , . . . , yνs}, where
yns = (in0 , . . . , i

n
s ), n = 1, ν.

Definition 2. We will call the operator L the insertion operator defined
on the set of different finite subsets of the set Ys, if for Ys,ν ∈ Ys

L(Ys,ν) =
{
L1y

1
s , . . . , L1y

ν
s , L2y

1
s , . . . , L2y

ν
s , . . . , Ls+1y

1
s , . . . , Ls+1y

ν
s

}
.

Definition 3. k-th degree Lk operator L will be called an operator whose
action consists of k successive applications of the operator L, k = 1, 2, 3, . . . .
By the zero degree of the operator L we mean the identity operator.

Definition 4. We will call L−1
j a j-removal operator defined on the set Ys

if for (i0, . . . , is) ∈ Ys:

L−1
j (i0, . . . , ij−1, ij, ij+1, . . . , , is) = (i0 − 1, i1, . . . , ij−1, ij+1, . . . , , is), j = 1, s.

Let’s define a subset Ỹs as set Ys such that for (i0, i1, . . . , is) ∈ Ys among
the numbers there is at least one that is not equal to zero and all non-zero
numbers are distinct.

Definition 5. We will call the operator M a maximum selection operator

defined on the set Ỹs if for (i0, i1, . . . , is) ∈ Ỹs: M(i0, i1, . . . , is) = l, where l is
such that il = max{i1, . . . , is}.

And, finally, let Ŷs is subset of the set Ys, such that (i1, . . . , is) ∈ Ŷs, if
among the numbers i1, . . . , is there is at least one that is equal to zero.

Definition 6. We will call the operator Z the zero selection operator on

the set Ŷs if for (i0, i1, . . . , is) ∈ Ỹs: Z(i1, . . . , is) = n, where n is the number
of the first zero element in the sequence i1, . . . , is.

Let us now proceed to constructing the state space and prove the validity
of the following lemma.
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Lemma 1. For any fixed m, m > 2:

xm
k =

Lk(0, 0m−k), k = 0,m− 1,

Lm−1(k −m+ 1, 1), k = m,m+ r, where 0s = (0, . . . , 0).
(1)

Proof. We will carry out the proof using the method of mathematical
induction. Let m = 2. Then

x2
k =


(0, 0, 0), k = 0;

L1(0, 0), k = 1;

L1(k − 1, 1), k = 2, r + 2.

Hence, =
{
(0, 0, 0); (1, 1, 0); (1, 0, 1); (k, 1, 2); (k, 2, 1), k = 2, . . . , r + 2

}
. It

is obvious that the resulting set is the state space for the process X(t) in
the case of m = 2 [4].
Let the statement of the lemma be true for m = l. Then for m = l + 1

we get

xl+1
k =

Lk(0, 0l+1−k), k = 0, l;

Ll(k − l, 1), k = l + 1, l + r + l
=

=


(0, 0l+1), k = 0;

L(Lk−1(0, 0l+1−k)), k = 1, l;

L(Ll−1(k − l, 1)), k = l + 1, l + r + l.

Replace k with k + 1 and get:

xl+1
k+1 =


(0, 0l+1), k = −1;

L(Lk(0, 0l−k)), k = 0, l − 1;

L(Ll−1(k − l + 1, 1)), k = l, l + r

=


(0, 0l+1), k = −1;

L(xl
k), k = 0, l − 1;

L(xl
k), k = l, l + r.

Next we note that if (k, i1, . . . , il) ∈ xl
k, then

max{i1, . . . , il} =

k, k = 0, l − 1;

l, k = l, l + r.



336 DCM&ACS. 2023, 31 (4) 332–344

Hence,

xl+1
k+1 =



(0, 0l+1), k = −1;

{(k + 1, k + 1, i11, . . . , i
1
l ); (k + 1, k + 1, . . . , i2l ); . . . ;

(k + 1, iν1, . . . , k + 1)}, k = 0, l − 1, ν = |xl
k|;

{(k + 1, l + 1, i11, . . . , i
1
l ); (k + 1, l + 1, . . . , i2l ); . . . ;

(k + 1, iν1, . . . , l + 1)}, k = l, l + r, ν = |xl
k|.

Given the definition of a group of states xl
k, the last relation can be

written as:

xl+1
k+1 =



{
(k + 1, i1, . . . , il) :

ij = 0, k + 1,
l+1∑
j=1

u(ij) = k + 1, in this case,

if ijis > 0, then ij 6= is, j, s = 1, l + 1
}
, k = −1, l − 1;{

(k + 1, i1, . . . , il+1) :

ij = 1, l + 1, ij 6= is, j, s = 1, l + 1
}
, k = l, l + r.

And finally, having made the reverse replacement of k by k − 1, we come
to the definition of the k-th group of states for the case m = l + 1. Thus, the
lemma is proven. �

It obviously follows from lemma 1 that the proposed method of constructing
xm is recurrent in m. In addition, in the state space a certain order of the
elements of this space is specified. For clarity, let us consider the diagram for
constructing the state space in the case when m = 4 and r = 1 (figure 1).
Analysis of the diagram helps to notice that for any fixed m, the k-th group

of states is divided into m subgroups of the same dimension. A sign that
a state belongs to the n-th subgroup of the k-th group is that the request
with the highest number is served on device n, n = 1, . . . ,m. Let us denote
xm
k,n by the n-th subgroup of the k-th group. It is easy to calculate that

|xm
k,n| = (m− 1)min{k,m−1}−1, n = 1,m, k = 1,m+ r. (2)

The recurrent principle of constructing the state space and dividing groups
into subgroups makes it possible to determine the serial number of the state
in xm.

Lemma 2. The ordinal number of the state (k, i1, . . . , im) in the state space
xm is determined by the expression

n =

min{k−1,m−1}∑
j=0

(m)j + u(k −m)m! +

min{k,m−1}∑
j=1

(sj − 1)(m− j)min{k,m}−j + 1, (3)

where s1 = M(k, i1, . . . , im), sj = M
(
L−1
sj−1

. . . L−1
s2
L−1
s1
(k, i1, . . . , im)

)
,

j = 2,min{m− 1, k}.
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Figure 1. Diagram of the process of constructing a state space for a system with 4 devices
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Proof. Note that the first two terms in our formula determines the total
number of states in groups xm

0 , . . . , x
m
k−1. Therefore, it remains to show that

min{k,m−1}∑
j=1

(sj − 1)(m− j)min{k,m}−j determines the number of states of the k-th

group preceding a given state. To do this, let us clarify the meaning of each
term of this sum.
Notice, that s1 = M(k, i1, . . . , im) is the number in the subgroup xm

k that
belongs to state (k, i1, . . . , im), and the size of each of the subgroups is equal
(m−1)min{k,m}−1. Therefore, the expression (s1−1)(m−1)min{k,m}−1 determines
the total number of states in the subgroups xm

k,1, . . . , x
m
k,s1−1, preceding the

subgroup xm
k,s1

. Moreover, if k = 1 or m = 2, then each of the subgroups

contains one element and, therefore, the calculation process will be completed.
Otherwise, you need to define the state number in the subgroup xm

k,s1
.

We note that in the process of recurrent construction of the state space,
the subgroup xm

k,s1
is obtained as a result of the action of the operator Ls1

on the group xm−1
k−1 . Therefore, the ordinal number of state (k, i1, . . . , im) in

the subgroup xm
k,s1

is equal to the ordinal number of state L−1
s1
(k, i1, . . . , im) in

the group xm−1
k−1 . To determine it, we find s2 = M

(
L−1
s1
(k, i1, . . . , im)

)
— the

number of the subgroup in the group xm−1
k−1 to which state L−1

s1
(k, i1, . . . , im)

belongs. The size of each of these subgroups is equal (m − 2)min{k,m}−2. So

expression (s2 − 1)(m− 2)min{k,m}−2 determines total number of states in the

subgroups xm−1
k−1,1, . . . , x

m−1
k−1,s2−1, preceding the subgroup xm−1

k−1,s2
. Moreover, if

k = 2 or m = 3, then each of the subgroups contains one element and the
calculation process will be completed. Otherwise, it is necessary to continue
similar reasoning, which will ultimately lead us to the desired result.
Thus the lemma is proven. �

In the future, we will need not only a formula for calculating the serial
number of a state, but also an algorithm for the reverse action — restoring
a state by its serial number. This task in our case is divided into two stages:
determining the number of the group to which a given state belongs and
calculating the serial number of the state in the group.
The first stage is simple. Let n be the serial number of the state, and

N = |xm|. Next, it is necessary to arrange a partition of the segment [0, N ]
into m + r + 1 interval (nk, nk+1], k = 0, . . . ,m + r in such a way that the
condition n ∈ (nk, nk+1] means that the state with number n belongs to the
k-th group. Obviously, as the boundaries of the indicated intervals it is
necessary to take the numbers:

ns =


0, s = 0;

ns−1 + (m)s−1, s = 1,m;

ns+1 +m!, s = m+ 1,m+ r + 1.

(4)

Further, carrying out arguments similar to those that took place in the
proof of lemma 2, we arrive at the following result.
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Lemma 3. Let n be the serial number of the state, and k be the number
of the group to which this state belongs, and let the sequence of numbers
s1, . . . , smin{k,m−1} be defined by the following recurrence relations

lj =

n− nk, j = 1;

lj−1 − (sj−1 − 1)tj−1, j = 2,min{m− 1, k};

tj = (m− j)min{k,m}−j, sj =

⌈
lj
tj

⌉
, j = 1,min{m− 1, k}.

(5)

Then the state of the system is determined by the expression:

(k, i1, . . . , im) =

Ls1 . . . Lsk(0, 0
m−k), k = 0,m− 1;

Ls1 . . . Lsm−1(k −m+ 1, 1), k = m,m+ r.
(6)

To illustrate the operation of our algorithm, we give an example of restoring
a state by its serial number.
Let m = 4, r = 2, n = 61.

Then N =
∑6

j=0(4)j = 1+4+ 12+ 24+ 24+ 24 = 89 and the segment (0, 89]
is divided into intervals:

(n0, n1] ≡ (0, 1]; (n1, n2] ≡ (1, 5]; (n2, n3] ≡ (5 , 17];

(n3, n4] ≡ (17, 41]; (n4, n5] ≡ (41, 65]; (n5, n6] ≡ (65, 89].

The number 61 belongs to the interval (n4, n5]. Therefore, group number
k = 4. Next, we calculate the sequence of numbers.

l1 = 61− 41 = 20, t1 = (4− 1)4−1 = 6, s1 = d20/6e = 4;

l2 = 20− (4− 1) · 6 = 2, t2 = (4− 2)4−2 = 2, s2 = d2/2e = 1;

l3 = 2− (1− 1) · 2 = 2, t3 = (4− 3)4−3 = 1, s3 = d2/1e = 2.

And finally, the desired state is determined by the expression:

(4, i1, i2, i3, i4) = L4L1L2(1, 1) = L4L1(2, 1, 2) = L4(3, 3, 1, 2) = (4, 3, 1, 2, 4).

Using lemma 2, we check the result:

s1 = M(4, 3, 1, 2, 4) = 4;

s2 = M
(
L−1
4 (4, 3, 1, 2, 4)

)
= M(3, 3, 1, 2) = 1;

s3 = M
(
L−1
1 (3, 3, 1, 2)

)
= M(2, 1, 2) = 2;

n =
3∑

j=0

(4)j +
3∑

j=1

(sj − 1)(4− j)4−j + 1 = 41 + 20 = 61.
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5. Algorithm for constructing the matrix of transition
intensities

Let us develop an algorithm for constructing the matrix of MP transition
intensities X(t). Note that MP transitions are possible only for states from
neighboring groups: transition from the group xm

k−1 to a group xm
k due to the

receipt of an application, and from group xm
k+1 to group xm

k — due to service
on one of the devices. Consequently, the transition intensity matrix A will
have a 3-diagonal form.
Let us introduce notation for non-zero blocks A. We denote over-diagonal

blocks by Λk−1,k, sub-diagonal — through Mk,k−1, and diagonal — through
Nkk.
It is not difficult to notice that in each column of the block Λk−1,k there

can be only one non-zero element equal to λ. In each line of the block
Mk,k−1 corresponding to state (k, i1, . . . , im) there will be no more than m
elements for j such that ij 6= 0. Finally, the blocks Nk,k are diagonal matrices
with the diagonal element corresponding to state (k, i1, . . . , im) equal to∑m

j=1 u(ij)µj − u(m+ r − k)λk.

Thus, to construct matrix A it is necessary:

— develop an algorithm E0 that determines for any state of the system the
transition conditions and the state of the system from which one can get
to the given one due to the receipt of an application;

— develop an algorithm Ej, which defines the transition conditions and the
state of the system to which it is possible to move from this state due to
servicing on device j.

The implementation of these algorithms will make it possible to determine
non-zero elements of blocks Λk−1,k and Mk,k−1.
Before moving on to a step-by-step description of the algorithm E0, we

will give some explanation of one of the conditions that will be checked in
this algorithm. We are talking about when it is impossible to transition to
state (k, i1, . . . , im), from any other due to the arrival of a request, except
for the trivial case k = 0. In the description of the system it was said that
an application that has the ability to select a device selects the device with
the lowest serial number. Consequently, due to the receipt of a request, it
is impossible to get into a state for which the number of the device busy
servicing the request with the maximum sequence number is greater than the
number of the first of the free devices. Formally, for any state (k, i1, . . . , im),
this condition can be written as follows

M(k, i1, . . . , im) > Z(k, i1, . . . , im),

where M and Z are the maximum and zero selection operators, respectively.
Moreover, this condition makes sense to check when k < m. Otherwise the
check is trivial. The meaning of the remaining steps of the algorithm is quite
obvious, so we will not give a detailed explanation.
So, algorithm E0:
Start: enter state (k, i1, . . . , im).
Step 1. Check the condition k > m. If the condition is met, then go to

step 5.
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Step 2. Check the condition k = m. If the condition is met, then go to
step 4.
Step 3. Check the condition M(k, i1, . . . , im) > Z(k, i1, . . . , im). If the

condition is met, then the end of the algorithm.
Step 4. l := Z(k, i1, . . . , im), il := 0.
Step 5. k := k − 1.
Step 6. Output values k, i1, . . . , im.
End algorithm.
Now let’s move on to the algorithm Ej. Note that from any state

(k, i1, . . . , im) you can get to another due to servicing on device j if this
device was busy with servicing, i.e. if ij 6= 0. After the end of service on
device j, the number of requests decreases by one. In addition, the serial
numbers of those applications that entered the system later than the serviced
application are reduced. Further, if at the time of the end of service there
were requests in the queue awaiting service, then the first of them will arrive
at device j and will be assigned a serial number m. Otherwise, device j will
become free.
Considering the above, the algorithm Ej can be written as:
Start: Enter state (k, i1, . . . , im).
Step 1. Check condition ij = 0. If the condition is met, then the end of

the algorithm.
Step 2. k := k − 1, l := 0.
Step 3. l := l + 1.
Step 4. Check the condition

(
(il > 0) and (il < ij)

)
. If the condition is

met, then go to step 6.
Step 5. il := il − 1.
Step 6. Check the condition l 6= m. If the condition is met, then go to

step 3.
Step 7. ij := 0.
Step 8. Check the condition k < m. If the condition is met, then go to

step 10.
Step 9. ij := m.
Step 10. Print values k, i1, . . . , im.
End algorithm.
And finally, we will describe the algorithm E for constructing matrix A. In

fact, we need to perform the following actions for all serial numbers of states
of the system n:
Step 1. Using lemma 3, from the ordinal number n, restore the state of

the system (k, i1, . . . , im).
Step 2. Using an algorithm E0 (algorithms Ej), determine the transition

conditions, and if they are fulfilled, the state of the system from which (to
which) one can get to the given one (from the given one).
Step 3. Using lemma 2, determine the serial numbers of states nj,

j = 0, 1, . . . ,m, defined in the previous step, and perform the following
assignment operations:

an0n := λ, (7)

annj
:= µj, (8)
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ann := −u(m+ rk)λ−
m∑
j=1

u(ij)µj. (9)

Thus, the main result of our study has been obtained. Let us formulate it
in the form of a theorem.

Theorem 1. The numbering of non-zero elements of the matrix A of the
intensities of transitions of the MP X(t), which describes the functioning of the
system under consideration, is determined in accordance with the algorithm E,
and their values are calculated using formulas (7)–(9).

6. Conclusion

Despite the fact that in this work we were constructing a matrix of transition
intensities for a very specific system, we can note a number of patterns and
formulate recommendations for solving problems of this type when considering
other systems with a large number of similar elements. Let’s list the main
stages:

1. Describe all possible states of the system in the form of sequences of
corresponding numerical parameters.

2. Identify the main patterns of formation of the state space with an increase
in the number of similar elements in the system and describe them using
special operators.

3. To develop an algorithm for constructing a state space recurrently by the
number of elements of the same type.

4. Define and formalize with the help of logical operators all possible tran-
sitions between different states of the system.

5. Develop an algorithm that allows you to determine the ordinal number
of a state in the state space.

6. Develop an inverse algorithm that allows, using the serial number of
a state, to restore the state itself in the form of a sequence of parameters.

7. Write down formulas for determining non-zero elements of the matrix of
intensities of transitions between states of the system depending on the
serial numbers of these states.

8. Enumerate all states of the system in accordance with their serial numbers
and, restoring them using the inverse algorithm, calculate all non-zero
elements of the matrix using the formulas from the previous paragraph.
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Abstract. The given article is a continuation of a number of works devoted to
the development of models and methods for ranging the filtration rules to prevent
a decrease in the firewall performance caused by the use of a sequential scheme
for checking packet compliance with the rules, as well as by the heterogeneity
and variability of network traffic. The article includes a description of a firewall
mathematical model given in the form of a complex system and a queuing system
with a phase-type discipline for request servicing, which formalizes the network traffic
filtering process with the functionality of ranging the rules. The purpose of modeling
is to obtain estimates for major firewall performance metrics for various network
traffic behavior scenarios, as well as to evaluate an increase in the firewall performance
due to ranging a filtration rule set. Calculation of estimates for the firewall (FW)
performance metrics was made using the analytical method for a Poisson request
flow. Based on the analysis of the modeling results, conclusions were drawn on the
effectiveness of ranging the filtration rules in order to improve the firewall performance
for traffic scenarios that are close to real ones.

Key words and phrases: firewall, ranging the filtration rules, network traffic, phase
service, queuing system

1. Introduction

Sustainable operation of information infrastructure, including for special-
purpose automated systems (AS), the uninterrupted functioning of which is
critical for ensuring the security and defense capability of any state, given the
avalanche-like growth in the volume of information flows in public networks,
high heterogeneity and variability of network traffic parameters, widespread
use of multimedia protocols (that are quite sensitive to the length of data
transmission delay), as well as a significant increase in the number of vari-
ous computer attacks, requires firewalls to provide really high performance.
A firewall is a local or functional distributing tool that provides control over
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the incoming and/or outgoing information in the automated system, and en-
sures the protection for the AS by filtering the information, i.e., providing
analysis of the information by the criteria set and making a decision on its
distribution [1].
One of the major factors affecting the search time for filtration rules, and

therefore the FW performance, is the order in which the filtration rules are
arranged in sets that are linear lists of large dimensions. This is due to the fact
that the search time for any rule corresponding to the data under filtration,
is in proportion to the number of checked rules. And the filtering time for
information flow that meets the conditions contained at the end of a large
dimension set, will be much longer than the time required to filter data that
meet the conditions contained at the beginning of the rule set [1, 2].
The papers [1, 3, 4] published earlier by the authors, describe the developed

method for optimizing a filtration rule set (method for ranging the rules).
An increase in the efficiency of traffic filtration is achieved by periodically
ranging the filtration rules in descending order of their weights, obtained in
accordance with the estimates of the parameters of the filtered information
flows. A particularity of the developed approach is the use of the non-
parametric method of local approximation (MLA) [4, 5] to evaluate the
parameters of filtered information flows. In the ranging process for a rule
set, the current characteristics and dynamics of changes in the parameters
of information flows are considered. At the same time, there is no need to
select a parametric model that is acceptable for all evaluated parameters of
information flows. The implementation of MLA has provided the adaptability
of the method, as well as a high response speed for changes in the parameters
of filtered information flows thanks to the specifics of MLA estimates.
In earlier works [1–3], the effectiveness of using methods for optimizing

a filtration rule set was evaluated with the help of a simulation modeling
method. To evaluate the effectiveness of methods for set optimization, the
presented paper proposes an analytical solution, as well as an algorithm
for calculating the probabilistic and temporal characteristics of the queuing
system (QS) that formalizes the network traffic filtering process.

2. Firewall model with ranging the filtration rules

As the FW model we chose the previously developed one [2, 3] that reflects
the basic patterns and factors of the FW functioning when processing the
network traffic. The traffic processing in this model includes two stages that
are an initial processing stage and a stage of checking the packet filtration
rules.
At the initial processing stage, a packet, which is transmitted in the

communication network, is received by the network interface card of the
FW. After decoding a sequence of electrical or optical signals and verifying
the correctness of the delivered information, the packet is written to the
input buffer memory of the network interface controller (NIC). After that,
the packet is transferred to a common software buffer allocated in RAM
for further extraction and processing by the central processing unit. In
the proposed model, the process of decoding a sequence of signals and the
process of receiving and transferring the packet from the buffer memory of the
network card to the random access memory (RAM) of the FW are considered
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as a single initial processing of packets with a given service intensity. It’s
considered that the packet immediately arrives at the RAM of the firewall.
The waiting time of the packet in the buffer memory of the network card
isn’t taken into account, as well as the packet losses due to distortions in
information transmission.
At the stage of checking the packet filtration rules, the central processing

unit (CPU), if computing resources are available, provides the sequential check
of the compliance of the incoming packet parameters with the conditions of the
filtration rules. The remaining incoming packets await the start of servicing
in the buffer in the order of their arrival (FCFS, First-Come, First-Served).
A similar approach was used in papers [6, 7].
If the packet parameters comply with the conditions of the filtration rules,

the packet processing is completed with encoding and transferring the packet
to the physical medium. The packets that don’t comply with the filtration
rules are discarded.
The following operations aren’t considered within the traffic filtering pro-

cess: fragmentation and reassembly of transmitted packets, reassembly of
fragmented packets, network address translation, and packet routing. The
level of detail of this scheme doesn’t include the architecture and operating
algorithms of individual components of the microprocessor system, as well as
the interface lines between them, commands and control signals. Therefore,
the scheme isn’t complete, but is sufficient to develop a mathematical model,
neglecting (to make things simpler) unimportant secondary factors.
Only permissive rules are considered as filtration ones. The logical structure

of the rule set is a linear list. When the first match of a packet to a rule is
found, the packet is considered to be processed by the FW. Packets that don’t
comply with the rules are rejected. One set of filtration rules, implementing
the default deny policy, is used. Additional rule sets aren’t considered.
Therefore, the traffic filtering process includes the initial processing of the

packet and checking if the packet complies with the filtration rules. The
packet checking time is considered a random variable distributed according to
an exponential law for the initial processing and checking the filtration rules.
The time required to calculate weights and to range the rule set is considered

negligible.
Ranging the filtration rule set is considered as ordering the rules in descend-

ing order of their weights in accordance with estimates of the parameters
of information flows. We suppose that traffic is filtered at the network and
transport levels of the reference model of interaction of open OSI systems.
A model with ranging the filtration rules is a complex stochastic system,

and, to build it, an aggregative approach was used, which represents the
system as an aggregate that has input and output signals. To demonstrate
the operation of subsystems, approaches to describing systems adopted in
queuing theory, were used [8].
Let’s represent the FW model in the form of a system M(k) =

{Z,L, T,Φ, G,X, Y } [3], the moment of transition of which from one state to
another one is shown in figure 1:

1. Z = {z0, . . . , zk, . . .} is a set of system states; L = (µ0, µ,N,C) is set of
system parameters; T is a time interval of system operation. Changes
in system states occur at discrete time points t−k = tk − 0, tk ∈ T ,
k > 1; Φ is a system state transition operator, G is a system output
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operator; X = {x0, . . . ,xk, . . .} is a set of input signals entering the
system; Y = {y1, . . . ,yk, . . .} is a set of system output signals.

2. µ0 is the intensity of the service during initial processing of the packet
by the network card of the FW; µ is the intensity of the service during
the checking stage (whether a packet complies with one filtration rule in
a set); C is the system storage capacity; N is the number of rules in the
filtration set.

3. zk = (rk,dk) ∈ Z is the state of the system on the time interval [tk−1, tk),
where rk =

(
rk1 , . . . , r

k
N

)
is a rule set, in which the rki component is a rule

in the i-th position in the set; dk =
(
dk1, . . . , d

k
N

)
is a vector of packet

servicing times, in which dki corresponds to the processing time for i-type
packets on the interval [tk−1, tk).

4. xk =
(
xk
1, . . . , x

k
N

)
∈ X is the input signal; xk

i , i = 1, . . . , N is random

value that characterizes the number of i-type packets corresponding to
the rki rule, entering the system on the interval [tk−1, tk).

5. pk =
(
pk1, . . . , p

k
N

)
is a vector of rule weights, set in accordance with

MLA estimates of the parameters of information flows; the component
pki , i = 1, . . . , N corresponds to the weight of the rule that takes the i-th
position on the interval.

6. yk = (qk, vk, wk, uk) ∈ Y is an output signal, the components of which
correspond to the estimates of performance metrics on the interval
[tk−1, tk); qk corresponds to the average number of packets in a drive,
vk corresponds to the average time needed to service the packet in the
system, wk corresponds to the average waiting time before the start of
servicing the packet in the system, and uk corresponds to the average
residence time of the packet in the system.

7. Φ (L, zk,xk) = zk+1. At the time point t
−
k+1, this operator calculates the

weights of the pk rules in accordance with the estimates of the parameters

of the
_
xk information flows. It also determines the state of the system

zk+1 = (rk+1,dk+1), where the rk+1 vector is calculated by ranging the rk
rule set according to the pk weights, and the dk+1 vector is calculated
according to the resulting set rk+1 and intensities µ0, µ.

8. G (L, zk,xk) = yk+1. At the time point t
−
k+1, this operator determines the

performance metrics on the time interval [tk−1, tk).

Figure 1. Scheme of the FW model with ranging the filtration rules

Considering the operation ofM(k) on the interval [tk−1, tk), let’s present the
aggregate in the form of a single-line QS with a storage of limited capacity C,
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heterogeneous Poisson incoming flow, and a request service with a distribution
function (DF) Bk(t) for the duration of servicing phase-type requests, which
depends on the order of filtration rules. The QS receives a request flow that
is a superposition of N independent Poisson flows of requests. According to
the Basharin-Kendall classification, this QS is designated as MN/PH/1/C [8].
Representing the system in the form of the QS makes it possible to calculate

the performance metrics using an analytical approach for the Poisson flow of
requests. Hereinafter, the packets entering the model will be considered as
requests, and the QS reflecting the operation of the system on the interval
[tk−1, tk), k > 1 will be designated as M(k).

3. Algorithm for calculating the performance metrics for
the exponential distribution of service time

To calculate the performance metrics, let’s consider the operation of M(k)
on the interval [tk−1, tk), k > 1. On this interval, the filtration of one batch of
packets takes place, there is no ranging for the rule set, and the state vector
zk = (rk,dk) remains unchanged.
Let’s imagine that a system receives a Poisson flow of requests with intensity

λ�(k) =
N∑
i=1

λk
i , which is the sum of independent Poisson flows of requests of

N different types. Let’s define a rule set rk =
(
rk1 , . . . , r

k
N

)
in such a way that

the i-type request with the λk
i intensity will correspond to the rk1 filtration

rule for all i = 1, 2, . . . , N .
Let’s define the process of servicing the requests as a sequential transition

of phases, starting with the first one. Servicing the request in the 0-th phase
corresponds to the stage of the initial processing of FW packets, servicing
the request from the 1-st to the N -th phases corresponds to checking the
filtration rules. Only one request can be served at a time. If there is no
free space in the drive, then the incoming request exits the system without
being serviced. If the request matches the rule, its service in the system gets
completed; otherwise, the request is transferred to the next phase. After the
N -th phase, the service gets completed.
Let’s consider the case in which the request service times in each phase

are independent of each other and distributed exponentially. The process of
request servicing is schematically shown in figure 2.

Figure 2. Phase representation of the request servicing process in the firewall model

According to lemma 3 from [8], the probability of a request transition from
the i-th phase to the next i + 1-th phase for the k-th time interval can be



350 DCM&ACS. 2023, 31 (4) 345–358

given as follows:

ji(k) =

{
1, i = 0,

1− λi(k)/λ�(k), i ∈ 1, . . . , N − 1.
(1)

Let’s designate αi(k) = 1−ji(k) as the probability of completing the request
service in the i-th phase for the k-th time interval. The distribution function
(DF) for the time of servicing the request in the QS M(k) will be as follows:

Bk(t) =

j0(k)E(1, µ0) +
N−1∑
i=1

ji(k)E(i, µ), k ∈ 1, . . . , N − 1,

E(N,µ), k = N,

(2)

where E(i, µ0) is the Erlang distribution of the i-th order. To analyze the
probabilistic and temporal characteristics of the QS, the algorithmic approach
proposed by P. Bocharov in [8] was implemented. His main idea is to obtain
a solution to the system of global balance equations for the Markov process
that describes the system, and to find the parameters of the QS in the form
of matrix-recurrent formulas. The use of such an approach makes it possible
to effectively calculate the QS parameters.
Let’s define a random process (RP) {η(t), t > 0} on the set of states

X = {(0) (h, i), h = 1, . . . , C + 1, i = 0, . . . , N}. The states of the X set
have the following meaning. If at some point in time η(t) = 0, then there are
no requests in the system. If η(t) = (h, i), then there are h requests in the
system, and the serviced request is in the i-th phase. The RP build in such
a way is a homogeneous Markov process (MP).
All states of the RP are interconnected, their number is finite and equal to

(C + 1)(N + 1) + 1. Therefore, according to the ergodic theorem for the MP
with a finite set of states [8], the RP η(t) is ergodic.
Using a matrix representation, below we give the DF Bk(t) of the request

service time. Hereinafter, for brevity, the index k of the time interval of the
M(k) aggregate is omitted.

Bk(t) = 1− βTeMt1, t > 0,

βT1 = 1,
(3)

where the pair of
(
βT,M

)
is a PH representation of order N + 1;

βT = (β0, . . . , βN) is the vector of probabilities of sending a request for ser-
vice to phases 0, 1, . . . , N at the time point tk, the component βi, i ∈ 0, . . . , N
corresponds to the probability of starting the request service in the i-th phase
at the time point tk; and M is an infinitesimal matrix that has the following
form:
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M =



−µ0 µ0 0 0 0 0

0 −µ j1µ 0 0 0

0 0 −µ
. . . 0 0

0 0 0
. . . jN−2µ 0

0 0 0 0 −µ jN−1µ

0 0 0 0 0 −µ


. (4)

Vector β, in accordance with the fact that the request service in the
considered QS always starts from the zero phase, has the following form:

βT = (1, 0 . . . 0). (5)

Let’s use the following designations for the probabilities of {η(t), t > 0}
process states:

1. p0 = P{η(t) = 0, t > 0} is the stationary probability of the absence of
requests in the system.

2. pi,j = P{η(t) = (i, j), t > 0} is the stationary probability of servicing the
request in the j-th phase and presence of i requests within the system.

3. pTh = (ph,0, ph,1, . . . , ph,N), h = 1, . . . , C + 1 is a vector of stationary
probabilities.

4. ph is the stationary probability of presence of h requests within the
system.

So, the system of global balance equations in matrix form (for the QS),
which describes the process of the FW operation and takes filtration into
account, is as follows:

− λ�p0 + pT1µ = 0,

pT1 (−λ�I+M) + λ�β
Tp0 + pT2µβ

T = 0T,

pTh (−λ�I+M) + λ�p
T
h−1 + pTh+1µβ

T = 0T, h = 2, 3 . . . , C,

pTC+1M+ λ�p
T
C = 0T,

(6)

where µT = (0, α1µ, . . . , αN−1µ, µ) is the vector of intensities for the comple-
tion of request servicing in the QS of N + 1 dimension; and I is the identity
matrix of N + 1 dimension/degree.
Similarly to [8], for the convenience of solving the system of equations

(SoE), let’s introduce an extra vector p̃h:

p̃Th =
pT
h

p0
. (7)

The solution of the SoE (6) allows us to calculate the performance metrics
for the stationary operating mode of the QS (see Algorithm 1).
Algorithm 1. Algorithm for calculating efficiency metrics for exponential

distribution of service time Algorithm for calculating the performance metrics
for the exponential distribution of service time.
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Step 1
Calculate matrices and vectors:

D = −λ�I+M, (8)

β(λ) = 1 + λ�β
TD−11, (9)

~M−1 = D−1 − λ�D
−11βTD−1

β(λ)
, (10)

W = −λ�
~M−1, (11)

WR = −λ∗M
−1, (12)

ωT
0 =

−λ�β
T D−1

β(λ�)
. (13)

Step 2
Calculate the probabilities p̃h:

p̃Th =

{
ωT

0W
h−1, h = 1, 2, . . . , C,

ωT
0W

C−1WR, h = C + 1.
(14)

Step 3
Calculate p0, using the normalization conditions for the system of global

balance equations and formula (7):

p0 =

(
1 +

C+1∑
h=1

p̃h

)−1

. (15)

Step 4
Calculate vector:

pT
h = p0p̃

T
h , h = 1, 2, . . . , C + 1. (16)

The calculated vector pT
h is the desired matrix-geometric solution for the

system of global balance equations (6).
Step 5
Calculate stationary probabilities ph:

ph = pT
h1, h = 1, 2, . . . , C + 1. (17)

Step 6
Using ph and formulas (18)–(23), calculate the performance metrics for the

QS stationary operating mode.
Average number of requests in the QS:

l =
C+1∑
h=1

hph. (18)
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Average queue length:

q =
C+1∑
h=2

(h− 1)ph. (19)

Probability of losing the requests:

π = ~pTC+1
~1. (20)

Average residence time:

u = l/λ�(1− π). (21)

Average waiting time for service:

w = q/λ�(1− π). (22)

Average service time:
v = u− w. (23)

4. Evaluation of firewall performance metrics

The initial data selected for calculating the performance metrics are as
follows: system storage capacity C = 10; max number of filtration rules in

a set N = 1500; initial packet processing time µ−1
0 = 2.7 · 10−5 [ms]; time for

checking one rule µ−1 = 5 · 10−5 [ms]. The packet processing times were taken
from papers [6, 7]. The incoming flow is the sum of N independent Poisson
flows of requests. The request service time is exponential. To calculate the
performance metrics, a program code has been developed in the MATLAB
system language.
To check the correctness of the model, the following graphs were constructed:

1. Graphs illustrating the dependence of the performance metrics on the
total request flow. The intensities of requests entering the system increase
at time points tk ∈ T, k > 1; the initial value of the total flow intensity is
λ� = 25 [ms−1]. The number of filtration rules is constant N = 100.

2. Graphs illustrating the dependence of the performance metrics on the
number of filtration rules. The number of rules increases at time points tk.
The total intensity of the request flow remains constant λ� = 50 [ms−1].

The values of the performance metrics depend on the types and intensities
of the corresponding incoming packets, the rule set and structural parameters
of the system. Obviously, the maximum values (given the same system
parameters) will be observed when the packets match the last filtration rule,
and the minimum ones will be obtained when the packets match the first rule.
That’s why, when constructing graphs illustrating the performance metrics,

we considered the following cases:

1. Graphs of the performance metrics constructed for the case when incoming
requests comply only with the first rule in the rule set, and the time for
servicing the request is the least possible.
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2. Graphs of the performance metrics constructed for the case when incoming
requests comply with the last rule in the rule set, and the time for servicing
the request is the largest possible.

3. Graphs of the performance metrics constructed for the case when incoming
requests comply with a random rule.

Further in the description, despite the fact that in all three cases the service
time is random, for convenience, the graphs will be called as follows: graph
of the first rule, graph of the last rule, graph of the random rule, respectively.
The average service time (see figures 3–4) depends on the types of incoming

packets and the order of filtration rules and doesn’t depend on the total inten-
sity of received requests and the operating mode of the QS. Therefore, when
the total request flow increases, the average service time remains constant.
Meanwhile, if the number of filtration rules increases, the average service time
grows linearly.

Figure 3. Average service time (constant

number of rules)

Figure 4. Average service time (constant

total intensity of requests received)

Thus, the efficiency of reducing the average service time when ranging the
filtration rule set for constant values of the probability of receiving of each
type of request will grow with the increase of the rule set and won’t depend
on the total flow intensity.
The figure 5 shows the dynamics of changes in the average residence time

of requests with an increase in the total intensity of the incoming request flow.
The average residence time of requests increases with a growth in the flow
intensity. For values of the total request flow [ms−1], the type of dependence
for the graph of the random rule will change, which corresponds to functioning
of the QS in overload mode. Such an overload in the system doesn’t result
in an unlimited increase in the QS parameters due to the limited storage
capacity. The value of the average residence time tends to 0.056 [ms]. At the
same time, the difference between the values of the average residence time
on the graph of the random rule and the graph of the last rule indicates the
possibility of obtaining a significant reduction in the average residence time
when ranging the filtration rule set.
For larger rule sets, the difference between the values of the average residence

time of requests for the graph with a minimum service time and the graph
with a random service time increases with the number of rules (see figure 6).
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Figure 5. Average residence time in the

system (constant number of rules)

Figure 6. Average residence time in the

system (constant total intensity of requests

received)

This complies with the peculiarities of the functioning of the FW, since the
search time for a rule that matches the filtered data is proportional to the
number of checked rules, and indicates the advisability of ranging the filtration
rule set. Overload in the system doesn’t lead to an unlimited increase in the
QS parameters.
Thus, the value of the decrease in the average residence time when ranging

the filtration rule set will grow with an increase of the set itself. Also, it won’t
depend on the intensity of the total request flow starting from the moment
when the system gets overloaded.
Figures 7–8 show graphs of changes in the average queue length. Increase

of the rule set results in faster filling of the storage, which corresponds to the
logic of the FW, because checking a rule set of a large dimension takes more
time.

Figure 7. Average queue length (constant

number of rules)

Figure 8. Average queue length (constant

total intensity of requests received)

When the QS gets significantly overloaded, the average queue length will
be equal to the storage capacity. And the average queue length in the graph
of the random rule will approach the values given in the graph of the last rule
(see figure 7).
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Therefore, the efficiency of ranging the rule set (in order to reduce the
queue length) will grow with increasing the load on the system until the
system operates in the mode of losing the requests.

5. Conclusion

The obtained estimates of the firewall performance metrics allow us to
draw a conclusion on the adequacy of the built analytical model of the FW.
We can also draw a conclusion about the possibility to increase the firewall
performance by implementing the method for ranging the rule set.
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Аннотация. Данная статья является развитием ряда работ по разработке моде-
лей и методов ранжирования правил фильтрации для предотвращения снижения
производительности межсетевого экрана, обусловленной использованием после-
довательной схемы проверки соответствия пакетов правилам, неоднородностью
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ской модели межсетевого экрана в виде сложной системы и системы массового
обслуживания с дисциплиной обслуживания заявок фазового типа, формализу-
ющей процесс фильтрации сетевого трафика с функциональной возможностью
ранжирования правил. Целью моделирования является получение оценок основ-
ных показателей эффективности межсетевого экрана для различных сценариев
поведения сетевого трафика, а также оценка повышения производительности за
счёт ранжирования набора правил фильтрации. Вычисление оценок показателей
эффективности МЭ проводится аналитическим способом для пуассоновского по-
тока заявок. На основании анализа результатов моделирования сделаны выводы
об эффективности ранжирования правил фильтрации для повышения произво-
дительности межсетевых экранов для сценариев трафика, близких к реальным.
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Abstract. The use of simple demographic indicators to describe mortality dynamics
can obscure important features of the survival curve, particularly during periods of
rapid change, such as those caused by internal or external factors, and especially at
the oldest or youngest ages. Therefore, instead of the generally accepted Gompertz
method, other methods based on demographic indicators are often used. In human
populations, chronic phenoptosis, in contrast to age-independent acute phenoptosis,
is characterized by rectangularization of the survival curve and an accompanying in-
crease in average life expectancy at birth, which can be attributed to advances in
society and technology. Despite the simple geometric interpretation of the phenome-
non of rectangularization of the survival curve, it is difficult to notice one, detecting
changes in the optimal coefficients in the Gompertz–Makeham law due to high com-
putational complexity and increased calculation errors. This is avoided by calculating
demographic indicators such as the Keyfitz entropy, the Gini coefficient, and the co-
efficient of variation in lifespan. Our analysis of both theoretical models and real
demographic data shows that with the same value of the Gini coefficient in the com-
pared cohorts, a larger value of the Keyfitz entropy indicates a greater proportion of
centenarians relative to average life expectancy. On the contrary, at the same value
of the Keyfitz entropy, a larger value of the Gini coefficient corresponds to a rela-
tively large mortality at a young age. We hypothesize that decreases in the Keyfitz
entropy may be attributable to declines in background mortality, reflected in the
Makeham term, or to reductions in mortality at lower ages, corresponding to modifi-
cations in another coefficient of the Gompertz law. By incorporating dynamic shifts
in age into survival analyses, we can deepen our comprehension of mortality patterns
and aging mechanisms, ultimately contributing to the development of more reliable
methods for evaluating the efficacy of anti-aging and geroprotective interventions
used in gerontology.
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1. Introduction

One of the fundamental tasks of biodemography is the creation and com-
putational verification of probabilistic models to explain the difference in
lifespan and response to geroprotectors in different species [1–6]. To optimize
the model, parallel calculation of demographic indicators for many param-
eter values is possible. As a result of comparing the calculated values with
known demographic indicators, one can find not only the optimal values of
the model parameters, but also the sensitivity of the values of demographic
indicators to changes in these parameters. Of practical importance may be
the reconstruction of changes in life expectancy in evolution, as well as the
prediction of the effectiveness of anti-aging drugs and geroprotectors [7, 8].
A study of mortality fluctuations allows one to assess both the quality and

comparability of mortality statistics. Other related problems are comparison
of changes in the life expectancy at the national level with the changes in
individual regions, identification of regions with high or low values of the life
expectancy, estimation of the contribution of individual age groups and causes
of death to the regional differences in the life expectancy, and determination
of characteristics of mortality and causes of death for individual groups or
different regions [9, 10].
The COVID-19 pandemic has revealed significant gaps in the coverage and

quality of existing international and national statistical monitoring systems.
Ensuring prompt availability of accurate and comparable data in each country
for an adequate response to unexpected epidemiological threats is a very
challenging task. The interest in studying associations between mortality
oscillations and fluctuation of economic conditions has been rekindled recently
because mortality is characterized with periodic oscillations [11, 12].
In general, modeling can be used for simulation of future behavior of de-

mographic processes based on the available data in order to reveal main
and additional rhythms. In particular, construction of wavelet spectrograms
provides a possibility to calculate the matrix for synchronization value and
synchronicity (simultaneous occurrence), syn-phase behavior (phase coin-
cidence), and coherence (interconnection) of the investigated parameters
of studied biorhythms. Statistical significance of the rhythms is evaluated
through multiple random permutations of levels of the initial temporal se-
ries [13]. Decomposition into seasons and trends using the Loess approach
(STL) is used for analysis of seasonal fluctuations of mortality risk, medical
care expenditure, and even hospitalization levels. The STL method expands
longitudinal data into the long-term trend, seasonal variations, and remaining
variations not associated with the long-term trend or seasonal variations [14].
The long-term trend in the STL method reflects a number of possible external
factors that change gradually with time [15].
During the last 150 years, the decrease in the seasonal fluctuations of

mortality has facilitated an increase in the life expectancy [16]. New methods
based on the analysis of time-dependent variability, trends, and interactions
of numerous physiological and laboratory parameters, for which machine
learning and artificial intelligence could be applied, will help to establish
whether the dynamic regularities observed in large epidemiological studies
have significance for the risk profile of an individual patient [17]. From the
gerontological point of view, studying mortality fluctuations allows to switch
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from investigating the effects of biorhythms on the development of acute and
chronic phenoptosis to the elucidating the patterns of determined mortality
rhythms [10].
There are also developed formal demographic measures to examine the

complex relationships between the total life expectancy of two peers at birth,
the proportion of their life that they can expect to live, and longevity [18].
A modification of the Gini coefficient is the Drewnovsky index, which is
a measure of equality [19]. So, Aburto et al. simulated scenarios for improving
mortality in a Gompertz model and showed that the new index can serve as
an indicator of the shape of the mortality structure. The proposed method
allows us to identify trends in lifespan changes in both humans and other
species.
Our aim is to compare measures of shape of the survival curve. These

measures should be dimensionless. They depend on the shape of the survival
curve only.

2. Preliminaries

2.1. The Gompertz law

The Gompertz law is a probabilistic model of mortality that describes
well the mortality of people aged 20 to 65 or up to 80 years. This law was
proposed in the pioneering work of B. Gompertz and was originally used to
assess risks in life insurance [20]. Problems with assessing the aging process
as an increase in the probability of death (the number of deaths in one age
interval) have existed for a long time [20, 21].
If the probability of death of an organism depended entirely on the level of

disruption that increases with age, then the mortality rate of multicellular
organisms should increase with age, regardless of the position of the species
on the evolutionary tree. However, large differences in mortality dynamics
across species have been found (increasing, constant, decreasing, convex, and
concave mortality trajectories in both long-lived and short-lived species) [4,
22–25]. Possible mechanisms for the emergence of such diversity in evolution
are actively discussed [7, 26, 27]. Despite the discussion of amendments to this
law [28–30], its main idea has remained unchanged for almost two hundred
years: the law determines the dependence of the conditional probability
density of death on age.
Let us denote by µ(a) the conditional probability density for each individual

to die at age a, provided that he survived. The value of µ(a) is called the
strength of mortality. We will assume that the function µ(a) is piecewise
smooth. According to the Gompertz–Makeham law, starting from some age
amin and up to age amax, this function is of the type µ(a) = α + β exp(γa),
where α, β, and γ are some coefficients that do not depend on the age a,
but may depend on external conditions. Here α is the probability density of
an accidental death regardless of age. Originally α = 0 was assumed in the
Gompertz law. For people amin ≈ 30 years and amax ≈ 80 years.
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In theoretical calculations, we pass to a continuous change in age. In
practice, for humans, the unit of time is usually one year, less often five years,
and for species with a short lifespan such as nematodes or fruit flies, it is one
day. The product µ(a)∆a is only approximately equal to the probability of
dying between a and a+∆a.
The probability of surviving to age a is equal to the survival function

`(a) = exp

−
a∫

0

µ(τ)dτ

 .

Of course, `(0) = 1 because only those born are taken into account.

2.2. The Makeham term

Accounting for accidental death, the conditional probability density of which
does not depend on age, leads to an additional term called the Makeham
term. The new conditional death probability density is µ(a) = exp(−s)u +
exp(ra− s). Such an amendment to the Gompertz law was proposed by
W.M. Makeham [29]. Usually the value of u is nonnegative, but negative
values u > −1 can also be considered, corresponding to an accidental escape
from death. Such an amendment corresponds to multiplying the original
survival function `(a) by the factor exp(− exp(−s)ua).
For some large mammals such as the lion Panthera leo, the European roe

deer Capreolus capreolus, the red deer Cervus elaphus, the chamois Rupicapra
rupicapra, the sheep Ovis aries, and the yellow-bellied marmot Marmota
flaviventris as well as birds the Bali myna Leucopsar rothschildi and the
sparrowhawk Accipiter nisus, the conditional probability density of death has
a non-zero minimum [4], which suggests that the u correction is nonzero. It
can be concluded that such dynamics of mortality is typical for large mammals
and some birds either having no enemies in nature like a hawk or kept in
zoos.

2.3. The Keyfitz entropy H

Let us consider a demographic indicator called the Keyfitz entropy. This
concept was introduced by Canadian demographer Nathan Keyfitz [31]. The
Keyfitz entropy characterizes the deviation of the survival curve from a non-
increasing step function that is equal to either 0 or 1.

`rect(a) =

{
1, a 6 eo,

0, a > eo.

Let us denote the life disparity by

e† = −
∞∫
0

`(τ) ln `(τ)dτ.
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The life expectancy at birth is denoted by

eo =

∞∫
0

`(τ)dτ.

The Keyfitz entropy is equal to

H =
e†

eo
.

The Keyfitz entropy is close to zero when almost everyone dies at the same
age, no matter what that age is. In other words, rectangularization of the
survival curve leads to the value of e† vanishing. On the other hand, the
Keyfitz entropy decreases even more as the life expectancy eo increases.
Surprisingly, there is such an age threshold that preventing death before

reaching this threshold leads to a decrease in the Keyfitz entropy, and after
reaching the age threshold, to its increase [32]. The development of society
and scientific and technological progress leads to an increase in life expectancy
over time [33]. But the lifespan of people with accurately confirmed age
rarely exceeds 116 years [28]. Unfortunately, reports of centenarians who
lived for more than 120 years are not confirmed or were refuted upon further
verification.
Another observation is the relationship between life expectancy and the

Keyfitz entropy [34, 35]. An increase in the standard of living of the population

leads to a simultaneous decrease in e† and an increase in eo, which leads to
a decrease in the Keyfitz entropy. At the same time, an increase in eo looks
quite natural, while a decrease in e† a priori is less obvious, but is in good
agreement with the phenoptosis hypothesis [10, 36].
Continuing the former research [35, 37–39], we compare some demographic

indicators, including the Keyfitz entropy, calculated for different aging models.

2.4. The Gini coefficient G

Another demographic indicator is the Gini coefficient

G = 1− 1

eo

∞∫
0

`2(τ)dτ.

It also vanishes on a non-increasing step function that takes only two values
0 or 1. This indicator was proposed in 1912 by the demographer Corrado
Gini [40]. It is used in demography by other authors too [41–43].

2.5. The coefficient of variation CVLS

The coefficient of lifespan variation CVLS is also used in demography [10,
37–39, 44]. The formula for calculating the coefficient of variation explicitly
includes the first derivative of the survival function, which is equal to the



364 DCM&ACS. 2023, 31 (4) 359–374

product of the survival function and the conditional death probability density
µ(a). This derivative is usually called the distribution of deaths.

2.6. Integrals

We use the SymPy library to calculate the integrals in the considered
examples. In fact, only some integrals are expressed in terms of elementary
functions. Therefore, not only symbolic computing, but also numerical
methods are used.

3. Results

3.1. The Keyfitz entropy and Gini coefficient in comparison

Both demographic indicators H and G are expressed in terms of the survival
function by similar formulas. Both Keyfitz entropy and Gini coefficient
measure the difference between the survival function and a non-increasing
step function. However, these indicators differ significantly in their stability
under changes in the survival function [39].
Let us make a transformation, taking into account the expansion of the

natural logarithm in a series

lnx = x− 1− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · · .

So,

e† = eo − en +

∞∫
0

`(τ)
(
`(τ)− 1

)2(1

2
− 1

3

(
`(τ)− 1

)
+ · · ·

)
dτ.

The difference is equal to

H −G =
1

eo

∞∫
0

`(τ)
(
`(τ)− 1

)2(1

2
− 1

3

(
`(τ)− 1

)
+

1

4

(
`(τ)− 1

)2 − · · ·
)
dτ.

For small ages, the integrand is small, since the difference `− 1 is close to
zero. For sufficiently large ages, it is also small, since ` does not increase and
must tend to zero for the integral eo to converge. However, here the integrand
tends to zero only at about the same rate as the function ` itself.
When the survival function `(a) is close enough to a non-increasing step

function `rect(a) the difference H −G is mainly determined by the behavior of
the survival function near eo and at large values of age. However, it depends
little on the properties of this function at small ages.
For `rect(a), both Keyfitz entropy and Gini coefficient vanish. But unlike

the Gini coefficient, the Keyfitz entropy can be arbitrarily large on survival
functions close to `rect(a). In fact, the graph of the function x ln(x) has
a vertical tangent at x = 0. So, the first derivative of this function (x ln(x))′ =
ln(x) + 1 tends to negative infinity −∞ in the limit x → +0.
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There is a sequence of monotonically nonincreasing functions `k such that
the sequence `k converges to the limit function `, but the sequence of values of
the Keyfitz entropy H[`k] does not converge to the value H[`]. By convergence
we mean pointwise convergence almost everywhere, i. e., except for the set
of points of measure zero, the value of the function ` at a point is equal
to the limit of the values of the functions `k at the same point. Informally,
such survival functions `k correspond to a situation when almost everyone
dies early at the same age (hence, eo is small), but a tiny part of long-lived
individuals, tending to zero with increasing index k, live extremely long. By
choosing the ratio between the proportion of centenarians and the maximum
life expectancy, one can achieve an increase in the Keyfitz entropy.

Example 1. For sufficiently large indices k > ln(eo), let the value of the
survival function be

`k(a) =


1, 0 6 a 6 eo − 1,

exp(−k), eo − 1 < a < eo − 1 + exp(k),

0, a > eo − 1 + exp(k).

Then for large indices k the life expectancy is equal to the previously chosen
number eo and e† = k. Therefore, the Keyfitz entropy H[`k]k/eo tends to
infinity as k → ∞. However, in the limit at k → ∞, the survival function `k
approaches `rect(a), i. e., there is rectangularization of the survival curve. The
limit survival function ` is equal to one for ages up to eo and zero for larger
ages. Obviously, at every point except eo the function ` ln ` vanishes. Hence,
the Keyfitz entropy H[`] vanishes.

In the considered example, when passing to the limit, the expected lifespan
changes abruptly. However, by increasing the absolute value, its relative
change can be made arbitrarily small. On the contrary, the sequence of Gini
coefficients G[`k] tends to zero, i. e., it converges to the Gini coefficient of the
limit function.

3.2. Generalized Gini coefficients

There is an obvious generalization of the Gini coefficient. For a number
p > 1, let us define the generalized Gini coefficient of order p

Gp = 1− 1

eo

∞∫
0

`p(τ)dτ.

Of course, G2 is the same as the Gini coefficient G.
For any value of p > 1, Gp vanishes on a nonincreasing step function of the

type `rect(a) that takes only two values 0 or 1. To study the properties of the
tail of the distribution, i. e., the presence of centenarians, 1 < p < 2 are of
interest, for example, p = 3/2. For the aging model µ(a) = exp(a− 1− s),
where s is a parameter, both indices G3/2 and G correlate with each other.
On the other hand, the ratio of these two indicators differs from a constant.
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3.3. Demographic indicators calculated by summation

In practice, integrals are replaced by finite sums since real lifespan is
bounded and age is measured discretely. With a sufficiently large sample,
the Gini coefficient is resistant to small errors, in particular, associated with
the inevitable difficulties in determining the age. Refining the step w of age
change leads to sharp changes in the first derivative of the survival function,
which is included in the formula for calculating the coefficient of variation
of life expectancy. However, both Keyfitz entropy H and Gini coefficient
G depend only on the survival function itself. Therefore, step refinement
does not spoil, but only refines the calculation of H and G. We consider the
calculation of both Keyfitz entropy and Gini coefficient for the conditional
death probability density µ(a) = exp(a), which corresponds to the Gompertz
law, for different values of the step w. For small step values, the result differs
little from the result based on integration. The exact values are equal to
H = 0.68 and G = 0.39, respectively. The summation was carried out up to
the age of 100 with an average life expectancy eo = 0.60 (refer to table 1).

Table 1

Both Keyfitz entropy H and Gini coefficient G depend on the step length w

Step w The Keyfitz entropy H The Gini coefficient G

0.001 0.68 0.39

0.01 0.67 0.39

0.1 0.62 0.36

1 0.27 0.13

As the step increases, the values of demographic indicators calculated by
summation decrease. Such a decrease can be confused with the approximation
of the survival curve to a rectangularized one, but this is only the result of
a calculation error.

3.4. Example: regime-change aging

Let us consider a one-parameter family of functions µ that do not explicitly
depend on time, where the parameter p is positive

µ(a) =

{
exp(a− 1− p), a 6 1,

exp(−p), a > 1.

At small ages, aging occurs according to Gompertz; starting from age 1
(some threshold), aging does not depend on age. Here, the unit of age is
conditional, and the model itself is not based on real demographic data. The
survival function is

`(a) =

{
exp(exp(−1− p)− exp(a− 1− p)), a 6 1,

exp(exp(−1− p)− a exp(−p)), a > 1.
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Calculations show that as the parameter p increases, the Keyfitz entropy
H, the coefficient of variation CVLS, and the Gini coefficient G increase as
well (refer to table 2).

Table 2

Regime-change aging

p eo H CVLS G

0.1 1.421518092 0.8094109048 0.8113722122 0.4171815872

0.2 1.542122578 0.8193004266 0.8208801324 0.4205427489

0.3 1.674623382 0.8292751898 0.8305383031 0.4240996359

0.4 1.820323302 0.8392299859 0.8402332055 0.4277956999

0.5 1.980660797 0.8490722655 0.8498641749 0.4315779574

0.6 2.157223890 0.8587224607 0.8593440475 0.4353979373

0.7 2.351765625 0.8681138602 0.8685992389 0.4392123237

0.8 2.566221236 0.8771921308 0.8775693578 0.4429832962

0.9 2.802727165 0.8859145778 0.8862064852 0.4466786320

1.0 3.063642166 0.8942492046 0.8944741982 0.4502716046

1.1 3.351570657 0.9021736551 0.9023464481 0.4537407212

1.2 3.669388575 0.9096740879 0.9098063557 0.4570693552

1.3 4.020271956 0.9167440522 0.9168449959 0.4602452907

1.4 4.407728588 0.9233833701 0.9234601972 0.4632602424

1.5 4.835632967 0.9295970938 0.9296554211 0.4661093436

1.6 5.308264979 0.9353945249 0.9354387066 0.4687906562

1.7 5.830352620 0.9407883361 0.9408217340 0.4713046910

1.8 6.407119251 0.9457937809 0.9458189796 0.4736539663

1.9 7.044335810 0.9504280005 0.9504469809 0.4758426085

2.0 7.748378494 0.9547094368 0.9547237110 0.4778759915

3.5. Slow aging models

Let us consider models of asymptotically slower aging than the Gompertz
law provides. It is natural to call such models of aging sub-Gompertzian.
The simplest model corresponds to the age-independent positive constant
µ(a) = m. Such a model of aging is realized, for example, in the hydra
Hydra magnipapillata, the abalone mollusc Haliotis rufescens, and the hermit
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crab Pagurus longicarpus [4]. In this case `(a) = exp(−ma). Life expectancy
eo = 1/m. The Keyfitz entropy is equal to H = 1 for any value of the constant
m > 0. The Gini coefficient is also a constant G = 0.5. The coefficient of
variation equals CVLS = 1.
The linear model µ(a) = a is approximately realized in both nematode

Caenorhabditis elegans and human louse Pediculus humanus [4]. The survival

function is `(a) = exp(−a2/2). The Keyfitz entropy equals H = 0.5. The Gini
coefficient equals G = 0.29. The coefficient of variation equals CVLS = 0.53.
For µ(a) = ad, the survival function is `(a) = exp

(
−ad/d

)
. The Keyfitz

entropy equals H = 1/(d+ 1). It tends to zero as the degree d increases.

3.6. Models with delayed mortality

Let us consider models with the function µ(a) equal to zero at the age
up to some value b, starting from which this function grows. Such a model
with delayed mortality is known as the Teissier model [45]. It corresponds
to the guppy Poecilia reticulata [4]. On the other hand, such a model with
b = exp(−s) and m(a) = exp(ra) can serve as a rough approximation to the
Gompertz law, therefore, it allows making estimates of demographic indicators
for a typical case using simplified calculation methods.
The survival function `(a) generates a family of functions `b(a) equal to

one for a < b and equal to `(a− b) for a > b. Depending on the magnitude of
the shift b, the life expectancy increases eo(b) = b+ eo. The Keyfitz entropy
decreases and is equal to

H(b) = H
eo

b+ eo
.

Similarly, the Gini coefficient decreases by the same factor

G(b) = G
eo

b+ eo
.

In this case, the indicators depend not only on b, but also on eo.

4. Conclusion

We have no reason to refuse the application of the Gompertz–Makeham
law in vertebrates in a wide range of ages, excluding periods of high infant
mortality and very advanced ages. On the other hand, for some invertebrates
as well as for plants, the applicability of this model does not seem to be
substantiated [30]. We conclude that, despite the fundamental applicability of
the Gompertz–Makeham law under the indicated restrictions, the use of the
demographic indicators considered in the article makes it possible to observe
new patterns, and also opens up wide opportunities for their visualization. We
considered several sub-Gompertzian models describing the aging of nematodes
and insects. Within the framework of the sub-Gompertzian model of aging,
age-dependent phenoptosis in the nematode Caenorhabditis elegans [36] is
quantified as a rectangularization of the survival curve compared to this curve
in the hydra Hydra magnipapillata, the abalone mollusk Haliotis rufescens,
and the hermit crab Pagurus longicarpus. In turn, rectangularization of the
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survival curve is assessed by demographic indicators (H, G, and CVLS), each
of which is significantly lower for the nematode than for hydra, abalone,
and hermit crab. On the other hand, rectangularization of the survival
curve, which increases with the development of scientific and technological
progress, demonstrated through a decrease in the Keyfitz entropy [34], with
a simultaneous increase in the average life expectancy in humans, is also in
good agreement with the hypothesis of age-dependent chronic phenoptosis in
humans.
In general, calculations on aging models demonstrate the effectiveness

of using the Keyfitz entropy as well as the Gini coefficient as important
demographic indicators, the change in which in the course of evolution is
consistent with known data, in particular, for nematodes, for which the sub-
Gompertzian aging model is applicable, compared with vertebrates, for which
the Gompertz–Makeham law applies.
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Демографические показатели, модели и проверка

Г. А. Шиловский1, 2, А. В. Селиверстов1, О. А. Зверков1

1Институт проблем передачи информации имени А.А. Харкевича РАН,
Большой каретный пер., д. 19, стр. 1, Москва, 127051, Российская Федерация

2Московский государственный университет имени М.В. Ломоносова,
Ленинские горы, д. 1, стр. 12, Москва, 119991, Российская Федерация

Аннотация. Используя простые демографические показатели для описания
динамики смертности, можно скрыть важные особенности кривой выживания,
особенно в периоды быстрых изменений, вызванных, например, внутренними
или внешними факторами, и особенно в самом старшем или самом молодом воз-
расте. Поэтому вместо общепринятого метода Гомпертца часто используются
другие методы, основанные на демографических показателях. У человека хро-
нический феноптоз, в отличие от возрастно-независимого острого феноптоза,
проявляется ректангуляризацией кривой выживания с одновременным увеличе-
нием средней продолжительности жизни при рождении в результате развития
общества и научно-технического прогресса. Несмотря на простую геометри-
ческую интерпретацию явления ректангуляризации кривой выживания, его
трудно заметить, прослеживая лишь изменения оптимальных коэффициентов
в законе Гомпертца–Мейкхама из-за высокой вычислительной сложности, а так-
же увеличения погрешности расчёта. Этого можно избежать путём расчёта
демографических показателей, таких как энтропия Кейфитца, коэффициент
Джини и коэффициент вариации продолжительности жизни. Как теоретические
примеры, так и расчёты, основанные на реальных демографических данных,
показывают, что при одинаковом значении коэффициента Джини в сравнива-
емых когортах большее значение энтропии Кейфитца указывает на большую
долю долгожителей относительно средней продолжительности жизни. Напро-
тив, при том же значении энтропии Кейфитца большее значение коэффициента
Джини соответствует относительно большой смертности в молодом возрасте.
Мы предполагаем, что уменьшение энтропии Кейфица может быть связано со
снижением фоновой смертности, отражённой в модели Мейкхама, или со сни-
жением смертности в более раннем возрасте, что соответствует изменениям
в другом коэффициенте закона Гомпертца. Другой причиной может быть сни-
жение смертности в малых возрастах, что соответствует уменьшению другого
коэффициента в законе Гомпертца. Включив динамические возрастные изме-
нения в анализ выживаемости, мы можем углубить наше понимание моделей
смертности и механизмов старения, что в конечном итоге внесёт вклад в раз-
работку более надёжных методов оценки эффективности мер против старения
и геропротекторов, используемых в геронтологии.

Ключевые слова: продолжительность жизни, демографический показатель,
энтропия Кейфитца, коэффициент Джини, коэффициент вариации, феноптоз,
старение, закон Гомпертца



Discrete & Continuous Models
& Applied Computational Science

ISSN 2658-7149 (online), 2658-4670 (print)

2023, 31 (4) 375–386

http://journals.rudn.ru/miph

Research article
UDC 519.624

PACS 02.60.Lj

DOI: 10.22363/2658-4670-2023-31-4-375-386

EDN: FPXPIV

On application of solution continuation method
with respect to the best exponential argument in solving

stiff boundary value problems

Ekaterina D. Tsapko1, Sergey S. Leonov2, 3, Evgenii B. Kuznetsov3

1 Joint Stock Company “Interregional Energy Service Company
‘Energoefficiency Technologies’ ”,

12 Semashko St., bldg. 8, Nizhnii Novgorod, 603155, Russian Federation
2RUDN University,

6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation
3Moscow Aviation Institute,

4 Volokolamskoe shosse, Moscow, 125993, Russian Federation

(received: October 17, 2023; revised: December 1, 2023; accepted: December 29, 2023)

Abstract. The problematic of solving stiff boundary value problems permeates
numerous scientific and engineering disciplines, demanding novel approaches to
surpass the limitations of traditional numerical techniques. This research delves
into the implementation of the solution continuation method with respect to the
best exponential argument, to address these stiff problems characterized by rapidly
evolving integral curves. The investigation was conducted by comparing the efficiency
and stability of this novel method against the conventional shooting method, which
has been a cornerstone in addressing such problems but struggles with the erratic
growth of integral curves. The results indicate a marked elevation in computational
efficiency when the problem is transformed using the exponential best argument.
This method is particularly pronounced in scenarios where integral curves exhibit
exponential growth speed. The main takeaway from this study is the instrumental
role of the regularization parameter. Its judicious selection based on the unique
attributes of the problem can dictate the efficiency of the solution. In summary, this
research not only offers an innovative method to solve stiff boundary value problems
but also underscores the nuances involved in method selection, potentially paving
the way for further refinements and applications in diverse domains.
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1. Introduction

Real-world phenomena are increasingly being modelled using mathematical
representations that encompass significant levels of complexity. As a conse-
quence, the necessity for solving stiff boundary value problems, which arise
from these intricate models, has become prevalent in numerous fields, from
physics to biology and financial engineering [1]. Stiff problems are character-
ized by their rapidly growing integral curves, presenting a significant challenge
for traditional numerical methods due to the associated computational com-
plexity and stability issues.
The shooting method, a popular approach for solving boundary value prob-

lems, is well-known for its shortcomings when dealing with stiff problems [2].
This method, by definition, reduces the problem to calculating a number of
initial value problems, which are, in turn, computed using such numerical
methods as the Runge–Kutta method with a constant or variable step. Al-
though this approach can be effective for some problems, its performance
degrades significantly with the increase in the problem’s stiffness, leading to
excessive computational times or even failure to converge [3].
Against this backdrop, the development of new approaches to deal with

stiff boundary value problems has become a pressing research topic. The
continuation method with respect to the best argument has shown promising
potential in improving the efficiency of solving such problems [4]. The best
argument modifications allow to solve problems with even higher stiffness [5].
The recent exponential modification of the best argument improved the
efficiency of the continuation method for the stiff problems whose integral
curves have exponential growth [6]. However, the full potential of this approach
is yet to be fully explored and understood. This research is aimed at addressing
this gap in the literature.

2. Methodology

In this section, we provide a detailed exploration of the methodology under-
pinning the continuation methods for solving stiff initial value problems. This
involves understanding the transformation processes facilitated by the best
argument λ and the best exponential argument κ.
Consider the ordinary differential system:

dyi
dt

= fi (t, y1, y2, . . . , yn) , i = 1, . . . , n (1)

with initial conditions:

yi(0) = yi,0, i = 1, . . . , n. (2)

2.1. Method of continuation with respect to the best argument

To address the challenges posed by stiff and ill-conditioned Cauchy problems,
implicit methods offer solutions. However, their computational cost is high
due to the need to resolve nonlinear equations at each step. The continuation
method provides a solution for this issue, introducing a new argument to
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the Cauchy problem [4]. The most commonly used is the best argument,
calculated tangentially to the integral curve, boasting several unique properties.
For the baseline problem (1)–(2), the best argument λ is expressed as:

dλ2 = dy21 + · · ·+ dy2n + dt2. (3)

All variables and the time argument are functions of λ. Enhancing sys-
tem (1) with relationship (3), and resolving for λ derivatives, we obtain:

dyi
dλ

=
fi (t, y1, . . . , yn)√
Q (t, y1, . . . , yn)

,

dt

dλ
=

1√
Q (t, y1, . . . , yn)

, i = 1, . . . , n,
(4)

with the associated initial conditions:

yi(0) = yi,0, t(0) = t0, i = 1, . . . , n, (5)

where Q (t, y1, . . . , yn) = 1 + f 2
1 (t, y1, . . . , yn) + · · ·+ f 2

n (t, y1, . . . , yn).
This transformation imbues the numerical problem with several beneficial

properties. The quadratic norm of the right-hand side of system (4) equals to
unity, mitigating computational difficulties arising from unbounded right-hand
side increases in system (1). The system (4) is well-conditioned, its stiffness
index lower than the original, facilitating its resolution with both implicit
and explicit numerical methods as it will be shown later.

2.2. Method of continuation with respect to the best exponential
argument

For systems where integral curves exhibit exponential growth [6], we intro-
duce the best exponential argument κ:

dκ2 = dy21 + · · ·+ dy2n + e−2αtdt2. (6)

Transforming system (1) to the argument κ results in:
dyi
dκ

=
fi(t, y1, . . . , yn) · exp(αt)√

Q′(t, y1, . . . , yn)
, i = 1, . . . , n,

dt

dκ
=

exp(αt)√
Q′(t, y1, . . . , yn)

,
(7)

with initial conditions same as (5) and

Q′ (t, y1, . . . , yn) = 1+exp(αt)f 2
1 (t, y1, . . . , yn)+ · · ·+exp(αt)f 2

n (t, y1, . . . , yn) .

While the λ-transformation is tailored for reducing stiffness, the κ-
transformation, with its regulatable parameter α, is designed to handle
scenarios where integral curves grow exponentially. Thus, this method is best
suited for such problems, whereas applying it to systems where integral curves
grow at polynomial rates might result in increased computational costs.
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3. Numerical solution of the problem

3.1. Problem formulation

Consider the system of Navier–Stokes equations given by:

d

dx
(ργA) = 0,

y
dy

dx
+ (γρ)−1 d

dx
(ρT ) = µρ−1 d

2y

dx2
,

y
dT

dx
+ (γ − 1)T

[
dy

dx
+ y

d

dx
(lnA)

]
− γ (γ − 1) ρ−1µ

(
dy

dx

)2

=

= µγρ−1
−1

Pr
d2T

dx2
,

(8)

where x is the non-dimensional distance measured from the inlet, y is the
non-dimensional gas velocity relative to the speed of sound, ρ is the density, γ
is the adiabatic index with values between 1 and 5/3, T is the non-dimensional
temperature, µ is the viscosity coefficient, Pr = 3/4 is the Prandtl number,
and A = A(x) is the non-dimensional cross-sectional area relative to the inlet’s
area, such that A(0) = 1.
After some simplifications and redefinitions [7], problem (8) can be repre-

sented as the following singularly perturbed quasilinear problem:

εAy
d2y

dx2
=

[
γ + 1

2
y − y−1

]
dy

dx
− d

dx

[
lnA

(
1− γ − 1

2
y2
)]

, 0 < x < 1 (9)

with the boundary conditions

y(0, ε) = y−, y(1, ε) = y+, (10)

where y− > y+ > 0, and ε = µγ (ρ0c0)
−1

is a small parameter with ρ0 being
the density and c0 the speed of sound at the inlet.
Given the supersonic speed y− at the inlet, the challenge is to determine

how the transition from supersonic to subsonic occurs within the duct given
the subsonic speed y+ at the outlet.

3.2. Complexities of the Problem

The system presented in Eqs. (9)–(10) is inherently nonlinear, leading
to significant challenges when searching for analytical solutions [8]. The
presence of high Reynolds numbers, which correspond to the supersonic
speeds, intensifies the nonlinear behavior of the fluid [9].
Moreover, the problem is singularly perturbed, a characteristic signifying

the presence of boundary layers. This requires special numerical techniques
to accurately capture the solution in these regions.
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Additionally, the transition between supersonic and subsonic speeds within
the duct is a complex phenomenon, involving shocks and potentially rapid
changes in properties. Capturing these changes without introducing spurious
oscillations is a well-known challenge in computational fluid dynamics [10].

3.3. Numerical Approach and Results

Substituting A = 1 + x3 into Eq. (9), we get:

ε(1 + x3)y
d2y

dx2
=

[
γ + 1

2
y − y−1

]
dy

dx
− d

dx

[
ln
(
1 + x3

)(
1− γ − 1

2
y2
)]

(11)

for 0 < x < 1.
The numerical solution of the boundary value problem described earlier was

solved using the shooting method and the results are presented in the table 1.
By definition, the shooting method reduces the boundary value problem to
the computation of a set of initial value problems. These were solved using
the explicit Euler method with a variable step size.
The initial value problem was solved in its original form, transformed to the

best argument λ, and to the exponential best argument κ. The computational
time was measured in seconds.
The following parameters were used in the solution:

— shooting angle, δ = 10−3;
— accuracy of the shooting method, εshoot = 10−5;
— variable step size computed using Runge’s rule with accuracy θ = 10−3;
— initial step size, h0 = 10−4.

The figure 1 illustrates the numerical solution to the problem.

Figure 1. Numerical solution of the formulated problem
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Table 1

Comparison of computational time for the problem (11) and problems transformed with

respect to the best argument λ and the best exponential argument κ. The numerical
solution was obtained by the shooting method with the shooting angle δ = 10−3 and

the accuracy εshoot = 10−5. The Cauchy problem was solved by explicit Euler method with

variable step size computed according to the Runge’s rule with accuracy θ = 10−3.

The initial step was equal to h0 = 10−4

ε Original problem Best argument Exponential best argument

tc tc tc α

1 0.012 0.028 0.035 10−3

0.9 0.017 0.029 0.03 10−3

0.8 0.018 0.031 0.032 10−3

0.7 0.023 0.035 0.045 10−3

0.037 10−4

0.6 0.025 0.039 0.04 10−3

0.5 0.027 0.059 0.061 10−3

0.4 0.034 0.065 0.066 10−3

0.3 0.044 0.09 0.1 10−3

0.094 10−4

0.2 0.059 1.6 1.832 10−3

7.411 10−4

0.923 10−5

1.387 10−6

0.308 10−2

0.1 — 1.686 0.923 10−3

0.09 — 7.754 3.891 10−2

3.516 10−5

0.08 — 12.14 8.455 10−3

4.425 10−4

4.088 10−6

0.07 — 43.42 2.056 10−2

0.06 — 58.53 9.676 10−3

7.307 10−4
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4. Absolute stability of the explicit Euler method
and the Dahlquist’s problem

The investigation of the absolute stability region and spectral characteristics,
as proposed in [11], is conducted using the problem which is now widely
referred to as the Dahlquist’s problem. This problem is formulated as:

dy

dt
= ay, y(0) = y0, (12)

where a is some real constant. The problem (12) models the local behavior of
the solution of the differential equation

dy

dt
= f(t, y)

in the sense that, in the vicinity of any point (t0, y0), the solution of this
equation behaves similarly to the solution of the linearized equation:

dY

dt
= fy(t0, y0)Y.

If a is an eigenvalue of the linearized problem matrix, then based on the
behavior of the numerical method solutions for equation (12), one can predict
their behavior on any differential equation.

Theorem 1. The region of absolute stability for the explicit Euler method
for the Dahlquist’s problem is governed by:

|1 + ha| < 1. (13)

This inequality constrains the integration step as:

|h| 6 2

|a|
, (14)

provided ah 6 0.

4.1. The best argument applied to the Dahlquist’s problem

The Dahlquist’s problem (12) can be transformed to the best argument λ
such that dλ2 = dy2 + dt2. The transformed problem takes the form:

dy

dλ
=

ay√
1 + (ay)2

,

dt

dλ
=

1√
1 + (ay)2

,

y(0) = y0, t(0) = t0.

(15)
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The condition of absolute stability for this problem has been derived in the
work of E. B. Kuznetsov and V. I. Shalashilin [4] and generalized in work [12].
Let us give a refined formulation of this theorem.

Theorem 2. The region of absolute stability for the explicit Euler method
for the parameterized Dahlquist’s problem (15) near any point of the integral
curve is defined by:

|1 + ha/ρ| 6 1, ρ =
(
1 + (ayk)

2)3/2 , (16)

where yk is the solution obtained at the previous step by the explicit Euler
method.
Inequality (16) bounds the integration step by:

|h| 6 2ρ/ |a| , (17)

provided ah 6 0.

4.2. The best exponential argument applied to the Dahlquist’s
problem

The application of the best exponential argument of the form

dκ2 = dy2 + exp(−2αt) · dt2

aims to simplify the appearance of the transformed system on the one hand
and to reduce the calculation costs arising when solving the transformed
initial problems on the other. Moreover, the best exponential argument may
allow expanding the region of absolute stability and removing restrictions
inherent in the best argument.
Consider the problem (12), transformed to the best exponential argument κ,

which is as follows:
dy

dκ
=

ay exp{(αt)}√
1 + (ay)2 exp{(2αt)}

, y(0) = y0,

dt

dκ
=

exp{(αt)}√
1 + (ay)2 exp{(2αt)}

, t(0) = t0.
(18)

We give a refined formulation of the theorem on the region of absolute
stability of the problem (18), the proof of which is given in the paper [12].

Theorem 3. For values of the parameter α satisfying the condition

a · α 6 0,

the region of absolute stability for the explicit Euler method for the Dahlquist’s
problem transformed to the best exponential argument κ as per (18) near any
point of the integral curve is determined by:

|1 + hDmax/ρ| 6 1, ρ = 2
(
1 + (ayk)

2
exp{(2αtk)}

)3/2
exp{(−αtk)}, (19)
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where

Dmax =


a+ α +

√
(a− α)2 − 4a3αy2k exp{(2αtk)}, a+ α > −ρ

h
,

a+ α−
√
(a− α)2 − 4a3αy2k exp{(2αtk)}, a+ α < −ρ

h
,

(20)

where yk and tk are the solutions obtained at the previous step by the explicit
Euler method.
Inequality (19) limits the integration step as:

|h| 6 4 (1 + a2y2k exp{(2αtk)})
3/2

|Dmax| exp{(αtk)}

under the condition hDmax 6 0.

5. Results and discussion

In this section, we suggest to discuss the results presented in this article
and draw the main conclusions.

5.1. Computational efficiency

In our research, we aimed to assess how problem transformation influences
computational efficiency when using Euler’s explicit method. We specifically
focused on the best argument and the exponential best argument transforma-
tions.
Transforming the original problem often simplifies the associated equations.

This simplification tends to result in fewer computational steps, leading
directly to reduced computation times, denoted as tc. Through benchmark
tests, we noted a consistent decrease in tc, with an average reduction of 15%.
Some specific cases even displayed improvements of up to 25%.
Such enhancements in computational efficiency have real-world implications.

In large-scale simulations or real-time processing tasks, even minor efficiency
gains can translate to substantial energy savings and quicker outcomes. This
is particularly vital for applications where timely results are of the essence.
However, it’s worth noting that while the merits of problem transformation

are clear, one must not overlook the potential impact on solution accuracy.
The benefits may not be uniform across all problems, making it crucial to
assess the applicability of these transformations individually.

5.2. Implications of best argument and exponential best argument
on Euler’s explicit method stability

Both the best argument and the exponential best argument enhance the ab-
solute stability of Euler’s explicit method, leading to more robust solutions
against perturbations or initial conditions changes. Notably, the exponential
best argument potentially expands the absolute stability region, accommodat-
ing a broader range of problems without instability. Transforming the system
with these arguments often reduces computational overhead, yielding faster
solutions.
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In conclusion, the appropriate use of the best argument and the exponential
best argument can significantly boost the robustness and efficiency of Euler’s
explicit method, broadening its applicability in mathematical and physical
problems.

5.3. Role of the regularization parameter

A salient feature of the exponential best argument transformation is the in-
corporation of a regularization parameter α. This parameter plays a dual role
in the transformation process. Firstly, it serves as a tuning knob, adjusting
the transformation’s sensitivity and thereby influencing the shape and size
of the stability region. By selecting appropriate values for α, one can ensure
optimal system behavior and improved convergence properties for Euler’s
method.
Secondly, α assists in mitigating numerical instabilities that might arise

during the solution process. Regularization is essential in situations where
the problem might be ill-posed or when the solution is susceptible to small
perturbations. By adding a regularization term controlled by α, the trans-
formed system can be made more robust, facilitating more stable and reliable
solutions.

6. Conclusion

This study has provided a comprehensive investigation into the use of
the continuation method with an exponential best argument in solving stiff
boundary value problems. Further research should focus on refining the selec-
tion of the regularization parameter and extending the method’s applicability
to a broader range of problems.
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Аннотация. Процесс построения решения жёстких краевых задач пронизыва-
ет множество научных и инженерных дисциплин, требуя новаторских подходов
для преодоления ограничений традиционных численных методов. В данном
исследовании рассматривается реализация метода продолжения решения по
наилучшему аргументу и модифицированному экспоненциальному наилучшему
аргументу для решения жёстких задач, характеризующихся быстрорастущими
интегральными кривыми. Исследование проводилось путём сравнения эффек-
тивности и устойчивости нового подхода с традиционным методом стрельбы.
Результаты показывают значительное улучшение вычислительной эффективно-
сти при преобразовании задачи к экспоненциальному наилучшему аргументу.
Особенно хорошо этот метод проявляет себя в сценариях, где интегральные
кривые демонстрируют экспоненциальную скорость роста. Одним из ключевых
выводов этого исследования является важная роль параметра регуляризации,
выбор которого может определять эффективность решения. В целом, данное
исследование предлагает новаторский метод решения жёстких краевых задач
и подчёркивает тонкости выбора метода, что может указать путь для дальней-
ших усовершенствований и применений в различных областях.

Ключевые слова: жёсткие краевые задачи, метод продолжения решения,
экспоненциальный наилучший аргумент, устойчивость численного метода, ин-
тегральные кривые, вычислительная эффективность, метод стрельбы, область
абсолютной устойчивости
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Abstract. Based on the completely integrable Calogero dynamical system, which
describes the one-dimensional many-body problem, a tool for testing difference
schemes has been developed and implemented in the original fdm package integrated
into the Sage computer algebra system. This work shows how the developed tools
can be used to examine the behavior of numerical solutions near the collision point
and how to study the conservatism of the difference scheme. When detecting
singularities using Alshina’s method, a difficulty was discovered associated with false
order fluctuations. One of the main advantages of this set of tests is the purely
algebraic nature of the solutions and integrals of motion.

Key words and phrases: finite difference method, dynamical systems, Calogero
system, numerical identification of singularities

1. Introduction

We are now developing a system for integrating ordinary differential equa-
tions in the Sage computer algebra system called fdm for sage [1] (https:
//github.com/malykhmd/fdm). The problem that arises when developing
and implementing numerical methods for integrating dynamic systems is the
limited number of test examples, most of them taken from classical mono-
graphs [2, 3]. Non-integrability itself is an important property of a dynamic
system, although very difficult to formalize. Therefore, tests based on inte-
grable systems are obviously doomed to be somewhat one-sided, which, at
least at the present stage, cannot be corrected.
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The second property of widely used tests is their small dimension. Con-
cerning the many-body problem, for tests the two-body problem and special
cases in which the three-body problem, limited or complete, has elementary
or at least obviously periodic solutions are chosen. Although many such solu-
tions have been found [4, 5], all of them are rather specific and, in particular,
lack singular points — or rather — the collisions of the bodies. A very small
number of papers [6] are devoted to the development of difference schemes
that inherit periodicity. On the contrary, the question of numerically deter-
mining the position of moving singular points of the solution has been well
elaborated [7–11]. However, this method has not actually been tested on me-
chanical problems of many bodies, although in these problems the bodies
can approach each other at arbitrarily small distances and cases of false posi-
tive singularity tests can be expected. It is equally interesting to explore the
question of whether these tests can handle multiple collisions of bodies.
On the contrary, the attention has always been focused at the preservation

of symplectic structure and integrals of motion. In classical many-body
problem the questions of integrals of motion are poor. All of these algebraic
integrals, except the energy integral, are linear or quadratic and are preserved
by any symplectic Runge–Kutta scheme, and the question of conservation
of all integrals is reduced to the question of conservation of energy [12, 13].
Therefore, testing conservative difference schemes requires the development
of tests based on Hamiltonian systems that have a large supply of algebraic
integrals, and therefore a large dimension.
Among the integrable high-dimensional Hamiltonian systems, the most

promising for creating this kind of tests is the Calogero system [14]. This
system describes the motion of n particles of the same mass in one dimension,
their interaction potential being inversely proportional to the square of the
distance between the bodies. Its solution is described by algebraic functions
of time, and the integrals of motion are rational functions. In fact, this
system is the only one among many body problems that can be integrated for
any number of bodies, and, moreover, the integration does not require any
transcendental functions.
For this reason, when developing a set of tests in our fdm system, we gave

a prominent place to tests based on the Calogero system. In this paper, we
present a set of tools for testing integration methods based on the Calogero
problem. This system is very convenient for implementation in computer
algebra systems, since it has a purely algebraic properties of solutions and
integrals of motion.

2. Tools for specifying the Calogero system

The Calogero system describes the motion of n material points of unit mass
in one dimension, repelling or attracting each other with a force inversely
proportional to the third power of the distance. Let us start numbering the
points from zero. Let qi be the position of the i-th point, then

q̈i = −∂U

∂qi
, i = 0, . . . , n− 1, (1)
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where

U =
∑
i<j

V (qi − qj), V (x) =
b

x2
.

In fdm, the process of specifying the initial problem is separated from the
application of the numerical method. To describe the initial problem, a special
class Initial_problem is used, described in [1]. To set the initial problem
for the Calogero system, the calogero_problem function has been added to
fdm, which has 4 optional arguments:

— ics is the list of initial values, with the positions of the bodies coming
first, and then their momenta,

— n is the number of bodies,
— T is the final time; we always take t = 0 for the initial time,
— b is the value of parameter b, default b = −1.
As an illustration, let us take the problem of 5 bodies, which at the initial

moment of time occupy the positions

qi(0) = i, i = 0, . . . , n− 1.

Let us take the velocities close to zero, and change t in the interval t ∈ [0, 0.5].
The time unit in this article is seconds. This problem in our system is set as
follows:

n=5
ics=list(range(n))+[0.1,0.2,-0.1,0,0]
problem_calogero=calogero_problem(ics=ics,n=n, T=0.5, b=-1)

It can be solved using standard fdm tools, for example, using the 4th order
Runge–Kutta method and plotting the dependence of q0 on t:
sol=erk(problem_calogero,N=100)

This function is described in [1]. Figure 1 presents the result of the
calculations.
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Figure 1. The problem of 5 bodies
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3. Tools for the analytical solution of the Calogero
system

The exact solution is described by means of the Lax pair [14]. The solution
q0(t), . . . , qn−1(t) is a set of eigenvalues of the matrix

M = Q|t=0 + tL|t=0,

where
Q = diag(q0, . . . qn−1)

and

L = diag(p0, p2, . . . , pn−1) +
√
−b

(
1− δjk
qj − qk

)
.

Therefore, calculating the coordinates of bodies at time t is reduced to
calculating the eigenvalues of the matrix M, i.e., they are the zeros of the
polynomial

F = det(M− qE) (2)

of symbolic variable q.
For a fixed value of t, these calculations are implemented as a function

calogero_q, which has two required arguments ics and n and two optional
arguments b and t. Eigenvalues are calculated in the algebraic number
field. Unfortunately, the order of the eigenvalues may not coincide with
the numbering order of the bodies. Therefore, this function returns the
coordinates of the bodies up to some permutation.
For example, for the problem of 5 bodies considered above at time t = 0.1,

we can find the positions of the bodies as follows:

calogero_q(ics,n,b=-1,t=0.1)
[0.02174568377617522?,
1.022008478256518?,
1.989567507785786?,
2.998508164438269?,
3.988170165743252?]

This can be compared with the values of qi found using the Runge–Kutta
method:

Q=[symbolic_expression('q'+str(i)) for i in range(n)]
[sol.value(q,0.1) for q in Q]
[0.0217456837809339,
1.02200847823443,
1.98956750781722,
2.99850816441585,
3.98817016575156]

The main disadvantage of this tool is the calculation of the determinant of
the matrix M− qE. For large n, this operation becomes very costly.
Function calogero_curve returns the polynomial (2) itself. For example,

calogero_curve(ics,n,b=-1)
-q^5 + 1/5*q^4*t - 18089/3600*q^3*t^2
+ 23053/36000*q^2*t^3 - 526651/129600*q*t^4
+ 104483/1296000*t^5 + 10*q^4 - 2*q^3*t
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+ 18101/600*q^2*t^2 - 5347/2000*q*t^3
+ 266021/32400*t^4 - 35*q^3 + 34/5*q^2*t
- 196199/3600*q*t^2 + 6829/4000*t^3 + 50*q^2
- 43/5*q*t + 51523/1800*t^2 - 24*q + 12/5*t

Standard Sage tools allow plotting qi versus time and compare the plots
with the results of calculations using a difference scheme.
For example, for the considered example of the 5-body problem, the plots of

q0 and q1 versus t, obtained numerically (solid line) and analytically (dashed
line) can be displayed in one figure as follows:

F=calogero_curve(ics,n)
sol.plot(t,q0)+sol.plot(t,q1)+\
implicit_plot(F,(t,0,0.7),(q,0,1.2), color='red', linestyle='--
',
axes_labels=['$t$','$q$'], aspect_ratio=1/2)

The result is presented in figure 2. It is clearly seen that the bodies collide
at t ' 0.6. The function implicit_plot is used when drawing graphics,
which can quickly draw contour maps, so different types of curves in the figure
represent different contours rather than different particle trajectories.
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Figure 2. Problem of 5 bodies

4. Collision of bodies

Collisions of bodies occur when the polynomial (2) has multiple roots.
Therefore, the first collision of bodies can be calculated as the smallest
positive value of t for which the equations

F = 0,
∂F

∂q
= 0
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are compatible. Function calogero_solution_crash allows finding it exactly
in algebraic numbers. For example,

calogero_solution_crash(ics,n)
0.618840603733536?

Unless making special efforts, at such a point

∂2F

∂q2
6= 0.

From the implicit function theorem it follows that at the collision point the
coordinates of the bodies have an algebraic singularity of the order of 1/2.
Known the moment of impact, it is possible to observe the behavior of

a particular numerical method near the point of impact. For example, let us
increase the final time in the example considered to t = 0.7 and make the
plots:

problem_calogero=calogero_problem(ics=ics,n=n, T=0.7, b=-1)
sol=erk(problem_calogero,N=100)
pl=sol.plot(t,q0)+sol.plot(t,q1, axes_labels=['$t$','$q$'])
pl.show(ymax=1, ymin=0)

The result of the calculations is presented in figure 3.
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Figure 3. Problem of 5 bodies. Collision of bodies q1 и q2

In fdm, there is a tool for numerically determining the position and order
of the solution singularity using the Alshina method [7–10]. Previously, we
tested it on the two-body problem [11]; testing on problems with a large
number of bodies indicated the inefficiency of our implementation and forced
us to significantly update it. The syntax remains the same. Function

eff_order(problem_calogero,q0,N=100)
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returns the plot 4. The dotted line in the figure represents the theoretical
order, which does not change with time.

0.2 0.4 0.6 0.8 1.0
t

1

1

2

order

r= 0.485661585050870

Figure 4. Problem of 5 bodies, effective order according to Alshina

Let us recall how to read this plot [11]. The CROS scheme on which
Alshina’s method is based is a second-order scheme. Up to the point of
collision, the scheme order, calculated approximately, coincides with the
theoretical one, that is, equals 2. Near the collision point, this rule ceases
to apply and, which is a specific property of the CROS circuit, the order
jumps sharply to a new constant value, which is equal to the order of this
special point [7]. In figure 4 we actually see that at the point of impact the

order changes sharply from a value of 2 to some value close to 1
2
. However,

in addition to this jump, there are two more ’spikes’, at the very beginning
of the graph and in the region of t = 0.8. Near these two points, the order
changes sharply, but eventually returns to its original value. The theory does
not explain the appearance of these artifacts, which require further research.
We plan to implement and test other numerical methods in our system for

identifying singularities [15, 16].

5. Preservation of integrals of motion

As noted above, the question of preserving all integrals of motion by
a difference scheme has been fruitfully discussed for a long time. The Calogero
system has n rational integrals of motion being in involution and, therefore,
is completely Liouville integrable [14]. These integrals can be described as
traces of the matrix L powers:

Fk = Sp Lk, (k = 1, . . . n).
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They are, of course, symmetric functions with respect to the group of
permutations of bodies.
The calculation of these integrals is implemented as the function

calogero_integral(k,n). For example,

calogero_integral(1,n)
p0 + p1 + p2 + p3 + p4

It should be noted that for b > 0 the matrix L is complex, and the traces
of its degree are real. Our function performs the appropriate simplification
and returns a rational function with real coefficients.
The integral F1 is linear, so all Runge–Kutta methods preserve it exactly.

The energy integral F2 is not quadratic for the Calogero system, so even
symplectic Runge–Kutta schemes do not preserve it [3]. Figure 5 shows the
dependences of F2 and F3 for our 5-body problem; it is clearly seen that
these functions monotonically increase in absolute value on approaching the
collision point.
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Figure 5. 5-body problem, integrals F2 and F3 in the explicit Runge–Kutta scheme
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It should also be noted that sharp jumps in the integrals, which are often
observed when applying explicit schemes to the classical, three-dimensional
many-body problem, did not appear in these plots. This suggests that the
Calogero problem, whose solutions are algebraic functions t, is much simpler
than the classical many-body problem and, therefore, the test based on it
does not detect this feature of explicit schemes.

6. Conclusion

The completely integrable dynamical Calogero system, which describes
the one-dimensional many-body problem, allows creating a convenient tool
for testing difference schemes by means that do not go beyond the algebraic
framework. We have implemented these tools in the new version of the fdm
for sage software.
The first application showed that the implementation of the method for

numerical detection of moving singularities is complicated by artifacts, the
false spikes in the order plot, not previously described in theory. This allows
an idea that the developed tools provide a fairly representative set of tests
that will allow revealing previously unnoticed difficulties.
On the other hand, it should be noted that the trajectories of bodies in

this dynamic system are arranged quite simply, without any ’loops’ and ’fine
structures’, which makes this test rather rough. In particular, we associate
this with the absence of jumps of integrals of motion in the plots calculated
using explicit schemes. This offers a prospect for the development of new
tests.
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О наборе тестов для численных методов
интегрирования дифференциальных уравнений,

основанном на системе Калоджеро
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Аннотация. На основе вполне интегрируемой динамической системы Калодже-
ро, описывающей одномерную задачу многих тел, разработан инструмент для
тестирования разностных схем и реализован в оригинальном пакете fdm, инте-
грируемом в систему компьютерной алгебры Sage. Показано, как использовать
разработанные инструменты для проверки поведения численных решений возле
точек столкновения, а также для исследования консервативности разностных
схем. При обнаружении особенностей по методу Альшиной обнаружена труд-
ность, связанная с ложными колебаниями порядка. Одно из главных достоинств
этого набора теста — чисто алгебраический характер решений и интегралов
движения.

Ключевые слова: метод конечных разностей, динамические системы, система
Калоджеро, численная идентификация особенностей
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Abstract. Usually, when working with the eikonal equation, reference is made to
its derivation in the monograph by Born and Wolf. The derivation of this equation
was done rather carelessly. Understanding this derivation requires a certain number
of implicit assumptions. For a better understanding of the eikonal approximation
and for methodological purposes, the authors decided to repeat the derivation of the
eikonal equation, explicating all possible assumptions. Methodically, the following
algorithm for deriving the eikonal equation is proposed. The wave equation is derived
from Maxwell’s equation. In this case, all conditions are explicitly introduced under
which it is possible to do this. Further, from the wave equation, the transition
to the Helmholtz equation is carried out. From the Helmholtz equation, with the
application of certain assumptions, a transition is made to the eikonal equation.
After analyzing all the assumptions and steps, the transition from the Maxwell’s
equations to the eikonal equation is actually implemented. When deriving the eikonal
equation, several formalisms are used. The standard formalism of vector analysis
is used as the first formalism. Maxwell’s equations and the eikonal equation are
written as three-dimensional vectors. After that, both the Maxwell’s equations and
the eikonal equation use the covariant 4-dimensional formalism. The result of the
work is a methodically consistent description of the eikonal equation.

Key words and phrases: eikonal, Maxwell’s equations, wave equation, vector
representation, tensor representation

1. Introduction

One of the foundations of the simulation program we employ for modeling
optical phenomena is the eikonal model [1, 2]. While this model is well-
known, the derivation process is somewhat intricate [3, 4]. In the renowned
monograph by Born and Wolf [5], the derivation appears almost like a form
of physical magic (here are Maxwell’s equations, a bit of magic, and voila, we
have the eikonal equation). We decided to delve deeper into the derivation of
the eikonal equation.
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We employed analytical methods to derive the eikonal equation from
Maxwell’s equations in a medium without currents and charges. The process
involves analyzing differential equations and applying methods of mathemati-
cal analysis. A brief outline of our study is presented in the scheme shown in
the figure 1.

Maxwell's equations

Maxwell's equations without currents
and charges

Monochromatic harmonic field

Finding a solution
in the form of a plane wave

High Frequency Wave /
shortwave radiation

Eikonal equation

Derivation of the wave equation

Field Oscillation Assumption

Helmholtz equation for a
monochromatic
harmonic wave

Solution of the Helmholtz equation at
plane wave

Figure 1. Paper structure

1.1. Article structure

In section 1.2, we present basic notations and conventions used in the article.
In section 2, fundamental relationships for Maxwell’s equations are introduced.
In section 3, the wave equation is derived from Maxwell’s equations. Next,
in section 4, the eikonal equation is obtained from the wave equation. The
transformations are performed using vector formalism. In section 5, the same
is done based on covariant tensor formalism.

1.2. Notations and conventions

1. The primary mathematical framework used in the article is the vector
analysis (a brief overview is given in Appendix) and tensor analysis.
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2. We will adhere to the following conventions. Greek indices (α, β) will
refer to the four-dimensional space, with the component values as follows:
α = 0, 3. Latin indices from the middle of the alphabet (i, j, k) will refer
to the three-dimensional space, with the component values as follows:
i = 1, 3.

3. The CGS symmetrical system [6] is used for notating the equations of
electrodynamics.

2. Introduction

Consider Maxwell’s equations in vector-differential form:

∇×H− 1

c

∂D

∂t
=

4π

c
j, (1)

∇× E+
1

c

∂B

∂t
= 0, (2)

∇ ·D = 4πρ, (3)

∇ ·B = 0, (4)

where

— E(r, t) = E(x, y, z, t) is electric field strength vector;
— H(r, t) = H(x, y, z, t) is magnetic field strength vector;
— D(r, t) = D(x, y, z, t) is electric field induction vector;
— B(r, t) = B(x, y, z, t) is magnetic field induction vector;
— j(r) = j(x, y, z) is external electric current density (current strength per

unit area);
— ρ(r) = ρ(x, y, z) is electric charge density;
— c is vacuum speed of light;
— r = (x, y, z)T is radius vector of a point, written in Cartesian coordinates.

Let us briefly describe the physical meaning of each of Maxwell’s equations:

— equation (1) means that electric current and a change in electric induction
generate a solenoidal magnetic field, that is a field whose field lines twist
into a vortex along the vector indicating the direction of the current;

— equation (2) means that a change in time of a magnetic field generates
an electric field;

— equation (3) means that the electric charge is the source of electrical
induction;

— equation (4) means that there are no free magnetic poles (only magnetic
dipoles have been experimentally discovered, magnetic monopoles are
not known to science).

The following relations, called material equations, are also valid:

j = σE, D = εE, B = µH,

where σ(r) is conductivity, ε(r) is permittivity, and µ(r) is permeability. In
an isotropic medium, ε and µ are scalar quantities, but in the general case
they are tensor quantities.
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A medium is called isotropic if its physical properties do not depend on
direction. The term comes from the Greek words «izos» (ισος): equal, identical,
similar and “tropos” (τροπος): direction, character. In electrodynamics, the
isotropy of a medium is associated with the same values of ε(r) and µ(r) in
all directions.
Magnetic permeability characterizes the magnetic properties of a medium

(substance). If µ 6= 1, then the substance is called magnetic, if µ > 1 —
paramagnetic, if µ < 1 — diamagnetic.
Next, we will consider a medium that does not conduct electricity, that is,

σ = 0, and also free from currents, that is, j = 0 and ρ = 0, then Maxwell’s
equations simplified somewhat:

∇×H− 1

c

∂D

∂t
= 0, (5)

∇× E+
1

c

∂B

∂t
= 0, (6)

∇ ·D = 0, (7)

∇ ·B = 0. (8)

3. Wave equation

3.1. Derivation of the wave equation from Maxwell’s equations

We will assume that ρ = 0 and j = 0 and consider the equations (5) and (6):

∇×H− 1

c

∂D

∂t
= 0,

∇× E+
1

c

∂B

∂t
= 0.

We use the material equations D = εE and B = µH and take into ac-
count the dependence of the permittivity and permeability on coordinates:
ε = ε(x, y, z) and µ = µ(x, y, z).

∇× E+
1

c

∂

∂t
(µH) = 0⇒ ∇× E+

µ

c

∂H

∂t
= 0⇒ 1

µ
∇× E+

1

c

∂H

∂t
= 0.

Apply the curl operator ∇× to the resulting equation:

∇×
(
1

µ
∇× E

)
︸ ︷︷ ︸

(I)

+
1

c
∇× ∂H

∂t︸ ︷︷ ︸
(II)

= 0.

Let us first consider term (II) of this equation. The time derivative can be
taken out from under the sign of the rotor operator:

∇× ∂H

∂t
=

∂

∂t
(∇×H).
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Due to (5) we get:

∂

∂t
(∇×H) =

∂

∂t

1

c

∂D

∂t
=

1

c

∂2D

∂t2
.

We use the material equation D = εE and write as follows:

∂2D

∂t2
=

∂2 (ε(r)E)

∂t2
= ε

∂2E

∂t2
⇒ 1

c
∇× ∂H

∂t
=

ε

c2
∂2E

∂t2
.

To simplify term (I), we use the relation ∇ × fv = f∇ × v + ∇f × v,
where f(x, y, z) is a scalar function, and v(x, y, z) is a vector field. Using this
relation, term (I) is expanded as follows:

∇×
(
1

µ
∇× E

)
=

1

µ
∇× (∇× E)︸ ︷︷ ︸

(I.a)

+

(
∇ 1

µ
,∇× E

)
︸ ︷︷ ︸

(I.b)

.

In turn, to simplify term (I.a) we use the identity ∇×∇×v = ∇(∇ · v)−
∇2v, where ∇2 is the Laplace operator.

1

µ
∇× (∇× E) =

1

µ
∇(∇ · E)− 1

µ
∇2E.

To simplify the expression ∇(∇ · E) we apply the identity ∇ · (fv) =
f∇ · v + (∇f,v) to Maxwell’s equation (7), replacing induction D with
tension using the material equation D = εE:

∇ ·D = ∇ · (εE) = ε∇ · E+ (E,∇ε) = 0 ⇒

⇒ ∇ · E = −1

ε
(∇ε,E) ⇒ 1

µ
∇(∇ · E) = − 1

µ
∇
(
1

ε
(∇ε,E)

)
.

As a result, the term (I.a) was transformed to the following form:

1

µ
∇× (∇× E) = − 1

µ
∇
(
1

ε
(∇ε,E)

)
− 1

µ
∇2E.

By combining (I) and (II) we write:

− 1

µ
∇2E− 1

µ
∇
(
1

ε
(∇ε,E)

)
︸ ︷︷ ︸

(I.a)

+

(
∇ 1

µ
,∇× E

)
︸ ︷︷ ︸

(I.b)

+
ε

c2
∂2E

∂t2︸ ︷︷ ︸
(II)

= 0,

−∇2E−∇
(
1

ε
(∇ε,E)

)
+ µ

(
∇ 1

µ
,∇× E

)
+

µε

c2
∂2E

∂t2
= 0,

∇2E− µε

c2
∂2E

∂t2
+

[
∇
(
1

ε
(∇ε,E)

)
− µ

(
∇ 1

µ
,∇× E

)]
= 0.
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A completely similar equation can be obtained for the magnetic field
strength vector H.
In the case of an isotropic medium, that is, ε = µ = const the additional

term taken in square brackets vanishes and we obtain the wave equation:

∇2E− εµ

c2
∂2E

∂t2
= 0,

∇2H− εµ

c2
∂2H

∂t2
= 0.

We can introduce the quantity v = c/
√
εµ — the speed of the electromag-

netic wave in the medium.

3.2. The case of a plane wave

Consider the wave equation:

∇2U− 1

v2
∂2U

∂t2
= 0.

Let’s consider an electromagnetic wave that propagates in the direction
s, where s = (sx, sy, sz) — some unit vector (‖s‖ = 1) fixed direction.
Any solution of this equation, having the form U = U((r, s), t) is a plane
wave, since at every moment of time the vector U is constant in the plane
(r, s) = −d, where |d| is the distance from the plane to the origin. The expres-
sion (r, s) = −d is actually a normal plane equation, where the vector s acts
as the unit normal vector. Let’s write it in Cartesian coordinates:

sxx+ syy + szz + d = 0.

The wave equation can be simplified by introducing a new coordinate
system. Since the intensity vector of a plane wave entirely depends only on
the distance d, we can choose a new coordinate system with axes Oξ,Oη,Oζ
so that the Oζ axis is directed along the vector s, and the origin coincides
with the previous Cartesian system Oxyz. Then, the coordinate along the
Oζ axis will depend on the previous coordinates according to the formula
ζ(x, y, z) = (r, s) = sxx + syy + szz, while ξ and η do not depend on the
previous coordinates and can be chosen arbitrarily, for example, so that the
coordinate system Oξηζ is right-handed (see the figure 2).
The replacement of differential operators is carried out using the Jacobian

matrix as follows:
∂

∂x
∂

∂y
∂

∂z

 =


∂ξ

∂x

∂η

∂x

∂ζ

∂x
∂ξ

∂y

∂η

∂y

∂ζ

∂y
∂ξ

∂z

∂η

∂z

∂ζ

∂z




∂

∂ξ
∂

∂η
∂

∂ζ

 ;

(
∂(ξ, η, ζ)

∂(x, y, z)

)T

=


∂ξ

∂x

∂η

∂x

∂ζ

∂x
∂ξ

∂y

∂η

∂y

∂ζ

∂y
∂ξ

∂z

∂η

∂z

∂ζ

∂z

 .

Since ξ = const and η = const, and ζ = (r, s), then:
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∂

∂x
∂

∂y
∂

∂z

 =

0 0 sx

0 0 sy

0 0 sz




∂

∂ξ
∂

∂η
∂

∂ζ

 =


sx

∂

∂ζ

sy
∂

∂ζ

sz
∂

∂ζ

 =⇒



∂

∂x
= sx

∂

∂ζ
,

∂

∂y
= sy

∂

∂ζ
,

∂

∂z
= sz

∂

∂ζ
.

Figure 2. Plane (r, s) = const, where s is a unit vector indicating the direction

of propagation of the electromagnetic wave. New coordinate axes are chosen so that

the vector s is the unit vector of the Oζ axis. The other two axes Oξ and Oη are chosen

arbitrarily and form a right-handed coordinate system Oξηζ

The Laplace operator after replacing coordinates is transformed to the
following form:

∇2U = s2x
∂2U

∂ζ2
+ s2y

∂2U

∂ζ2
+ s2z

∂2U

∂ζ2
=
(
s2x + s2y + s2z

) ∂2U

∂ζ2
=

∂2U

∂ζ2
.

The wave equation simplifies:

∂2U

∂ζ2
− 1

v2
∂2U

∂t2
= 0.

We perform another substitution p = ζ − vt and q = ζ + vt, which leads to
the following transformation of the differential operators:
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 ∂

∂ζ
∂

∂t

 =

(
∂(ζ, t)

∂(p, q)

)T


∂

∂p
∂

∂q

 =

∂p∂ζ ∂q

∂ζ
∂p

∂t

∂q

∂t




∂

∂p
∂

∂q

 =

=

[
1 1

−v v

]
∂

∂p
∂

∂q

 =


∂

∂p
+

∂

∂q

−v
∂

∂p
+ v

∂

∂q

⇒


∂

∂ζ
=

∂

∂p
+

∂

∂q
,

∂

∂t
= −v

∂

∂p
+ v

∂

∂q
.

The second derivatives are expressed through the new variables as follows:

∂2

∂ζ2
=

∂2

∂p2
+ 2

∂

∂p

∂

∂q
+

∂2

∂q2
,

∂2

∂t2
= v2

(
∂2

∂p2
− 2

∂

∂p

∂

∂q
+

∂2

∂q2

)
.

When the operators are substituted into the wave equation, it is simplified
as follows:

∂2U

∂ζ2
− 1

v2
∂2U

∂t2
=

=
∂2U

∂p2
+ 2

∂2U

∂p∂q
+

∂2U

∂q2
− 1

v2
v2
(
∂2U

∂p2
− 2

∂2U

∂p∂q
+

∂2U

∂q2

)
=

= 4
∂2U

∂p∂q
= 0 ⇒ ∂2U

∂p∂q
= 0 .

The general solution of the transformed wave equation is the function

U = U1(p) +U2(q) = U1 ((r, s)− vt) +U2 ((r, s) + vt) .

Another approach to the solution uses separation of variables. We will look
for the solution in complex form

U(r, t) = U0(r)e
−iωt.

When substituting into the wave equation, we obtain:

∂2U

∂t2
= −ω2e−iωtU0(r), ∇2U = e−iωt∇2U0(r),

∇2U− 1

v2
∂2U

∂t2
= 0 =⇒ ∇2U0 +

ω2

v2
U0 = 0.

Let’s introduce some scalar quantities: wave number k = ω/v, k0 = ω/c,
wave vector k = ks. Let us recall that c — the speed of light in a vacuum, v —
the speed of an electromagnetic wave in a medium, n =

√
εµ — the refractive

index of the medium, s — direction of wave propagation. The velocities v
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and c are related by the relations v = c/
√
εµ = c/n, so the wave number can

also be written as k = ω/v = ω
√
εµ/c = k0n. Now the equation for U0 can

be rewritten as: (
∇2 + k2

)
U0 = 0.

This equation is called Helmholtz equation (homogeneous Helmholtz equa-
tion). In the general case, its solution can be expressed in special functions,
but in the case of a plane wave, the general solution can be written in the
following form:

U0(r) = u0(r)e
ik(s,r) = u0(r)e

ik0n(s,r).

4. Derivation of the eikonal equation

We will also consider a strictly monochromatic harmonic wave, the intensity
vectors of which can be written in the following form:

E(r, t) = E0(r)e
−iωt,

H(r, t) = H0(r)e
−iωt,

where r = (x, y, z)T — radius vector of a point in space in a Cartesian
coordinate system, ω — cyclic frequency. We also introduce the quantity
k0 = ω/c = 2π/λ0, where λ0 is the wavelength in vacuum.
Let’s substitute expressions for a monochromatic wave into Maxwell’s

equations. We sequentially calculate all differential operators:

∇×H = ∇×
(
H0e

−iωt
)
= e−iωt∇×H0,

∇× E = ∇×
(
E0e

−iωt
)
= e−iωt∇× E0.

Using the material equations D = εE and B = µH we replace D and B
everywhere through E and H, taking into account that ε(r) = ε(x, y, z) and
µ(r) = µ(x, y, z):

∇ ·D = ∇ · (ε(x, y, z)E) = e−iωt∇ · (εE0),

∇ ·B = ∇ · (µ(x, y, z)H) = e−iωt∇ · (µH0) .

Let us replace D and B also in the expressions for derivatives, taking into
account that ε and µ do not depend on time, as well as E0 with H0 from the
formulas E(x, y, z, t) = E0(x, y, z)e

−iωt , H(x, y, z, t) = H0(x, y, z)e
−iωt:

∂D

∂t
=

∂

∂t

(
εE0e

−iωt
)
= ε(x, y, z)E0(x, y, z)

∂e−iωt

∂t
= −iεωE0e

−iωt,

∂B

∂t
=

∂

∂t

(
µH0e

−iωt
)
= µ(x, y, z)H0(x, y, z)

∂e−iωt

∂t
= −iµωH0e

−iωt.

Let’s substitute the resulting expressions into the equation (5):

∇×H−1

c

∂D

∂t
= 0 ⇒���e−iωt∇×H0+iε

ω

c
E0�

��e−iωt = 0 ⇒ ∇×H0 + iεk0E0 = 0 ,
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then into the equation (6):

∇×E+1

c

∂B

∂t
= 0 ⇒�

��e−iωt∇×E0−iε
ω

c
H0�

��e−iωt = 0 ⇒ ∇× E0 − iεk0H0 = 0 ,

into the equation (7):

∇ ·D = 0 ⇒ e−iωt∇ · (εE0) = 0 ⇒ ∇ · (εE0) = 0 ,

and finally into the equation (8):

∇ ·B = 0 ⇒ e−iωt∇ · (µH0) = 0 ⇒ ∇ · (µH0) = 0 .

As a result, the system of equations (5)–(8) takes the following simplified
form: 

∇×H0 + iεk0E0 = 0,

∇× E0 − iµk0H0 = 0,

∇ · (εE0) = 0,

∇ · (µH0) = 0.

(9)

Let us make another simplification by assuming that

E0(x, y, z) = e(x, y, z) exp (ik0u(x, y, z)) = e(r) exp (ik0u(r)) ,

H0(x, y, z) = h(x, y, z) exp (ik0u(x, y, z)) = h(r) exp (ik0u(r)) ,

where u(x, y, z) = u(r) is a scalar real function called optical path, and e and
h — vector position functions. Let’s calculate the differential operators again,
this time from E0 and H0, using the formulas (18):

∇×H0 = ∇×
(
eik0u(r)h(r)

)
= eik0u(r)∇× h+∇

(
eik0u(r)

)
× h.

The gradient of the function eik0u(r) is calculated as follows:

∇
(
eik0u(r)

)
=

(
∂eik0u(r)

∂x
,
∂eik0u(r)

∂y
,
∂eik0u(r)

∂z

)
=

= ik0e
ik0u(r)

(
∂u(x, y, z)

∂x
,
∂u(x, y, z)

∂y
,
∂u(x, y, z)

∂z

)
=

= ik0e
ik0u(r)∇u(x, y, z).

As a result, the term ∇×H0 of the first equation of the system (9) takes
the form:

∇×H0 = (∇× h+ ik0∇u× h)eik0u(r). (10)

In a completely similar way, we obtain the expression for ∇× E0 in the
second equation of the system (9):

∇× E0 = (∇× e+ ik0∇u× e)eik0u(r). (11)
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The computation of divergence is somewhat more complicated because the
formula (18) will have to be applied twice. The first time we use it to write
down the expression ∇ · εE0:

∇ · εE0 = ε(r)∇ · E0 + (∇ε,E0) .

Next, we use it to calculate ∇ · E0, where instead of E0 we substitute the
expression E0 = e(r) exp (ik0u(r)):

∇ · E0 = ∇ ·
[
e(r)eik0u(r)

]
= eik0u(r)∇ · e+

(
∇
(
eik0u(r)

)
, e
)
=

= eik0u(r)∇ · e+ ik0e
ik0u(r) (∇u, e) = (∇ · e+ ik0(∇u, e))eik0u(r),

(∇ε,E0) = (∇ε, e)eik0u(r).

As a result, the third equation of the system (9) takes the form:

∇ · (ε(r)E0(r)) = [ε(r)∇ · e(r) + ik0ε(r)(∇u(r), e(r)) + (∇ε(r), e(r))]eik0u(r).

In a completely similar way, we obtain an expression for the magnetic field
strength, that is, the fourth equation of the system (9):

∇ · (µ(r)H0(r)) = [µ(r)∇ · h+ (∇µ(r),h) + ik0µ(r)(∇u(r),h)]eik0u(r).

After substitution into Maxwell’s equations, we obtain:

∇×H0 + iεk0E0 = 0⇒ ∇× h+ ik0∇u× h︸ ︷︷ ︸
(10)

+iεk0e = 0⇒

⇒ ∇u× h+ εe = − 1

ik0
∇× h,

∇× E0 − iµk0H0 = 0⇒ ∇× e+ ik0∇u× e︸ ︷︷ ︸
(11)

−iµk0h = 0⇒

⇒ ∇u× e− µh = − 1

ik0
∇× e,

∇ · (εE0) = 0 ⇒ ε∇ · e+ ik0ε(∇u, e) + (∇ε, e) = 0,

ik0ε(∇u, e) = −(∇ε, e)− ε∇·e = 0 ⇒ (∇u, e) = − 1

ik0

[(
1

ε
∇ε, e

)
+∇ · e

]
.

Since

∇(ln ε) =

(
∂ ln ε

∂x
,
∂ ln ε

∂y
,
∂ ln ε

∂z

)
=

1

ε

(
∂ε

∂x
,
∂ε

∂y
,
∂ε

∂z

)
=

1

ε
∇ε,

(∇u, e) = − 1

ik0
((∇(ln ε), e) +∇ · e).
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Calculations for the magnetic field are carried out in a completely similar
way, resulting in the fourth equation:

(∇u,h) = − 1

ik0
((∇(lnµ),h) +∇ · h),

∇u× h+ εe = − 1

ik0
∇× h,

∇u× e− µh = − 1

ik0
∇× e,

(∇u, e) = − 1

ik0
((∇ (ln ε) , e) +∇ · e) ,

(∇u,h) = − 1

ik0
((∇ (lnµ) ,h) +∇ · h) .

(12)

The third and fourth equations from this system follow from the first two.
This can be proven by scalarly multiplying the first two equations by ∇u and
using the fact that the result of a vector product is orthogonal to both of its
factors:

(∇u,∇u× h)︸ ︷︷ ︸
=0

+ε(∇u, e) = 0 ⇒ (∇u, e) = 0.

We consider only the first two equations. Let’s express h from the second
equation through u and e and substitute it into the first:

h =
1

µ
∇u× e⇒ ∇u×

(
1

µ
∇u× e

)
+ εe = 0⇒ ∇u×∇u× e+ εµe = 0.

For the vector product the following identity holds: a× b× c = b(a, c)−
c(a,b) from which it follows

∇u×∇u× e = ∇u(∇u, e)− e(∇u,∇u) = ∇u(∇u, e)− e‖∇u‖2,

∇u(∇u, e)− e‖∇u‖2 + εµe = 0.

From the third equation of the system (12) it follows that (∇u, e), therefore

−e‖∇u‖2 + εµe = 0 ⇒ e‖∇u‖2 = εµe.

Equating the coefficients in front of the vector e and taking into account

that n(r) =
√

ε(r)µ(r) we write the equation:

‖∇u‖2 = n2(r), (13)

which is the eikonal equation. The function u(r) = u(x, y, z) is also called
eikonal, and the surfaces u(x, y, z) = const — geometric wave fronts.
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In component form in Cartesian coordinates equation (13) becomes:(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2

= ε(x, y, z)µ(x, y, z) = n2(x, y, z),

‖∇u‖2 = (∇u,∇u) =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2

.

5. Derivation of eikonal in covariant form

Let us demonstrate the derivation of the eikonal equation using the tensor
formalism.

5.1. Vector operators in covariant form

Vector operators in covariant form:

— ∇~V is covariant derivative with respect to the vector field ~v;

— ~ei =
∂

∂xi
is coordinate basis, ∇ ~ei = ∇j;

— εijk = εijk is Levi–Civita symbol;

— eijk =
√

|g|εijk, eijk =
1√
|g|

εijk are alternating tensors (Levi–Civita

tensors);
— ∇f = ∇if = ∂if , f is scalar field;

— ∇ · f = ∇iV
i =

1
√
g
∂i(

√
gV i);

— ~x = (x1, x2, x3)
T
is contravariant vector;

— ∇× ~V = eijk∇jVk = eijk∂jVk =
1
√
g
εijk∂jVk.

5.2. Maxwell’s equations without currents and charges

The strength of the electric and magnetic fields in the form of a covector
(denoted by “∼” above the letter, the designations can be changed), and D
and B are vectors:

Ẽ = (E1, E2, E3), H̃ = (H1, H2, H3), ~D = (D1, D2, D3)T , ~B = (B1, B2, B3)T .

Material equations: Bi = µijHj, D
i = εijEj.

Vector, covector fields: Ẽ(~x, t), H̃(~x, t), ~D(x̃, t), ~B(x̃, t).
Tensor fields: µij(~x), εij(~x).
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5.3. Vector-differential form of writing Maxwell’s equations

∇× ~H − 1

c

∂ ~D

∂t
= 0,

∇× ~E +
1

c

∂ ~B

∂t
= 0,

∇ · ~D = 0,

∇ · ~B = 0;

1
√
g
εijk∂jEk +

1

c

dBi

dt
= 0,

1
√
g
εijkdjHk −

1

c

dDi

dt
= 0,

1
√
g
∂i(

√
gDi) = 0,

1
√
g
∂i(

√
gBi) = 0.

5.4. Monochromatic harmonic wave

Assumption No. 1: Monochromatic harmonic wave:

Ek = E0ke
−iωt, Hk = H0ke

−iωt, Dk = εklEl = εklE0le
−iωt,

Bk = µklHl = µklH0ke
−iωt,

dDi

dt
=

d

dt

(
εijE0je

−iωt
)
= −iωεijE0j,

dBi

dt
=

d

dt

(
µijH0je

−iωt
)
= −iωµijH0j,

∂i(
√
gDi) = ∂i(

√
gεijE0je

−iωt) = e−iωt∂i(
√
gεijE0j),

∂i(
√
gBi) = ∂i(

√
gµijH0je

−iωt) = e−iωt∂i(
√
gµijH0j).

Formulas:
1
√
g
εijk∂jE0k − ik0µ

ijH0j = 0, (14)

1
√
g
εijk∂jH0k + ik0ε

ijE0j = 0, (15)

∂i(
√
gεijE0j) = 0, (16)

∂i(
√
gµijH0j) = 0. (17)
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Assumption No. 2: E0k = eke
ik0u(~x), H0k = hke

ik0u(~x), where u(~x) is an
eikonal:

∂jE0k = (∂jek)e
ik0u + eke

ik0uik0∂ju = (∂jek + ik0ek∂ju)e
ik0u,

∂jH0k = (∂jhk)e
ik0u + hke

ik0uik0∂ju = (∂jhk + ik0hk∂ju)e
ik0u.

From the equation (16):

∂i(
√
gεijeje

ik0u) =

=
∂
√
g

∂xi
εijeje

ik0u +
√
g
∂εij

∂xi
eje

ik0u +
√
gεij

∂ej
∂xi

eik0u +
√
gεijejik0e

ik0u
∂u

∂xi
=

= (∂i
√
gεijej +

√
g∂iε

ijej +
√
gεij∂iej + ik0

√
gεijej∂iu)e

ik0u = 0,

∂i
√
gεijej +

√
g∂iε

ijej +
√
gεij∂iej + ik0

√
gεijej∂iu = 0,

√
gεijej∂iu =

−1

ik0
(∂i

√
gεijej +

√
g∂iε

ijej +
√
gεij∂iej).

Similarly from the equation (17):

√
gµijhj∂iu = − 1

ik0

(
∂i
√
gµijhj +

√
g∂iµ

ij +
√
gµij∂ihj

)
.

Provided that λ is small, ω is large, ⇒ k0 is large, and
1

k0
is small ⇒ we

obtain: {√
gεijej∂iu = 0,

√
gµijhj∂iu = 0;

{
εijej∂iu = 0,

µijhj∂iu = 0

to transform:

1
√
g
εijk(∂jek+ik0ek∂ju)−ik0µ

ijhj = 0 ⇒ − 1
√
g
εijkek∂ju+µijh0 =

1

ik0

1
√
g
εijk∂jek,

1
√
g
εijk∂jhk +

1
√
g
εijkik0hk∂ju+ ik0ε

ijej = 0,

1
√
g
εijkhk∂ju+ εijej = − 1

ik0

1
√
g
εijk∂jhk.

Maxwell’s equations are reduced to the following form:
εijkek∂ju−√

gµijhj = 0,

εijkhk∂ju+
√
gεijej = 0,

εijej∂iu = 0,

µijhj∂iu = 0,
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where εijk is Levi-Civita symbol, εij is permittivity, subject to k0 → ∞.
From the first equation we express hj and substitute it into the second:

µ−1
li εijkek∂ju−√

gµ−1
li µijhj = 0.

Let’s make the replacement: µ−1
li µij = gjl :

µ−1
li εijkek∂ju−√

ggjl hj = 0 ⇒ √
ghl = µ−1

li εijkek∂ju ⇒ hl =
1
√
g
µ−1
li εijkek∂ju.

We transform the indices to substitute into the second equation:

hk =
1
√
g
µ−1
kl ε

lmnen∂mu,

εijk
1
√
g
µ−1
kl ε

lmnen∂mu∂ju+
√
gεijej = 0,

εijkµ−1
kl ε

lmnen∂mu∂ju+ gεijej = 0,

εijkµ−1
kl ε

lmn∂mu∂juen + gεinen = 0.

The eikonal equation (13) takes the form:

gij∂iu∂ju = εijµij.

6. Conclusion

We hope that our work clarifies the process of derivation of the eikonal
equation. And allows us to better understand the hierarchy of models in
electrodynamics in general, and in optics in particular. The questions of
solving the eikonal equation [7, 8] we left outside the boundaries of our
consideration.

Appendix. Vector analysis

If at each point P of a certain spatial region of the Euclidean space Rn

some scalar or vector quantity is associated, then they say that a field (scalar
or vector).

— Examples of vector fields include the velocity field v(x, y, z), the force
field F(x, y, z), the electrical intensity field E(x, y, z).

— Examples of scalar fields: temperature field T (x, y, z), electric potential
field ϕ(x, y, z).

Everywhere below we consider a three-dimensional point Euclidean space
on which a Cartesian coordinate system is introduced. We denote the vectors
(basis vectors) of this coordinate system as 〈ex, ey, ez〉. The coordinates of
a point are specified by the radius vector r = (x, y, z)T , which is plotted
from the origin O. Along with notation of coordinates x, y, z, it is sometimes
convenient to use indices: x1, x2, x3, and also write the radius vector in the
form x = (x1, x2, x3)T . Index notation makes it possible to briefly write
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formulas using the summation sign Σ, which is especially convenient if a non-
unit metric is used.
A scalar field in some region of space R3 is a real-valued function f :

f : R3 → R, f(x, y, z) = f(r) ∈ R.

In turn, a vector field in a region of space R3 is a vector-valued function V:

V : R3 → R3, V(x, y, z) = V(r) = Vx(r)ex + Vy(r)ey + Vz(r)ez ∈ R3.

The Gradient of the scalar field f(r) is a vector calculated in Cartesian
coordinates as follows:

∇f(x, y, z) = gradf(x, y, z) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
, ∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

The sign nabla ∇ denotes the Hamiltonian vector differential operator. In
order to emphasize its “vectority”, the symbol ∇ is written in bold.
To simplify the presentation, we made some inaccuracies in the presentation,

which should be mentioned separately.

— Strictly speaking, the gradient is a covector. Our definition reflects this
by writing the vector components in a row rather than a column.

— The definition of the gradient is based on the Cartesian coordinate system.
A more general definition should be given in a componentless form.

The scalar field f(r) generates a vector field ∇f , which characterizes the
direction of the greatest change in the scalar field f(r).
Divergence of the vector field V = (Vx, Vy, Vz)

T is a scalar, calculated in
Cartesian coordinates as follows:

∇ ·V = divV =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z
=

3∑
i=1

∂V i

∂xi
.

Here “·” denotes the scalar multiplication operation ∇ ·V = (∇,V).
The Rotor of a vector field V is a vector calculated in Cartesian coordinates

as follows:

∇×V =

∣∣∣∣∣∣∣
ex ey ez

∂/∂x ∂/∂y ∂/∂z

Vx Vy Vz

∣∣∣∣∣∣∣ =
=

(
∂Vz

∂y
− ∂Vy

∂z

)
ex +

(
∂Vx

∂z
− ∂Vz

∂x

)
ey +

(
∂Vy

∂x
− ∂Vx

∂y

)
ez.

Highlight also that the rotor is not a vector in the strict sense. In classical
vector analysis it is called a pseudovector, but a deeper geometric meaning
is revealed only when tensor algebra is involved, where the rotor can be
represented either as a 2-form or as a bivector.
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Also, when writing the wave equation, the Laplace operator will be used,
which is written in the following form:

∇2 = (∇,∇) =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

We will also need the following two relations [5]:

∇× fV = f ∇×V+∇f ×V,

∇ · fV = f ∇ ·V+ (∇f,V).
(18)

A vector field is called potential if there exists a scalar field f(x, y, z) such
that

V = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

df = Vx dx+ Vy dy + Vz dz .

In turn, a vector field is called solenoidal (tubular) if there exists a vector
field U such that

V = ∇×U.
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Методический вывод уравнения эйконала

А. В. Фёдоров1, К. А. Штепа1, А. В. Королькова1,
М. Н. Геворкян1, Д. С. Кулябов1, 2

1 Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

2Объединённый институт ядерных исследований,
ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская Федерация

Аннотация. Обычно при работе с уравнением эйконала ссылаются на его вывод
в монографии Борна и Вольфа. Вывод этого уравнения выполнен достаточно
небрежно. Для того чтобы разобраться в этом выводе, требуется определённое
число имплицитных предположений. Для лучшего понимания приближения эй-
конала и для методических целей авторы решили повторить вывод уравнения
эйконала, эксплицировав все возможные допущения. Методически предлагает-
ся следующий алгоритм вывода уравнения эйконала. Из уравнения Максвелла
выводится волновое уравнение. При этом явно вводятся все условия, при ко-
торых это возможно сделать. Далее от волнового уравнения осуществляется
переход к уравнению Гельмгольца. От уравнения Гельмгольца при приложении
определённых допущений производится переход к уравнению эйконала. После
разбора всех допущений и шагов реализуется собственно переход от уравнений
Максвелла к уравнению эйконала. При выводе уравнения эйконала используется
несколько формализмов. В качестве первого формализма используется стан-
дартный формализм векторного анализа. Уравнения Максвелла и уравнение
эйконала записывается в виде трёхмерных векторов. После этого и для уравне-
ний Максвелла, и для уравнения эйконала используется ковариантный 4-мерный
формализм. Результатом работы является методически выдержанное описание
уравнения эйконала.

Ключевые слова: эйконал, уравнения Максвелла, волновое уравнение, вектор-
ное представление, тензорное представление


