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Abstract. The mathematical model of the retrial queuing system 𝑀 [𝑛]/𝑀/1 with
feedback and batch Poisson arrival is constructed. Customers arrive in groups. If the
server is free, one of the arriving customers starts his service, the rest join the orbit.
The retrial and service times are exponentially distributed. The customer whose
service is completed leaves the system, or reservice, or goes to the orbit. The method
of asymptotic diffusion analysis is proposed for finding the probability distribution
of the number of customers in orbit. The asymptotic condition is growing average
waiting time in orbit. The accuracy of the diffusion approximation is obtained.

Key words and phrases: retrial queuing system, batch arrival, feedback, asymptotic
diffusion analysis

1. Introduction

There are situations in practice where an arriving customer that sees the
server being occupied temporarily leaves the system or goes to orbit. In some
random time customer retries to occupy a server again. These situations are
modeled as retrial queuing systems. In addition, there are queuing systems in
which a customer that has already received service requires a second service.
It depends on the quality of the received service or external factors. Classical
examples are communication networks in which erroneously transmitted data
is retransmitted. The functioning of such systems is described by retrial
queuing systems with feedback.
There are many reviews on the study of queuing systems with repeated

calls, for example [1, 2]. Models with feedback, instantaneous and delayed,
have also been intensively studied in the last two decades [3–5]. At the same
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time, classical methods do not allow us to evaluate the characteristics of such
systems. The application of asymptotic analysis methods makes it possible
to obtain the asymptotic characteristics of the system under various limiting
conditions. For example, in [6], a stationary probability distribution of the
number of customers in orbit was obtained under conditions of a large delay
of customers in orbit. To perform more detailed and accurate analysis of the
model a method of asymptotic diffusion analysis is applied [7].
In this paper, we study retrial queuing systems with single server, batch

Poisson arrival process, instantaneous and delayed feedback. The retrial and
service times are exponentially distributed. A diffusion approximation of the
probability distribution of the number of customers in orbit is constructed. It
is shown that the accuracy of the diffusion approximation is higher then the
accuracy of Gaussian approximation obtained in [6].

2. System description

We consider the queuing system 𝑀 [𝑛]/𝑀/1 with repeated calls (see figure 1)
with Poisson batch input flow with a parameter 𝜆 and given probabilities 𝑞𝜈
of occurrence of 𝜈 customers in the group (𝜈 > 0, 𝑞0 = 0, ∑∞

𝜈=1 𝑞𝜈 = 1). If
the server is free, then one customer receive service, the rest of customers
go to the orbit. If the server is busy, the arriving customers join the orbit.
The service time is exponentially distributed with parameter 𝜇. A customer
whose service is completed leaves the system with probability 𝑟0, receives
service again with probability 𝑟1 or goes to the orbit with probability 𝑟2, thus
𝑟0 + 𝑟1 + 𝑟2 = 1. In orbit, customers wait for a time distributed exponentially
with parameter 𝜎, after which they repeat an attempt to occupy the server.
In case of an unsuccessful attempt, the customers remain in orbit.

Figure 1. Queuing system model with retrial calls and feedback

We denote by 𝑖(𝑡) the number of customers in orbit at time 𝑡, the process
𝑛(𝑡) determines the state of the server as follows:

𝑛(𝑡) =
⎧{
⎨{⎩

0, if the server is idle;

1, if the server is busy.

The two-dimensional process {𝑖(𝑡), 𝑛(𝑡)} is а continuous-time Markov chain.
It is required to find the probability distribution of the number of customers
in orbit, taking into account the state of the server

𝑃𝑛(𝑖, 𝑡) = 𝑃{𝑛(𝑡) = 𝑛, 𝑖(𝑡) = 𝑖}, 𝑛 = 0, 1; 𝑖 = 0, ∞.
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We compose a system of Kolmogorov differential equations for the proba-
bility distribution 𝑃𝑛(𝑖, 𝑡)

⎧
{
{
{
⎨
{
{
{
⎩

𝜕𝑃0(𝑖, 𝑡)
𝜕𝑡

= −(𝜆 + 𝑖𝜎)𝑃0(𝑖, 𝑡) + 𝜇𝑟0𝑃1(𝑖, 𝑡) + 𝜇𝑟2𝑃1(𝑖 − 1, 𝑡);

𝜕𝑃1(𝑖, 𝑡)
𝜕𝑡

= (𝑖 + 1)𝜎𝑃0(𝑖 + 1, 𝑡) + (𝜇𝑟1 − 𝜇 − 𝜆)𝑃1(𝑖, 𝑡)+

+
𝑖+1

∑
𝜈=1

𝜆𝑞𝜈𝑃0(𝑖 − 𝜈 + 1, 𝑡) +
𝑖

∑
𝜈=1

𝜆𝑞𝜈𝑃1(𝑖 − 𝜈, 𝑡).

(1)

We consider the partial characteristic functions of the number of customers

in the orbit 𝐻𝑛(𝑢, 𝑡) =
∞
∑
𝑖=0

𝑒𝑗𝑢𝑖𝑃𝑛(𝑖, 𝑡) and the characteristic function for the

number of customers in the batch ℎ(𝑢) =
∞
∑
𝜈=1

𝑒𝑗𝑢𝜈𝑞𝜈, where 𝑗 =
√

−1. Then
we take into account that

𝜕𝐻𝑛(𝑢, 𝑡)
𝜕𝑢

=
∞

∑
𝑖=0

𝑖𝑗𝑒𝑗𝑢𝑖𝑃𝑛(𝑖, 𝑡),

∞
∑
𝑖=0

𝑖
∑
𝜈=1

𝑞𝜈𝑒𝑗𝑢𝑖𝑃1(𝑖 − 𝜈, 𝑡) = ℎ(𝑢)𝐻1(𝑢, 𝑡),

∞
∑
𝑖=0

𝑖+1

∑
𝜈=1

𝑞𝜈𝑒𝑗𝑢𝑖𝑃0(𝑖 − 𝜈 + 1, 𝑡) = 𝑒−𝑗𝑢ℎ(𝑢)𝐻0(𝑢, 𝑡),

and rewrite system (1) as

⎧
{{
⎨
{{
⎩

𝜕𝐻0(𝑢, 𝑡)
𝜕𝑡

= 𝜎𝑗𝜕𝐻0(𝑢, 𝑡)
𝜕𝑢

− 𝜆𝐻0(𝑢, 𝑡) + (𝜇𝑟0 + 𝜇𝑟2𝑒𝑗𝑢) 𝐻1(𝑢, 𝑡);

𝜕𝐻1(𝑢, 𝑡)
𝜕𝑡

= −𝜎𝑗𝑒−𝑗𝑢 𝜕𝐻0(𝑢, 𝑡)
𝜕𝑢

+ 𝜆𝑒−𝑗𝑢ℎ(𝑢)𝐻0(𝑢, 𝑡)+
+ (𝜆ℎ(𝑢) − 𝜇𝑟0 − 𝜇𝑟2 − 𝜆) 𝐻1(𝑢, 𝑡).

(2)

The total characteristic function 𝐻(𝑢, 𝑡) of the number of customers in orbit
is 𝐻(𝑢, 𝑡) = 𝐻0(𝑢, 𝑡) + 𝐻1(𝑢, 𝑡). We summarize the equations of system (2)
and write

𝜕𝐻(𝑢, 𝑡)
𝜕𝑡

= 𝜎𝑗 (1 − 𝑒−𝑗𝑢) 𝜕𝐻0(𝑢, 𝑡)
𝜕𝑢

+ 𝜆 (𝑒−𝑗𝑢ℎ(𝑢) − 1) 𝐻0(𝑢, 𝑡)+

+ (𝜇𝑟2 (𝑒𝑗𝑢 − 1) + 𝜆 (ℎ(𝑢) − 1)) 𝐻1(𝑢, 𝑡). (3)

3. The first stage of asymptotic. A transfer coefficient

We solve the equations for the characteristic function (2) under the as-
ymptotic condition of the growing average waiting time in orbit, that is, we
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assume that 𝜎 → 0. We denote 𝜎 = 𝜀 and make the following substitutions in
system (2)

𝜏 = 𝜀𝑡, 𝑢 = 𝜀𝑤, 𝐻𝑛(𝑢, 𝑡) = 𝐹𝑛(𝑤, 𝜏, 𝜀), 𝑛 = 0, 1,

𝜕𝐻0(𝑢, 𝑡)
𝜕𝑢

= 1
𝜀

𝜕𝐹0(𝑤, 𝜏, 𝜀)
𝜕𝑤

, 𝜕𝐻𝑛(𝑢, 𝑡)
𝜕𝑡

= 𝜀𝜕𝐹𝑛(𝑤, 𝜏, 𝜀)
𝜕𝜏

, 𝑛 = 0, 1,

then we get a system of equations

⎧
{{{
⎨
{{{
⎩

𝜀𝜕𝐹0(𝑤, 𝜏, 𝜀)
𝜕𝜏

= 𝑗𝜕𝐹0(𝑤, 𝜏, 𝜀)
𝜕𝑤

− 𝜆𝐹0(𝑤, 𝜏, 𝜀)+

+ (𝜇𝑟0 + 𝜇𝑟2𝑒𝑗𝑤𝜀) 𝐹1(𝑤, 𝜏, 𝜀);

𝜀𝜕𝐹1(𝑤, 𝜏, 𝜀)
𝜕𝜏

= −𝑗𝑒−𝑗𝑤𝜀 𝜕𝐹0(𝑤, 𝜏, 𝜀)
𝜕𝑤

+ 𝜆𝑒−𝑗𝑤𝜀ℎ(𝑤, 𝜀)𝐹0(𝑤, 𝜏, 𝜀)+
+ (𝜆ℎ(𝑤, 𝜀) − 𝜇𝑟0 − 𝜇𝑟2 − 𝜆) 𝐹1(𝑤, 𝜏, 𝜀).

(4)

We look for a solution to the equations in the form 𝐹𝑛(𝑤, 𝜏, 𝜀) = 𝑅𝑛𝑒𝑗𝑤𝑥(𝜏),
then

⎧{
⎨{⎩

𝜀𝑗𝑤𝑥′(𝜏)𝑅0 = −𝑥(𝜏)𝑅0 − 𝜆𝑅0 + (𝜇𝑟0 + 𝜇𝑟2𝑒𝑗𝑤𝜀) 𝑅1;
𝜀𝑗𝑤𝑥′(𝜏)𝑅1 = 𝑒−𝑗𝑤𝜀𝑥(𝜏)𝑅0 + 𝜆𝑒−𝑗𝑤𝜀ℎ(𝑤, 𝜀)𝑅0+

+ (𝜆ℎ(𝑤, 𝜀) − 𝜇𝑟0 − 𝜇𝑟2 − 𝜆) 𝑅1.
(5)

As 𝜀 → 0, we have lim
𝜀→0

ℎ(𝑤, 𝜀) = 1 and system (5) reduces to a single

equation
−(𝑥(𝜏) + 𝜆)𝑅0 + (𝜇𝑟0 + 𝜇𝑟2)𝑅1 = 0. (6)

Equation (6) with the normalization condition 𝑅0 + 𝑅1 = 1 give 𝑅0 and
𝑅1 as functions of 𝑥

𝑅0(𝑥) = 𝜇𝑟0 + 𝜇𝑟2
𝑥 + 𝜆 + 𝜇𝑟0 + 𝜇𝑟2

, 𝑅1(𝑥) = 𝑥 + 𝜆
𝑥 + 𝜆 + 𝜇𝑟0 + 𝜇𝑟2

. (7)

We summarize the equations of system (5) and obtain

𝑗𝑤𝑥′(𝜏) = (𝑥(𝜏)𝑒−𝑗𝑤𝜀 − 1
𝜀

+ 𝜆𝑒−𝑗𝑤𝜀ℎ(𝑤, 𝜀) − 1
𝜀

) 𝑅0(𝑥)+

+ (𝜇𝑟2
𝑒𝑗𝑤𝜀 − 1

𝜀
+ 𝜆ℎ(𝑤, 𝜀) − 1

𝜀
) 𝑅1(𝑥).

As 𝜀 → 0 we get 𝑥′(𝜏) = (−𝑥(𝜏) + 𝜆 ( ̄𝜈 − 1)) 𝑅0(𝑥) + (𝜇𝑟2 + 𝜆 ̄𝜈) 𝑅1(𝑥).
We denote by 𝑎(𝑥) the right side of the last equality

𝑎(𝑥) = [𝜆 ( ̄𝜈 − 1) − 𝑥] 𝑅0(𝑥) + (𝜆 ̄𝜈 + 𝜇𝑟2) 𝑅1(𝑥). (8)

It will be shown below that the function 𝑎(𝑥) is the transfer coefficient of
some diffusion process approximating the number of customers in orbit.
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4. The second stage of asymptotic. A diffusion
coefficient

We substitute

𝐻𝑛(𝑢, 𝑡) = 𝐻(2)
𝑛 (𝑢, 𝑡) exp{𝑗𝑢

𝜎
𝑥(𝜎𝑡)} , 𝑛 = 0, 1

in the system (2) and the equation (3). Here 𝐻(2)
𝑛 (𝑢, 𝑡) is the characteristic

function of the centered random variable 𝑖(𝑡) − 𝑥(𝜎𝑡)/𝜎. Then we obtain

a system of equations for 𝐻(2)
𝑛 (𝑢, 𝑡) in the form

𝜕𝐻(2)
0 (𝑢, 𝑡)
𝜕𝑡

+ 𝑗𝑢𝑥′(𝜎𝑡)𝐻(2)
0 (𝑢, 𝑡) = 𝜎𝑗

𝜕𝐻(2)
0 (𝑢, 𝑡)
𝜕𝑢

−

− (𝑥(𝜎𝑡) + 𝜆)𝐻(2)
0 (𝑢, 𝑡) + (𝜇𝑟0 + 𝜇𝑟2𝑒𝑗𝑢) 𝐻(2)

1 (𝑢, 𝑡);

𝜕𝐻(2)
1 (𝑢, 𝑡)
𝜕𝑡

+ 𝑗𝑢𝑥′(𝜎𝑡)𝐻(2)
1 (𝑢, 𝑡) = −𝜎𝑗𝑒−𝑗𝑢 𝜕𝐻(2)

0 (𝑢, 𝑡)
𝜕𝑢

+

+ (𝑥(𝜎𝑡) + 𝜆ℎ(𝑢)) 𝑒−𝑗𝑢𝐻(2)
0 (𝑢, 𝑡)+

+ (𝜆ℎ(𝑢) − 𝜆 − 𝜇𝑅0 − 𝜇𝑅2) 𝐻(2)
1 (𝑢, 𝑡);

𝜕𝐻(2)(𝑢, 𝑡)
𝜕𝑡

+ 𝑗𝑢𝑥′(𝜎𝑡)𝐻(2)(𝑢, 𝑡) = 𝜎𝑗 (1 − 𝑒−𝑗𝑢)
𝜕𝐻(2)

0 (𝑢, 𝑡)
𝜕𝑢

+

+ (𝑥(𝜎𝑡) (𝑒−𝑗𝑢 − 1) + 𝜆 (ℎ(𝑢)𝑒−𝑗𝑢 − 1)) 𝐻(2)
0 (𝑢, 𝑡)+

+ (𝜇𝑟2 (𝑒𝑗𝑢 − 1) + 𝜆 (ℎ(𝑢) − 1)) 𝐻(2)
1 (𝑢, 𝑡).

We denote 𝜎 = 𝜀2 and make a replacement

𝜏 = 𝜀2𝑡, 𝑢 = 𝜀𝑤, 𝐻(2)
𝑛 (𝑢, 𝑡) = 𝐹 (2)

𝑛 (𝑤, 𝜏, 𝜀),

then we get the system

⎧
{{{{{
⎨
{{{{{
⎩

𝜀2 𝜕𝐹 (2)
0 (𝑤, 𝜏, 𝜀)

𝜕𝜏
+ 𝑗𝜀𝑤𝑎(𝑥)𝐹 (2)

0 (𝑤, 𝜏, 𝜀) = 𝑗𝜀
𝜕𝐹 (2)

0 (𝑤, 𝜏, 𝜀)
𝜕𝑤

−

− (𝑥 + 𝜆)𝐹 (2)
0 (𝑤, 𝜏, 𝜀) + (𝜇𝑟0 + 𝜇𝑟2𝑒𝑗𝜀𝑤) 𝐹 (2)

1 (𝑤, 𝜏, 𝜀);

𝜀2 𝜕𝐹 (2)
1 (𝑤, 𝜏, 𝜀)

𝜕𝜏
+ 𝑗𝜀𝑤𝑎(𝑥)𝐹 (2)

1 (𝑤, 𝜏, 𝜀) = −𝑗𝜀𝑒−𝑗𝜀𝑤 𝜕𝐹 (2)
0 (𝑤, 𝜏, 𝜀)

𝜕𝑤
+

+ (𝑥 + 𝜆ℎ(𝜀𝑤)) 𝑒−𝑗𝜀𝑤𝐹 (2)
0 (𝑤, 𝜏, 𝜀)+

+ (𝜆ℎ(𝜀𝑤) − 𝜆 − 𝜇𝑟0 − 𝜇𝑟2) 𝐹 (2)
1 (𝑤, 𝜏, 𝜀)

(9)
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and equation

𝜀2 𝜕𝐹 (2)(𝑤, 𝜏, 𝜀)
𝜕𝜏

+ 𝑗𝜀𝑤𝑎(𝑥, 𝜏)𝐹 (2)(𝑤, 𝜏, 𝜀) =

= (𝑥(𝜏) (𝑒−𝑗𝜀𝑤 − 1) + 𝜆 (ℎ(𝜀𝑤)𝑒−𝑗𝜀𝑤 − 1)) 𝐹 (2)
0 (𝑤, 𝜏, 𝜀)+

+ 𝑗𝜀 (1 − 𝑒−𝑗𝜀𝑤)
𝜕𝐹 (2)

0 (𝑤, 𝜏, 𝜀)
𝜕𝑤

+

+ (𝜇𝑟2 (𝑒𝑗𝜀𝑤 − 1) + 𝜆 (ℎ(𝜀𝑤) − 1)) 𝐹 (2)
1 (𝑤, 𝜏, 𝜀). (10)

We write the solution 𝐹 (2)
𝑛 (𝑤, 𝜏, 𝜀), 𝑛 = 0, 1 in the form

𝐹 (2)
𝑛 (𝑤, 𝜏, 𝜀) = Φ(𝑤, 𝜏) (𝑅𝑛 + 𝑗𝜀𝑤𝐹𝑛) + 𝑂(𝜀2) (11)

and expand 𝑒±𝑗𝜀𝑤, ℎ(𝜀𝑤) in Taylor series up to the first order of 𝜀 in system (9),
and up to the second order in equation (10). We substitute (11) into (9), (10)
and take into account equations (6), (8), then we can write

𝑗𝜀𝑤𝑎(𝑥)𝑅0 = −𝑗𝜀𝑤(𝑥 + 𝜆)𝑓0 + 𝑗𝜀𝑤𝜇𝑟2𝑅1 + 𝑗𝜀𝑤 (𝜇𝑟0 + 𝜇𝑟2) 𝑓1+

+ 𝑗𝜀𝑅0
1

Φ(𝑤, 𝜏)
𝜕Φ(𝑤, 𝜏)

𝜕𝑤
+ 𝑂(𝜀2);

𝑗𝜀𝑤𝑎(𝑥)𝑅1 = 𝑗𝜀𝑤 (𝜆 ̄𝜈 − 𝜆 − 𝑥) 𝑅0 + 𝑗𝜀𝑤(𝑥 + 𝜆)𝑓0 + 𝑗𝜀𝑤𝜆 ̄𝜈𝑅1−

− 𝑗𝜀𝑤 (𝜇𝑟0 + 𝜇𝑟2) 𝑓1 − 𝑗𝜀𝑅0
1

Φ(𝑤, 𝜏)
𝜕Φ(𝑤, 𝜏)

𝜕𝑤
+ 𝑂(𝜀2);

(12)

and

𝜀2 𝜕Φ(𝑤, 𝜏)
𝜕𝜏

+ (𝑗𝜀𝑤)2𝑎(𝑥)Φ(𝑤, 𝜏)𝑓 = (𝑗𝜀𝑤)2 [(𝜆𝜈2 − 2𝜆 ̄𝜈 + 𝜆 + 𝑥) 𝑅0
2

+

+ (𝜆 ̄𝜈 − 𝜆 − 𝑥) 𝑓0 + (𝜆𝜈2 + 𝜇𝑟2) 𝑅1
2

+ (𝜆 ̄𝜈 + 𝜇𝑟2) 𝑓1] Φ(𝑤, 𝜏)+

+ (𝑗𝜀𝑤)2 𝑅0
𝑤

𝜕Φ(𝑤, 𝜏)
𝜕𝑤

+ 𝑂(𝜀3), (13)

where 𝜈2 =
∞
∑
𝜈=1

𝜈2𝑞𝜈.

After simple transformations using (8), two equations of system (12) are
reduced to a single equation

−(𝑥 + 𝜆)𝑓0 + (𝜇𝑟0 + 𝜇𝑟2) 𝑓1 = 𝑎(𝑥)𝑅0(𝑥) − 𝜇𝑟2𝑅1(𝑥) − 𝑅0(𝑥)
𝑤Φ(𝑤, 𝜏)

𝜕Φ(𝑤, 𝜏)
𝜕𝑤

.

Solution we find in the form

𝑓𝑛 = 𝐶 ⋅ 𝑅𝑛(𝑥) + 𝑔𝑛 − 𝜑𝑛
1

𝑤Φ(𝑤, 𝜏)
𝜕Φ(𝑤, 𝜏)

𝜕𝑤
. (14)
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Here 𝐶 ⋅ 𝑅𝑛(𝑥) is the general solution of the homogeneous equation due
to (6), 𝑔𝑛 is the solution of the equation

−(𝑥 + 𝜆)𝑔0 + (𝜇𝑟0 + 𝜇𝑟2) 𝑔1 = 𝑎(𝑥)𝑅0(𝑥) − 𝜇𝑟2𝑅1(𝑥), (15)

and 𝜑𝑛 satisfies the equation

− (𝑥 + 𝜆) (−𝜑0)
𝑤Φ(𝑤, 𝜏)

𝜕Φ(𝑤, 𝜏)
𝜕𝑤

+ (𝜇𝑟0 + 𝜇𝑟2) (−𝜑1)
𝑤Φ(𝑤, 𝜏)

𝜕Φ(𝑤, 𝜏)
𝜕𝑤

=

= − 𝑅0(𝑥)
𝑤Φ(𝑤, 𝜏)

𝜕Φ(𝑤, 𝜏)
𝜕𝑤

.

or
−(𝑥 + 𝜆)𝜑0 + (𝜇𝑟0 + 𝜇𝑟2) 𝜑1 = 𝑅0(𝑥). (16)

Differentiating (6) with respect to 𝑥 and comparing with (16), we note that

𝜑0 = 𝜕𝑅0(𝑥)
𝜕𝑥

, 𝜑1 = 𝜕𝑅1(𝑥)
𝜕𝑥

, 𝜑0 + 𝜑1 = 0.

Then, taking into account (7), we obtain

𝜑0 = − 𝜇(𝑟0 + 𝑟2)
(𝑥 + 𝜆 + 𝜇(𝑟0 + 𝑟2))2 , 𝜑1 = −𝜑0. (17)

Similarly, we set 𝑔0 + 𝑔1 = 0, then from equation (15)

𝑔1 = 𝑎𝑅0(𝑥) − 𝜇𝑟2𝑅1(𝑥)
𝑥 + 𝜆 + 𝜇𝑟0 + 𝜇𝑟2

, 𝑔0 = −𝑔1. (18)

The equation (13) can be written as

𝜕Φ(𝑤, 𝜏)
𝜕𝜏

+ (𝑗𝑤)2𝑎(𝑥)Φ(𝑤, 𝜏)𝑓 = (𝑗𝑤)2 [(𝜆𝜈2 − 2𝜆 ̄𝜈 + 𝜆 + 𝑥) 𝑅0(𝑥)
2

+

+ (𝜆 ̄𝜈 − 𝜆 − 𝑥) 𝑓0 + (𝜆𝜈2 + 𝜇𝑟2) 𝑅1(𝑥)
2

+ (𝜆 ̄𝜈 + 𝜇𝑟2) 𝑓1] Φ(𝑤, 𝜏)+

+ (𝑗𝑤)2 𝑅0(𝑥)
𝑤

𝜕Φ(𝑤, 𝜏)
𝜕𝑤

.

We substitute solution (14) into it and, taking into account (8), (17), (18),
we obtain

𝜕Φ(𝑤, 𝜏)
𝜕𝜏

= 𝑤𝜕Φ(𝑤, 𝜏)
𝜕𝑤

[(𝜆 ̄𝜈 − 𝜆 − 𝑥) 𝜑0 + (𝜆 ̄𝜈 + 𝜇𝑟2) 𝜑1 − 𝑅0(𝑥)] +

+ (𝑗𝑤)2 [(𝜆 ̄𝜈 − 𝜆 − 𝑥) 𝑔0 + (𝜆 ̄𝜈 + 𝜇𝑟2) 𝑔1 + (𝜆𝜈2 − 2𝜆 ̄𝜈 + 𝜆 + 𝑥) 𝑅0(𝑥)
2

+

+ (𝜆𝜈2 + 𝜇𝑟2) 𝑅1(𝑥)
2

] Φ(𝑤, 𝜏). (19)
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We denote

𝑏(𝑥) = (𝜆𝜈2 − 2𝜆 ̄𝜈 + 𝜆 + 𝑥) 𝑅0(𝑥) + (𝜆𝜈2 + 𝜇𝑟2) 𝑅1(𝑥)+
+ 2 (𝜇𝑟2 + 𝜆 + 𝑥) 𝑔1(𝑥). (20)

It will be shown below that the function 𝑏(𝑥) is the diffusion coefficient
of some diffusion process approximating the number of customers in orbit.
Then, taking into account (8), (17), equation (19) can be written in the form

𝜕Φ(𝑤, 𝜏)
𝜕𝜏

= 𝑤𝜕Φ(𝑤, 𝜏)
𝜕𝑤

𝑎′(𝑥) + (𝑗𝑤)2

2
Φ(𝑤, 𝜏)𝑏(𝑥). (21)

5. The third stage of asymptotic. A diffuse
approximation

The inverse Fourier transform Φ(𝑤, 𝜏) =
∞
∫

−∞
𝑒𝑗𝑤𝑦𝑃(𝑦, 𝜏)𝑑𝑦 converts an

equation (21) for the characteristic functions to the equation for the probability
density 𝑃(𝑦, 𝜏).
Given the relationship

𝑤𝜕Φ(𝑤, 𝜏)
𝜕𝑤

= −
∞

∫
−∞

𝑒𝑗𝑤𝑦(𝑦𝑃 (𝑦, 𝜏))′𝑑𝑦,

(𝑗𝑤)2Φ(𝑤, 𝜏) =
∞

∫
−∞

𝑒𝑗𝑤𝑦 𝜕2𝑃(𝑦, 𝜏)
𝜕𝑦2 𝑑𝑦,

we obtain the equation

𝜕𝑃(𝑦, 𝜏)
𝜕𝜏

= −𝑎′(𝑥)𝜕 (𝑦𝑃 (𝑦, 𝜏))
𝜕𝑦

+ 𝑏(𝑥)
2

𝜕2𝑃(𝑦, 𝜏)
𝜕𝑦2 .

The resulting equation is the Fokker–Planck equation for the probability
density of some diffusion process 𝑦(𝜏) with transfer coefficient 𝑎′(𝑥)𝑦 and
diffusion coefficient 𝑏(𝑥). Thus, the process 𝑦(𝜏) is a solution of the stochastic
differential equation

𝑑𝑦(𝜏) = 𝑎′(𝑥)𝑦(𝜏)𝑑𝜏 + √𝑏(𝑥)𝑑𝜔(𝜏),

where 𝜔(𝜏) is a Wiener process.

We introduce a diffusion process 𝑧(𝜏) = 𝑥(𝜏) + 𝜀𝑦(𝜏), where the function
𝑥(𝜏) is a solution of the ordinary differential equation 𝑑𝑥(𝜏) = 𝑎(𝑥)𝑑𝜏. Then
the diffusion process 𝑧(𝜏) is a solution of the following stochastic differential
equation

𝑑𝑧(𝜏) = [𝑎(𝑥) + 𝜀𝑎′(𝑥)𝑦(𝜏)] 𝑑𝜏 + 𝜀√𝑏(𝑥)𝑑𝜔(𝜏).
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We consider the right hand side of the resulting stochastic differential
equation

𝑎(𝑥) + 𝜀𝑎′(𝑥)𝑦 = 𝑎(𝑥 + 𝜀𝑦) + 𝑂(𝜀2) = 𝑎(𝑧) + 𝑂(𝜀2),

𝜀√𝑏(𝑥) = 𝜀√𝑏(𝑥 + 𝜀𝑦 − 𝜀𝑦) = 𝜀√𝑏(𝑧 − 𝜀𝑦) = 𝜀√𝑏(𝑧) + 𝑂(𝜀2)
and assume that the terms 𝑂(𝜀2) do not contribute significantly to the solution
and can be neglected. Then we obtain a stochastic differential equation of
the form

𝑑𝑧(𝜏) = 𝑎(𝑧)𝑑𝜏 + 𝜀√𝑏(𝑧)𝑑𝜔(𝜏).

We denote by the probability density of the diffusion process 𝑧(𝜏) as

Π(𝑧, 𝜏) = 𝜕𝑃 {𝑧(𝜏) < 𝑧}
𝜕𝑧

and write the Fokker–Planck equation for this distribution

𝜕Π(𝑧, 𝜏)
𝜕𝜏

= −𝜕𝑎(𝑧)Π(𝑧, 𝜏)
𝜕𝑧

+ 𝜀2

2
𝜕2𝑏(𝑧)Π(𝑧, 𝜏)

𝜕𝑧2 .

The inverse replacement 𝜎 = 𝜀2 leads to the equation for stationary proba-
bility distribution of diffusion process 𝑧(𝜏)

−(𝑎(𝑧)Π(𝑧))′ + 𝜎
2

(𝑏(𝑧)Π(𝑧))′′ = 0,

(𝑏(𝑧)Π(𝑧))′ = 2
𝜎

𝑎(𝑧)Π(𝑧).

To solve this equation we introduce replacement of variables

𝐺(𝑧) = 𝑏(𝑧)Π(𝑧),

and obtain the equation

𝐺′(𝑧) = 2
𝜎

𝑎(𝑧)
𝑏(𝑧)

𝐺(𝑧),

then the solution is written in the form

𝐺(𝑧) = 𝐶 exp
⎧{
⎨{⎩

2
𝜎

𝑧

∫
0

𝑎(𝑥)
𝑏(𝑥)

𝑑𝑥
⎫}
⎬}⎭

.

Inverse replacement leads to

Π(𝑧) = 𝐶
𝑏(𝑧)

exp
⎧{
⎨{⎩

2
𝜎

𝑧

∫
0

𝑎(𝑥)
𝑏(𝑥)

𝑑𝑥
⎫}
⎬}⎭

.
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On the basis of obtained probability density function we construct the
diffusion approximation by formula

𝑃 𝐷(𝑖) = Π(𝑖𝜎)
∞
∑
𝑛=0

Π(𝑛𝜎)
. (22)

6. Numerical results

We determine the applicability of the obtained approximation by comparing
the asymptotic distribution (22) with the steady state distribution 𝑃(𝑖)
obtained when solving the system (1) by the matrix method. We consider
different values of the parameter 𝜎. To compare two probability distributions,
we use the Kolmogorov distance

Δ1 = max
0≤𝑛<∞

∣
𝑛

∑
𝑖=0

(𝑃 (𝑖) − 𝑃𝐷(𝑖))∣ . (23)

We consider following system parameters 𝜆 = 1, 𝑟0 = 0.5, 𝑟1 = 0.3, 𝑟2 = 0.2,
𝑞1 = 0.5, 𝑞2 = 0.3, 𝑞3 = 0.1, 𝑞4 = 0.1. We introduce the system loading

parameter 𝜌 = 𝜆 ̄𝜈
𝜇𝑟0

. It defines the value of the parameter 𝜇. We take Δ = 0.05
as a threshold value.

Table 1 presents Kolmogorov distances Δ1 calculated by formula (23),
table 2 presents Kolmogorov distances Δ2 calculated for the Gaussian approx-
imation obtained in [6]. Bold in the tables are the values that correspond to
a satisfactory approximation accuracy. It can be concluded that the accuracy
of diffusion approximation increases with decreasing the parameter 𝜎 and
increasing the system load 𝜌, and the accuracy of Gaussian approximation
decreases with high system load. In addition, the accuracy of the diffusion
approximation is higher than the accuracy of the Gaussian approximation.

Table 1

Kolmogorov distance Δ1

Δ1 𝜎 = 2 𝜎 = 1 𝜎 = 0.5 𝜎 = 0.1 𝜎 = 0.05
𝜌 = 0.2 0.135 0.089 0.050 0.016 0.012

𝜌 = 0.5 0.094 0.060 0.035 0.013 0.009

𝜌 = 0.7 0.059 0.036 0.021 0.009 0.006

𝜌 = 0.9 0.019 0.011 0.007 0.003 0.002
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Table 2

Kolmogorov distance Δ2

Δ2 𝜎 = 2 𝜎 = 1 𝜎 = 0.5 𝜎 = 0.1 𝜎 = 0.05
𝜌 = 0.2 0.221 0.152 0.086 0.018 0.013

𝜌 = 0.5 0.162 0.105 0.047 0.027 0.019

𝜌 = 0.7 0.175 0.108 0.045 0.039 0.027

𝜌 = 0.9 0.187 0.109 0.084 0.057 0.040

7. Conclusions

The mathematical model of the system 𝑀 [𝑛]/𝑀/1 with an incoming batch
Poisson flow and feedback is constructed. The system of equations for
probability distribution of the number of customers in orbit is present.
A diffusion approximation of the probability distributions of the number of

customers in orbit is obtained. The asymptotic condition is growing average
waiting time in orbit. The accuracy of the approximation is determined using
the Kolmogorov distance in comparison with the steady state probability
distribution obtained by the matrix method. Numerical examples are given
for different values of the system parameters, the accuracy of the diffusion
approximation and the Gaussian approximation is compared. It is shown that
the accuracy of the diffusion approximation is higher than the accuracy of
the Gaussian approximation.
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Асимптотически диффузионный анализ RQ-системы
с обратными связями и неординарным входящим
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Аннотация. В работе исследована 𝑀 [𝑛]/𝑀/1 RQ-система с неординарным пуас-
соновским входящим потоком. Заявки на вход системы поступают группами.
В каждый момент времени обслуживается не более одной заявки, остальные
попадают на орбиту. Заявка, обслуживание которой завершено, либо покидает
систему, либо повторно поступает на обслуживание, либо переходит на орбиту.
Методом асимптотически диффузионного анализа при асимптотическом усло-
вии растущего среднего времени ожидания на орбите построена аппроксимация
распределения вероятностей числа заявок на орбите. Показано, что точность
диффузионной аппроксимации превышает точность гауссовской аппроксимации.

Ключевые слова: система массового обслуживания, RQ-система, неор-
динарный поток, обратная связь, асимптотически-диффузионный анализ
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Abstract. Solutions of many applied Cauchy problems for ordinary differential
equations have one or more multiple zeros on the integration segment. Examples are
the equations of special functions of mathematical physics. The presence of multiples
of zeros significantly complicates the numerical calculation, since such problems
are ill-conditioned. Round-off errors may corrupt all decimal digits of the solution.
Therefore, multiple zeros should be treated as special points of the differential
equations. In the present paper, a local solution transformation is proposed, which
converts the multiple zero into a simple one. The calculation of the latter is not
difficult. This makes it possible to dramatically improve the accuracy and reliability
of the calculation. Illustrative examples have been carried out, which confirm the
advantages of the proposed method.

Key words and phrases: ordinary differential equations, Cauchy problem, multiple
zero, solution transformation

1. Introduction

Consider the Cauchy problem for an ordinary differential equation (ODE)

𝑑𝑢/𝑑𝑡 = 𝑓(𝑢, 𝑡), 𝑢(0) = 𝑢0. (1)

The solution of many such problems has one or more multiples of zeros
inside the integration segment. Examples are special functions: elliptic
Weierstrass functions [1], 𝜃-function [2], derivatives of cylindrical functions [3],
and a number of others.
To calculate them, power series, Fourier series or direct numerical integration

of the original equation [2] are used. The latter method seems to be the
most versatile. However, the numerical calculation of such problems faces
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a typical difficulty. If the grid node exactly coincides with the position of
the solution zero and the order of accuracy of the scheme does not exceed
the multiplicity of the zero, then the further numerical solution identically
equals and calculation becomes impossible. If the grid node does not coincide
with the soluton zero, but is close to it, then the numerical solution becomes
so small in absolute magnitude that it turns out to be comparable to unit
round-off errors.

After passing a multiple of zero, the integral curves diverge rapidly, so the
contribution of rounding errors increases by many orders of magnitude. Thus,
passing a multiple of zero “removes” several significant digits from the solution.
The more multiples of zeros fall on the integration segment, the greater the
loss of accuracy. Such tasks are called ill-conditioned [4].

Therefore, we propose to consider multiple zeros in the solution of differential
equations as special points along with poles and root singularities. We call
them non-singular special points.

In the present paper, a new method for calculating problems with non-
singular features is proposed. It consists of two stages:

1) numerical detection of the nearest zero, calculation of its position and
multiplicity;

2) local transformation of the solution, which converts a multiple zero into
a simple one. The calculation of such a solution is not difficult.

The method is generalized to ODE systems. Examples illustrating the
advantages of the proposed approach are given.

2. Detection of the nearest zero

Let the nearest zero of the solution 𝑢(𝑡) be located at the point 𝑇 and
has a multiplicity 𝑞. The values of 𝑞 and 𝑇 are unknown in advance. Let
us introduce the grid 𝑡𝑛, 0 ⩽ 𝑛 ⩽ 𝑁, ℎ = 𝑡𝑛+1 − 𝑡𝑛 for the independent
variable. Let the calculation be carried out according to some difference
scheme. The numerical solution is denoted by 𝑢𝑛. Obviously, the algorithm
for investigating the nearest zero can use only those values of 𝑢𝑛 for which
𝑡𝑛 < 𝑇. Otherwise, the accuracy of such a study deteriorates dramatically.
Earlier in [5, 6], an algorithm for numerical detection of the nearest pole in

the solution of the ODE was proposed. A zero can be considered as a pole of
negative order. Therefore, we can apply this technique to the study of zeros.
Let us describe the corresponding procedure. Near zero, the representation is
valid

𝑢 = 𝐶𝑞(𝑇 − 𝑡)𝑞 + 𝐶𝑞+1(𝑇 − 𝑡)𝑞+1 + … . (2)

Let us neglect the second and subsequent terms and differentiate this equality.
Taking into account (1), we get

𝑓 = − 𝑞𝑢
𝑇 − 𝑡

. (3)
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Let us write (3) in nodes 𝑛 and 𝑛 + 1. We obtain a system of equations
with respect to the quantities 𝑞 and 𝑇. Its solution has the form

𝑞𝑛 =
𝑡𝑛 − 𝑡𝑛+1

𝑢𝑛/𝑓𝑛 − 𝑢𝑛+1/𝑓𝑛+1
, 𝑇𝑛 = 𝑞𝑢𝑛

𝑓𝑛
+ 𝑡𝑛. (4)

Although the exact value of 𝑞 is an integer, the calculated 𝑞𝑛 turns out to be
a float-point number.
The formulas (4) are actually a difference scheme for 𝑞 and 𝑇. Its error

consists of two factors: the error of the original difference scheme for the
problem (1) and the error introduced by discarding the second and subsequent
terms in (2). The first factor can be reduced by conducting a global thickening
of the grid ℎ → 0. The second factor decreases with the tendency of 𝑡𝑛 → 𝑇
even if the grid step is fixed.
It is not difficult to show that if the calculated values of 𝑞𝑛 and 𝑇𝑛 tend

to be constant when the number of the current node 𝑛 increases, then the
detected singular point is a multiple of zero. The justification of this statement
reproduces almost verbatim the proof of Theorem 1 from [7].

3. Transformation of the solution

𝑤-transformation. Suppose, during the calculation using the procedure
described above, a multiple zero of the solution 𝑢(𝑡) is detected. This means
that for some 𝑛, the next change in the calculated 𝑞𝑛 and 𝑇𝑛 is quite small:
|𝑞𝑛 − 𝑞𝑛−1| < 𝜀, |𝑇𝑛 − 𝑇𝑛−1| < 𝜀, where 𝜀 is some small number. The number
of the node where this condition is met is denoted by 𝑛∗.
Round 𝑞𝑛∗

to an integer and introduce a new unknown function

𝑤 = sign (𝑢)|𝑢|1/𝑞. (5)

It is not difficult to make sure that 𝑤(𝑡) satisfies the problem

𝑑𝑤
𝑑𝑡

= 𝑤1−𝑞

𝑞
𝑓(𝑤𝑞, 𝑡), 𝑤(𝑡𝑛∗

) = sign (𝑢𝑛∗
)|𝑢𝑛∗

|1/𝑞. (6)

The function 𝑤 has a simple zero at the point 𝑇. Numerical calculation of
such a solution is not difficult.
Starting from the moment 𝑡𝑛∗

we solve the problem (6) according to the same

scheme as the original problem. Simultaneously, at each step, we calculate the
solution 𝑢𝑛 = (𝑤𝑛)𝑞 both before and after the zero. After passing 𝑤 through
zero, we return to the calculation of the original problem (1). Similarly, the
calculation of the second and subsequent zeros is carried out.

𝜏-transformation. The geometric interpretation of the transformation de-
scribed above is that the multiple zero of the function 𝑢 becomes a simple
zero of the function 𝑤. The same result can be achieved by introducing
a transformation of the independent variable instead of the solution.
Let us calculate 𝑞 (rounded to an integer) and 𝑇. Let us introduce a new

argument 𝜏 = (𝑇 − 𝑡)𝑞. The solution 𝑢(𝜏) has a simple zero at the point 𝑇.
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In the new argument, the equation (1) takes the form

𝑑𝑢
𝑑𝜏

= −1
𝑞

𝜏1/𝑞−1𝑓(𝑢, 𝑇 − 𝜏1/𝑞). (7)

The calculation is carried out in the same way as described in the previous
paragraph.

4. Generalizations

ODE systems. It is easy to generalize the described approach to the case
of an ODE system of the order of 𝐽

𝑑u
𝑑𝑡

= f(u, 𝑡), u(0) = u0, (8)

where u = {𝑢1, 𝑢2, … , 𝑢𝐽}, f = {𝑓1, 𝑓2, … , 𝑓𝐽}.
Let several components of the solution contain multiple zeros located in

the general case at different points. Then a representation similar to (2) is
valid for each of these components. For each component of the solution, we
conduct the study described in section 2. Let the nearest zero be located

in the component 𝑢𝑘; it corresponds to the moment of time 𝑇 𝑘 and has the

order 𝑞𝑘. Let us introduce a replacement (5) for the 𝑘-th component without
changing other components. The resulting system takes the form

𝑑𝑤𝑘

𝑑𝑡
= 1

𝑞𝑘 [𝑤𝑘]1−𝑞𝑘𝑓𝑘(𝑢1, 𝑢2, … , 𝑢𝑘−1, [𝑤𝑘]𝑞𝑘 , 𝑢𝑘+1, … , 𝑢𝐽),
𝑑𝑢𝑗

𝑑𝑡
= 𝑓𝑗(𝑢1, 𝑢2, … , 𝑢𝑘−1, [𝑤𝑘]𝑞𝑘 , 𝑢𝑘+1, … , 𝑢𝐽), 1 ⩽ 𝑗 ⩽ 𝐽, 𝑗 ≠ 𝑘.

(9)

Let us calculate the system (9) until the component 𝑤𝑘 passes through

zero. Simultaneously with 𝑤𝑘 at each step we calculate 𝑢𝑘 = [𝑤𝑘]𝑞𝑘
. Then we

return to the original system (8) and integrate it, simultaneously conducting
a numerical study of zeros in each component. When the nearest multiple
zero of one of the components is detected, we introduce a system similar
to (9), etc.

Multiple constant. In addition to multiple zeros, similar difficulties are
presented by points where the solution itself is different from zero, and several
first derivatives are zero. Such features are natural to denote as multiple
constants. In the vicinity of such a point, the solution is represented as

𝑢(𝑡) = 𝐴 + 𝐶𝑞(𝑇 − 𝑡)𝑞 + … , (10)

where 𝐴 ≠ 0. The proposed approach can be applied directly to such
problems if the value of 𝐴 is known exactly. To do this, it is enough to make
a transformation

𝑤 = 𝐴 + sign(𝑢)|𝑢|1/𝑞. (11)
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The case when 𝐴 is unknown in advance is particularly difficult. We
have attempted to construct various difference schemes for calculating 𝐴 by
analogy with 2. However, the accuracy of this calculation was insufficient to
construct a transformation of the form (11). Therefore, we leave the case of
the unknown 𝐴 outside the scope of this work.

5. Validation

Test example. As test examples, it is advisable to choose problems with
a known exact solution, which is expressed in elementary functions. This
allows a particularly thorough verification of the numerical method.
Let us set the exact solution

𝑢ex(𝑡) = cos𝑞(𝜋𝑡 + 𝜋/4). (12)

It has zeros of multiplicity 𝑞 at points 𝑇𝑘 = 1/4 + 𝑘, 𝑘 = 1, 2, …. Let us
construct a differential equation for it. There are different ways to do this.
However, an equation with the right-hand side depending only on 𝑡 is of no
interest, since it is solved by quadrature. On the other hand, the right-hand
side, which depends only on 𝑢, also appears to be a special case. Therefore,
we consider a non-autonomous equation

𝑑𝑢
𝑑𝑡

= −𝑞𝜋|𝑢|1−1/𝑞 sin(𝜋𝑡 − 𝜋/4). (13)

The initial condition is set according to (12). The integration segment
0 < 𝑡 < 𝑡max is selected so that it contains a specified number of multiples of
zeros.
Figure 1 shows the field of integral curves for this problem. This graph

illustrates what is said in section 1. The rapid divergence of the integral
curves after each multiple of zero is clearly visible. It is also seen that even
a relatively small change in the initial condition significantly changes the
integral curve.
Along with the equation (13) in the argument “time” 𝑡, the corresponding

system was considered in the argument “arc length of the integral curve” 𝑙
[8, 9]. Recall the formulas for the transition to this argument

𝑑𝑢
𝑑𝑙

= 𝑓
√1 + 𝑓2

, 𝑑𝑡
𝑑𝑙

= 1
√1 + 𝑓2

. (14)

It is easy to see that in this argument the vector of the right parts has
unit length. It is also known [8] that parameterization through the arc length
provides the best conditionality of the problem (in a global sense, i.e. over
the entire segment 0 < 𝑡 < 𝑡max).

Testing methodology. The calculation of the task (13) or (14) is carried
out until the specified time point 𝑡max is reached. Each calculation was carried
out on a set of thickening grids: the first grid contained 𝑁 intervals of length ℎ,
the second had 2𝑁 intervals of length ℎ/2, etc. The error of the numerical
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solution was calculated on each grid as the difference between numerical and
exact solutions

𝛿𝑛 = 𝑢𝑛 − 𝑢ex(𝑡𝑛). (15)

Figure 1. The field of integral curves of the equation (13)

For the problem (14), the exact solution as a function of the arc length
is unknown, so we consider the error according to (15), substituting the
calculated time points 𝑡𝑛 into the exact solution (12).

Method choice. Let us put 𝑡max = 3𝜋/2 ≈ 4.7. Then the segment
0 < 𝑡 < 𝑡max contains 5 zeros of the solution. Let 𝑞 = 3. Let us calculate the
problem (13) using an explicit four-stage Runge–Kutta scheme (ERK4) [10]
using the proposed approach.
Figure 2 shows the error of the obtained solution depending on the number

of grid nodes on a double logarithmic scale. Power convergence 𝛿𝑁 ∼ 𝑁−𝑝

corresponds to a straight line with a slope of −𝑝.
Visually, the error curve decreases and tends to a straight line with a slope

of −4. This corresponds to the theoretical 4th order of accuracy of this scheme.
On excessively detailed grids, the error reaches the value ∼ 10−14 and ceases
to decrease. This corresponds to the background of rounding errors. It can be
seen that they are only 100 times larger than the unit rounding error. This
shows the high reliability of the proposed approach.
For comparison, we performed calculations of this problem without using

the proposed approach. Various schemes were used: the explicit ERK4 scheme,
the explicit-implicit one-step Rosenbrock scheme with complex coefficient
CROS [11], implicit optimal backward Runge–Kutta scheme BORK4 [12,
13] and the explicit Dorman–Prince method with automatic step selection
DoPri5 [14, 15]. The error obtained in these calculations is also shown in
figure 2. It can be seen that the ERK4, CROS and BORK4 schemes without
replacement give approximately the same errors. The rate of their descending
roughly corresponds to the first order of accuracy, which is sharply different
from their theoretical orders of accuracy. The convergence of the DoPri5
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method turns out to be faster, but the accuracy cannot be obtained better
than 10−3.

Figure 2. Errors in the test (13)

Thereby, from figure 2 it can be seen that the proposed approach dramati-
cally increases the accuracy and reliability of the calculation. The problem
under consideration presents a significant difficulty for classical schemes.
However, the proposed approach allows calculations to be carried out even ac-
cording to explicit schemes and to obtain an accuracy not much higher than
the errors of unit round-off error.
Figure 3 shows similar calculations of the problem (14). It is clearly

seen that the ERK4 scheme with the proposed replacement implements the
theoretical order of accuracy and provides excellent accuracy up to ∼ 10−14. In
calculations without the proposed replacement, all schemes give significantly
worse accuracy and do not implement the theoretical order of convergence.

Figure 3. Errors in the test (14)
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6. Conclusion

The test calculations have shown that the proposed approach for numerical
solution of the Cauchy problems with multiple zeros on the integration
segment provides high accuracy and reliability of calculation for a wide
class of problems. At the same time, standard approaches demonstrate
unsatisfactory accuracy. The simplicity of implementation, the possibility of
generalization and use with a large set of numerical schemes make the method
convenient for application to applied problems.
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Численное интегрирование задач Коши
с несингулярными особыми точками

А. А. Белов1, 2, И. В. Горбов1

1Московский государственный университет им. М.В. Ломоносова,
Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия

2 Российский университет дружбы народов,
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Аннотация. Решения многих прикладных задач Коши для обыкновенных диф-
ференциальных уравнений имеют один или несколько кратных нулей на отрезке
интегрирования. Примерами являются уравнения специальных функций матема-
тической физики. Наличие кратных нулей существенно затрудняет численный
расчёт, поскольку такие задачи являются плохо обусловленными. Из-за ошибок
округления в решении может не остаться ни одного верного знака. Поэтому крат-
ные нули следует отнести к особым точкам ОДУ. В данной работе предложена
локальная замена искомой функции, которая преобразует кратный нуль решения
в простой. Расчёт последнего не представляет трудностей. Это позволяет карди-
нально повысить точность и надёжность расчёта. Проведены иллюстративные
примеры, которые подтверждают преимущества предлагаемого метода.

Ключевые слова: обыкновенные дифференциальные уравнения, задача Коши,
кратные нули, преобразование решения
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Abstract. The paper proposes a stable method for constructing a normal to a surface
given approximately. The normal is calculated as the gradient of the function in the
surface equation. As is known, the problem of calculating the derivative is ill-posed.
In the paper, an approach is adopted to solving this problem as to the problem of
calculating the values of an unbounded operator. To construct its stable solution,
the principle of minimum of the smoothing functional in Morozov’s formulation
is used. The normal is obtained in the form of a Fourier series in the expansion
in terms of eigenfunctions of the Laplace operator in a rectangle with boundary
conditions of the second kind. The functional stabilizer uses the Laplacian, which
makes it possible to obtain a normal in the form of a Fourier series that converges
uniformly to the exact normal vector as the error in the surface definition tends
to zero. The resulting approximate normal vector can be used to solve various
problems of mathematical physics using surface integrals, normal derivatives, simple
and double layer potentials.

Key words and phrases: ill-posed problem, stable derivative calculation, regular-
ization method, discrete Fourier series

1. Introduction

When solving many problems of mathematical physics, which are boundary
value problems for partial differential equations, there is a need to calculate the
normal to the surface, in particular, when calculating the normal derivative.
For example, when calculating the potentials of a simple and double layer, as
well as other surface integrals.
In the case when the surface is known “exactly”, that is, for example, it is

given by an equation with an exactly known function

𝐹(𝑥, 𝑦, 𝑧) = 0, (1)

© Laneev E.B., BaajO., 2023
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then the normal (generally speaking, not unit normal) will be calculated up
to the sign in the form of the gradient of the function in the equation of the
surface

n1 = grad𝐹(𝑥, 𝑦, 𝑧) = ∇𝐹. (2)

In applied problems, a situation may arise when the surface is not known
accurately. The error may be related to the measurement error, digitization,
or the surface data is the result of modeling, that is, it contains the model
error. That is, even in the case when the surface is given by the equation
𝑧 = 𝐹(𝑥, 𝑦), where the function 𝐹 is given analytically, that is, “exactly”,
such a surface can be considered as “model”, approximately describing “real”
surface.

In applied problems, a situation may arise when the surface is not known
accurately. In the case when the surface is known inaccurately, it becomes
necessary to calculate the normal to the surface given approximately.

As follows from (2), the calculation of the normal is related to the calculation
of the derivatives of the function in the equation of the surface. As [1] is
known, such a problem is ill-posed and in the case when the surface is known
approximately, the use of regularizing algorithms is required to obtain its
approximate solution.

The problem of calculating the derivative of a function as an ill-posed
problem has been considered in many works, for example [2–9] and others.
Here, following [10], we will solve the problem of stable differentiation as
a problem of calculating the values of an unbounded operator.

2. Problem statement

When solving the problem of constructing a normal vector to a surface, we
confine ourselves to considering a surface of the form

𝑆 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐹(𝑥, 𝑦)}, (3)

that is, a surface given by the equation

𝑧 = 𝐹(𝑥, 𝑦), 𝐹 ∈ 𝐶2(Π) (4)

on a rectangle
Π = {(𝑥, 𝑦) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦}. (5)

As follows from (2), for an exactly given function 𝐹, the normal vector is
calculated by the formula

n1 = grad (𝐹(𝑥, 𝑦) − 𝑧) = ∇𝑥𝑦𝐹 − k. (6)

Let the surface 𝑆 be given with an error, namely: instead of the exact
function 𝐹 in (3), there is a function 𝐹 𝜇 defined on a rectangle Π of the
form (5), so

‖𝐹 𝜇 − 𝐹‖𝐿2(Π) ⩽ 𝜇. (7)
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Let us pose the problem of constructing a uniform approximation to the
normal vector to the surface that converges uniformly to the exact one as
𝜇 → 0.
Note that the normal vector is needed to calculate the normal derivative

of the function
𝜕𝜑
𝜕𝑛

= (n, ∇𝜑), n = n1

𝑛1
, as well as when calculating surface

integrals to calculate a surface element 𝑑𝜎 = 𝑛1(𝑥, 𝑦)𝑑𝑥𝑑𝑦.

3. Constructing a stable solution to the problem

To calculate the normal vector to the surface given by the equation (2), in
accordance with (6), it is necessary to calculate the gradient ∇𝑥𝑦𝐹. To obtain
a solution of the formulated problem that is stable to the error (7), we use
the [11] approach, which consists in the fact that the problem of calculating
the gradient ∇𝑥𝑦𝐹 is considered as the problem of calculating the values of an

unbounded operator [10]. In contrast to [11], we will consider the Laplacian
instead of the gradient as an unbounded operator, which allows us to obtain
a uniform approximation for the normal.
As an approximation to the function ∇𝑥𝑦𝐹, computed from the known

function 𝐹 𝜇 related to the function 𝐹 by the condition (7), we will consider
the gradient of the extremal of the functional

𝑁𝛽[𝑊] = ‖𝑊 − 𝐹 𝜇‖2
𝐿2(Π) + 𝛽 ‖Δ𝑊‖2

𝐿2(Π) , 𝛽 > 0 (8)

in which the squared norm of the Laplacian of the argument of the functional
is used as a stabilizer.
We assume that the surface 𝑆 of the form (3) satisfies the conditions

𝐹 ′
𝑥|𝑥=0,𝑙𝑥

= 0, 𝐹 ′
𝑦|𝑦=0,𝑙𝑦

= 0; 𝐹 ‴
𝑦 |𝑥=0,𝑙𝑥

= 0, 𝐹 ‴
𝑦 |𝑦=0,𝑙𝑦

= 0. (9)

We obtain the Euler equation for the functional (8). To vary the functional,
we have

𝛿𝑁𝛽[𝑊] = 2 (𝑊 − 𝐹 𝜇, 𝛿𝑊) + 2𝛽(Δ𝑊, Δ𝛿𝑊). (10)

We write the second scalar product in (10) as a double integral

𝛿𝑁𝛽[𝑊] = 2 (𝑊 − 𝐹 𝜇, 𝛿𝑊) + 2𝛽

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑑𝑥𝑑𝑦Δ𝑊(𝑥, 𝑦)Δ𝛿𝑊(𝑥, 𝑦). (11)

Separating the second derivatives in the Laplacian and changing the order
of integration over the variables 𝑥 and 𝑦, we transform the double integrals
by integrating by parts:

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑑𝑥𝑑𝑦Δ𝑊(𝑥, 𝑦)Δ𝛿𝑊(𝑥, 𝑦) =
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=

𝑙𝑦

∫
0

𝑑𝑦

𝑙𝑥

∫
0

𝑑𝑥Δ𝑊(𝑥, 𝑦) 𝜕2

𝜕𝑥2 𝛿𝑊(𝑥, 𝑦) +

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦Δ𝑊(𝑥, 𝑦) 𝜕2

𝜕𝑦2 𝛿𝑊(𝑥, 𝑦) =

=

𝑙𝑦

∫
0

𝑑𝑦 ⎡
⎢
⎣

Δ𝑊(𝑥, 𝑦)𝛿𝑊 ′
𝑥(𝑥, 𝑦)∣

𝑥=𝑙𝑥

𝑥=0
−

𝑙𝑥

∫
0

𝑑𝑥 𝜕
𝜕𝑥

Δ𝑊(𝑥, 𝑦) 𝜕
𝜕𝑥

𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

+

+

𝑙𝑥

∫
0

𝑑𝑥 ⎡
⎢
⎣

Δ𝑊(𝑥, 𝑦)𝛿𝑊 ′
𝑦(𝑥, 𝑦)∣

𝑦=𝑙𝑦

𝑦=0
−

𝑙𝑦

∫
0

𝑑𝑦 𝜕
𝜕𝑦

Δ𝑊(𝑥, 𝑦) 𝜕
𝜕𝑦

𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

. (12)

Since the extremal must satisfy the same boundary conditions, the variations
of the derivatives at the boundary are equal to zero, and the one-time integrals
are equal to zero. Integrating the remaining integrals by parts again, we
obtain

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑑𝑥𝑑𝑦Δ𝑊(𝑥, 𝑦)Δ𝛿𝑊(𝑥, 𝑦) =

=

𝑙𝑦

∫
0

𝑑𝑦 ⎡
⎢
⎣

−

𝑙𝑥

∫
0

𝑑𝑥 𝜕
𝜕𝑥

Δ𝑊(𝑥, 𝑦) 𝜕
𝜕𝑥

𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

+

+

𝑙𝑥

∫
0

𝑑𝑥 ⎡
⎢
⎣

−

𝑙𝑦

∫
0

𝑑𝑦 𝜕
𝜕𝑦

Δ𝑊(𝑥, 𝑦) 𝜕
𝜕𝑦

𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

=

=

𝑙𝑦

∫
0

𝑑𝑦 ⎡
⎢
⎣

−Δ𝑊 ′
𝑥(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)∣

𝑥=𝑙𝑥

𝑥=0
+

𝑙𝑥

∫
0

𝑑𝑥 𝜕2

𝜕𝑥2 Δ𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

+

+

𝑙𝑥

∫
0

𝑑𝑥 ⎡
⎢
⎣

−Δ𝑊 ′
𝑦(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)∣

𝑦=𝑙𝑦

𝑦=0
+

𝑙𝑦

∫
0

𝑑𝑦 𝜕2

𝜕𝑦2 Δ𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

. (13)

Since, in accordance with the boundary conditions

𝑊 ‴
𝑥 |𝑥=0,𝑙𝑥

= 0, 𝜕2

𝜕𝑦2 𝑊 ′
𝑥|𝑥=0,𝑙𝑥

= 0; 𝑊 ‴
𝑦 |𝑦=0,𝑙𝑦

= 0, 𝜕2

𝜕𝑥2 𝑊 ′
𝑦|𝑦=0,𝑙𝑦

= 0.

Then the one-time integrals in (13) are equal to zero and, thus, we obtain

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑑𝑥𝑑𝑦Δ𝑊(𝑥, 𝑦)Δ𝛿𝑊(𝑥, 𝑦) =

𝑙𝑦

∫
0

𝑑𝑦

𝑙𝑥

∫
0

𝑑𝑥 𝜕2

𝜕𝑥2 Δ𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)+
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+

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦 𝜕2

𝜕𝑦2 Δ𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦) =

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦Δ2𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦). (14)

Now, for the variation of the functional (10), taking into account (14), we
obtain

𝛿𝑁𝛽[𝑊] = 2(𝑊 − 𝐹 𝜇, 𝛿𝑊) + 2𝛽(Δ𝑊, Δ𝛿𝑊) =
= 2(𝑊 − 𝐹 𝜇, 𝛿𝑊) + 2𝛽(Δ2𝑊, 𝛿𝑊). (15)

Equating the variation to zero and adding boundary conditions (9), we
obtain that the extremal of the functional (8) is a solution to the following
boundary value problem for the Euler equation

⎧
{{{
⎨
{{{
⎩

𝛽Δ2𝑊 + 𝑊 = 𝐹 𝜇,
𝑊 ′

𝑥|𝑥=0,𝑙𝑥
= 0,

𝑊 ′
𝑦|𝑦=0,𝑙𝑦

= 0,
𝑊 ‴

𝑥 |𝑥=0,𝑙𝑥
= 0,

𝑊 ‴
𝑦 |𝑦=0,𝑙𝑦

= 0.

We will seek the solution of this boundary value problem in the form of an
expansion in the Fourier series

𝑊(𝑥, 𝑦) =
∞

∑
𝑛,𝑚=0

�̃�𝑛𝑚 cos
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
(16)

in terms of the eigenfunctions of the Laplace operator satisfying the boundary
conditions (9)

{cos 𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
}

∞

𝑛,𝑚=0

. (17)

The solution of the boundary value problem for the Euler equation is
obtained in the form

𝑊 𝜇
𝛽 (𝑥, 𝑦) =

∞
∑

𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚

1 + 𝛽𝑘4
𝑛𝑚

cos
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
, (18)

where, for brevity, the notation is introduced

𝑘𝑛𝑚 = 𝜋 (𝑛2

𝑙2𝑥
+ 𝑚2

𝑙2𝑦
)

1/2

,
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and the Fourier coefficients ̃𝐹 𝜇
𝑛𝑚 have the form

̃𝐹 𝜇
𝑛𝑚 = 4𝜀𝑛𝜀𝑚

𝑙𝑥𝑙𝑦
∫
Π

𝐹 𝜇(𝑥, 𝑦) cos 𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
𝑑𝑥𝑑𝑦,

𝜀𝑛 = 1, 𝑛 ≠ 0, 𝜀0 = 0.5.
(19)

It is easy to see that the series (18) converges uniformly on the rectangle Π.
As an approximation to the gradient of the function 𝐹 𝜇, we will consider

the vector function

∇𝑥𝑦𝑊 𝜇
𝛽 (𝑥, 𝑦) =

=
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚

1 + 𝛽𝑘4
𝑛𝑚

(−i𝜋𝑛
𝑙𝑥

sin
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
− j

𝜋𝑚
𝑙𝑦

cos
𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
) . (20)

The series (20) also converges uniformly on Π. Indeed, applying the Cauchy–
Bunyakovsky inequality, in particular, for the 𝑥-component of the gradient,
we obtain

∣ 𝜕
𝜕𝑥

𝑊 𝜇
𝛽 (𝑥, 𝑦)∣ ⩽

⩽
∞

∑
𝑛,𝑚=0

| ̃𝐹 𝜇
𝑛𝑚|

1 + 𝛽𝑘4
𝑛𝑚

𝜋𝑛
𝑙𝑥

⩽
∞

∑
𝑛,𝑚=0

| ̃𝐹 𝜇
𝑛𝑚|𝑘𝑛𝑚

1 + 𝛽𝑘4
𝑛𝑚

⩽ 1
𝛽

∞
∑

𝑛,𝑚=0

| ̃𝐹 𝜇
𝑛𝑚|√𝜀𝑛𝜀𝑚

𝑘3
𝑛𝑚

√𝜀𝑛𝜀𝑚
⩽

⩽ 1
𝛽

( 4
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=0

𝜀𝑛𝜀𝑚
𝑘6

𝑛𝑚
)

1
2

(
𝑙𝑥𝑙𝑦
4

∞
∑

𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚)2

𝜀𝑛𝜀𝑚
)

1
2

⩽ 𝐶
𝛽

||𝐹 𝜇||𝐿2(Π). (21)

A similar estimate can be obtained for the 𝑦-component of the gradient. In
addition, the uniform convergence of the series (18) is also proved.
Let us now prove the convergence of the series (18) and (20) to 𝐹 and

grad𝐹, respectively, as 𝜇 → 0.
Let 𝐹 +− be an even-periodic continuation of the function 𝐹 with period 2𝑙𝑥

in variable 𝑥 and period 2𝑙𝑦 in variable 𝑦 from a rectangle Π of the form (5),

that is

𝐹 +(𝑥, 𝑦) = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ Π; 𝐹 +(−𝑥, 𝑦) = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ Π;
𝐹 +(𝑥, −𝑦) = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ Π; 𝐹 +(−𝑥, −𝑦) = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ Π;

𝐹 +(𝑥 + 2𝑙𝑥𝑛, 𝑦 + 2𝑙𝑦𝑚) = 𝐹 +(𝑥, 𝑦), (𝑥, 𝑦) ∈ ℝ2, 𝑛, 𝑚 = ±1, ±2, ....

Theorem 1. Let 𝐹 + ∈ 𝐶2(ℝ2), 𝑀 ⩾ ‖Δ𝐹‖𝐿2(Π), 𝛽 = 𝛽(𝜇) = 𝜇2/𝑀2.

Then

∥𝑊 𝜇
𝛽(𝜇) − 𝐹∥

𝐿2(Π)
⩽ 3

2
𝜇 → 0 as 𝜇 → 0, (22)

∥∇𝑥𝑦𝑊 𝜇
𝛽(𝜇) − ∇𝑥𝑦𝐹∥

𝐿2(Π)
⩽ 2√𝜇𝑀 → 0 as 𝜇 → 0. (23)
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Proof. Let’s introduce a notation for a function of the form (18) for 𝜇 = 0

𝑊𝛽(𝑥, 𝑦) =
∞

∑
𝑛,𝑚=0

̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚
cos

𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
. (24)

Let us prove the estimate (22) in the assertion of the theorem. Applying

the triangle inequality for the norm of the difference 𝑊 𝜇
𝛽 − 𝐹 we obtain

∥𝑊 𝜇
𝛽 − 𝐹∥

𝐿2(Π)
⩽ ∥𝑊 𝜇

𝛽 − 𝑊𝛽∥
𝐿2(Π)

+ ∥𝑊𝛽 − 𝐹∥
𝐿2(Π)

. (25)

Using the orthogonality of the trigonometric system, for the first norm on
the right side (25) we obtain

∥𝑊 𝜇
𝛽(𝜇) − 𝑊𝛽(𝜇)∥

2

𝐿2(Π)
=

=
∞

∑
𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2

(1 + 𝛽𝑘4
𝑛𝑚)2

𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

⩽
∞

∑
𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2
𝑙𝑥𝑙𝑦

4𝜀𝑛𝜀𝑚
⩽

⩽ ‖𝐹 𝜇 − 𝐹‖2
𝐿2(Π) = 𝜇2. (26)

And for the second norm on the right side (25) under the conditions of the
theorem, we obtain:

∥𝑊𝛽(𝜇) − 𝐹∥
2

𝐿2(Π)
=

=
∞

∑
𝑛,𝑚=0

(𝛽𝑘4
𝑛𝑚)2 ̃𝐹 2

𝑛𝑚

(1 + 𝛽𝑘4
𝑛𝑚)2

𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

⩽ 𝛽2 max
𝑥

( 𝑥
1 + 𝛽𝑥2 )

2 ∞
∑

𝑛,𝑚=0

𝑘4
𝑛𝑚 ̃𝐹 2

𝑛𝑚𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

⩽

⩽ 𝛽
4

‖Δ𝐹‖2
𝐿2(Π) ⩽ 𝜇2

4𝑀2 𝑀2 = 𝜇2

4
. (27)

Here we have used the fact that under the conditions of the theorem

∞
∑

𝑛,𝑚=0

𝑘4
𝑛𝑚 ̃𝐹 2

𝑛𝑚𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

= ∥Δ𝐹∥2
𝐿2(Π)

⩽ 𝑀2, (28)

as well as the value of the maximum

max
𝑥

( 𝑥
1 + 𝛽𝑥2 ) = 1

2
√

𝛽
.

For the difference norm on the left side (25) with 𝛽(𝜇) = 𝜇2/𝑀2 from (26)
and (27) we obtain

∥𝑊 𝜇
𝛽(𝜇) − 𝐹∥

𝐿2(Π)
⩽ 𝜇 + 𝜇

2
= 3

2
𝜇. (29)
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We now obtain the estimate (23) by applying the triangle inequality

∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝐹∥

𝐿2(Π)
⩽

⩽ ∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝑊𝛽∥

𝐿2(Π)
+ ∥∇𝑥𝑦𝑊𝛽 − ∇𝑥𝑦𝐹∥

𝐿2(Π)
. (30)

Estimate the first difference in on the right side (30):

∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝑊𝛽∥

2

𝐿2(Π)
= ∫

Π

∣−i
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚

𝜋𝑛
𝑙𝑥

sin
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
−

−j
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚

𝜋𝑚
𝑙𝑦

sin
𝜋𝑚𝑦

𝑙𝑦
cos

𝜋𝑛𝑥
𝑙𝑥

∣
2

𝑑𝑥𝑑𝑦 =

= ∫
Π

∣
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚

𝜋𝑛
𝑙𝑥

sin
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
∣
2

𝑑𝑥𝑑𝑦+

+ ∫
Π

∣
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚

𝜋𝑚
𝑙𝑦

sin
𝜋𝑚𝑦

𝑙𝑦
cos

𝜋𝑛𝑥
𝑙𝑥

∣
2

𝑑𝑥𝑑𝑦. (31)

Using the orthogonality of the trigonometric system, we obtain:

∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝑊𝛽∥

2

𝐿2(Π)
=

∞
∑

𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2

(1 + 𝛽𝑘4
𝑛𝑚)2 (𝜋𝑛

𝑙𝑥
)

2 𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

+

+
∞

∑
𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2

(1 + 𝛽𝑘4
𝑛𝑚)2 (𝜋𝑚

𝑙𝑦
)

2 𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

=
𝑙𝑥𝑙𝑦
4

∞
∑

𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2
𝑘2

𝑛𝑚

𝜀𝑛𝜀𝑚 (1 + 𝛽𝑘4
𝑛𝑚)2 ⩽

⩽ max
𝑥

( 𝑥
1 + 𝛽𝑥4 )

2 ∞
∑

𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2
𝑙𝑥𝑙𝑦

4𝜀𝑛𝜀𝑚
= 1√

𝛽
∥𝐹 𝜇 − 𝐹∥2

𝐿2(Π)
. (32)

Here we have used the estimate for the maximum

max
𝑥

( 𝑥
1 + 𝛽𝑥4 ) = 33/4

4
𝛽−1/4 ⩽ 𝛽−1/4.

Extracting the root at (32), we obtain for the first difference at (30):

∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝑊𝛽∥

𝐿2(Π)
⩽ 1

4
√

𝛽
∥𝐹 𝜇 − 𝐹∥

𝐿2(Π)
= 𝜇

4
√

𝛽
. (33)

Similarly, to evaluate the second difference in (30), using (24), we obtain:



236 DCM&ACS. 2023, 31 (3) 228–241

∥∇𝑥𝑦𝑊𝛽 − ∇𝑥𝑦𝐹∥2
𝐿2(Π)

= 𝛽2 𝑙𝑥𝑙𝑦
4

∞
∑

𝑛,𝑚=0

̃𝐹 2
𝑛𝑚 [𝑘4

𝑛𝑚]2 𝑘2
𝑛𝑚

𝜀𝑛𝜀𝑚 (1 + 𝛽𝑘4
𝑛𝑚)2 ⩽

⩽ 𝛽2 max
𝑥

( 𝑥3

1 + 𝛽𝑥4 )
2 ∞

∑
𝑛,𝑚=0

( ̃𝐹𝑛𝑚𝑘2
𝑛𝑚)2𝑙𝑥𝑙𝑦

4𝜀𝑛𝜀𝑚
= √𝛽∥Δ𝐹∥2 = √𝛽𝑀2. (34)

Here we have used the estimate for the maximum

max
𝑥

( 𝑥3

1 + 𝛽𝑥4 ) = 33/4

4
𝛽−3/4 ⩽ 𝛽−3/4,

and also by the fact that under the conditions of the theorem

Δ𝐹 =
∞

∑
𝑛,𝑚=0

̃𝐹𝑛𝑚𝑘2
𝑛𝑚 cos

𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
.

Therefore, the second norm on the right side (30) after taking the square
root in (34) evaluates to

∥∇𝑥𝑦𝑊𝛽 − ∇𝑥𝑦𝐹∥
𝐿2(Π)

⩽ 4√𝛽𝑀. (35)

Thus, using the estimates (34), (35) and the conditions of the theorem on
the function 𝛽(𝜇), from (30) we obtain an error estimate in calculating the
gradient of the function 𝐹:

∥∇𝑥𝑦𝑊 𝜇
𝛽(𝜇) − ∇𝑥𝑦𝐹∥

𝐿2(Π)
⩽ 𝜇

4
√

𝛽
+ 4√𝛽𝑀 ⩽ 2√𝜇𝑀 → 0 as 𝜇 → 0. (36)

Note that for 𝛽(𝜇) = 𝜇2/𝑀2, the expression on the right represents the
minimum by the parameter 𝛽.
The theorem is proved. �

Based on this theorem, we can use the formula for the approximate gradient
to construct an approximate normal to the surface 𝑆 by the formula (6)

n
𝜇
1 = ∇𝑥𝑦𝑊 𝜇

𝛽(𝜇) − k. (37)

then from (37) and (36) follows an estimate of the deviation of the approximate

normal n
𝜇
1 from the exact:

∥n𝜇
1 − n1∥

𝐿2(Π)
= ∥∇𝑥𝑦𝑊 𝜇

𝛽 − ∇𝑥𝑦𝐹∥
𝐿2(Π)

⩽ 2√𝜇𝑀.

The surface defined by the equation 𝑧 = 𝑊 𝜇
𝛽(𝜇)(𝑥, 𝑦), where 𝑊 𝜇

𝛽(𝜇) has the

form (18), denote

𝑆𝜇 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝑊 𝜇
𝛽(𝜇)(𝑥, 𝑦)} . (38)



E.B. Laneev, O. Baaj, On a stable calculation of the normal... 237

Since the series (18) converges uniformly, the surface 𝑆𝜇 is given by a con-
tinuous function.

When solving various problems of mathematical physics that use surface
integrals and a normal derivative on a surface given approximately by the
condition (7), an approximately given surface 𝑧 = 𝐹 𝜇(𝑥, 𝑦) can be replaced
by the surface 𝑆𝜇, and the normal to the surface can be calculated according
to the formula (37).

4. Application of the problem of calculating the normal
to the inverse problem of thermography

Calculation of the normal to the surface may be necessary, in particular,
when solving the inverse problem of thermography. In this case, we consider
the problem of correcting the thermogram 𝑓, which is a digitized temperature
distribution on the surface of the investigated heat-conducting body containing
heat sources. The image of body sources on a thermogram is, as a rule,
distorted due to the process of heat conduction, heat transfer, and the relative
remoteness of heat sources from the body surface. In order to refine the image
in a cylindrical area of rectangular cross section

𝐷(𝐹, 𝐻) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹 (𝑥, 𝑦) < 𝑧 < 𝐻}. (39)

a boundary value problem for the Laplace equation is considered (we assume
that the support of the heat source density function 𝜌 is located in the region
𝑧 > 𝐻)

⎧{{{
⎨{{{⎩

Δ𝑢(𝑀) = 0, 𝑀 ∈ 𝐷(𝐹 , 𝐻),
𝑢∣

𝑆
= 𝑓,

𝜕𝑢
𝜕𝑛

∣
𝑆

= ℎ(𝑈0 − 𝑓)∣
𝑆
,

𝑢|Γ𝐻
= 0.

(40)

The set of side faces of 𝐷(𝐹, 𝐻) is denoted as Γ𝐻.

Note that in the problem (40) on the surface 𝑆 of the form (3), the Cauchy
conditions are specified, that is, the boundary values 𝑓 of the desired function
𝑢 and the values of its normal derivative are given, so the problem (40) has
a unique solution. The boundary 𝑧 = 𝐻 of the domain 𝐷(𝐹, 𝐻) is free and
thus the problem (40) is not robust against data errors, i.e. ill-posed.

The function 𝑢|𝑧=𝐻 will be considered as an adjusted thermogram. Since
the plane 𝑧 = 𝐻 is located closer to the density carrier 𝜌 than the surface
𝑆 from which the original thermogram is taken, it should be expected that
the corrected thermogram more accurately conveys information about the
distribution of heat sources than the original thermogram.

We will assume that the function 𝑓 in the problem (40) is given with an

error, that is, instead of 𝑓, the function 𝑓𝛿 is given, such that

∥𝑓𝛿 − 𝑓∥
𝐿2(Π)

⩽ 𝛿. (41)
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In [12], an approximate solution to an ill-posed problem (40) is con-
structed as

𝑢𝛿
𝛼(𝑀) = 𝑣𝛿

𝛼(𝑀) + Φ𝛿(𝑀), 𝑀 ∈ 𝐷(𝐹 , 𝐻), (42)

where the function

Φ𝛿(𝑀) = ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃)∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)−

− 𝑓𝛿(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

]𝑑𝑥𝑃𝑑𝑦𝑃 (43)

is calculated using the problem data (40) and the Dirichlet problem source
function

𝜑(𝑀, 𝑃) =

= 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚|𝑧𝑀−𝑧𝑃|

𝑘𝑛𝑚
× sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
, (44)

𝑘𝑛𝑚 = 𝜋(𝑛2

𝑙2𝑥
+ 𝑚2

𝑙2𝑦
)

1/2

in the infinite cylinder

𝐷∞ = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, −∞ < 𝑧 < ∞} ⊂ ℝ3.

The function 𝑣𝛿
𝛼, which is an approximation to the density potential 𝜌, in

[12] is obtained using the Tikhonov regularization method [1]

𝑣𝛿
𝛼(𝑀) =

= −
∞

∑
𝑛,𝑚=1

Φ̃𝛿
𝑛𝑚(𝑎) exp{𝑘𝑛𝑚(𝑧𝑀 − 𝑎)}

1 + 𝛼 exp{2𝑘𝑛𝑚(𝐻 − 𝑎)}
sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
, 𝛼 > 0, (45)

Φ̃𝛿
𝑛𝑚(𝑎) are Fourier coefficients of the function Φ𝛿(𝑀) of the form (43)

Φ̃𝛿
𝑛𝑚(𝑎) = 4

𝑙𝑥𝑙𝑦
∫
Π

Φ𝛿(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
𝑑𝑥𝑑𝑦. (46)

As follows from the formula (43) when calculating the value of Φ, the normal
to the surface is used. Estimates of the error in calculating the function Φ
and the approximate solution 𝑢 that arise when replacing the exact normal
n1 with an approximate normal are obtained in [13].

5. Conclusion and discussion

Formulas (37), (20) for approximate calculation of the normal to an ap-
proximately given surface can be used in the calculation of surface integrals
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and potentials of a simple and double layer and in other problems [14] using
the normal to the surface. For numerical summation of Fourier series (45)
and calculation of Fourier coefficients (46) algorithms for summing discrete
Hamming series [15, 16] can be used. Discretization of formulas (45), (46)
can be done in accordance with [17].
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Аннотация. В работе предлагается устойчивый метод построения нормали к по-
верхности, заданной приближённо. Нормаль вычисляется как градиент функции
в уравнении поверхности. Как известно, задача вычисления производной яв-
ляется некорректно поставленной. В работе принят подход к решению этой
задачи как к задаче вычисления значений неограниченного оператора. Для
построения её устойчивого решения используется принцип минимума сглажива-
ющего функционала в формулировке Морозова. Нормаль получена в виде ряда
Фурье в разложении по собственным функциям оператора Лапласа в прямо-
угольнике с краевыми условиями второго рода. В стабилизаторе функционала
используется лапласиан, что позволяет получить нормаль в виде ряда Фурье,
равномерно сходящегося к точному вектору нормали при стремлении к нулю по-
грешности в задании поверхности. Полученный приближенный вектор нормали
может использоваться при решении различных задач математической физики,
использующих поверхностные интегралы, нормальные производные, потенциалы
простого и двойного слоя.

Ключевые слова: некорректная задача, устойчивое вычисление производной,
метод регуляризации, дискретный ряд Фурье
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Abstract. The curvature tensor �̂� of a manifold is called harmonic, if it obeys

the condition Δ(HR)�̂� = 0, where Δ(HR) = 𝐷𝐷∗ + 𝐷∗𝐷 is the Hodge–de Rham
Laplacian. It is proved that all solutions of the Einstein equations in vacuum, as well
as all solutions of the Einstein–Cartan theory in vacuum have a harmonic curvature.
The statement that only solutions of Einstein’s equations of type 𝑁 (describing
gravitational radiation) are harmonic is refuted.

Key words and phrases: Hodge–de Rham Laplacian, harmonic curvature tensor,
harmonic solutions in vacuum of Einstein equation and Einstein–Cartan theory
equations

1. Introduction. Harmonic curvature tensor

In non-Euclidean spaces, in the formalism of differential forms, an external
covariant differential 𝐷 is defined, as well as an external covariant codifferential
𝐷∗, whose action on the 𝑝-form 𝜔 is determined by the rule:

𝐷∗𝜔 = (−1)𝑝 ∗−1 𝐷 ∗ 𝜔,

where ∗ is the Hodge dualization operator mapping differential forms onto
polyvectors and vice versa. The inverse operator ∗−1 is determined by the

rule: ∗−1 = (−1)𝑞(𝑛−𝑞)+𝑠∗, where 𝑛 is the dimension of the manifold, 𝑠 is the
sign of the determinant of the metric, and 𝑞 is the degree of the form on
which the operator ∗−1 acts. As a result, in the definition of 𝐷∗ the operator
∗−1 acts on the 𝐷 ∗ 𝜔 form of the degree 𝑞 = 𝑛 − 𝑝 + 1. As a consequence,
the action of the codifferential 𝐷∗ can be represented in an equivalent form
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as: 𝐷∗𝜔 = (−1)𝑛𝑝+𝑛+1+𝑠 ∗ 𝐷 ∗ 𝜔, which for a 4-dimensional pseudo-Euclidean
space and a form 𝜔 of even degree gives 𝐷∗𝜔 = ∗𝐷 ∗ 𝜔 [1, 2].
A differential form is said to be harmonic if the action of the Hodge–

de Rham Laplacian Δ(HR) = 𝐷𝐷∗ + 𝐷∗𝐷 on it is identically equal to zero. In

particular, if the curvature 2-form �̂� satisfies the condition Δ(HR)�̂� = 0, then
the corresponding curvature tensor is said to be harmonic [3, 4]. In Riemann

space, this condition in coordinates is fulfilled if the equation ∇𝜆𝑅𝜆
𝜎𝜇𝜈 = 0 is

satisfied.

2. Hodge–de Rham Laplacian in gauge field theories

The Hodge–de Rham Laplacian arises in geometrized gauge theories. For
example, a similar operator arises in the geometric interpretation of the Yang–
Mills theory as a theory of fiber bundle, where the exterior differential 𝑑 and
co-differential 𝛿 are defined, as well as the operator Δ = 𝑑𝛿 + 𝛿𝑑, which in
this case is called the Laplace-Beltrami Laplacian. This operator plays an
essential role in the theory, since the Yang–Mills gauge field equations follow
from the condition Δ = 0. In this geometric interpretation the comparison of
the potentials of the Yang–Mills gauge field and the linear connection of the
fiber bundle is important [5].
In the geometric interpretation of the gravitational field in the Poincaré-

gauge theory of gravity (PGTG) as the theory of an affine fibred space arising
as a consequence of the localization of the Poincaré group, the Hodge–de Rham

Laplacian Δ(HR) = 𝐷𝐷∗ + 𝐷∗𝐷 also arises.

3. Hodge–de Rham Laplacian and geometric criterion
of gravitational radiation

Earlier in the literature, when discussing various geometric criteria of
gravitational radiation, one could come across the statement that those and
only those Einstein spaces of type 𝑁 describing gravitational radiation are

harmonic (that is, for which the equality Δ(HR)�̂� = 0 is satisfied). The Einstein
space is understood as the space in which the Einstein equation in vacuum
𝑅𝛼𝛽 = Λ𝑔𝛼𝛽 is satisfied.

Let us prove that this statement is erroneous, although it is given in
the well-known monograph on gravitational waves [6].

4. On the property of harmonic solutions of the general
theory of relativity and Poincaré-gauge theory of gravity

Let us find out what role the Hodge–de Rham Laplacian plays in the general
theory of relativity and the Poincaré-gauge theory of gravity.
In authors’ paper [7] the detailed calculation of the result of the action of

the Hodge–de Rham Laplacian on the curvature 2-form �̂� of the Riemann
space of general relativity is given.



244 DCM&ACS. 2023, 31 (3) 242–246

The intermediate result is:

Δ(HR)�̂� = (1/2) (𝑅𝜆
𝜎𝜇𝜈;𝜌

;𝜌 + 𝑅𝜆
𝜎𝜇

𝜌
[;𝜌;𝜈] − 𝑅𝜆

𝜎𝜈
𝜌
[;𝜌;𝜇]) ̄𝑒𝜆 ⊗ ̄𝑒𝜎 ⊗ 𝜃𝜇 ∧ 𝜃𝜈,

where ̄𝑒𝜆 is the coordinate basis of vectors; 𝜃𝜇 are the basic 1-forms, ∧ is the ex-
ternal multiplication; the symbol “semicolon” means covariant differentiation
of the components of the curvature tensor.

We substitute into this equality the identity 𝑅𝜆
𝜎𝜇𝜈;𝜌

;𝜌 = 𝑅𝜆
𝜎𝜇

𝜌
;𝜈;𝜌 − 𝑅𝜆

𝜎𝜈
𝜌
;𝜇;𝜌

obtained by the Bianchi identity contraction. As a result, we get:

Δ(HR)�̂� = (𝑅𝜆𝜎𝜇
𝜌
;𝜌)

;𝜈
𝜃𝜆 ∧ 𝜃𝜎 ⊗ 𝜃𝜇 ∧ 𝜃𝜈.

Based on this result, the statement was proved in [7]:
All solutions of Einstein’s equation 𝑅𝛼𝛽 = Λ𝑔𝛼𝛽 in vacuum are harmonic.

The proof is based on the equality 𝑅𝜆𝜎𝜇
𝜌
;𝜌 = 2𝑅𝜇[𝜆;𝜎] = 0, which is a conse-

quence of the Bianchi identity and the Einstein equation in vacuum. The right
side of this equality is called the Codazzi equation. Note that this assertion
was stated in [8] (without calculations) and is also known to geometers [4].
The authors have calculated the result of the action of the Hodge–de Rham

Laplacian on the curvature 2-form

𝐶
�̂� in the PGTG in spaces with torsion:

Δ(HR)

𝐶
�̂�= [(∇𝜇𝛿𝜅

𝜈 + 1/2𝑇 𝜅
𝜇𝜈) (∇𝜇𝛿𝛼

𝜅 + 1/2𝑇 𝛼𝛽
𝜅 + 𝛿𝛼

𝜅 𝑇 𝛽) 𝑅𝜆
𝜎𝛼𝛽] ̄𝑒𝜆⊗ ̄𝑒𝜎⊗𝜃𝜇∧𝜃𝜈.

Here, 𝑇 𝜅
𝜇𝜈 is the torsion tensor, 𝑇 𝜅 is its trace and ∇𝜇 is the symbol of

covariant differentiation.
If we confine ourselves to a special case of the Riemann–Cartan space, then

the consequence of this expression is the statement:
The solutions of the equations of the gravitational field of the Einstein–Cartan

theory in vacuum are harmonic.
The proof is based on the fact that in the Einstein–Cartan theory one of

the equations of the gravitational field in vacuum is 𝑇 𝜅
[𝛼𝛽] + 2𝛿𝜅

[𝛼𝑇𝛽] = 0, and
then on the use of the proved statement for general relativity.

5. Conclusion

Thus, it has been shown that both the general theory of relativity and
the Poincaré-gauge theory of gravity (in the particular case of the Einstein–
Cartan theory) have a property similar to the Yang–Mills and Maxwell
electromagnetism theories, namely, the solutions of the field equations of
these theories in vacuum are harmonic, what demonstrates the generality of
the gauge theory of gravity with other gauge theories.
It is also shown that the assertion existing in the literature that the equality

Δ(HR)�̂� = 0 holds only for solutions of the Einstein equation in vacuum of
type 𝑁, and therefore can serve as a criterion for the presence of gravitational
radiation, is an erroneous assertion, although it is indicated in the well-known
monograph by V.D. Zakharov [6].
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Аннотация. Тензор кривизны �̂� многообразия называется гармоничным, ес-

ли он подчиняется условию Δ(HR)�̂� = 0, где Δ(HR) = 𝐷𝐷∗ + 𝐷∗𝐷 — лапласиан
Ходжа-де Рама. Доказывается, что все решения уравнений Эйнштейна в пустоте,
а также все решения теории Эйнштейна–Картана в пустоте обладают гармонич-
ной кривизной. Опровергается утверждение о том, что гармоничными являются
только решения уравнений Эйнштейна типа 𝑁, описывающее гравитационное
излучение.

Ключевые слова: Лапласиан Ходжа–де Рама, гармоничный тензор кривизны,
гармоничные решения в пустоте уравнений Эйнштейна и уравнений теории
Эйнштейна–Картана
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Abstract. We propose an efficient method for Hamiltonian simulation of multi-qubit
quantum systems with special types of interaction. In our approach, the Hamiltonian
of a 𝑛-qubit system should be represented as a linear combination of the standard
Pauli basis operators, and then decomposed into a sum of partial Hamiltonians,
which are, in general, not Pauli operators and satisfy some anticommutation relations.
For three types of Hamiltonians, which are invariant with respect to permutations of
qubits, the effectiveness of the main algorithm in the three-qubit cluster model is
shown by calculating the operator exponentials for these Hamiltonians in an explicit
analytical form. We also calculate the density operator, partition function, entropy,
and free energy of the cluster weakly coupled to a thermal environment. In our
model, the cluster is in the Gibbs state in the temperature interval 0.1−2K, which
corresponds to the operating range of modern quantum processors. It follows from
our analysis that the thermodynamic properties of such systems strongly depend on
the type of internal interaction of qubits in the cluster.

Key words and phrases: Hamiltonian simulation, cluster of qubits, operator
exponential, thermal environment, Gibbs state, thermodynamic properties

1. Introduction

In recent decades, effective mathematical methods and computational
algorithms have been developed to simulate the dynamics of quantum systems
and their thermodynamic properties on classical computers. It is believed
that classical modeling of quantum systems, at least in quantum computation
and chemical physics [1, 2], is potentially the shortest path to substantive
quantum algorithms. In quantum information and condensed matter physics,
the Hamiltonian simulation is one of the most important problems [3–5]. This
problem can be mathematically formulated as the task of computing, exactly
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or approximately, the operator exponential exp(𝜏�̂�) for a Hamiltonian of

the form �̂� = ∑ �̂�𝑘, where each summand is assumed to be a Hermitian
operator [6, 7]. Usually the simulating Hamiltonian has a simpler form in
comparison with the Hamiltonian of a real quantum system, but they both
have the same specific features; in particular, their spectra should be close to
each other.
In this paper we propose a method for computing the operator exponen-

tials based on the decomposition of a simulating Hamiltonian into a linear
combination of 𝑛-qubit Pauli operators to reduce the complexity of the com-
putations. The method is suitable for Hamiltonians of a certain type, which,
nevertheless, represent a wide class of quantum systems in condensed matter
physics. Note that we will understand the problem of Hamiltonian simulation
in a wide sense. Namely, if the parameter 𝜏 is purely imaginary, say 𝜏 = −𝑖𝑡,
then the operator exponential describes the unitary time evolution of a closed

quantum system. On the other hand, the exponential exp(−𝛽�̂�)/𝑍 is the

density operator of a quantum subsystem weakly interacting with a ther-
mal environment having the inverse temperature 𝛽. We will consider only
time-independent Hamiltonians.
The paper is organized as follows. Sec. 2 contains some mathematical pre-

liminaries, in particular necessary definitions and properties of the Pauli basis.
Sec. 3 is devoted to the description of our method and the corresponding algo-
rithm. In Sec. 4 we consider a cluster consisting of three qubits, three model
Hamiltonians for different types of interaction, and compute the correspond-
ing exponentials and spectra. Sec. 5 deals with the same cluster interacting
with a thermal environment. In the last two sections, our goal is twofold: first,
we want to demonstrate the proposed method with a specific example (which
admits fully analytical calculations), and second, to present a prototype of
some realistic models for clusters that include a three-qubit interaction.
Throughout the paper, we use the natural system of units with 𝑐 = 1, ℏ = 1,

and 𝑘𝐵 = 1, so that energy and temperature are measured in units of inverse
length.

2. Pauli basis

Let ℋ be a one-qubit Hilbert space and ℋ𝑛 = ℋ⊗𝑛 be the corresponding
2𝑛-dimensional Hilbert space for a quantum system of 𝑛 distinguishable

qubits. Let 𝐿(ℋ𝑛) = ℋ𝑛 ⊗ ℋ†
𝑛 be the space of linear operators acting on

ℋ𝑛 and ℋ†
𝑛 by the left and right contractions respectively. It is obvious that

𝐿(ℋ𝑛) is a Hilbert space with respect to the Hilbert-Schmidt inner product,

⟨ ̂𝐴, �̂�⟩ = tr( ̂𝐴†�̂�), ̂𝐴, �̂� ∈ 𝐿(ℋ𝑛), and obviously dimℂ𝐿(ℋ𝑛) = 4𝑛. The
identity operator, �̂�0 = |0⟩⟨0| + |1⟩⟨1|, and the three Pauli operators

�̂�1 = |0⟩⟨1| + |1⟩⟨0| , �̂�2 = −𝑖 |0⟩⟨1| + 𝑖 |1⟩⟨0| , �̂�3 = |0⟩⟨0| − |1⟩⟨1|

form the Pauli basis in 𝐿(ℋ). Recall that

tr �̂�𝑘 = 0, �̂�2
𝑘 = �̂�0,

{�̂�𝑘, �̂�𝑙} = 0, [�̂�𝑘, �̂�𝑙] = 2𝑖 sign(𝜋)�̂�𝑚, (𝑘𝑙𝑚) = 𝜋(123),
(1)
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where 𝜋(123) is a permutation of {1, 2, 3}, 𝑘, 𝑙, 𝑚 ∈ {1, 2, 3}; [ , ] and { , }
denote the commutator and anticommutator respectively.

The Pauli basis in 𝐿(ℋ𝑛) is defined by

{�̂�𝑘1…𝑘𝑛
}

𝑘1,…,𝑘𝑛 ∈ {0,1,2,3}
, �̂�𝑘1…𝑘𝑛

= �̂�𝑘1
⊗ … ⊗ �̂�𝑘𝑛

, (2)

where �̂�0…0 is the identity operator. It is obvious that the Pauli basis consists
of 4𝑛 elements. We will use compact notations like �̂�𝐾 = �̂�𝑘1…𝑘𝑛

, denoting

the string 𝑘1 … 𝑘𝑛, 𝑘1, … , 𝑘𝑛 ∈ {0, 1, 2, 3}, by the corresponding decimal
representation 𝐾, 0 ⩽ 𝐾 ⩽ 4𝑛 − 1. Note that all the operators �̂�𝐾 are
Hermitian and unitary at the same time. In addition, one can easily check
the useful relations

�̂�2
𝐾 = �̂�0…0, {tr �̂�𝐾}

𝐾≠0
= 0, tr �̂�0…0 = 2𝑛. (3)

In what follows, we often use the symbol ̂𝐼 to denote �̂�0…0, if its meaning is
clear from the context.
The following proposition is a direct consequence of relations (1): any two

operators of the Pauli basis, say �̂�𝐾 and �̂�𝐿, either commute or anticommute,
that is,

either [�̂�𝐾, �̂�𝐿] = 0 or {�̂�𝐾, �̂�𝐿} = 0. (4)

The strings 𝐾 = 𝑘1 … 𝑘𝑛 and 𝐿 = 𝑙1 … 𝑙𝑛 completely define the correspond-
ing Pauli operators �̂�𝐾 and �̂�𝐿. Let 𝑝 be the number of pairs (𝑘𝛼, 𝑙𝛼), where
𝑘𝛼 ∈ 𝐾 and 𝑙𝛼 ∈ 𝐿, such that 𝑘𝛼 ≠ 0, 𝑙𝛼 ≠ 0, and 𝑘𝛼 ≠ 𝑙𝛼, 𝛼 = 1, 2, … , 𝑛. If
𝑝 is even (odd), then the operators commute (respectively, anticommute). The
proof of this statement is elementary.

The statement (4), which can be rewritten in the form �̂�𝐿�̂�𝐾�̂�𝐿 = ±�̂�𝐾,
play a key role in implementation of our algorithm presented in the next
section. Note also that Hamiltonians and density operators, being Hermitian,
are written as linear combinations of the Pauli basis operators with real
coefficients.

3. Decompositions of Hamiltonians in the Pauli basis

The simplest version of the Lie–Trotter–Suzuki decomposition has the form

𝑒𝜏𝐻 = (𝑒𝜏𝐻1/𝑚𝑒𝜏𝐻2/𝑚 ⋯ 𝑒𝜏𝐻𝑟/𝑚)𝑚 + 𝑂(𝜏2𝑟2/𝑚).

In practice, one usually uses an enhanced formula of forth order, which gives

an error of order 𝑂(𝜏5𝑟5/𝑚4), however, in any case, the operator exponentials
in the product must be calculated with very high accuracy. Note that if these
exponentials can be represented analytically in a simple closed form, it may
be possible to reduce the exponential complexity to polynomial.
In Hamiltonian simulation, the first step as always is to divide, in some

“maximal” way, the original Hamiltonian into pairwise commuting Hermitian
parts, so that the total operator exponential will be found as the product

of the exponentials of these partial Hamiltonians. Let �̂� be such a partial
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Hamiltonian. In what follows, we require that it can be represented as the sum

�̂� =
𝐾

∑
𝑘=1

𝑎𝑘�̂�𝑘, 𝑎𝑘 ∈ ℝ, (5)

where the operators �̂�𝑘 are Hermitian and satisfy the conditions

{�̂�𝑘, �̂�𝑙}𝑘⩽𝑙 = 𝑏𝑚�̂�𝑚, 𝑏𝑚 ∈ ℝ, 𝑘, 𝑙, 𝑚 ∈ {1, 2, … , 𝐾} . (6)

In addition, we assume that 𝐾 ≪ 4𝑛, since otherwise this decomposition
does not have any meaningful sense. In formula (6), the integer-valued function
𝑚 = 𝑚(𝑘, 𝑙) completely defines the anticommutation relations. Therefore,
from a purely computational point of view, our algorithm reduces to an
iterative procedure for this function and finite summation operations. Indeed,

the next step obviously consists in computing the powers of �̂�. The second
power is

�̂�2 = ∑
𝑘⩽𝑙

𝑎𝑘𝑎𝑙𝑏𝑚(𝑘,𝑙)�̂�𝑚(𝑘,𝑙),

so that, after collecting similar terms, we obtain the decomposition of the
form (5) with other coefficients, say 𝑐𝑘. Then the third power (and analogously

the fourth one) of �̂� has the form

�̂�3 = ∑
𝑘⩽𝑙

𝑎𝑘𝑐𝑙𝑏𝑚(𝑘,𝑙)�̂�𝑚(𝑘,𝑙).

It is important that the series of coefficients at the powers of the operator
can often be summarized into a simple closed expression.
The proposed algorithm starts with the decomposition of the Hamiltonian

in accordance with the expressions (5) and (6). Here the conditions (6) seem
to be very strong. However, first, they are automatically satisfied for any set
of anticommuting Pauli basis operators and, therefore, are of great significance
in applications. Second, the model Hamiltonian of a quantum system often
has a high degree of symmetry. It takes place, for example, under the quite
weak assumption that there exists some sufficiently large permutation group,
acting on qubits, such that the Hamiltonian is invariant with respect to this
action. In the latter case, the conditions (6) usually hold and, moreover, the
terms in the decomposition (5) have a number of common eigenvectors. And
third, for Ising-type Hamiltonians, the corresponding lattice, as a rule, can be
partitioned in some suitable way into local subsets for which the conditions (6)
hold.
In conclusion of this section, we consider a special but very important

version of the conditions (6) when

�̂�2
𝑘 = ̂𝐼, {�̂�𝑘, �̂�𝑙}𝑘≠𝑙 = 0, 𝑘, 𝑙 = 1, 2, … , (7)

where we formally add the identity operator ̂𝐼 = �̂�0 to the set {�̂�𝑘}𝐾
𝑘=1

to keep it closed under the anticommutation operation. In this case, an

elementary calculation gives the following relations for the powers of �̂�:
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�̂�2𝑘+1 = 𝑎2𝑘�̂�, �̂�2𝑘 = 𝑎2𝑘 ̂𝐼 , 𝑘 = 1, 2, … , 𝑎 = (
𝐾

∑
𝑘=1

𝑎2
𝑘)

1/2

.

From the power series expansion, the exponential of the Hamiltonian (5),
in its turn, can now be obtained in a simple closed form:

exp(𝜏�̂�) = ̂𝐼 + 𝜏�̂� + 𝜏2

2!
�̂�2 + 𝜏3

3!
�̂�3 + 𝜏4

4!
�̂�4 + … =

= ( ̂𝐼 + 𝑎2𝜏2

2!
̂𝐼 + 𝑎4𝜏4

4!
̂𝐼 + …) + (𝑎𝜏

𝑎
�̂� + 𝑎3𝜏3

𝑎3!
�̂� + …) =

= ch(𝑎𝜏) ̂𝐼 + sh(𝑎𝜏)
𝑎

�̂�. (8)

It is appropriate to clarify the significance of the obtained formula by the
fact that the relations (7) are automatically fulfilled if the decomposition (5)
contains only anticommuting Pauli operators. Note also that there is one
more important special case when, in addition to the conditions (6), the

operators �̂�𝑘 commute pairwise, [�̂�𝑘, �̂�𝑙] = 0 (the next section deals with

just such a case). Then the exponential exp(𝜏�̂�) is the product of exponentials
exp(𝜏𝑎𝑘�̂�𝑘) of partial Hamiltonians, and each exponential can be calculated

using a simple version of the basic algorithm and naturally represented as

a linear combination of the operators �̂�𝑘. Then the product should be
expanded into a linear combination of all the same operators.

4. Three-qubit model Hamiltonians

In the literature, there are many examples of few-qubits (usually two- and
three-qubits) systems with various model Hamiltonians (see e.g. [8] and the
references therein). In this section, we consider a three-qubit cluster and three
model Hamiltonians describing different types of internal interaction between
the qubits. The most important distinctive feature of these Hamiltonians is
the presence of three-qubit interactions. In order to perform all calculations
in an analytical form and thereby provide an illustrative example of using our
algorithm, the Hamiltonians are chosen to be invariant under permutations

of qubits. Namely, we define two Hamiltonians (the third one is �̂�1 + �̂�2) by
the relations

�̂�1 = 1
12

( ̂𝐹1 + ̂𝐹2 + ̂𝐹3 + 3 ̂𝑆) , �̂�2 = 1
12

( ̂𝐺1 + ̂𝐺2 + ̂𝐺3 + 3 ̂𝐼) . (9)

where ̂𝑆 = −�̂�333, and

̂𝐹1 = �̂�113 +�̂�131 +�̂�311, ̂𝐹2 = �̂�223 + �̂�232 +�̂�322, ̂𝐹3 = �̂�003 +�̂�030 +�̂�300,
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̂𝐺1 = �̂�022+�̂�202+�̂�220, ̂𝐺2 = �̂�011+�̂�101+�̂�110, ̂𝐺3 = −�̂�033−�̂�303−�̂�330.

Given the symmetry, one can easily obtain the relations

{ ̂𝐹𝑖, ̂𝑆} = 2 ̂𝐺𝑖, { ̂𝐺𝑖, ̂𝑆} = 2 ̂𝐹𝑖, 𝑖 = 1, 2, 3,

{ ̂𝐹𝑖, ̂𝐹𝑗} = 2 ̂𝐺𝑘, { ̂𝐺𝑖, ̂𝐺𝑗} = 2 ̂𝐺𝑘, { ̂𝐹𝑖, ̂𝐺𝑗} = 2 ̂𝐹𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘,

{ ̂𝐹1, ̂𝐺1} = 6 ̂𝑆 + 4 ̂𝐹1, { ̂𝐹2, ̂𝐺2} = 6 ̂𝑆 + 4 ̂𝐹2, { ̂𝐹3, ̂𝐺3} = 6 ̂𝑆 − 4 ̂𝐹3.

The squares of the operators are ̂𝑆2 = ̂𝐼 and

̂𝐹 2
1 = ̂𝐺2

1 = 3 ̂𝐼 + 2 ̂𝐺1, ̂𝐹 2
2 = ̂𝐺2

2 = 3 ̂𝐼 + 2 ̂𝐺2, ̂𝐹 2
3 = ̂𝐺2

3 = 3 ̂𝐼 − 2 ̂𝐺3.

Using these relations, we find that the Hamiltonians �̂�1 and �̂�2 commute,

[�̂�1, �̂�2] = 0, and

{�̂�1, �̂�2} = 2�̂�1, �̂�2
1 = �̂�2

2 = �̂�2, (10)

so that

�̂�3
1 = �̂�1, �̂�4

1 = �̂�2, �̂�5
1 = �̂�1, … , �̂�3

2 = �̂�2, �̂�4
2 = �̂�2, … .

Finally, using the above relations and the Taylor series expansion of the op-
erator exponential, we obtain

exp(𝜏�̂�1) = ̂𝐼 + 𝜏�̂�1 + 𝜏2

2
�̂�2

1 + 𝜏3

3!
�̂�3

1 + 𝜏4

4!
�̂�4

1 + 𝜏5

5!
�̂�5

1 + ⋯ =

= ̂𝐼 + (𝜏 + 𝜏3

3!
+ 𝜏5

5!
+ ⋯)�̂�1 − �̂�2 + (1 + 𝜏2

2
+ 𝜏4

4!
+ ⋯)�̂�2 =

= ̂𝐼 + sh𝜏�̂�1 + (ch𝜏 − 1)�̂�2, (11)

and analogously,

exp(𝜏�̂�2) = ̂𝐼 + (e𝜏 − 1)�̂�2. (12)

We will also consider the Hamiltonian

�̂� = �̂�1 + �̂�2, (13)

for which the corresponding exponential is

exp(𝜏�̂�) = ̂𝐼 + e𝜏sh𝜏�̂�1 + e𝜏 (ch𝜏 − 1)�̂�2. (14)

The Hamiltonians (9) and (13) have the same eigenvectors, but of course
their eigenvalues must be different. We also have the following consequence of

the symmetry of �̂�1, �̂�2, and �̂�: if a state is invariant under all permutations
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of qubits, then it is obviously the eigenvector of these Hamiltonians. This
implies that the states

𝑆0 = |000⟩ , 𝑆1 = |111⟩ ,

𝑊 = |001⟩ + |010⟩ + |100⟩√
3

, 𝑊 = |011⟩ + |101⟩ + |110⟩√
3

,

are eigenvectors for them, where 𝑊 is one of the two inequivalent classes

of completely entangled states, and 𝑊 is the “false”, 𝑊-state. Other four
eigenvectors can be chosen as

𝑉1 = 2 |001⟩ − |010⟩ − |100⟩√
6

, 𝑉2 = |010⟩ − |100⟩√
2

,

𝑉3 = 2 |011⟩ − |101⟩ − |110⟩√
6

, 𝑉4 = |101⟩ − |110⟩√
2

.

These eight eigenvectors make up an orthonormal basis in the Hilbert space
ℋ⊗3. The Hamiltonians (9) and (13) have strongly degenerate spectra. By
introducing the notations [𝑆] = {𝑆0, 𝑆1} and [𝑉 ] = {𝑉1, 𝑉2, 𝑉3, 𝑉4}, we can
write down these spectra as

Spec �̂�1 = { (−1, 𝑊), (0, [𝑆], [𝑉 ]), (1, 𝑊)}, (15)

Spec �̂�2 = {(0, [𝑆], [𝑉 ]), (1, 𝑊, 𝑊)}, (16)

Spec �̂� = {(0, [𝑆], [𝑉 ], 𝑊), (2, 𝑊)}, (17)

where the real numbers in round parentheses denote the corresponding eigen-
values.

5. Three-qubit cluster in a thermal environment

Model Hamiltonians provide wide possibilities for approximate simulation
of real quantum systems in condensed matter physics. This section is devoted
to a toy model of a material consisting of three-qubit clusters with strong in-
tracluster quantum coherence and a weak (thermal) intercluster interaction.
Such models of clusters in the presence of a thermal environment were consid-
ered earlier for two-qubit clusters [9] and three and four-qubit clusters [10–12]
with simpler but less symmetric Hamiltonians. We will use the Hamiltonians
that were studied in the previous section.
In general, the total Hamiltonian of a subsystem and a thermal environment

(bath), weakly coupled with each other, is given by the sum

�̂� = �̂�𝑠 + �̂�𝑏 + �̂�𝑖𝑛𝑡.

In this connection, there arises a subtle issue whether the density operator
of the subsystem, 𝜌(𝑡), given in an arbitrary initial state 𝜌(0), will come to
an equilibrium (Gibbs) state over long time. For Hamiltonians with non-
degenerated spectrum, von Neumann proves this statement rigorously in his



254 DCM&ACS. 2023, 31 (3) 247–259

pioneer paper [13] (see also [14, 15]). However, it is shown in [16] that the
requirement of non-degeneracy can be ruled out; in this case, the subsystem
will reside close to a fixed equilibrium state most of the time. Also, there
are no theoretical or experimental examples of degenerate subsystems with
non-equilibrium long time dynamics in the literature. On the other hand,
the degeneracy is a consequence of the high symmetry of the subsystem’s
Hamiltonian, but in realistic situations, perturbations violate the degeneracy of
energy level [17]. Our consideration will be based on the following assumption:
if the intensity of the interaction (in the sense of the usual operator norm

of �̂�𝑖𝑛𝑡) between the subsystem and the environment is much less than the
temperature 1/𝛽, and the internal interaction (determined by 𝐻𝑠) of qubits
in the subsystem is greater than 1/𝛽, then the subsystem will be in a state

being very close to the Gibbs state ̂𝜌 = exp(−𝛽 ̂𝐻𝑠)/𝑍.

At this stage, we have to introduce a dimensional factor into the Hamiltoni-

ans (9) and (13) by replacing �̂� → 𝜔�̂� or, equivalently, by setting 𝜏 = −𝛽𝜔,
where [𝜔] = 𝐿−1; in other words, the coefficient 1/12 in (9) will be replaced
by 𝜔/12. According to formulae (15)–(17), the eigenvalues of the Hamilto-
nians �̂�1, �̂�2, and �̂� are {−𝜔, 0, 𝜔}, {0, 𝜔}, and {0, 2𝜔}, respectively. For
the interaction �̂�1, the ground state of the system is non-degenerated, as

well as the exited state for �̂�, while both the states for the Hamiltonian �̂�2
are degenerated. From the expressions (11), (12), and (14), one can find the

corresponding partition functions 𝑍 = tr exp(−𝛽�̂�) and density operators

̂𝜌 = exp(−𝛽�̂�)/𝑍. Taking into account that tr�̂�1 = 0 and tr�̂�2 = 2𝜔, we
obtain

𝑍1 = 6 + 2ch(𝜔𝛽), 𝑍2 = 6 + 2e−𝜔𝛽, 𝑍 = 9 − 2e−𝜔𝛽 + e−2𝜔𝛽,

̂𝜌1 = 1
𝑍1

[ ̂𝐼 − sh(𝜔𝛽)
𝜔

�̂�1 + ch(𝜔𝛽) − 1
𝜔

�̂�2] ,

̂𝜌2 = 1
𝑍2

[ ̂𝐼 + e−𝜔𝛽 − 1
𝜔

�̂�2] ,
(18)

̂𝜌 = 1
𝑍

[ ̂𝐼 − e−𝜔𝛽sh(𝜔𝛽)
𝜔

�̂�1 + e−𝜔𝛽(ch(𝜔𝛽) − 1)
𝜔

�̂�2] . (19)

We see that the partition function 𝑍1 diverges in the low temperature limit.
In a real system, the divergence will be compensated by the sharp dominance
of the Hamiltonian 𝐻𝑖𝑛𝑡 in comparison with the temperature. In fact, the
condition of weak coupling between the cluster and its thermal environment is
violated for all the three types of interaction in the region 𝛽 ≫ 1. Therefore,
there are no equilibrium states despite of good definiteness of the density

operators: for 𝛽 → ∞, we have (with the same error 𝑂(e−𝜔𝛽))

̂𝜌1 = �̂�2 − �̂�1
2𝜔

, ̂𝜌2 =
̂𝐼

6
− �̂�2

6𝜔
, ̂𝜌 =

̂𝐼
9

+ �̂�2 − �̂�1
18𝜔

.
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The divergence of 𝑍1 is reflected in the fact that ̂𝜌1 is a pure state in the
zero temperature limit, ̂𝜌2

1 = ̂𝜌1, so that it cannot represent any Gibbs state.
An analogous picture takes place at high temperatures. In this case, the
internal interaction between qubits becomes of the order of 1/𝛽 or less than
it, so that the cluster again cannot be considered in isolation from the entire
system. In the region 𝛽 ≪ 1 where quantum effects no longer dominate, we
have the usual semiclassical behavior (in particular, all eigenstates are almost
equally probable)

̂𝜌 = ̂𝜌1 =
̂𝐼 − 𝛽�̂�1

8
+ 𝑂(𝛽2), ̂𝜌2 = 4 + 𝜔𝛽

32
̂𝐼 − 𝛽

8
�̂�2 + 𝑂(𝛽2), 𝛽 → 0.

Using the well-known expressions for the average energy, von Neumann
entropy, and free energy,

ℰ = tr( ̂𝜌�̂�) = −𝜕𝛽 ln𝑍, 𝑆 = ln𝑍 + 𝛽 ℰ, ℱ = ℰ − 𝑇 𝑆 = −1
𝛽
ln𝑍, (20)

we have plotted in figures 1 and 2, respectively, the entropies and free energies
for the three states under considerations. Recall that the transition from
natural units to ordinary units consists in the replacements

𝛽 → 𝛽
𝑐ℏ

, 𝜔 → 𝑐ℏ𝜔.

Thus the value 𝛽 = 1 corresponds to the inverse temperature 1/𝑇 ≈
3 ⋅ 1016 erg−1, that is, 𝑇 ≈ 3 ⋅ 10−17 erg ≈ 0.2K. Note that the usual working
inverse temperatures of qubits, realized, for example, in the form of quantum
dots or superconducting artificial atoms, are in the interval 0.2 ⩽ 𝛽 ⩽ 2.

1 2 3 4 5
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βββ
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Partition function Z2

1 2 3 4 5
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βββ
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Figure 1. In the low temperature region, lim
𝜔→∞

𝑍2 = 6 and lim
𝜔→∞

𝑍 = 9, in contrast
to the partition function 𝑍1, which diverges
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Figure 2. Entropy 𝑆(𝛽) (left panel) and free energy 𝐹(𝛽) (right panel) for the states (18)
and (19). In the low temperature limit 𝛽 → ∞, we have, with an error 𝑂(e−2𝜔𝛽),

the expansions 𝐹1 = −𝜔 − (6/𝛽)e−𝜔𝛽, 𝐹2 = −(ln6)/𝛽 − e−𝜔𝛽/(3𝛽),
𝐹 = −(ln9)/𝛽 + 2e−𝜔𝛽/(9𝛽). In the high temperature limit 𝛽 → 0, we have

𝐹1 ∼ 𝐹2 ∼ 𝐹 ∼ −3(ln2)/𝛽

6. Conclusions

We have presented a simple method for simulating multi-qubit clusters
having Hamiltonians of a special form, but nevertheless covering a wide range
of quantum systems in condensed matter physics. It is assumed that the
Hamiltonian of a quantum system can be represented as a linear combination
of some set of partial Hamiltonians, so that their anticommutators up to
a factor are themselves elements of this set. Another feature of our approach is
the use of the Pauli basis, in which all calculations have the simplest form. To
demonstrate the effectiveness of the main algorithm, we considered a cluster
of three qubits and three model Hamiltonians representing various types of
interactions that are symmetric under permutations of qubits and therefore
make possible a fully analytical treatment.
Our algorithm was used to find the density operator, partition function,

entropy, and free energy of such a cluster, weakly coupled to a thermal
environment, for the Hamiltonians under consideration. In our model, the
cluster is in a Gibbs state in the temperature interval 0.1−2K, that is, in the
operating range of modern quantum processors. Our analysis showed that
the thermodynamic properties of such a system strongly depend on the type
of internal interaction of qubits in the cluster.
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Аннотация. Предлагается эффективный метод математического моделиро-
вания гамильтонианов многокубитных квантовых систем с взаимодействием
специального вида. В нашем подходе гамильтониан системы 𝑛 кубитов должен
быть представлен линейной комбинацией в стандартном базисе Паули, а затем
разложен в сумму частичных гамильтонианов, которые, вообще говоря, не яв-
ляются операторами Паули и удовлетворяют некоторым антикоммутационным
соотношениям. Для трёх типов гамильтонианов, инвариантных относительно
перестановок кубитов, эффективность основного алгоритма в модели трёхкубит-
ного кластера показана посредством вычисления операторных экспонент этих
гамильтонианов в явном аналитическом виде. Кроме того, вычислен оператор
плотности состояния, статистическая сумма, энтропия и свободная энергия для
кластера, слабо связанного с термостатом. В нашей модели кластер находится
в состоянии Гиббса в интервале температур 0,1−2K, что соответствует рабочему
диапазону современных квантовых процессоров. Из нашего анализа следует, что
термодинамические свойства такой системы сильно зависят от типа внутреннего
взаимодействия кубитов в кластере.

Ключевые слова: моделирование квантовых гамильтонианов, кластер куби-
тов, операторная экспонента, термостат, состояние Гиббса, термодинамические
свойства
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Abstract. Since the appearance of COVID-19, a huge amount of data has been
obtained to help understand how the virus evolved and spread. The analysis of
such data can provide new insights which are needed to control the progress of the
epidemic and provide decision-makers with the tools to take effective measures to
contain the epidemic and minimize the social consequences. Analysing the impact
of medical treatments and socioeconomic factors on coronavirus transmission has
been given considerable attention. In this work, we apply panel autoregressive
distributed lag modelling (ARDL) to European Union data to identify COVID-19
transmission factors in Europe. Our analysis showed that non-medicinal measures
were successful in reducing mortality, while strict isolation virus testing policies
and protection mechanisms for the elderly have had a positive effect in containing
the epidemic. Results of Dumitrescu–Hurlin paired-cause tests show that a bi-
directional causal relationship exists for all EU countries causal relationship between
new deaths and pharmacological interventions factors and that, on the other hand,
some socioeconomic factors cause new deaths when the reverse is not true.

Key words and phrases: causality analysis, COVID-19, socio-economic,
Dumitrescu–Hurlin’ panel

1. Introduction

In January 2020, the SARS-CoV-2 coronavirus from 2019 made its way
to Europe. As a result, the European Union and the majority of European
nations had documented their first case. It should be observed, nevertheless,
that the infection spread unevenly. At the end of April, there were more
than three million confirmed cases of the severe acute respiratory syndrome
coronavirus (COVID-19) worldwide (CSS, 2020), (SARS-CoV-2). The first
human instance of the coronavirus was discovered in Wuhan, China, in
late 2019 despite the fact that its origins are still unknown. One way the
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coronavirus is spread from person to person is through respiratory droplets
created when infected people cough or sneeze in front of others [1].
Air travel is one of the factors contributing to the coronavirus outbreak

in Europe. Late January or early February saw the confirmation of the first
instances. Human contacts after the virus’s introduction to Europe helped it
spread quickly. Social contact is crucial for the spread of all viruses, including
COVID-19, according to research [2]. Human behavior is frequently viewed
as a crucial safeguard for stopping the COVID-19 pandemic [3]. Globally,
policymakers and health professionals are urging people to exercise social
responsibility by limiting social interaction, adhering to stringent cleanliness
and distancing guidelines, and being vaccinated. 1 Politicians are advising
their constituents to weigh the social costs of their individual acts in terms
of economics. In order to counteract COVID-19, official strategies heavily
rely on this method of using social capital. The significance of social capital
to controlling COVID-19 and preserving population health, however, is not
well supported by systematic studies. According to what we know, this study
is the first to rigorously analyze the dynamic link between social capital
and health outcomes, as determined by COVID-19 instances and excess
mortality. We systematically demonstrate that social capital has a causal
and beneficial impact on pandemic-related health outcomes based on different
analyses for seven European nations: Austria, Germany, Great Britain, Italy,
the Netherlands, Sweden, and Switzerland. Personal hygiene habits and
non-pharmaceutical interventions are the only ways to stop the spread of
COVID-19 in the absence of vaccines and medications.
The development of a broad framework for the causal analysis of COVID-19

in Europe is the goal of this research. As response variables, the number
of new cases and fatalities attributable to COVID-19 are used. Potential
causative variables include intervention factors and measures.

2. Related works

Several studies have used various approaches and linked data from the WHO
and other COVID-19 data sources to study the pandemic’s spread or serve as
a guide for developing measures. Using the COVID-19 government response
tracker data from the University of Oxford, employed Nonlinear Additive
Noise Models for Bivariate Causal Discovery to determine the causative effect
of a factor or an intervention measure on the number of new cases or an
intervention measure. Reference [4] used data from the pandemic that affected
31 provinces and regions in China from January 20, 2020, to February 24,
2021, and the directed acyclic graph to demonstrate the causal link between
influencing factor and daily cases. Using information from the official reports of
the Robert Koch Institute, [5] studied the spread of the virus in Germany and
the causative influence of restriction measures. In order to estimate the total
causal effects based on directed acyclic graph analysis by negative binomial
regression, collected data for 401 German districts between 15 February
and 8 July 2020 from publicly accessible sources in Germany (e.g., the
Robert Koch Institute, Germany’s National Meteorological Service, Google).
The most commonly used statistical methods for analysing epidemiological
factors of COVID-19 and evaluating intervention measures include correlation,
regression, logistic regression and a dynamic model coupled with a linear
model. Yet, if particular structures are considered, statistical methods like
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regression can only be regarded as instruments for causal analysis because they
only allow a measure of causal dependence to be defined for these structures.
On the basis of natural hypotheses, a procedure that is more effective than
those now in use can be developed. Based on association analysis, this
technique is known as dependency analysis. The statistical examination of the
impacts of influencing factors and health interventions on the dissemination
of COVID-19 has used association analysis as a reference. Yet, it is still
challenging to comprehend the COVID-19 transmission pathway based on
association analysis. The data were taken from the GlobalEconomy.com
website used Pearson correlation analysis and multivariate linear regression to
uncover economic and socio-political aspects that could fuel the coronavirus’s
expansion.

3. Materials and methods

3.1. Data Description

The analysis includes data for European economies from February 1st, 2020,
through November 27th, 2022. Based on the statistics that are available,
the era and the group of nations are chosen. The University of Oxford’s
COVID-19 government response was where the information came from. The
Government Response Index can be created using the data in this set, which
also includes a stringency index, a containment and health index, and an
economic support index (see table 1).

Table 1

Definition of variables

Variables Definition

NEW_DEATHS News recorded deaths of COVID 19

STRINGENCY Stringency Index

CONTAINMENT Containment Health Index

ECONOMIC_SUP Economic Support Index

VACCINATION Vaccination policy

TESTING Availability of detection

PROTECT_ELD Care policy for the elderly population

The stringency index collects data on social segregation measures, coded
from eight indicators: stay-at-home regulations, workplace closures, public
event cancellations, gathering size restrictions, closures to public transporta-
tion, and travel restrictions both domestically and internationally.
Three indices that stand for public awareness efforts, testing regulations,

and contact tracing make up the containment and health index. The index
stands for the government’s emergency health system policies, including the
coronavirus testing program.
The government’s income support program for citizens in times of crisis

is reflected in the economic support index, which consists of two indicators:



K.A. Brou, Identification of COVID-19 spread factors in Europe based… 263

household anticipated debt alleviation and government income assistance.
Each of these three metrics is expressed as a simple sum of the values for
the underlying metrics, scaled to a range between 0 and 100. These indexes
are provided for comparison and shouldn’t be used as a judgment on the
suitability or efficacy of a nation’s approach. The WHO is the source of the
daily total of new cases. The time frame for the study is from January 1,
2020, to December 4, 2022, and it includes 230 different nations.
Table 2 displays a statistical breakdown of the key variables. The greatest

value is 1623, the minimum value is 1918, and the average value is 42.27578,
using the daily number of new deaths as an example. The number of new
deaths is chosen as the explanatory variable since all efforts implemented
by different governments around the world aim to prevent mortality, and
reducing the number of cases will likely result in a decrease in deaths. So,
the analysis will show us which measures not new instances as was noted in
earlier literature really had an impact on pandemic related deaths.

Table 2

Descriptive and Summary Statistics

Variables Mean Standard Deviation Minimum Maximum

NEW_DEATHS 42.27578 104.4784 -1918.000 1623.000

STRINGENCY 43.11964 23.07557 0 96.30000

CONTAINMENT 49.82720 17.54525 0 90.00000

ECONOMIC_SUP 57.41835 34.87956 0 100.0000

VACCINATION 2.998873 2.247651 0 5.000000

TESTING 2.355943 0.799513 0 3.000000

PROTECT_ELD 1.588960 1.006744 0 3.000000

3.2. Methodology

In our empirical research, we examined how health interventions and
socioeconomic observational data contributed to the global spread of COVID-
19. Using this method, we may assess how health measures have affected the
spread of COVID-19. In order to accomplish our goal, we used in this study
a linear function that incorporates socioeconomic observational data and
health treatments as an extra variable to control factors that are equivalent to
COVID-19. As suggested by Pesaran and Shin, the equation is calculated using
a time series autoregressive distributed lag model (ARDL). The advantage of
the ARDL framework is that it can differentiate between short- and long-term
impacts, which enhances earlier material. We may also predict a consistent
short-term cross-sectional influence (short term coefficient of nations) due to
our extensive sample size. Due to its distinction between short- and long-term
impacts, the ARDL methodology aids in addressing the shortcomings of
earlier work.
Using both time and cross-sectional dimensions increases the overall number

of data and their variability in our panel estimation. A panel estimation also
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reduces the noise that results from a single time-series estimation, leading to
more trustworthy inference.

3.2.1. Panel unit root tests

The determination of the order of integration of variables serves as the
foundation for estimating any econometric model. It is required to verify that
the variables in the regression are either integrated of order zero 𝐼(0) or at
most integrated at order one 𝐼 during the ARDL model estimate procedure
𝐼(1). Reference [6] was used to check the integration of the variables in the
proper sequence. The ADF regression for panel data serves as the foundation
for these two tests and is described as follows in (1):

Δ𝑦𝑖,𝑡 = 𝜔𝑖𝑦𝑖,𝑡−𝑗 +
𝑝

∑
𝑗=1

𝜙𝑗Δ𝑦𝑖,𝑡−𝑗 + 𝜖𝑖,𝑡, where 𝜔𝑖 = 𝜌𝑖 − 1. (1)

Both tests evaluate the zero-unit root 𝐻0: 𝜔𝑖 = 0 (𝜌 = 1) with respect
to the stationarity alternative 𝐻1: 𝜔𝑖 < 0 (𝜌𝑖 < 1). The LLC test assumes
that the tested parameters are the same in all panels, i.e., 𝜌𝑖 = 𝜌 for all
countries in the panel. The IPS test, which averages the ADF statistic and
enables the parameters to vary across panels, is less constrictive than the LLC
test. However, because they do not take into consideration the cross-section
dependency issue that could arise as a result of macroeconomic linkages,
unexplained residual independence, and unobserved common factors, both
the IPS and LLC tests are regarded as first-generation unit root tests. In
order to determine whether the variables in the model for this study have any
cross-sectional dependence, second-generation unit root tests are run. Then,
the Pesaran [7] proposed cross-section dependence (CD) test is conducted.
When N is more than T, the CD test can be used to determine whether there
is any cross-sectional dependency among the variables. The pair correction
coefficients of OLS residual regressions are averaged to form the basis of the
CD test. After the CD test has confirmed whether cross-sectional dependence
exists, the cross-sectional Augmented Dickey-Fuller (CADF) test is carried
out by Pesaran [8]. In order to test the null hypothesis of cross-sectional
dependency among a panel of nations, the CADF test considers cross-section
dependence among the variables. This is done to verify that the variables are
still either 𝐼(0) or I even if there is cross-sectional dependency among the
group of countries 𝐼(1).

3.2.2. Panel cointegration tests

After the order of integration is established, the next step in the study is to
test for evidence of long-run cointegration between NEW DEATHS and the
independent variables using the panel cointegration tests from Pedroni, Kao
and Westlund may be used for samples smaller than 100 in number. Based
on the panel-data model for an 𝐼(1) dependent variable 𝑦, the Pedroni and
Kao tests compare the cointegration alternative to the null hypothesis of no
cointegration (see (2)):

𝑦𝑖,𝑡 = 𝑥′
𝑖𝑡𝛽𝑖 + 𝑧′

𝑖𝑡𝜏𝑖 + 𝜖𝑖,𝑡, (2)



K.A. Brou, Identification of COVID-19 spread factors in Europe based… 265

where both tests demand that the covariates not be integrated among them-
selves for each panel I the variables in 𝑥(𝑖, 𝑡) are an 𝐼(1) series. The Kao
test constrains 𝛽𝑖 = 𝛽 by assuming that all of the nations in the panel share
a common cointegration vector. There are some distinctions between the two
tests even though they both use the identical null and alternative hypothe-
ses. In reality, the Pedroni test differs from the Kao test in that it accepts
panel-specific cointegrating vectors.

3.2.3. Autoregressive distributed Lag model

The ARDL model is estimated via unit root and cointegration tests. The
ARDL model can be employed with confidence for short sample periods and
distinguishes between short- and long-run coefficients. In fact, [8] shows that
the long-run parameters are super-consistent even with a small sample size,

whereas the short-run values are
√

𝑇 consistent. A panel ARDL (𝑝, 𝑞1, 𝑞2, 𝑞3,
𝑞4, 𝑞5) Equation is used to express the connection as a result, where 𝑝 stands
for the lags of the dependent variable and 𝑞 for the lags of the independent
variables. In (3), we can see a representation of the panel ARDL equation:

ΔNEW_DEATHS𝑖,𝑡 =

= 𝛼0 +
𝑝

∑
𝑗=1

𝛼1
𝑖,𝑗ΔNEW_DEATHS𝑡−𝑖 +

6
∑
𝑘=1

𝑞𝑘

∑
𝑗=0

𝛼𝑘+1
𝑖,𝑗 𝑋𝑘

𝑡−𝑗 + 𝜖𝑖,𝑡, (3)

where 𝑖 = 1, 2, 3, … , 𝑁 and 𝑡 = 1, 2, 3, … , 𝑇, 𝛼𝑖 represents the fixed effects,

𝑋𝑘 𝛼𝑘
𝑖,𝑗, 𝑘 = 1, 2, … , 9 are the lagged coefficients of the independent variables

(Stringency Index, Containment Health Index, Economic Support, Vaccination
policy, Testing policy, Protection to elderly) and the regressors and 𝜖𝑖,𝑡 is the
error term which is assumed to be white noise and varies across countries
and time. In a panel error correction (ECM) representation equation (4) is
formulated as follows:

ΔNEW_DEATHS𝑖,𝑡 = 𝛼𝑖 +
𝑝

∑
𝑗=1

𝛼1
𝑖,𝑗ΔNEW_DEATHS𝑡−𝑖+

+
6

∑
𝑘=1

𝑞𝑘

∑
𝑗=0

𝛼𝑘+1
𝑖,𝑗 𝑋𝑘

𝑡−𝑗 +
6

∑
𝑘=1

𝛽𝑘𝑋𝑘
𝑡−𝑖 + 𝜖𝑖,𝑡, (4)

where Δ is the first difference of variables. Also, 𝛼1–𝛼7 are the short-run
coefficients. While 𝛽1–𝛽7 are the long-run coefficients of stringency index,
containment health index, economic support index, vaccination policy, testing
policy and protection of elderly respectively. In order to estimate the short-
term equation, Hendry’s [9] suggestion that after establishment of long-run
relationship between the dependent and independent variables, the panel
error correction Model (ECM) model is expressed in equation (5) as follows:
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ΔNEW_DEATHS𝑖,𝑡 = 𝛼0 +
𝑝

∑
𝑗=1

𝛼1
𝑖,𝑗ΔNEW_DEATHS𝑡−𝑖+

+
6

∑
𝑘=1

𝑞𝑘

∑
𝑗=0

𝛼𝑘+1
𝑖,𝑗 𝑋𝑘

𝑡−𝑗 + ΘECM𝑡 − 1 + 𝜖𝑡, (5)

where Θ is the ECM coefficient, which gauges the rate at which the economy
adjusts each year in the direction of long-run equilibrium. The Akaike’s lag
selection criteria are used to establish the ECM model’s ideal lag length. All
the nations in the sample are considered while estimating the panel ECM.

This offers a broad overview as well as a platform of the connections
between health interventions, socioeconomic observational data, and news
coronavirus mortality throughout European member states. The COVID-19
death, however, is dependent on a number of factors, including the stringency
index, containment health index, economic support index, vaccination policy,
testing policy, and the protection of elderly people, as emphasized in the
research study. Using the pooled mean group (PMG) method, the panel
ARDL regression is estimated. Reference [10] describes an estimation method
that combines pooling and averaging of coefficients. The intercepts, short-run
coefficients, and error variances can vary freely between groups using this
panel approach. The likelihood-based PMG estimator, meanwhile, imposes
the restriction that the long-run coefficients be constant across groups. When
homogeneity restriction is in fact true, this results in consistent estimates. The
PGM estimator is also less susceptible to outliers in situations where the cross-
sectional (N) is very small, as it is in our study, and it may simultaneously
fix the serial autocorrelation issue. Furthermore, by selecting the proper lag
structure for both the dependent and independent variables, this likelihood-
based estimation resolves the issue with endogenous regressors.

3.2.4. Panel causality test

Testing for bidirectional causality between the public announcement of
COVID-19’s death and health treatments and socioeconomic observational
data is the last step in our empirical research. Reference [11] creates a tech-
nique for analyzing the causal link between time series in a major study. The
Granger representation theorem shows that there must be at least a unidirec-
tional causality between two time series if they are cointegrated. By extending
this methodology, Dumitrescu and Hurlin make it possible to identify causality
in panel data. To ascertain if there is unidirectional or bidirectional causation
between the two variables, the Dumitrescu and Hurlin causality test is used
[12]. This two-way Granger test is used to look into the direction of causality
(see equations (6), (7)):

ΔNEW_DEATHS𝑖,𝑡 =

= 𝛼𝑖 +
𝑝

∑
𝑖=1

𝛿𝑖,𝑘ΔNEW_DEATHS𝑡−𝑘 +
𝑘

∑
𝑘=1

𝜋𝑖,𝑘Δ𝑋𝑡−𝑘 + 𝜖𝑡, (6)
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Δ𝑋𝑖,𝑡 = 𝛼𝑖 +
𝑝

∑
𝑖=1

𝛿𝑖,𝑘Δ𝑋𝑡−𝑘 +
𝑝

∑
𝑖=1

𝜋𝑖,𝑘ΔNEW_DEATHS𝑡−𝑘 + 𝜖𝑡 (7)

with 𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇, where 𝑋1,𝑡 are the observations of in-
dependent variables used previously for country 𝑖 in period 𝑡. In essence,
equations (4) and (5) examine the significance of X’s impacts on the present
values of confirmed cases and X’s effects on the present values of confirmed
cases, respectively. Hence, the alternative is: 𝐻0 ∶ 𝜋𝑖,1 = … = 𝜋𝑖,𝑘 = 0
∀𝑖 = 1, … , 𝑁 which is similar to the fact that there is no proof of causal-
ity for any of the panel’s countries. The possibility of causality for each of
the panel’s countries, but not necessarily for all of them, is another crucial
premise of this test.

4. Results

4.1. Panel unit root and cointegration tests

As it’s crucial to make sure that the order of integration is either zero
or one for ARDL modeling, the empirical analysis should begin with the
execution of the unit root test. To look for signs of stationarity, the Levin
Lin Chu (LLC) first-generation unit root tests are used. Overall, the findings
show that the panel’s order of integration for the variables included in the
analysis is 𝐼(0) or 𝐼(1), allowing for their use in the estimation of an ARDL
model. The second stage of the study is to test for cointegration between
the dependent variable and the six regressors given the strong support of
Integration order in all the variables throughout our panel. The possibility
that there is no cointegration in the panel is investigated using the Pedroni
and Kao residual-based cointegration tests. The null hypothesis that there is
no cointegration in the three panels is substantially rejected by cointegration
tests. Consequently, for all three panels, there is proof of a long-term link
between the dependent and explanatory factors. This implies that findings
from an estimation of the Error Correction Model (ECM) will be trustworthy
in both the short- and long-term.

4.2. Panel ARDL estimation

The next step is to estimate the panel ARDL regression as indicated in
the ECM equation using a Pooled Mean Group (PMG) estimation. This is
done after checking that the five variables are not integrated of an order equal
or larger than 𝐼(2) and that the series are co-integrated. Based on the AIC
lag selection criterion, the appropriate lag duration is chosen.
Table 3 presents the empirical results on COVID-19 new deaths and in-

tervention variables for the panel of 27 EU member states and for the full
sample period, February 1st, 2020, to November 27, 2022.
The next step is to estimate the panel ARDL regression using a Pooled

Mean Group (PMG) estimation as stated in the ECM equation. This is
done after making sure the series are co-integrated and that none of the five
variables are integrated to an order equal to or greater than 𝐼(2). The suitable
lag time is selected using the AIC lag selection criterion.
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Table 3

Panel Error Correction Model estimation (Long-Run Coefficients)

Variables Pooled Mean Estimator

Coefficient Standard Error

STRINGENCY -0.098759*** 0.023735

CONTAINMENT 0.184387*** 0.034941

ECONOMIC_SUP -0.004844 0.004357

VACCINATION -0.116884 0.075845

TESTING -0.678345*** 0.231617

PROTECTION -0.712513*** 0.200808

Note: *,**,*** indicates statistical significance at the 10%, 5%, and 1%
level.

The empirical results on the relationship between public debt and economic
growth are presented in the table 3 for the panel of 27 EU member states
and for the entire sample period, from February 1st, 2020, to November 27th,
2022, subject to other explanatory variables. In other words, the greater the
measure, the stronger the control over the spread of the virus will be since
variables are highly negative. The reappearance of new deaths is not much
impacted by economic assistance or immunization policies. Only containment
can be thought to have a 10% chance of having a major long-term impact
on news death. The responses to COVID-19 have a long-term impact on
lowering the number of new diseases brought on by the pandemic.

4.3. Causality

The few empirical studies that have examined the relationship between
COVID-19 new deaths, healthcare interventions, and socioeconomic obser-
vational data have produced conflicting findings. In actuality, the outcomes
differ depending on the nations and epochs studied in these studies. For this
reason, a panel Granger causality test is carried out in the analysis’s con-
cluding section. The Granger causality test requires that the two-time series
have a long-run association, or be cointegrated, in order for it to be valid.
It was established in earlier phases of the analysis that there is a long-term
association between new COVID-19 fatalities and health treatments and so-
cioeconomic observational data across all panels through panel cointegration
tests. This demonstrates that the relationship between COVID-19 death and
other variables must at least have a unidirectional cause (see the table 4).

The paired Dumitrescu and Hurlin Panel causality test [12] is used to
determine the direction of causality. The test compares a possible alternative
demonstrating causality for at least one cross-sectional unit of the panel with
the null hypothesis that there is no homogenous Granger causality.
Table 5 displays the outcomes of the pairwise Dumitrescu–Hurlin panel

causality tests.
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Table 4

Dumitrescu and Hurlin panel causality test

Null hypothesis W-Stat Zbar-Stat p-value

STRINGENCY does not Granger Cause

NEW_DEATHS

18.8074 43.4847 0.0000

NEW_DEATHS does not Granger Cause

STRINGENCY

1.81496 -0.48906 0.6248

CONTAINMENT does not Granger Cause

NEW_DEATHS

19.0667 44.1558 0.0000

NEW_DEATHS does not Granger Cause

CONTAINMENT

2.33235 0.84984 0.3954

ECONOMIC_SUP does not Granger

Cause NEW_DEATHS

8.10025 15.7761 0.0000

NEW_DEATHS does not Granger Cause

ECONOMIC_SUP

2.12838 0.32200 0.7475

VACCINATION does not Granger Cause

NEW_DEATHS

8.48059 16.7605 0.0000

NEW_DEATHS does not Granger Cause

VACCINATION

4.70284 6.98432 3.E-12

TESTING does not Granger Cause

NEW_DEATHS

7.71457 14.7781 0.0000

NEW_DEATHS does not Granger Cause

TESTING

1.25976 -1.92584 0.0541

PROTECT_ELD does not homogeneously

cause NEW_DEATHS

7.55908 14.3758 0.0000

NEW_DEATHS does not homogeneously

cause PROTECT_ELD

1.44830 -1.43794 0.1505

The results reveal that for the full group of countries, there is a bidirectional
causality between new deaths and vaccination policy at a 95% confidence level.
At 90% confidence level we can also consider that there is a bidirectional
causality between new deaths of COVID-19 and testing policy. We can
also notice that stringency, containment, economic support and help to
elderly people cause new death when the contrary is not true. The sense of
the causality is given in ARDL model result (coefficients of stringency and
economic support to elderly are negatives meaning that more the variable
increase and less will be the number of recorded cases of deaths due to
COVID-19). In the other hand, more containment should lead to more
deaths.
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Table 5

Panel Error Correction Model estimation (Short-Run Coefficients)

Variables Pooled Mean Estimator

Coefficient Standard Error

ECT(-1) -0.204139*** 0.051513

D(NEW_DEATHS(-1)) -0.446762*** 0.050073

D(NEW_DEATHS(-2)) -0.366532*** 0.031000

D(NEW_DEATHS(-3)) -0.171823*** 0.015298

D(CONTAINMENT) -2.888073* 1.621810

5. Conclusion

In order to analyze the impact of health and socioeconomic interventions,
we used data on European Union countries from Oxford University and
WHO. We also addressed the challenges of identifying causal risk factors
and evaluating the causal effects of risk factors and intervention measures on
COVID-19. Overall, the pandemic preventive strategies have been successful
in lowering the number of new fatalities, according to the study’s findings. The
Panel Autoregressive Distributed Lag (ARDL) modeling approach provided us
with a way to give policy-makers some means to adopt the best containment
measures in order to stop the spread and maximize the societal impact.
Containment measures are the sole component that has an impact immediately.
The pairwise Dumitrescu–Hurlin panel causality tests, on the other hand, show
that there is a bidirectional causality between new deaths and pharmaceutical
intervention factors for the entire group of countries, and that, conversely,
socioeconomic intervention factors cause new deaths when the converse is not
true.
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Аннотация. С момента появления COVID-19 было получено огромное коли-
чество данных, помогающих понять, как развивался и распространялся вирус.
Анализ таких данных помогает получить новые знания, необходимые для кон-
троля за развитием эпидемии и предоставить лицам, принимающим решения,
инструменты для принятия эффективных мер по сдерживанию эпидемии и ми-
нимизации социальных последствий. Анализу влияния медицинских методов
лечения и социально-экономических факторов на передачу коронавируса было
уделено много внимания. В этой работе мы применяем панельное авторегрес-
сионное моделирование с распределённым запаздыванием (ARDL) к данным
Европейского союза для выявления факторов распространения COVID-19 в Ев-
ропе. Наш анализ показал, что немедикаментозные меры были успешными
в снижении смертности, а строгость изоляции, политика тестирования на ви-
рус и механизмы защиты пожилых людей оказывают положительное влияние
на сдерживание эпидемии. Результаты панельных тестов попарной причинно-
следственной связи Думитреску–Херлина показывают, что для всех стран
Евросоюза существует двунаправленная причинно-следственная связь между
новыми смертями и факторами фармакологического вмешательства и что, с дру-
гой стороны, некоторые социально-экономические факторы вызывают новые
смерти, когда обратное неверно.

Ключевые слова: анализ причинно-следственных связей, COVID-19,
социально-экономические факторы, группа Думитреску–Херлина
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Abstract. This paper investigates neurotechnologies for developing brain–computer
interaction (BCI) based on the generative deep learning Stable Diffusion model. An
algorithm for modeling BCI is proposed and its training and testing on artificial data
is described. The results are encouraging researchers and can be used in various
areas of BCI, such as distance learning, remote medicine and the creation of robotic
humanoids, etc.
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1. Introduction

An increasing number of researches in the field of artificial intelligence
are aimed at development of neurotechnological applications using advances
in generative deep learning. Many of these studies focus on using machine
learning to analyze or decode brain signals, and lead to the creation of
various biomedical devices that help people improve their quality of life [1].
One of the applications of machine learning in neurotechnology is modeling
brain–computer interaction (BCI). There are many different approaches to
BCI modeling, including the use of different machine learning models and
neural network architectures. One of the recent developments in this field is
Stable Diffusion (SD), which allows generating samples with a predetermined
distribution using a stochastic diffusion process [2].
Stable Diffusion (Stable Diffusion) is one of the approaches for implementing

stochastic diffusion, which takes into account the peculiarities of the input
data distribution. In particular, Stable Diffusion is a generalized Cauchy
distribution, which is a mixture of distributions with heavy tails and takes
into account the presence of heavy outliers in the data. This makes Stable
Diffusion particularly useful for modeling brain–computer interactions because
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data from electroencephalography (EEG) or magnetoencephalography (MEG)
often contain spikes and noise. Stable diffusion is the process of solving
the Fokker–Planck equation, which describes the evolution of the probability
density on the time axis. This probability density is usually a set of parameters
or latent features that are valuable indicators for processing EEG or MEG
data. Stable diffusion allows not only to generate new samples based on
these parameters, but also to solve many other tasks related to data analysis,
such as classification, regression, clustering, etc. [3, 4]. Moreover, it can be
used in improving the quality of BCI, by improving the accuracy of decoding
and computer interface control. A number of works have demonstrated the
successful application of latent diffusion methods in the tasks of medical
rehabilitation [5–7], research of biological structures [7, 8], development of
humanoid robots [9–11].
This paper proposes a brain–computer interaction algorithm based on the

Stable Diffusion model for BCI modeling in the learning process. The process
of model creation is described, starting from data preparation and ending with
the implementation of the model in a computer interface control application.

2. Stable Diffusion generative deep learning models

Diffusion models are machine learning models that learn to decompose
random Gaussian noise step-by-step to produce a pattern of interest, such as
an image [12–14]. The diffusion model has a significant disadvantage, since
the denoising process is time and memory consuming. This makes the process
slow and requires a lot of memory. The main reason for this is that they
work in pixel space, which becomes unreasonably expensive, especially when
generating high-resolution images. Stable diffusion was introduced to solve
this problem because it depends on latent diffusion. Latent diffusion reduces
memory and computational overhead by applying the diffusion process to
a lower-dimensional latent space instead of using the actual pixel space.
Understanding the Basics of Denoising Diffusion Probabilistic Models.

Figure 1. Process of Denoising Diffusion Probabilistic Model (Image by author)



E.Y. Shchetinin, Brain–computer interaction modeling… 275

There are three main components in latent diffusion, the most important of
which is the variation autoencoder (VAE). The autoencoder (VAE) consists of
two main parts: an encoder and a decoder. The encoder converts the images
into a low-dimensional latent representation, which will be the input for the
next component, the U-Net. The decoder does the reverse work, converting
the latent representation back into an image. The U-Net is also made up of
encoder and decoder parts, and both are made up of ResNet blocks. The
encoder compresses the image into a lower resolution image, and the decoder
decodes the lower resolution image back into a higher resolution image.
To ensure that the U-net does not lose important information when down-

sampling, short connections are usually added between the encoder’s ResNet
networks for downsampling and the decoder’s ResNet networks for upsam-
pling. In addition, a stable diffusion U-net is capable of conditioning its
output to text embeddings by means of cross-attention layers. Cross-attention
layers are added to both the encoding and decoding parts of the U-net, usually
between ResNet blocks. The encoder is used to obtain a latent representa-
tion (latent) of the input images for the direct diffusion process during latent
diffusion training. While during output, the VAE decoder converts the latent
representation back into an image.
Text encoder. The text encoder converts an input query, such as “Pikachu

will have a nice dinner with a view of the Eph-phil tower”, into a space of
embedding that can be understood by the U-net. This would be a simple
transformer-based encoder that maps a sequence of tokens into a sequence
of hidden embeddings of text. It is important to use a good cue to get the
expected result. That’s why cue engineering is trending right now. Cue
engineering is the search for specific words that can make a model produce
a result with certain properties.
The reason latent diffusion is fast and efficient is because the U-net of latent

diffusion works in low-dimensional space. This reduces memory size and
computational complexity compared to diffusion in pixel space. For example,
the autoencoder used in Stable Diffusion has a reduction factor of 8. This
means that the shape image (3, 512, 512) becomes (4, 64, 64) in latent space,
which requires 64 times less memory. The stable diffusion model first takes
a latent seed and a text cue as input. The latent seed is then used to generate
random representations of latent images of size 64 × 64, and the text cue is
converted into 77 × 768 text blobs using the CLIP text encoder.
The U-network then iteratively discolors the random representations of the

hidden images, being conditioned by the text embeddings. The output of the
U-net, which is the residual noise, is used to compute the representation of
the hidden image using the scheduler algorithm. The scheduler algorithms
compute the predicted representation of the cleaned image based on the
previous noise representation and the predicted noise residual. Many different
scheduler algorithms can be used for these calculations, each with its own
pros and cons. For Stable Diffusion, we recommend using one of the following:

— PNDM scheduler (used by default);
— DDIM scheduler;
— K-LMS scheduler.

The denoising process is repeated about 50 times to get a better represen-
tation of the latent image step by step. After the process is completed, the
latent image representation is decoded by a part of the variational autocoder,
the decoder.
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Pre-trained latent diffusion models were used to develop our project. The
pre-trained diffusion model includes all the components needed to create
a complete diffusion pipeline. They are stored in the following folders:

— text_encoder: Stable Diffusion uses CLIP, but other diffusion models
may use other encoders, such as BERT.

— tokenizer: This must match the one used by the text_encoder model.
— scheduler: The scheduling algorithm used to postpone adding noise to

the image during training.
— U-Net: The model used to generate a latent representation of the input

data.
— VAE: The autoencoder module we will use to decode the latent represen-

tations into real images.

We can load the components by accessing the folder in which they were
saved, using the subfolder argument for from_pretrained [8].

3. Developing a brain–computer interaction algorithm
based on the SD model

Step 1. Data preparation

The first step in creating the Stable Diffusion model for BCI modeling is
to prepare the data. As data, we will use a set of EEG data obtained from
subjects who performed the task of memorizing numbers. Each experiment
consisted of several trials, each of which required the subject to memorize
a specific digit displayed on a screen and then reproduce it using reasoning.
EEG electrodes placed on the subjects’ heads were used to acquire the

data, and the signals were digitized and recorded on a computer. This data
consisted of several channels and included information about the temporal
distribution of the signals received from each electrode.
Before processing the data, we performed preprocessing, including noise

filtering and outlier elimination. In addition, we created a function to convert
the data into a format suitable for model processing and training. At this
stage we have prepared the data set which contains the information about the
time distribution of the EEG signals for the purpose of training and testing
the Stable Diffusion model.

Step 2: Model development

After receiving the data we began to develop the model itself. In our case
we chose the Stochastic Diffusion model using Stable Diffusion as the diffusion
process. It is worth noting that we used the TensorFlow Probability library
to implement this model [15–18]. Stable Diffusion was implemented in the
form of a parametrized distribution, which is specified by two parameters –
the exponent and the scale. These parameters were trained on EEG data
and used to generate new samples. In addition, we used the autoencoder
model to train latent features from the EEG data, which were then used as
input parameters for the Stable Diffusion model. In general, the model was
trained on the EEG data, which were divided into a training set, a control
set, and a test set. During training, we used the maximum likelihood method
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to optimize the model parameters. In addition, we used L2 regularization to
prevent model overtraining.

Step 3: Testing the Model

After training the model, we proceeded to test it on the control and test
datasets. We used metrics such as accuracy, AUC ROC, f1-score, and error
matrix to evaluate the quality of the model. We also tested how well our
model performed on new data by displaying samples created with the model
and comparing them to real data. We found that our model fairly accurately
reflected the distribution of the EEG data and allowed us to generate new
samples that seemed similar to the real data.

Step 4: Implement the model in the application

Finally, we set about incorporating the model into a computer interface
management application. We used the TensorFlow Serving library to run our
model on a remote server that handled requests from the application and
returned real-time predicates. In our application, the user could control the
computer with his mind. He could select commands such as “up”, “down”,
“left”, and “right” just by thinking about those commands. These mental
commands were passed to the TensorFlow server through our Python library,
which in turn used the Stable Diffusion model to classify the user’s EEG
signals and determine his intentions.

Step 5: Implementing the model in the training process

After we successfully trained and tested the Stable Diffusion model for
BCI modeling, we proceeded to implement it into the learning process. We
created an interactive application that allows users to control the computer
interface through thinking. The application is a scenario in which the user is
asked to perform a task, such as moving the mouse cursor around a target
and pressing buttons. To control the thinking, the user looks at a symbol
that corresponds to a given command and directs his or her attention to that
symbol. Then, the application’s interfaces use EEG signals to recognize that
symbol and execute the appropriate command.

4. Discussion of results

In this paper, we have reviewed the details of creating a Stable Diffusion
model to simulate brain–computer interaction in the learning process. We
described in detail how to prepare the data, develop the model, and test it
to determine the quality of its performance. We also demonstrated how our
Stable Diffusion model can be applied to create an interactive application
that allows users to manipulate the computer interface with their thinking.
The Stable Diffusion model we developed has been shown to work well in
simulating brain–computer interaction in the learning process. We created
a model that could process EEG data and generate new samples that matched
the distribution of the real data. We also successfully incorporated this model
into a computer interface control application where the user could control the
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computer by thinking. Moreover, our Stable Diffusion model can solve not
only the classification problem, but also some other data processing problems,
such as clustering and regression. It can be used not only for modeling the
interaction between the brain and the computer, but also for other tasks
related to time series analysis and modeling of temporal processes. As a result,
the Stable Diffusion model is a powerful tool for modeling and constructing
ROC/PR curves to evaluate the quality of model performance.
To test the model we used different tasks related to EEG signal decoding.

For example, we used different types of classification with a number of
classes from 2 to 10, including one-vs-all and multi-class classification. We
also performed clustering analysis to see which activity patterns could be
extracted from the data. During model testing, we obtained high accuracy
and AUC values, as well as high clustering quality. Overall, the model gave
good results on all tasks, indicating its validity and applicability to BCI
modeling.
One of the main advantages of modeling brain–computer interaction with

Stable Diffusion is that it takes into account the peculiarities of input data
distribution, which allows to work more efficiently with data containing noise
and spikes. Furthermore, using Stable Diffusion maximizes the likelihood of
the data, which improves the accuracy of decoding and controlling computer
interfaces. Another important advantage of simulating brain–computer inter-
action with Stable Diffusion is that it can be run in real-time online. This
is especially important when applying such a model to real-world computer
interface control tasks, where fast response and accuracy are critical.

5. Conclusion

The Stable Diffusion model is a powerful tool for modeling brain–computer
interaction, and can be used to create biomedical devices that help people
improve their quality of life. For example, such devices can be used to
control prostheses, control mouse cursors, or play computer games without
using hands or voice. However, at this point, our knowledge of the actual
capabilities and limits of this model and the specific solutions it can provide
is far from complete, which opens up many possibilities for future research
and development. The use of brain–computer interaction modeling to control
computational interfaces is an experimental and promising area that has great
potential for future development. However, it is also a challenging task that
requires high skill and expertise in neurotechnology, machine learning, and
biomedical sciences.
Successful implementation of such a model requires the use of modern data

processing and analysis methods, as well as a strong technical base, including
powerful computing resources and highly specialized devices for EEG and
MEG data acquisition and processing.
Despite limitations and disadvantages, the use of brain–computer inter-

action modeling is one of the most promising and attractive directions in
neurotechnology, and has the potential to significantly change our lives in the
future. And in conclusion it is worth mentioning that the future of this direc-
tion is determined by how fast, scientists can develop models which can be of
real interest for people and be widely used in their lives. They can change ex-
isting work processes and teach us new ways to manage the world around us
through our thoughts, and help people with disabilities in their daily lives.
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That is why this area is now actively researched and developed all over the
world. To date, there are several successful prototypes of computer-interface
control devices that use brain–computer interaction, and undoubtedly, we
will see more potential applications of this technology in the future.
However, it is important to note that the use of brain–computer interaction

technologies also raises ethical and safety issues. Thus, in order to achieve
the most positive results, it is necessary to pay due attention to security
and ethical issues, including data privacy and information security rights of
individual users.
In general, the application of brain–computer interaction modeling is an

important direction in neurotechnology, which opens up possibilities for a wide
range of new applications. However, in order to successfully achieve the results
and to use this technology in everyday life, careful work and continuous search
for new solutions and improvement of technologies are needed.
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Моделирование взаимодействия «мозг – компьютер»
на основе модели стабильной диффузии

Е. Ю. Щетинин

Финансовый университет при Правительстве Российской Федерации
Ленинградский проспект, д. 49, Москва, 125993, Россия

Аннотация. В этой статье исследуются нейротехнологии для развития взаимо-
действия «мозг – компьютер» (BCI) на основе генеративной модели стабильной
диффузии с глубоким обучением. Предложен алгоритм моделирования BCI
и описано его обучение и тестирование на искусственных данных. Полученные
результаты обнадёживают исследователей и могут быть использованы в раз-
личных областях BCI, таких как дистанционное обучение, удалённая медицина,
создание роботов-гуманоидов и т. д.

Ключевые слова: технология нейронных сетей, система мозг-компьютер, ста-
бильная диффузия


