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Abstract. In the proposed work, we consider a heterogeneous queueing system
with a Markov renewal process and an unlimited number of servers. The service
time for requests on the servers is a positive random variable with an exponential
probability distribution. The service parameters depend on the state of the Markov
chain nested over the renewal moments. It should be noted that these parameters do
not change their values until the end of maintenance. Thus, the devices in the system
under consideration are heterogeneous. The object of the study is a multidimensional
random process — the number of servers of each type being served with different
intensities in the stationary regime. The method of asymptotic analysis under the
condition of equivalent growing of service times in the units of servers is applied for
the study. The method of asymptotic analysis is implemented in the construction of
a sequence of asymptotic of increasing order, in which the asymptotic of the first
order determines the asymptotic mean value of the number of occupied servers. The
second-order asymptotic allows one to construct a Gaussian approximation of the
probability distribution of the number of occupied servers in the system. It is shown
that this approximation coincides with the Gaussian distribution.

Key words and phrases: queuing system, random environment, Markov renewal
process, asymptotic analysis method

1. Introduction

Queueing theory is a field of applied mathematics that deals with the study
and analysis of processes in various service, production, management, and
communication systems in which homogeneous events are repeated many
times. Examples of such systems include consumer services; systems for
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receiving, processing, and transmitting information, automatic production
lines, telecommunication systems, and others [1].

The independence of processes in queueing systems is generally assumed
when developing queueing models. However, real systems often involve sev-
eral process dependencies, and failure to consider these can lead to a serious
under errors in the estimation of the performance measures. Semi-Markov
processes are used in modeling stochastic control problems arising in Mar-
kovian dynamic systems where the sojourn time in each state is a general
continuous random variable. They are powerful, natural tools for the opti-
mization of queues, production scheduling, reliability/maintenance [2, 3]. For
example, in a machine replacement problem with deteriorating performance
over time, a decision-maker, after observing the current state of the machine,
decides whether to continue its usage, initiate maintenance (preventive or
corrective) repair or replace the machine.

Semi-Markov Processes include renewal processes and continuous-time
Markov chains as special cases. In a semi-Markov process similar to Markov
chains, state changes occur according to the Markov property, i.e., states
in the future do not depend on the states in the past given the present.
However, the sojourn time in a state is a continuous random variable with
distribution depending on that state and the next state. A renewal process
is a generalization of a Poisson process that allows arbitrary holding times.
Its applications include such as planning for replacing worn-out machinery
in a factory. A Markov renewal process is a generalization of a renewal
process that the sequence of holding times is not independent and identically
distributed. Their distributions depend on the states in a Markov chain. The
Markov renewal processes were studied by Pyke in the 1960s [4, 5].

In the proposed work, we consider a heterogeneous queueing system (QS)
with a Markov renewal process (MRP) for the process of its arrival and an
unlimited number of servers. The service time for requests have an exponential
probability distribution. Parameter of the service depends on the state of
the Markov chain nested over the renewal moments. It should be noted that
these parameters do not change their values until the end of maintenance.
Thus, the devices in the system under consideration are heterogeneous.This
problem for the Queueing System 𝑀|𝑀|∞ in a Markov Random Enviroment
was addressed in [6–8].

The objects of the study are the number of servers of each type being
served in the stationary regime. Such a QS can be attributed to the class of
non-homogeneous QS operating in a random environment.

Currently, a significant part of the information, telecommunication, and
other systems operate in a changing environment. The impact of a random
environment can be expressed, for example, in a change in the parameters
of the functioning of the system. In this regard, questions arise about the
stability of such systems to external influences. Therefore, the study of
systems operating in a random environment is an urgent task. In various
works devoted to the study of systems in Markov and semi-Markov random
environments, various variants of the system’s response to a change in the
state of the external environment were considered in [9–11].

In this paper, we consider the case assuming that the service mode of claims
does not change until they leave the system. The method of asymptotic
analysis under the condition of equivalent growing of service times in the
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units of servers is applied for the study. This asymptotic condition means
proportional growth of the average service times in both service units and it
is taken from practice. The method of asymptotic analysis is implemented in
the construction of a sequence of asymptotic of increasing order, in which the
asymptotic of the first order determines the asymptotic mean value of the
number of occupied servers. The second-order asymptotic allows to construct
an approximation of the probability distribution of the number of occupied
servers in the system. It is shown that this approximation coincides with the
Gaussian distribution.

2. Markov renewal process

A renewal process is a generalization of a Poisson process that allows
arbitrary waiting time between events. Its applications include such as
planning for replacing worn-out machinery in a factory. A Markov renewal
process is a generalization of a renewal process that the sequence of holding
times is not independent and identically distributed. Their distributions
depend on the states in a Markov chain. The Markov renewal processes were
studied by Pyke [4, 5] in 1960s.

2.1. Mathematical model of the Markov renewal process

Consider a two-dimensional homogeneous Markov random process
{𝜉(𝑛), 𝜏(𝑛)} with discrete time 𝑛 = 1, 2, 3, …, where 𝜉(𝑛) takes values from
some discrete set 𝜉(𝑛) = 𝑘 = 1, 2, 3, … and 𝜏(𝑛) takes on non-negative values.

We denote

𝐹(𝑘2, 𝑥; 𝑘1, 𝑦) = 𝑃{𝜉(𝑛 + 1) = 𝑘2, 𝜏(𝑛 + 1) < 𝑥|𝜉(𝑛) = 𝑘1, 𝜏(𝑛) = 𝑦} =
= 𝐹(𝑘2, 𝑥; 𝑘1) = 𝑃𝑘1𝑘2

𝐴𝑘2
(𝑥).

A random stream of homogeneous events 𝑡1 < … < 𝑡𝑛 < 𝑡𝑛+1 < …
will be called the Markov renewal flow or MR-flow given by the matrix of
transition probabilities P and functions 𝐴𝑘(𝑥) distribution of interval lengths
𝜏𝑛+1 = 𝑡𝑛+1 − 𝑡𝑛, for which the equalities 𝜏𝑛+1 = 𝜏𝑛 hold.

To study the MR-flow, we define the process 𝑧(𝑡) as the length of the
interval from the time 𝑡 to the time 𝑡𝑛+1 of the next event in the considered
flow and the process

𝑘(𝑡) = 𝜉(𝑛), 𝑡𝑛 ⩽ 𝑡 < 𝑡𝑛+1,

that is, the process 𝑘(𝑡) on the interval 𝑡𝑛 ⩽ 𝑡 < 𝑡𝑛+1 retains the value that it
received at the beginning of this interval and which coincides with the value
𝜉(𝑛) of the embedded Markov chain.

For a Markov renewal flow, the three-dimensional process {𝑘(𝑡), 𝑧(𝑡), 𝑚(𝑡)}
is Markov, therefore, for its probability distribution

𝑃(𝑘, 𝑧, 𝑚, 𝑡) = 𝑃 {𝑘(𝑡) = 𝑘, 𝑧(𝑡) < 𝑧, 𝑚(𝑡) = 𝑚}
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by the formula of total probability we obtain the equality

𝑃(𝑘, 𝑧 − Δ𝑡, 𝑚, 𝑡 + Δ𝑡) =
= 𝑃(𝑘, 𝑧, 𝑚, 𝑡) − 𝑃(𝑘, Δ𝑡, 𝑚, 𝑡) + ∑

𝜈
𝑃(𝜈, Δ𝑡, 𝑚 − 1, 𝑡)𝑃𝜈𝑘𝐴𝑘(𝑧) + 𝑜(Δ𝑡)

from which it follows that the probability distribution 𝑃(𝑘, 𝑧, 𝑚, 𝑡) is a solution
to the Kolmogorov equations

𝜕𝑃(𝑘, 𝑧, 𝑚, 𝑡)
𝜕𝑡

=

= 𝜕𝑃(𝑘, 𝑧, 𝑚, 𝑡)
𝜕𝑧

− 𝜕𝑃(𝑘, 0, 𝑚, 𝑡)
𝜕𝑧

+ ∑
𝜈

𝜕𝑃(𝜈, 0, 𝑚 − 1, 𝑡)
𝜕𝑧

𝑃𝜈𝑘𝐴𝑘(𝑧). (1)

By defining the functions

𝐻(𝑘, 𝑧, 𝑢, 𝑡) =
∞

∑
𝑚=0

𝑒𝑗𝑢𝑚𝑃(𝑘, 𝑧, 𝑚, 𝑡),

the equations (1) can be rewritten as

𝜕𝐻(𝑘, 𝑧, 𝑢, 𝑡)
𝜕𝑡

= 𝜕𝐻(𝑘, 𝑧, 𝑢, 𝑡)
𝜕𝑧

−𝜕𝐻(𝑘, 0, 𝑢, 𝑡)
𝜕𝑧

+∑
𝜈

𝜕𝐻(𝜈, 0, 𝑢, 𝑡)
𝜕𝑧

𝑒𝑗𝑢𝑃𝜈𝑘𝐴𝑘(𝑧).

The basic equation for a semi-Markov flow has the form

𝜕h(𝑧, 𝑢, 𝑡)
𝜕𝑡

= 𝜕h(𝑧, 𝑢, 𝑡)
𝜕𝑧

+ 𝜕h(0, 𝑢, 𝑡)
𝜕𝑧

(𝑒𝑗𝑢PA(𝑧) − I) , (2)

where P is the matrix of transition probabilities, A(𝑧) = diag [𝐴𝑘(𝑧)], I is
identity diagonal matrix. To find its particular solution, we define the initial
condition in the form

h(𝑧, 𝑢, 0) = r(𝑧),
where r(𝑧) — stationary probability distribution of the values of a two-
dimensional random process {𝑘(𝑡), 𝑧(𝑡)}.

2.2. Finding the distribution r(𝑧)

Vector r(𝑧) is a solution to the equation obtained from (2)

𝜕r(𝑧)
𝜕𝑧

+ 𝜕r(0)
𝜕𝑧

(PA(𝑧) − I) = 0,

therefore it can be written as

r(𝑧) = ∫
𝑧

0

𝜕r(0)
𝜕𝑧

(I−PA(𝑥)) 𝑑𝑥. (3)
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Since 𝑟(𝑘, 𝑧) = 𝑃{𝑘(𝑡) = 𝑘, 𝑧(𝑡) < 𝑧} then r = r(∞). Therefore, we obtain

r = ∫
∞

0

𝜕r(0)
𝜕𝑧

(I−PA(𝑥)) 𝑑𝑥. (4)

By virtue of the necessary condition for the convergence of the improper
integral, we can write down the equality to zero of the integrand at 𝑥 → ∞,
we obtain the system of equations

𝜕r(0)
𝜕𝑧

(I−P) = 0 (5)

for
𝜕r(0)

𝜕𝑧
, where P = A(∞).

Since the system (4) coincides with the system of Kolmogorov equations for
the stationary probability distribution r of values of the embedded Markov
chain, then

𝜕r(0)
𝜕𝑧

= 𝜆r, (6)

where 𝜆 is some multiplicative constant, the value of which is found as follows.
Substituting (6) into (4), we obtain

r = 𝜆 ∫
∞

0
r (P−A(𝑥)) 𝑑𝑥.

Since re = 1 then

𝜆 = 1
∫∞
0

r (P−A(𝑥)) e𝑑𝑥
= 1

∫∞
0

(1 − 𝐹(𝑥)) 𝑑𝑥
. (7)

Equalities (7), (6) and (3) solve the problem of finding the probability
distribution r(𝑧).

3. Mathematical model

Consider a queueing system 𝑀𝑅𝑃 |𝑀|∞ with an unlimited number of
servers of different types, operating in a semi-Markov random environment (see
the figure 1). Arrivals are determined as Markov renewal process, interarrival
periods have cumulative distribution functions 𝐴1(𝑥), 𝐴2(𝑥), … 𝐴𝐾(𝑥) and
the matrix of transition probabilities P = [𝑝𝑖𝑗], 𝑖, 𝑗 = 1, 2, … , 𝐾 — embedded

in the moments of occurrence of events Markov chains with a finite number
of states 𝑘(𝑡) = 1, 2, … , 𝐾. The service discipline is defined as follows: if the
embedded Markov chain is in the state 𝑘(𝑡) = 𝑖, then the incoming customer
will be serviced on the 𝑖-th type server during a random time, exponentially
distributed 𝐹𝑖(𝑥) = 1 − 𝑒−𝜇𝑖𝑥.
The problem is to study a multidimensional random process — numbers

occupied servers of different types in the system at time 𝑡, which is denoted
by i(𝑡) = [𝑖1(𝑡), 𝑖2(𝑡), … , 𝑖𝐾(𝑡)]. The process i(𝑡) is not Markov. For clarity,
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consider the case when the external environment takes only 2 different states.
We define a four-dimensional Markov random process {𝑘(𝑡), 𝑧(𝑡), 𝑖1(𝑡), 𝑖2(𝑡)},
where 𝑧(𝑡) is the length of the interval from the time 𝑡 to the time of the next
event in the stream Markov renewal, 𝑘(𝑡) is a Markov chain embedded with
respect to renewal times.

Figure 1. Queueing system 𝑀𝑅𝑃|𝑀|∞ in a semi-Markov random environment

For research, we will obtain some characteristics for the number of events
occurring in the MR stream.
For the probability distribution

𝑃(𝑘, 𝑧, 𝑖1, 𝑖2, 𝑡) = 𝑃{𝑘(𝑡) = 𝑘, 𝑧(𝑡) < 𝑧, 𝑖1(𝑡) = 𝑖1, 𝑖2(𝑡) = 𝑖2}

we write down the Kolmogorov system of differential equations:

𝜕𝑃(1, 𝑧, 𝑖1, 𝑖2, 𝑡)
𝜕𝑡

= 𝜕𝑃(1, 𝑧, 𝑖1, 𝑖2, 𝑡)
𝜕𝑧

− 𝜕𝑃(1, 0, 𝑖1, 𝑖2, 𝑡)
𝜕𝑧

−

− (𝑖1𝜇1 + 𝑖2𝜇2)𝑃 (1, 𝑧, 𝑖1, 𝑖2, 𝑡) + 𝜕𝑃(1, 0, 𝑖1 − 1, 𝑖2, 𝑡)
𝜕𝑧

𝑝11𝐴1(𝑧)+

+ 𝜕𝑃(2, 0, 𝑖1 − 1, 𝑖2, 𝑡)
𝜕𝑧

𝑝21𝐴1(𝑧) + 𝑃(1, 𝑧, 𝑖1 + 1, 𝑖2, 𝑡)(𝑖1 + 1)𝜇1+

+ 𝑃(1, 𝑧, 𝑖1, 𝑖2 + 1, 𝑡)(𝑖2 + 1)𝜇2,

𝜕𝑃 (2, 𝑧, 𝑖1, 𝑖2, 𝑡)
𝜕𝑡

= 𝜕𝑃(2, 𝑧, 𝑖1, 𝑖2, 𝑡)
𝜕𝑧

− 𝜕𝑃(2, 0, 𝑖1, 𝑖2, 𝑡)
𝜕𝑧

−

− (𝑖1𝜇1 + 𝑖2𝜇2)𝑃 (2, 𝑧, 𝑖1, 𝑖2, 𝑡) + 𝜕𝑃(2, 0, 𝑖1, 𝑖2 − 1, 𝑡)
𝜕𝑧

𝑝22𝐴2(𝑧)+

+ 𝜕𝑃(1, 0, 𝑖1, 𝑖2 − 1, 𝑡)
𝜕𝑧

𝑝12𝐴2(𝑧) + 𝑃(2, 𝑧, 𝑖1 + 1, 𝑖2, 𝑡)(𝑖1 + 1)𝜇1+

+ 𝑃(2, 𝑧, 𝑖1, 𝑖2 + 1, 𝑡)(𝑖2 + 1)𝜇2.

For a stationary probability distribution, we write this system in the form

𝜕𝑃(1, 𝑧, 𝑖1, 𝑖2)
𝜕𝑧

− 𝜕𝑃(1, 0, 𝑖1, 𝑖2)
𝜕𝑧

−

− (𝑖1𝜇1 + 𝑖2𝜇2)𝑃 (1, 𝑧, 𝑖1, 𝑖2) + 𝜕𝑃(1, 0, 𝑖1 − 1, 𝑖2)
𝜕𝑧

𝑝11𝐴1(𝑧)+
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+ 𝜕𝑃(2, 0, 𝑖1 − 1, 𝑖2)
𝜕𝑧

𝑝21𝐴1(𝑧) + 𝑃(1, 𝑧, 𝑖1 + 1, 𝑖2)(𝑖1 + 1)𝜇1+

+ 𝑃(1, 𝑧, 𝑖1, 𝑖2 + 1)(𝑖2 + 1)𝜇2 = 0,

𝜕𝑃(2, 𝑧, 𝑖1, 𝑖2)
𝜕𝑧

− 𝜕𝑃(2, 0, 𝑖1, 𝑖2)
𝜕𝑧

−

− (𝑖1𝜇1 + 𝑖2𝜇2)𝑃 (2, 𝑧, 𝑖1, 𝑖2) + 𝜕𝑃(2, 0, 𝑖1, 𝑖2 − 1)
𝜕𝑧

𝑝22𝐴2(𝑧)+

+ 𝜕𝑃(1, 0, 𝑖1, 𝑖2 − 1)
𝜕𝑧

𝑝12𝐴2(𝑧) + 𝑃(2, 𝑧, 𝑖1 + 1, 𝑖2)(𝑖1 + 1)𝜇1+

+ 𝑃(2, 𝑧, 𝑖1, 𝑖2 + 1)(𝑖2 + 1)𝜇2 = 0.

We introduce partial characteristic functions of the form

𝐻(𝑘, 𝑧, 𝑢1, 𝑢2) =
∞

∑
𝑖1=0

∞
∑
𝑖2=0

𝑒𝑗𝑢1𝑖1𝑒𝑗𝑢2𝑖2𝑃(𝑘, 𝑧, 𝑖1, 𝑖2), where 𝑗 =
√

−1.

Let us write the system of differential equations for the partial characteristic
functions

𝜕𝐻(1, 𝑧, 𝑢1, 𝑢2)
𝜕𝑧

− 𝜕𝐻(1, 0, 𝑢1, 𝑢2)
𝜕𝑧

+

+ 𝑗𝜇1 (1 − 𝑒−𝑗𝑢1) 𝜕𝐻(1, 𝑧, 𝑢1, 𝑢2)
𝜕𝑢1

+ 𝑗𝜇2 (1 − 𝑒−𝑗𝑢2) 𝜕𝐻(1, 𝑧, 𝑢1, 𝑢2)
𝜕𝑢2

+

+ 𝜕𝐻(1, 0, 𝑢1, 𝑢2)
𝜕𝑧

𝑒𝑗𝑢1𝑝11𝐴1(𝑧) + 𝜕𝐻(2, 0, 𝑢1, 𝑢2)
𝜕𝑧

𝑒𝑗𝑢1𝑝21𝐴1(𝑧) = 0,

𝜕𝐻(2, 𝑧, 𝑢1, 𝑢2)
𝜕𝑧

− 𝜕𝐻(2, 0, 𝑢1, 𝑢2)
𝜕𝑧

+

+ 𝑗𝜇1 (1 − 𝑒−𝑗𝑢1) 𝜕𝐻(2, 𝑧, 𝑢1, 𝑢2)
𝜕𝑢1

+ 𝑗𝜇2 (1 − 𝑒−𝑗𝑢2) 𝜕𝐻(2, 𝑧, 𝑢1, 𝑢2)
𝜕𝑢2

+

+ 𝜕𝐻(1, 0, 𝑢1, 𝑢2)
𝜕𝑧

𝑒𝑗𝑢2𝑝12𝐴2(𝑧) + 𝜕𝐻(2, 0, 𝑢1, 𝑢2)
𝜕𝑧

𝑒𝑗𝑢2𝑝22𝐴2(𝑧) = 0

with initial conditions
𝐻(𝑘, 𝑧, 0, 0) = 𝑟(𝑘, 𝑧).

In vector-matrix form, this system will take the form

𝜕h(𝑧, 𝑢1, 𝑢2)
𝜕𝑧

+ 𝜕h(0, 𝑢1, 𝑢2)
𝜕𝑧

(PA(𝑧)B(u) − I) +

+ 𝑗𝜇1 (1 − 𝑒−𝑗𝑢1) 𝜕h(𝑧, 𝑢1, 𝑢2)
𝜕𝑢1

+ 𝑗𝜇2 (1 − 𝑒−𝑗𝑢2) 𝜕h(𝑧, 𝑢1, 𝑢2)
𝜕𝑢2

= 0, (8)
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with initial conditions
h(𝑧, 0, 0) = r(𝑧),

where
h(𝑧, 𝑢1, 𝑢2) = [𝐻(1, 𝑧, 𝑢1, 𝑢2), 𝐻(2, 𝑧, 𝑢1, 𝑢2)] ,

B(u) = [𝑒𝑗𝑢1 0
0 𝑒𝑗𝑢2

] , I = [1 0
0 1

] .

The resulting system of equations (8) is the main one for further research.
Since it is not possible to find an explicit form of a solution to the problem
(8), we will seek the solution under the asymptotic condition of equivalent
growing of service times in the units of servers. This asymptotic condition
means proportional growth of the average service times in both service units
and it is taken from practice.

4. Asymptotic analysis of the first order

We denote 𝜇1 = 𝜖, 𝜇2 = 𝑞𝜖, 𝑞 = const (𝜖 is an infinitesimal quantity).
Then we can write the asymptotic condition of equivalent growing of service
times in the units of servers in the form 𝜇1, 𝜇2 → 0. In (8) we perform the
replacements

h(𝑧, 𝑢1, 𝑢2) = f(𝑧, 𝑤1, 𝑤2, 𝜖), 𝑢1 = 𝜖𝑤1, 𝑢2 = 𝜖𝑤2,

we obtain the matrix equation for f(𝑧, 𝑤1, 𝑤2, 𝜖)

𝜕f(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑧

+ 𝜕f(0, 𝑤1, 𝑤2, 𝜖)
𝜕𝑧

(PA(𝑧)B(u, 𝜖) − I) +

+𝑗 (1 − 𝑒−𝑗𝜖𝑤1) 𝜕f(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑤1

+ 𝑗𝑞 (1 − 𝑒−𝑗𝜖𝑤2) 𝜕f(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑤2

= 0,
(9)

Theorem 1. The limiting solution for 𝜖 → 0 to the equation (9)
f(𝑧, 𝑤1, 𝑤2, 𝜖) has the form

f(𝑧, 𝑤1, 𝑤2, 𝜖) = r(𝑧) exp{𝑗𝜆 (𝑟1𝑤1 + 𝑟2𝑤2
𝑞

)} , (10)

where r(𝑧) = [𝑟1(𝑧), 𝑟2(𝑧)] is the vector of the probability distribution of the
values of the embedded Markov chain, r = [𝑟1, 𝑟2] is vector of stationary
probability distribution of the values of the embedded Markov chain.

Proof. In the equation (9) we carry out the passage to the limit for 𝜖 → 0,
we obtain that f(𝑧, 𝑤1, 𝑤2) is a solution to the equation

𝜕f(𝑧, 𝑤1, 𝑤2)
𝜕𝑧

+ 𝜕f(0, 𝑤1, 𝑤2)
𝜕𝑧

(PA(𝑧) − I) = 0,
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which defines the vector function r(𝑧), therefore we will seek the function
f(𝑧, 𝑤1, 𝑤2, 𝜖) in the form of the expansion

f(𝑧, 𝑤1, 𝑤2, 𝜖) = r(𝑧)Φ(𝑤1, 𝑤2) + 𝑜(𝜖). (11)

In the equation (9) we carry out the passage to the limit as 𝑧 → ∞,
multiply this equation by the unit column vector e, expand the exponents
in a Maclaurin series up to the first order. In the resulting expression, we
substitute the expansion (11), divide by 𝜖 and carry out the passage to the
limit at 𝜖 → 0, we obtain the equation for the function Φ(𝑤1, 𝑤2)

𝑤1
𝜕Φ(𝑤1, 𝑤2)

𝜕𝑤1
+ 𝑞𝑤2

𝜕Φ(𝑤1, 𝑤2)
𝜕𝑤2

= 𝑗𝜕r(0)
𝜕𝑧

PWeΦ(𝑤1, 𝑤2),

where
𝜕r(0)

𝜕𝑧
= 𝜆r, rP = r, re = 1, 𝜆 = 1

∫∞
0

(1 − rA(𝑥)e) 𝑑𝑥
,W = [𝑤1 0

0 𝑤2
].

The solution will have the following form

Φ(𝑤1, 𝑤2) = exp{𝑗𝜆 (𝑟1𝑤1 + 𝑟2𝑤2
𝑞

)}

Substituting the obtained solution into (11), we get (10).

The theorem is proved. �

By substitution and equality (3), we write down the approximate (asymp-
totic) equality

h(𝑧, 𝑢1, 𝑢2) ≈ f(𝑧, 𝑤1, 𝑤2) = r(𝑧) exp{𝑗𝜆 (𝑟1𝑤1 + 𝑟2𝑤2
𝑞

)} =

= r(𝑧) exp{𝑗𝜆 (𝑟1𝑢1
𝜇1

+ 𝑟2𝑢2
𝜇2

)} .

Let us define the characteristic of the process {𝑖1(𝑡), 𝑖2(𝑡)} in the stationary
mode

ℎ(𝑢1, 𝑢2) = exp{𝑗𝜆 (𝑟1𝑢1
𝜇1

+ 𝑟2𝑢2
𝜇2

)} ,

which we will call the first-order asymptotics of the characteristic functions
of the number of occupied servers in the system.

5. Asymptotic analysis of the second order

In the equation (8) we replace

h(𝑧, 𝑢1, 𝑢2) = h2(𝑧, 𝑢1, 𝑢2) exp{𝑗𝜆 (𝑟1𝑢1
𝜇1

+ 𝑟2𝑢2
𝜇2

)} ,
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we obtain the equation for h2(𝑧, 𝑢1, 𝑢2)

𝜕h2(𝑧, 𝑢1, 𝑢2)
𝜕𝑧

+ 𝜕h2(0, 𝑢1, 𝑢2)
𝜕𝑧

(PA(𝑧)B(u) − I) +

+𝑗𝜇1 (1 − 𝑒−𝑗𝑢1) 𝜕h2(𝑧, 𝑢1, 𝑢2)
𝜕𝑢1

+ 𝑗𝜇2 (1 − 𝑒−𝑗𝑢2) 𝜕h2(𝑧, 𝑢1, 𝑢2)
𝜕𝑢2

−

−𝜆𝑟1 (1 − 𝑒−𝑗𝑢1)h2(𝑧, 𝑢1, 𝑢2) − 𝜆𝑟2 (1 − 𝑒−𝑗𝑢2)h2(𝑧, 𝑢1, 𝑢2) = 0.

(12)

We denote 𝜇1 = 𝜖2, 𝜇2 = 𝑞𝜖2, in (12) we replace

h2(𝑧, 𝑢1, 𝑢2) = f2(𝑧, 𝑤1, 𝑤2, 𝜖), 𝑢1 = 𝜖𝑤1, 𝑢2 = 𝜖𝑤2,

we obtain the equation for f2(𝑧, 𝑤1, 𝑤2, 𝜖)

𝜕f2(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑧

+ 𝜕f2(0, 𝑤1, 𝑤2, 𝜖)
𝜕𝑧

(PA(𝑧)B(w, 𝜖) − I) +

+ 𝑗𝜖 (1 − 𝑒−𝑗𝜖𝑤1) 𝜕f2(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑤1

+ 𝑗𝜖𝑞 (1 − 𝑒−𝑗𝜖𝑤2) 𝜕f2(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑤2

−

− 𝜆𝑟1 (1 − 𝑒−𝑗𝜖𝑤1) f2(𝑧, 𝑤1, 𝑤2, 𝜖) − 𝜆𝑟2 (1 − 𝑒−𝑗𝜖𝑤2) f2(𝑧, 𝑤1, 𝑤2, 𝜖) = 0.
(13)

Theorem 2. The limiting solution for 𝜖 → 0 to the equation (13)
f2(𝑧, 𝑤1, 𝑤2) has the form

f2(𝑧, 𝑤1, 𝑤2) = r(𝑧) exp{𝑗2

2
(𝜆 (𝑟1𝑤2

1 + 𝑟2
𝑤2

2
𝑞

) +

+𝜅 (𝑟2
1𝑤2

1 + 4𝑟1𝑟2
𝑤1𝑤2
𝑞 + 1

+ 𝑟2
2

𝑤2
2

𝑞
))} , (14)

where 𝜅 = 𝜆2 ∫
∞

0
(rA(𝑥) − r(𝑥)) e𝑑𝑥.

Proof. We will obtain the solution of the equation (14) in the following
form

f2(𝑧, 𝑤1, 𝑤2, 𝜖) = Φ(𝑤1, 𝑤2) (r(𝑧) + 𝑗𝜖(𝑟1𝑤1 + 𝑟2𝑤2)f2(𝑧)) + 𝑜2(𝜖), (15)

where f2(𝑧) satisfies the condition f2(∞)e = 0. Substitute (15) into (13) and
expand the exponents in a series up to the first order. Considering that

𝜕r(𝑧)
𝜕𝑧

+ 𝜕r(0)
𝜕𝑧

(PA(𝑧) − I) = 0,

we obtain the equation for finding the function f2(𝑧)

e
𝜕f2(𝑧)

𝜕𝑧
− 𝜆er(𝑧) + e

𝜕f2(0)
𝜕𝑧

(PA(𝑧) − I) + 𝜆A(𝑧) = 0. (16)
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From the equation (16) we find that

𝜕f2(0)
𝜕𝑧

= 𝜅r, where 𝜅 = 𝜆2 ∫
∞

0
(rA(𝑥) − r(𝑥)) e𝑑𝑥.

Substitute (15) into (13) and expand the exponents in a series up to the
second order. Multiply by e and perform the passage to the limit 𝑧 → ∞, we
obtain the equation for finding the function Φ(𝑤1, 𝑤2)

𝑤1
𝜕Φ(𝑤1, 𝑤2)

𝜕𝑤1
+ 𝑤2𝑞𝜕Φ(𝑤1, 𝑤2)

𝜕𝑤2
=

= Φ(𝑤1, 𝑤2) (−𝜆 (𝑟1𝑤2
1 + 𝑟2𝑤2

2) − 𝜅 (𝑟1𝑤1 + 𝑟2𝑤2)2) . (17)

The solution of the equation (17) has the form

Φ(𝑤1, 𝑤2) =

= exp{𝑗2

2
(𝜆 (𝑟1𝑤2

1 + 𝑟2
𝑤2

2
𝑞

) + 𝜅 (𝑟2
1𝑤2

1 + 4𝑟1𝑟2
𝑤1𝑤2
𝑞 + 1

+ 𝑟2
2

𝑤2
2

𝑞
))} (18)

Substituting the solution (18) into (15) and performing the passage to the
limit 𝜖 → 0, we obtain (14).
The theorem is proved. �

Due to the change, as well as the equality (14) for the function h2(𝑧, 𝑢1, 𝑢2)
we can write down the approximate (asymptotic) equality

h2(𝑧, 𝑢1, 𝑢2) ≈ f2(𝑧, 𝑤1, 𝑤2) =

= r(𝑧) exp{𝑗2

2
(𝜆 (𝑟1

𝑢2
1

𝜇1
+ 𝑟2

𝑢2
2

𝜇2
) +

+𝜅 (𝑟2
1

𝑢2
1

𝜇1
+ 4𝑟1𝑟2

𝑢1𝑢2
𝜇1 + 𝜇2

+ 𝑟2
2

𝑢2
2

𝜇2
))} .

Thus, the characteristic function of the number of occupied servers in the
system under consideration has the form

ℎ2(𝑢1, 𝑢2) = exp{𝑗𝜆 (𝑟1𝑢1
𝜇1

+ 𝑟2𝑢2
𝜇2

) + 𝑗2

2
[𝜆 (𝑟1

𝑢2
1

𝜇1
+ 𝑟2

𝑢2
2

𝜇2
) +

+𝜅 (𝑟2
1

𝑢2
1

𝜇1
+ 4𝑟1𝑟2

𝑢1𝑢2
𝜇1 + 𝜇2

+ 𝑟2
2

𝑢2
2

𝜇2
)]} . (19)

6. Numerical example

Let us consider a numerical example where we can illustrate the accuracy
of approximating formula (19). Consider queueing system with MRP arrivals,
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where the Markov renewal process is given by matrices

P = [0.3 0.7
0.6 0.4

] , A(𝑥) = diag{𝐴1(𝑥), 𝐴2(𝑥)}.

Here 𝐴1(𝑥) and 𝐴2(𝑥) are gamma distribution cdf-s with shape and rate
parameters 𝛼 and 𝛽 that have the following values:

𝛼1 = 0.5, 𝛽1 = 0.25, 𝛼2 = 1.5, 𝛽2 = 1.5.

The service times are exponentially distributed with service rates

𝜇1 = 1 ⋅ 𝜀, 𝜇2 = 2 ⋅ 𝜀

for the the first and the second types of arrivals respectively. Here parameter
𝜀 will be varied to establish the accuracy of approximation (19) accordingly
to the asymptotic condition 𝜀 → 0.
To establish the accuracy of the approximation, we use its comparison with

the results of simulation modeling of the corresponding system. For the error
estimation (difference between the results), we use the Kolmogorov distance

Δ = max
𝑖1,𝑖2∈[0,∞)

∣𝐹approx(𝑖1, 𝑖2) − 𝐹sim(𝑖1, 𝑖2)∣ ,

where 𝐹approx(𝑖1, 𝑖2) is a cdf of Gaussian distribution (19) and 𝐹sim(𝑖1, 𝑖2)
is a cdf built basing on the results of the simulation. The results of the
comparison is presented in the table 1. We see that the Kolmogorov distance
decreases with decreasing of parameter 𝜀, so, approximation (19) becomes
more accurate for small values of this parameter.

Table 1

Kolmogorov distance Δ between the approximation and distribution based

on the simulation results for various values of asymptotic parameter 𝜀

𝜀 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

Δ 0.1137 0.0501 0.0371 0.0323 0.0253 0.0226 0.0197

For example, if we suppose that error Δ ⩽ 0.05 means that the approxima-
tion is accurate enough then we can conclude that for the considered example,
Gaussian approximation (19) is applicable for values 𝜀 < 0.05.

7. Conclusions

In this paper, the method of asymptotic analysis is used to study a mathe-
matical model of the 𝑀𝑅|𝑀|∞ system functioning under the condition of
a changing environment. The case is considered when a semi-Markov random
environment has 2 different states. It is proved that the asymptotic character-
istic function of the number of occupied servers of each type in the considered
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system is Gaussian with the vector of mathematical expectations

a = [𝜆 𝑟1
𝜇1

, 𝜆 𝑟2
𝜇2

]

and the covariance matrix

K =
⎡
⎢
⎢
⎣

𝜆 𝑟1
𝜇1

+ 𝜅 𝑟2
1

𝜇1
4𝜅 𝑟1𝑟2

𝜇1 + 𝜇2

4𝜅 𝑟1𝑟2
𝜇1 + 𝜇2

𝜆 𝑟2
𝜇2

+ 𝜅 𝑟2
2

𝜇2

⎤
⎥
⎥
⎦

.
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Аннотация. В работе рассматривается гетерогенная система массового обслу-
живания с входящим потоком марковского восстановления и неограниченным
числом серверов. Время обслуживания запросов на серверах является положи-
тельной случайной величиной с экспоненциальным распределением вероятностей.
Параметры обслуживания зависят от состояния цепи Маркова в моменты вос-
становления. Следует отметить, что эти параметры не меняют своих значений
до окончания обслуживания. Таким образом, устройства в рассматриваемой
системе являются неоднородными (гетерогенными). Объектом исследования ста-
новится многомерный случайный процесс — количество серверов каждого типа,
обслуживаемых с разной интенсивностью в стационарном режиме. Для иссле-
дования применён метод асимптотического анализа при условии эквивалентно
долгого времени обслуживания. Метод асимптотического анализа реализуется
при построении последовательности асимптотик возрастающего порядка, в кото-
рой асимптотика первого порядка определяет асимптотическое среднее значение
числа занятых серверов. Асимптотика второго порядка позволяет построить гаус-
совскую аппроксимацию распределения вероятностей числа занятых серверов
в системе.

Ключевые слова: система массового обслуживания, случайная среда, поток
марковского восстановления, метод асимптотического анализа
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Abstract. The paper describes a grid method for solving an ill-posed problem
for the Fredholm equation of the first kind using the A.N. Tikhonov regularizer.
The convergence theorem for this method was formulated and proved. A procedure
for thickening grids with a simultaneous increase in digit capacity of calculations is
proposed.
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1. Introduction

A large number of applied tasks are ill-posed. A number of methods
have been developed to solve them. Firstly, these are parametric methods
in which the solution is represented as a decomposition over some basis,
and the regularized equation is reduced to the problem of optimizing the
coefficients of the decomposition (see, for example [1–3]). The success of
this approach strongly depends on the successful choice of the basis. Such
methods are difficult to study; finding estimates of accuracy and conditionality
in calculations with finite digit numbers is particularly difficult. Most of the
proofs are carried out for exact calculations with infinite digit capacity, i.e.,
without round-off errors.
Secondly, iterative methods with simple or implicit iterations [4, 5] are

often used to obtain an approximate analytical solution. The number of
iterations is also a regularizing parameter [6]. This looks tempting, since
there is no need to introduce additional stabilizing terms and thereby increase
the discrepancy. On the other hand, in the general case, iterations have
to be implemented numerically. The finite-difference approximation of the
corresponding quadratures introduces some systematic error in the operator
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and the right part. To reduce it, it is necessary to perform calculations on
thickening grids.

The third approach is represented by various grid methods (finite-difference
or finite-element), in which the solution is calculated in a set of discrete grid
nodes, that is, essentially replaced by a piecewise constant function. In this
approach, the initial problem is reduced to a system of algebraic equations
that can be solved by any direct or iterative method [7, 8]. Yu. L. Gaponenko
showed that finite-difference approximation makes the problem correct, i.e.,
self-regulation takes place [9, 10]. The study of finite element approximations
(for specific applied problems) was carried out, for example, in [11, 12].
However, the proofs and convergence estimates are valid for calculations with
infinite digit capacity, since they do not take into account rounding errors.

The central point of all regularizing algorithms is the justification of con-
vergence and the evaluation of the actual accuracy, that is, the difference
between the exact solution and the approximate one found. A review of the
literature on this issue is given in [13]. Known a posteriori estimates are majo-
rant and often greatly overestimate the error (up to 10 times or more). Quite
often, they require specific information and solutions that are not easy to
obtain in complex application tasks [14].

Another important issue is the choice of the regularization parameter. This
problem is not trivial, since in most applied calculations the error level is
fixed and does not tend to zero [15]. The best known solution to this question
is the well-known generalized residual principle [16].

In the present paper, we describe a grid method for solving an ill-posed
problem for the Fredholm equation of the first kind using the Tikhonov
regularizer of the zeroth order. For this method, we formulate and prove con-
vergence theorem which takes into account finite digit capacity of calculations.
For its practical implementation, we propose procedure of simultaneous grid
thickening and increase of digit capacity.

2. Method

We consider the Fredholm equation of the first kind

𝐴𝑢 = 𝑓, 𝐴𝑢 = ∫
𝑏

𝑎
𝐾(𝑦, 𝑥)𝑢(𝑥)𝑑𝑥, 𝑦 ∈ [𝑐, 𝑑]. (1)

A well-known technique of regularization is to add the simplest Tikhonov
stabilizer to the residual [8]. This leads to the following optimization problem

‖𝐴𝑢 − 𝑓‖2
𝐿2 + 𝛼‖𝑢‖2

𝐿2 → min . (2)

Here, 𝛼 > 0 is a regularization parameter.

Minimizing (2) by 𝑢 leads to the Euler equation. In the case of a non-self-
adjoint operator 𝐴, it has the form
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𝑏
∫
𝑎

𝑄(𝑧, 𝑥)𝑢(𝑥)𝑑𝑥 + 𝛼𝑢 = 𝐹(𝑧), 𝑧 ∈ [𝑎, 𝑏],

𝑄(𝑧, 𝑥) = 𝑄(𝑥, 𝑧) =
𝑑

∫
𝑐

𝐾(𝑦, 𝑥)𝐾(𝑦, 𝑧)𝑑𝑦, 𝐹(𝑧) =
𝑑

∫
𝑐

𝐾(𝑦, 𝑧)𝑓(𝑦)𝑑𝑦.
(3)

To solve (2), let us use convenient mesh method [17]. We introduce meshes
on 𝑥 ∈ [𝑎, 𝑏] and 𝑦 ∈ [𝑐, 𝑑]. For simplicity, they are supposed to be uniform
and to have the same number of steps 𝑁. The grid steps of 𝑥 and 𝑦 are
denoted by ℎ = (𝑏 − 𝑎)/𝑁 and 𝜏 = (𝑑 − 𝑐)/𝑁, respectively. Let us replace all
integrals in (1) by quadrature rules (for definiteness, using trapezoid rule).
This leads to the difference problem

𝑁
∑
𝑛=0

[(𝐴∗𝐴)𝑘,𝑛 + 𝛼𝐸𝑘,𝑛] 𝑢𝑛 = 𝐹𝑘, 0 ⩽ 𝑘 ⩽ 𝑁,

(𝐴∗𝐴)𝑘,𝑛 = 𝜏ℎ𝑔𝑛

𝑀
∑

𝑚=0
𝑔𝑚𝐾𝑚,𝑘𝐾𝑚,𝑛, 𝐹𝑘 = 𝜏

𝑀
∑

𝑚=0
𝑔𝑚𝐾𝑚,𝑘𝑓𝑚.

(4)

Here, 𝑔 are the weights of the trapezoid formula, 𝐸𝑘,𝑛 is the unit matrix.

The system of equations (4) is solved by some direct method.

3. Convergence

Let us formulate a few preliminary considerations.
1𝑜 When replacing integrals with grid approximations, we introduce some

error. It can be considered as systematic. This error can be estimated using
the Richardson method. This method is rigorously substantiated in [18].
Recall the essence of this approach.
In sequential twofold mesh thickening, even nodes of the current mesh

coincide exactly with the nodes of the previous one. In these nodes, one
can directly compute the difference of solutions on the sequential grids 𝛿 =
𝑢fine − 𝑢coarse. The error estimation takes the form

𝑟 = 𝛿
(2𝑝 − 1)

, (5)

where 𝑝 is the accuracy order of the scheme. We emphasize that this approach
does not require any information on the derivatives of the exact solution and
provides asymptotically precise (i.e. unimprovable) error value instead of
majorant one.

The described procedure can be controlled by graphs of lg ‖𝑟‖𝑙2 versus lg𝑁.
If 𝑁 is too small, the plot behavior is irregular. For “moderate” 𝑁, the plot is
a straight line with slope −𝑝. On this section of the plot, Richardson method
is applicable. For excessively large 𝑁, the plot sharply passes to a horizontal
line. This means that the calculation has reached round-off error background
caused by finite digit capacity. Here, Richardson method is inapplicable, and
one should terminate the calculations.
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2𝑜 The matrix of a linear system (4) is ill-conditioned. Calculations with
finite digit capacity lead to a random error associated with round-off errors.
With a sufficiently small step, the calculation error becomes comparable with
round-off errors and ceases to decrease with further thickening of the grids. To
reduce the impact of rounding errors, one needs to increase the digit capacity
of calculations. Apparently, Richtmyer was the first to point this out in the
1950s [19]. He noted that any difference scheme is incorrect in the sense that
when the grid step tends to zero, it is necessary to increase the digit capacity
of calculations.
At the same time, theorems on regularizing properties are usually proved for

exact calculations (i.e., with infinite digit capacity). However, real calculations
are carried out on finite round-off errors. It often turns out that in ill-
conditioned problems, computer round-off errors can become predominant.
3𝑜 The use of a regularizer improves the conditionality of the linear system

matrix. Therefore, increasing 𝛼 reduces the random error (for calculations
with fixed bit depth). However, the regularizer itself introduces a systematic
error in the problem, which increases with increasing 𝛼.
Based on these suggestive considerations, we formulate the convergence

theorem of the grid method (4). As far as we know, it is new.

Theorem 1. For any precision 𝜀 > 0, there exist 𝛼0 > 0, step ℎ0 and digit
capacity 𝐾0 such that for ℎ < ℎ0, 𝐾 > 𝐾0 and 𝛼 = 𝛼0 the error is less than 𝜀.

Proof. The proof consists of 3 stages. We write down the regularized
Fredholm equation. For it, according to Tikhonov’s fundamental theorem,
there is a required value of 𝛼0.
By virtue of the Ryabenky–Fillipov theorems, there is such a ℎ0 that

provides a systematic approximation error that does not exceed the required
one for calculations with infinite digit capacity.
Since, for the selected grid step ℎ, the conditionality of the linear system is

known, then there is such a digit capacity that provides the required smallness
of the random error. The theorem is proved. �

4. Calculation procedure

For the practical implementation of this theorem, the following algorithm
is proposed. Let us set some 𝐾 and 𝛼 and perform the calculation with grid
thickening. On each grid, we calculate the error estimate using the Richardson
method. We thicken the grids until this estimate stops decreasing. Denote
the last solution obtained as the limiting one.
Let us perform such calculations for a wide range of 𝛼 values. The depen-

dence of the true error of the limiting solution (i.e., the difference between
numerical and exact solutions) on 𝛼 has the following qualitative form. For
𝛼 = 0, the error is very large due to poor conditionality of the matrix 𝐴∗𝐴.
For small 𝛼, the random error is predominant, and the systematic error is neg-
ligible. As 𝛼 increases, the random error decreases, and the systematic error,
on the contrary, increases due to the term ∼ 𝛼‖𝑢‖2 in the regularizer. With
some 𝛼, the random and systematic errors become equal. This 𝛼 corresponds
to the best achievable accuracy at the selected bit depth.



124 DCM&ACS. 2023, 31 (2) 120–127

The value of the random error is estimated as the product of the unit
rounding error 𝛿0 by the condition number 𝜅 of a linear system (4). For

calculations with 64-bit numbers, we have 𝛿0 = 10−16.2. To estimate 𝜅, it is
advisable to use the angular conditionality number [20]. As noted above, the
systematic error consists of the grid approximation error (which is calculated
using the Richardson method) and the regularizer contribution. In the zeroth
approximation, these contributions can be considered independent. Therefore,
according to the rules of statistics, the total value of the systematic error can

be estimated as √‖𝑟‖2 + 𝛼2‖𝑢‖2.
As the final one, we choose such a 𝛼, in which the estimates of random and

systematic error are equal. If the obtained accuracy is unsatisfactory, one
should increase the digit capacity and repeat the described calculations.
As far as we know, such calculation procedures with simultaneous thickening

of grids and increasing digit capacity have not been proposed before.

5. Conclusion

Let us discuss possible generalizations of the proposed approaches. Firstly,
the convergence theorem admits generalization to the case when the difference
scheme is compiled not for a regularized problem, but for an initial ill-posed
one. The absence of a regularizer reduces the systematic error. However,
obviously, a significantly larger number of digits is required, which increases
the complexity of the calculation.
Secondly, it is also advisable to use the procedure of thickening grids with

a simultaneous increase in digit capacity for the numerical solution of formally
correct, but ill-conditioned problems. Examples are stiff Cauchy problems
with contrast structures. It is easy to construct a problem in which, when
calculating 64-bit numbers, there is not a single correct sign in the answer [17].
Note that ill-conditionality and round-off errors are one of the important
factors limiting the applicability of grid methods. Therefore, the relaxation
of this restriction is of great practical interest.
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Аннотация. В статье описан сеточный метод решения некорректной задачи для
уравнения Фредгольма первого рода с использованием регуляризатора А.Н. Ти-
хонова. Сформулирована и доказана теорема о сходимости этого метода. Для её
практической реализации предложена процедура сгущения сеток с одновремен-
ным увеличением разрядности вычислений.
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Abstract. The calculation of quadratures arises in many physical and technical
applications. The replacement of integration variables is proposed, which dramatically
increases the accuracy of the formula of averages. For infinitely smooth integrand
functions, the convergence law becomes super power. It is significantly faster than the
power law and is close to exponential one. For integrals with bounded smoothness,
power convergence is realized with the maximum achievable order of accuracy.

Key words and phrases: trapezoid rule, exponential convergence, error estimate,
asymptotically sharp estimates

1. Introduction

Applied tasks. In many physical problems, it is required to approximate
integrals that are not taken in elementary functions. Here are some examples:

1. Calculation of special functions of mathematical physics: Fermi–Dirac
functions equal to the moments of the Fermi distribution, gamma function,
cylindrical functions and a number of others.

2. Calculation of Fourier coefficients of a given function, Fourier and Laplace
transforms.

3. Numerical solution of integral equations, both correctly posed and incor-
rect.

4. Solving boundary value problems for partial differential equations (in-
cluding eigenvalue problems) written in integral form, etc.

Such integrals must be calculated with high accuracy up to computer
round-off errors.
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Calculation of quadratures. Commonly, trapezoid, mean and Simpson
methods on a uniform grid are used for grid calculation of quadratures. The
majorant error estimation is well known for these methods. For trapezoid
and mean formulas it is 𝑂(ℎ2), for Simpson’s formula it is 𝑂(ℎ4), where ℎ
is the grid step. There are ways to improve accuracy: calculation on a set
of thickening grids and extrapolation refinement by the Richardson method,
refinement by the Euler–Maclaurin formula, etc. [1, 2]. All these methods
give a power dependence of the error on the grid step 𝑂(ℎ𝑚).
If the integrand is periodic and the integral is calculated over the full

period, then the dependence of the error on the step becomes exponential
instead of power-law ∼ exp(−1/ℎ) [3–5]. This means that when the step
is halved, the number of correct characters in the answer approximately
doubles. This convergence rate is much faster than the power one. However,
the corresponding class of integrand functions is rather narrow. Attempts
have been made in the literature to expand this class [6–9], but they were
considered unsuccessful [7].

In the present paper, an approach is proposed that dramatically acceler-
ates the convergence of the mean rule. It is based on a special substitution of
integration variables. The integrand function may be non-periodic. If it is
infinitely smooth, then the proposed replacement provides super power con-
vergence of the quadrature. This convergence rate is significantly faster than
the power-law one and is close to the exponential one.
If the integrand has bounded smoothness, then the proposed method gives

a power convergence with the maximum achievable order of accuracy.
The proposed approach does not require a priori information about the

nature of the integrand function and is uniformly applicable to a wide range of
tasks. The class of integrand functions, for which the super power convergence
of quadratures is realized, is significantly expanded.

2. Change of integration variables

Consider the integral

𝐼 = ∫
1

0
𝑓(𝑥)𝑑𝑥. (1)

Let us perform the variable change in two stages. First, using fractional
polynomial transformation 𝑡(𝑥), we map the segment 𝑥 ∈ (0, 1) to the straight
line 𝑡 ∈ (−∞, +∞). Then we map this line to the segment 𝜉 ∈ (0, 1) using
the transformation 𝑡(𝜉), whose derivatives tend to zero near 𝜉 = 0 and 𝜉 = 1
faster than any degree 𝜉𝑚.
Such substitutions can be made in various ways. In this paper, the following

transformation was considered

𝑡(𝜉) = 𝐴(𝜉 − 0.5)
𝜉𝛼(1 − 𝜉)𝛼 , 𝑥(𝑡) = 1

2
+ 1

2
th(𝐵𝑡), (2)

where 𝐴, 𝐵, 𝛼 are constants. The mapping (2) is shown in figure 1 as 𝑥(𝜉)
dependence. It is almost linear in the middle of the segment, but at its ends,
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the derivatives of 𝑥𝜉 quickly tend to zero. It is also possible to implement the

replacement (2), in which the error function Φ(𝐵𝑡) is taken instead of the
hyperbolic tangent.

Figure 1. Variable transformation (2). Parameters 𝐴, 𝐵, 𝛼 are equal to unity

After mapping (2), the integral takes the form

𝐼 = ∫
1

0

̃𝑓(𝜉)𝑑𝜉, ̃𝑓(𝜉) = 𝑓{𝑥[𝑡(𝜉)]}𝑥𝑡[𝑡(𝜉)]𝑡𝜉(𝜉). (3)

Periodic continuation. Let us show that the new integrand ̃𝑓(𝜉) admits an
infinitely smooth periodic continuation beyond the boundaries of the segment
𝜉 ∈ (0, 1).
The expression 𝑡𝜉(𝜉) ∼ 𝜉−𝛼−1(1 − 𝜉)−𝛼−1 has poles at the ends of the

segment 𝜉 = 0 and 𝜉 = 1. However, for 𝜉 → 0 + 0 and 𝜉 → 1 − 0, the
derivative 𝑥𝑡 ∼ exp(−𝜉−𝛼(1 − 𝜉)−𝛼) tends to zero significantly faster. As
a result, 𝑥𝑡𝑡𝜉 → 0 when striving for points 𝜉 = 0 and 𝜉 = 1 from inside the

segment. Therefore, ̃𝑓(𝜉) vanishes at the boundaries of the segment.
Similarly, it can be shown that all derivatives of this function tend to zero

at 𝜉 → 0 + 0 and 𝜉 → 1 − 0. For example, the first derivative has the form

̃𝑓𝜉 = 𝑓𝑥𝑥2
𝑡 𝑡2

𝜉 + 𝑓𝑥𝑡𝑡𝑡2
𝜉 + 𝑓𝑥𝑡𝑡𝜉𝜉. (4)

All derivatives of 𝑑𝑡𝑚/𝑑𝜉𝑚 ∼ 𝜉−𝛼−𝑚(1−𝜉)−𝛼−𝑚 at the boundaries of the seg-
ment have poles that are multiplied by the expression ∼ exp(−𝜉−𝛼(1 − 𝜉)−𝛼)
in various degrees. Therefore, for 𝜉 → 0 + 0 and 𝜉 → 1 − 0 we have ̃𝑓𝜉 → 0.
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The same is true for higher derivatives 𝑑 ̃𝑓𝑚
𝜉 /𝑑𝜉𝑚. Thus, the integrand func-

tion ̃𝑓 can be periodically continued infinitely smoothly beyond the boundaries
of the segment 𝜉 ∈ (0, 1).

3. Mean rule convergence

On the segment 𝜉 ∈ (0, 1), we introduce a uniform grid with a step ℎ = 1/𝑁.
Half-integer nodes are denoted by 𝜉𝑛+1/2 = (𝑛−1/2)ℎ, 𝑛 = 1, ..., 𝑁. We write

the mean rule quadrature

𝐼𝑁 =
𝑁

∑
𝑛=1

ℎ ̃𝑓(𝜉𝑛+1/2). (5)

The following statement holds.

Theorem 1.
A) If 𝑓(𝑥) is infinitely smooth on the segment 𝑥 ∈ (0, 1), then the quadra-

ture (5) has super power convergence.
B) If 𝑓(𝑥) has 𝑗 continuous derivatives on 𝑥 ∈ (0, 1), the (𝑗 + 1)-th derivative

has a discontinuity at the point 𝑥 = 𝑎 ∈ (0, 1), and this point is a grid node,
then the quadrature (5) has power convergence. The order of accuracy is 𝑗 + 2
if 𝑗 is even, and 𝑗 + 3 if 𝑗 is odd. This order of accuracy is maximal for a given
smoothness of the integrand function.

Proof. Let us prove the statement A). The power part of the mean rule error
is described by the Euler–Maclaurin formula [1]. It contains the differences of
odd derivatives at the ends of the integration segment

𝛿 =
∞

∑
𝑘=1

𝑏𝑘ℎ2𝑘 ( ̃𝑓 (2𝑘−1)(1) − ̃𝑓 (2𝑘−1)(0)) , 𝑏𝑘 = const. (6)

As noted above, due to the variable transform (2), the derivatives ̃𝑓 (𝑘)(𝜉) →
0 for 𝜉 → 0 + 0 and 𝜉 → 1 − 0. All summands in the sum of (6) vanish.
Therefore, there are no power terms left in the error of the mean rule, and
the convergence turns out to be super power one.
Let us prove the statement B). Under these assumptions, the power-law

contribution to the error of the mean formula has the form

𝛿 =
∞

∑
𝑘=1

𝑏𝑘ℎ2𝑘 ( ̃𝑓 (2𝑘−1)(1) − ̃𝑓 (2𝑘−1)(0)) +

+
𝐾

∑
𝑘=1

𝑏𝑘ℎ2𝑘 ( ̃𝑓 (2𝑘−1)(𝑎 − 0) − ̃𝑓 (2𝑘−1)(𝑎 + 0)) . (7)

The first sum in (7) is similar to (6). After the variable transform (2), it
turns to zero.
The second sum is the error resulting from the singularity at the point 𝑎.

If 2𝑘 − 1 ⩽ 𝑗, then by virtue of continuity, the right and left limit values of
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derivatives of the order of 2𝑘 − 1 are the same ̃𝑓 (2𝑘−1)(𝑎 − 0) = ̃𝑓 (2𝑘−1)(𝑎 + 0).
What is the limit of summation of 𝐾? Since ̃𝑓 (𝑗+1) is discontinuous at the
point 𝑎, and only odd derivatives are included in (7), two cases are possible.

If 𝑗 is odd, then 2𝐾 − 1 = 𝑗 + 2. Then 𝛿 = 𝑂(ℎ𝑗+3). If 𝑗 is even, then

2𝐾 − 1 = 𝑗 + 1, and 𝛿 = 𝑂(ℎ𝑗+2). Obviously, this order of accuracy is the
maximum, i.e. it cannot be improved. The theorem is proved. �

Note. The literature describes [6–9] variable substitutions similar to (2). In
these works, trapezoid and Simpson formulas were used, in which one needs
to calculate the integrand function at the boundary points. However, after

variable change (2), the integral function ̃𝑓(𝜉) has essentially singular points
within the boundaries of the segment 𝜉 = 0 and 𝜉 = 1. Therefore, calculating

̃𝑓(0) and ̃𝑓(1) presents a problem; in particular, computer numbers overflow
occurs.
To avoid this, in [6] it was proposed to cut the integration segment, i.e.

instead of 𝜉 ∈ (0, 1), consider 𝜉 ∈ (𝜀, 1 − 𝜀), where 𝜀 is some small number.
Such a cutting introduced a significant error, and it was not possible to realize
superstellar convergence. The authors of [7] conducted numerical experiments
and found that this approach is inferior in quantitative accuracy to Simpson’s
formula without replacing variables. Therefore, this approach was considered
unpromising [7].

We use the mean rule that does not require calculating ̃𝑓(0) and ̃𝑓(1).
Therefore, the described difficulty does not arise, and super power convergence
is realized.

4. Method validation

Infinitely smooth integrand. As an example, consider a test integral with
a known exact value

𝐼 = ∫
1

0
𝑒𝑥/(𝑒 − 1)𝑑𝑥 = 1. (8)

The integrand is infinitely smooth.
The calculation was carried out on a set of grids with different 𝑁 = 2, 4, 8, ...

On each grid, the mean rule quadrature and its error Δ = |𝐼 − 𝐼𝑁|, equal
to the difference between the numerical and exact integrals, were calculated.
Figure 2 shows a graph of the error Δ depending on the number of grid steps
𝑁. The scale of the graph is semi-logarithmic. At this scale, exponential
convergence corresponds to a straight line, and a power-law curve corresponds
to a logarithmic curve.
Dark circles correspond to the calculation with the replacement of vari-

ables (2), light circles correspond to the calculation without it. One can see
that the proposed replacement of variables dramatically increases accuracy:
already at 𝑁 ∼ 100, the error is Δ ∼ 10−14, which is comparable to rounding
errors. The gain in accuracy compared to the calculation without replacing
variables reaches 10 orders of magnitude. The convergence rate is somewhat
inferior to the exponential one, but cardinally exceeds the power one.
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Figure 2. The error of the mean rule quadrature in the test (8).

Notation are explained in the text

Due to the presence of essentially singular points of ̃𝑓 at the boundaries
of the segment, the dependence of the error on the number of steps is non-
monotonic and alternating [10, 11]. In this graph, this can be seen by the
non-monotonic behavior of the curve. Local minima correspond to the change
of the error sign.
Therefore, the proposed replacement dramatically increases the accuracy of

the mean rule quadrature. We recommend it for wide application in practical
computing.

Integrand function with bounded smoothness. Often in applications, it
is necessary to calculate integrals from piecewise given spline approximations
and interpolants. They have limited smoothness. So, the simplest linear
interpolation is continuous, but has discontinuities of the first derivative. The
cubic spline is continuous along with the second derivative, and the third
derivative experiences a discontinuity.
As an example, consider the integral of the function

𝑓(𝑥) = { 1, 𝑥 < 0.5,
1 + (2𝑥 − 1)𝑚, 𝑥 ⩾ 0.5,

(9)

for integers 1 ⩽ 𝑚 ⩽ 5. The function (9) has a 𝑚 − 1 continuous derivative,
and the 𝑚-th derivative experiences a discontinuity. The exact values of the
integral 𝐼 are known, they are listed in table 1.
The calculation was carried out on several thickening grids. They were

chosen so that the feature 𝑥 = 0.5 was a node. For example, it is enough
to take only even 𝑁 for this. The resulting errors depending on the number
of steps are shown in figure 3. The scale of the graph is double logarithmic.
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Table 1

Test (9)

𝑚 𝐼 𝑞
1 1 + 2𝑒0.5 − 𝑒 2
2 1 − 8𝑒0.5 + 5𝑒 4
3 1 + 48𝑒0.5 − 29𝑒 4
4 1 − 384𝑒0.5 + 233𝑒 6
5 1 + 3840𝑒0.5 − 2329𝑒 6

Therefore, the power convergence corresponds to a straight line whose slope
is equal to the order of accuracy. The numbers near the lines are the values
of 𝑚.

Figure 3. The error of the mean rule quadrature in the test 9.

Notation are explained in the text

It can be seen that on sufficiently detailed grids, the curves for each 𝑚 tend
to straight lines, i.e. power convergence is realized. The corresponding orders
of accuracy of 𝑞 are given in the table 1. They are completely consistent with
Theorem 1.
On coarse meshes, the behavior of curves is irregular. The error depends on

𝑁 nonmonotonically, changes sign and decreases significantly faster than the
power law. Apparently, the law of convergence on coarse meshes corresponds to
the super power one (similar to the figure 2). Justification of this consideration
is beyond the scope of the present work.
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For comparison, the figure 3 shows the calculation error according to the
mean rule without variable change. For all the 𝑚 considered, the errors were
approximately the same, so we showed them with one line. It is indicated by
an asterisk (*). This line corresponds to a power convergence with a second
order of accuracy. It can be seen that for 𝑚 ⩾ 2 (i.e., if there is at least
one continuous derivative), the proposed replacement increases the order of
accuracy and sharply reduces the quantitative error. In Fig. 3, the accuracy
gain was from 3 to 8 orders of magnitude.
We performed a similar calculation using grids in which the singularity

𝑥 = 0.5 did not get into the node. To do this, it is enough to take only odd 𝑁.
This case does not fall under Theorem 1. Nevertheless, the theorem turned
out to be true for it as well. The resulting errors were similar to the figure 3.
In particular, the convergence rate for the considered 𝑚 turned out to be the
same. The quantitative accuracy was somewhat worse than figure 3. This
was most noticeable for 𝑚 = 1. For other 𝑚, the accuracy decreasing turned
out to be insignificant.

5. Conclusion

In this paper, a special transformation of the integration variable is proposed,
which dramatically increases the accuracy of the mean rule quadrature. For
infinitely smooth integrand functions, convergence becomes super power one.
For functions of bounded smoothness, the convergence law remains power-law,
but the maximum achievable order of accuracy is realized.
Let us conduct a qualitative comparison of the proposed approach with other

methods for improving the accuracy of quadratures listed in the introduction.
None of them provides super power convergence. Therefore, for infinitely

smooth functions, the proposed approach provides obviously higher accuracy.
The use of Euler–Maclaurin corrections requires a large amount of a priori

information about the integrand. It is necessary to accurately calculate high
derivatives and a priori set the number of corrections to be taken into account.
Therefore, the maximum order of accuracy is realized if the smoothness class
of the integrand function is known.
On the contrary, the proposed approach is uniformly applicable to integrals

both infinitely smooth and having bounded smoothness. One does not need
to know the smoothness class in advance.
It is possible to increase the order of accuracy using Richardson extrapo-

lation only on sufficiently detailed grids on which theoretical convergence is
already being implemented, but rounding errors have not yet been achieved.
On coarse grids, the use of extrapolation can even degrade accuracy.
In the proposed method, even on coarse grids, convergence is observed, and

quite fast. A quantitative comparison of the Richardson extrapolation and
the proposed method for bounded smoothness functions is beyond the scope
of this paper.
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Квадратуры со сверхстепенной сходимостью

А. А. Белов1, 2, М. А. Тинтул1, В. С. Хохлачев1

1Московский государственный университет им. М.В. Ломоносова,
Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия

2 Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Аннотация. Вычисление квадратур возникает во многих физических и техни-
ческих приложениях. В статье предложена замена переменных интегрирования,
кардинально повышающая точность формулы средних. Для бесконечно гладких
подынтегральных функций закон сходимости становится сверхстепенным. Он
существенно быстрее степенного и близок к экспоненциальному. Для подынте-
гральных функций с ограниченной гладкостью реализуется степенная сходимость
с максимально достижимым порядком точности.

Ключевые слова: формула трапеций, экспоненциальная сходимость, оценки
точности, асимптотически точные оценки
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Abstract. This article discusses a universal way to create animation using Asymptote
the language for vector graphics. The Asymptote language itself has a built-in library
for creating animations, but its practical use is complicated by an extremely brief
description in the official documentation and unstable execution of existing examples.
The purpose of this article is to eliminate this gap. The method we describe is based
on creating a PDF-file with frames using Asymptote, with further converting it into
a set of PNG images and merging them into a video using FFmpeg. All stages are
described in detail, which allows the reader to use the described method without
being familiar with the used utilities.

Key words and phrases: vector graphics, TeX, asymptote, scientific graphics

1. Introduction

In this paper we study the creation of animation animation using the vector
graphics language Asymptote [1–4].
Asymptote is an interpreted language, that is a translator into the PostScript

vector graphics language. Designed to create vector images for mathematical
publications. It is closely integrated with the TEX system and is an integral
part of the TEX Live [5] distribution. It has a C-like syntax, supports the
creation of functions, custom data structures, and comes with an extensive
set of modules for various tasks. Unlike PGF/TikZ [6], Asymptote is more
imperative, so it is easier to implement complex program logic on it.
In the official documentation of this language, only a few paragraphs are

devoted to the animation creation process and the user is referred to the
source code examples located in the animations directory. Asymptote creates
animation in two steps. At the first step, a multi-page PDF-file is created
containing images that will become frames of future animation. Then, using
the external utility ImageMagick [7] (command convert), this PDF-file is

© Gevorkyan M.N., Korolkova A.V., Kulyabov D. S., 2023
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converted into a GIF image. If the ImageMagick utility is not installed on
the user’s system, all examples will stop at creating a multi-page PDF-file
with a set of images and a GIF image with animation will not be received.
In this article, we are considering a universal way to create animation in

video format using the ffmpeg [8, 9] and Ghostscript [10] utilities. All external
programs will be called explicitly from the command line. With the help of
Asymptote, only a multi-page PDF-file with frames for the future video will
be created.
The reader should be familiar with the basic capabilities of the Asymptote

language. For an introduction to the basics of the language, we recommend
the manual [11]. The information from it will be enough to understand this
work. As an example, we chose the animation of the process of constructing
epitrochoids and hypotrochoids. In the first part of the work, we will recall
the definitions of these curves, some of their properties and reduce their
construction to a composition of two rotations. In the second part of the
article, we will describe in detail the implementation of their construction
using Asymptote. And in the third part we will focus on the technical side of
the issue and describe the process of creating a multi-page PDF-file, converting
it into PNG images using Ghostscript and converting these images into video
using ffmpeg.

2. Task description

Consider the task of animating the process of constructing cycloidal curves,
namely hypotrochoids and epitrochoids. We will not use the parametric
equation of these curves, but will reduce everything to the composition of two
rotations applied to the starting point of the curve. This will better illustrate
the capabilities of the Asymptote language.

2.1. Definition of epitrochoids

Epitrochoid is defined as a trajectory plotted by a fixed point 𝑃 lying on
a radial line of circle with radius 𝑟, which rolls along the outer side of the
circle with radius 𝑅 (figure 1). The parametric equation of the curve has
the following form:

⎧{
⎨{
⎩

𝑥(𝑡) = (𝑅 + 𝑟) cos(𝜑) − 𝑑 cos(𝑅 + 𝑟
𝑟

𝜑) ,

𝑦(𝑡) = (𝑅 + 𝑟) sin(𝜑) − 𝑑 sin(𝑅 + 𝑟
𝑟

𝜑) ,

where 𝑑 is the distance from the center of the rolling circle to the point of the
curve, 𝜑 is the angle of rotation of the rolling circle relative to the axis 𝑂𝑥.
Let us introduce the coefficient 𝑘 = 𝑟/𝑅, then it will possible to change the

parameterization and the equation will take the form:

{
𝑥(𝑡) = 𝑅(𝑘 + 1) cos(𝑘𝑡) − 𝑑 cos((𝑘 + 1)𝑡),
𝑦(𝑡) = 𝑅(𝑘 + 1) sin(𝑘𝑡) − 𝑑 sin((𝑘 + 1)𝑡),

where the parameters 𝑡 and 𝜑 are related as 𝜑 = 𝑘𝑡.
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Figure 1. 𝑅 = 3, 𝑟 = 1, 𝑑 = 1/2
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Figure 2. 𝑅 = 4, 𝑟 = 2, 𝑑 = 2

Some special cases of epitrochoids have proper names. So for 𝑟 = 𝑅,
Pascal’s snail is obtained, for 𝑑 = 𝑅 + 𝑟 — rosy curve or rose, and for 𝑑 = 𝑟 —
epicycloid (figure 2).

2.2. Definition of a hypotrochoid

Hypotrochoid is the trajectory described by a fixed point 𝑃 on a radial
straight circle of radius 𝑟, which rolls along the inner side of the circle of
radius 𝑅 (figure 3). The parametric equation of the curve has the following
form:

⎧{
⎨{
⎩

𝑥(𝑡) = (𝑅 − 𝑟) cos(𝜑) + 𝑑 cos(𝑅 − 𝑟
𝑟

𝜑) ,

𝑦(𝑡) = (𝑅 − 𝑟) sin(𝜑) − 𝑑 sin(𝑅 − 𝑟
𝑟

𝜑) ,

where, as in the case of the epitrochoid, 𝑑 is the distance from the center
of the rolling circle to the point 𝑃. In particular, for 𝑑 = 𝑟, hypocycloid is
obtained (figure 4).
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Figure 3. 𝑅 = 4, 𝑟 = 2, 𝑑 = 1
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Figure 4. 𝑅 = 4, 𝑟 = 2, 𝑑 = 2
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It is also possible to parameterize 𝜑 = 𝑘𝑡, where 𝑘 = 𝑟/𝑅, then the equation
will take the form:

{
𝑥(𝑡) = 𝑅(1 − 𝑘) cos(𝑘𝑡) + 𝑑 cos((1 − 𝑘)𝑡),
𝑦(𝑡) = 𝑅(1 − 𝑘) sin(𝑘𝑡) − 𝑑 sin((1 − 𝑘)𝑡).

2.3. Reducing the problem to a composition of turns

The construction of cycloidal curves begins by specifying two circles: a fixed
circle of radius 𝑅 centered at point 𝑂𝑅 and a moving circle of radius 𝑟 centered
at point 𝑂𝑟.
A fixed circle will be conventionally called “large”, and a moving one —

“small”, since usually 𝑅 > 𝑟. On the radial line of a small circle, we fix the
point of the curve 𝑃0.
From the definition of hypotrochoids and epitrochoids, it follows that

a motion 𝑇 (𝜑) is performed over the point 𝑃0, consisting of a composition of
two turns (figures 5–10):

1. 𝑇1(𝜑) — rotation around the point 𝑂𝑅 by the angle 𝜑, at which the
point 𝑂𝑟 turns into 𝑂′

𝑟, and the point 𝑃0 into the point 𝑃1/2;

2. 𝑇2(𝜃(𝜑)) — rotation around the point 𝑂′
𝑟 by the angle 𝜃, at which 𝑃1/2

turns into 𝑃1.
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Figure 5. Hypocycloid

𝑑 = 𝑟
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Figure 6. Hypotrochoid

𝑑 > 𝑟
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Figure 7. Hypotrochoid

𝑑 < 𝑟

The rotation angle 𝜃 is related to the angle 𝜑. A small circle must travel
a distance equal to the length of the arc 𝑃𝑃1/2, which means that the lengths

of the arcs 𝑃𝑃1/2 and 𝑃1/2𝑃1 are equal.

|𝑃𝑃1/2| = 𝑅𝜑 = |𝑃1/2𝑃1| = 𝜃𝑟 ⇒ 𝜃 = 𝑅𝜑
𝑟

= 𝜑
𝑘

, 𝑘 = 𝑟/𝑅.

Thus, to construct a curve, it is enough to set the parameters 𝑅, 𝑟 and 𝑑,
the initial positions of the circles and the points 𝑃0. It is usually assumed
that the center of 𝑂𝑅 coincides with the origin, and the center of 𝑂𝑟 lies on
the 𝑂𝑥 axis.
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Figure 8. Epicycloid 𝑑 = 𝑟
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Figure 9. Epitrochoid 𝑑 > 𝑟
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Figure 10. Epitrochoid 𝑑 < 𝑟

Then the coordinates of the center 𝑂𝑟 are calculated as:

OO𝑟 = OO𝑅 + (𝑅 + 𝑠 ⋅ 𝑟, 0)𝑇, 𝑠 = {
+1, if epitrochoid,
−1, if hypotrochoid. (1)

And the coordinates of the curve point are 𝑃0: OP0 = OO𝑟 + (𝑑, 0)𝑇.
Now, to find any point of the curve, it is enough to act on 𝑃0 by converting

𝑇 (𝜑) = 𝑇2(𝜑/𝑘) ∘ 𝑇1(𝜑) setting the required value to 𝜑. If it is necessary
to construct a set of points, then taking a sufficiently small step 𝜑, one can
consistently act on the point 𝑃0 by transformations 𝑇 (𝑖𝜑), 𝑖 = 1, 2, … , 𝑛:

𝑃0
𝑇 (𝜑)
⟶ 𝑃1, 𝑃0

𝑇 (2𝜑)
⟶ 𝑃2, 𝑃0

𝑇 (3𝜑)
⟶ 𝑃3, 𝑃0

𝑇 (4𝜑)
⟶ 𝑃4, , … , 𝑃0

𝑇 (𝑛𝜑)
⟶ 𝑃𝑛, .

3. Implementation on Asymptote

Below we present the source code of the program in the Asymptote language
and comment on its key points:

include "config.asy";

import animation;
import graph;

unitsize(1cm);
size(10cm, 10cm);

string ssign(int d) {
return d > 0 ? "+" : "-";

}

transform T1(real phi, pair O_R) { // (2)
return rotate(angle=phi, z=O_R);

}

transform T2(real phi, int sign, real k, pair O_r) { // (4)
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return rotate(angle=sign*phi/k, z=O_r);
}

pen BigCircle = blue;
pen littleCircle = deepgreen;
pen curve = red;

int sign = -1; // (6)
real R = 4.0;
real r = 2.0;
real d = 2.0;
real k = r/R;
int N = 100; // (8)
pair O_R = (0, 0);
int turns = 1; // (10)
usersetting(); // (12)

pair O_r = O_R + polar(R + sign * r, 0); // (14)
pair P = O_r + polar(d, 0); // (16)
pair Q = O_r - sign * polar(r, 0); // (18)

guide xcycloid;
transform T;

animation A; // (20)
A.global = true;

draw(circle(c=O_R, r=R), p=BigCircle); // (22)
dot(O_R, p=BigCircle);

for(real phi: uniform(0, 360turns, N)) {
save(); // (24)
T = T1(phi, O_R) * T2(phi, sign, k, O_r); // (26)
xcycloid = xcycloid -- T*P; // (28)
draw(xcycloid, p=1bp+curve); // (30)
dot(T*P, L=Label("P", align=NW)); // (32)
draw(O_R -- T*O_r, L=Label("R"+ssign(sign)+"r")); // (34)
draw(T*O_r -- T*P, L=Label("d"));
draw(circle(c=T*O_r, r=r), p=littleCircle); // (36)
dot(T*O_r, p=littleCircle);
dot(T1(phi, O_R)*Q, p=littleCircle); // (38)

include "axes.asy"; // (40)

A.add(); // (42)
restore(); // (44)

}

A.movie(); // (46)
currentpicture.erase();
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This program creates a multi-page PDF-file, each page of which is a future
frame of the video. The main work on calculating the points of the curve is
performed by the functions T1 (2) and T2 (4). These functions are defined for
convenience, so that the code reflects the above formulas as much as possible.
All the work is done by the built-in function rotate, which allows you to
determine rotation around an arbitrary point (argument z) by an arbitrary
angle value in degrees (argument angle).

Next, we set a set of variables-parameters (6). The variable sign is 𝑠 from
the formula (1), and the rest correspond to their mathematical notation. The
variable N (8) sets the number of calculated points and, as a result, frames in
the future video. The variable turns (10) sets the number of complete turns
around the center of 𝑂𝑅. Calling the built-in function usersetting (12)
to override the value of any variable specified above via the command line
argument -u.

Then, based on the above-defined parameters, the coordinates of the initial
position of the center of the moving circle 𝑂𝑟 (14), the points of the curve
𝑃 (16) and the point of tangency 𝑄 of the moving circle with the stationary
(18) are calculated.

Next, an object A (20) is created, into which animation frames will be
recorded (objects of the type picture or frame). A has several fields, in
particular the global field of the bool type allows you to enable and disable
saving the created images as an array in RAM and writing them as files to
disk only after they are all built.

The curve points are calculated in a loop, but before that, a fixed circle (22)
and its center are drawn. Then, at the beginning of each iteration of the
cycle, all the current stationary elements of the image are saved (object
picture) (24), all movable elements are built, the resulting image is added to
the structure A (42) and the image state is reset (44) to the one that was at
the time of (24). The process continues until all frames are drawn and saved
to A.

As the cycle progresses, the angle 𝜑 changes from 0 to 2𝜋𝑛 (in degrees).
At each step, the rotation transformation 𝑇 (𝜑) is calculated (28), applied to
the starting point of 𝑃 and added to the path (guide) xcycloid (28). With
each iteration of the loop, new points are added to the path xcycloid and
the curve grows.

The following drawing commands follow:

— of the already calculated part of the curve (30);
— of the new point position 𝑃 (32);
— of a segment of length 𝑅 + 𝑠 ⋅ 𝑟 (34) connecting the center of 𝑂𝑅 to

the new position of the center of 𝑂𝑟, as well as a segment of length 𝑑
connecting the new center of 𝑂𝑟 to the point 𝑃 of the curve;

— directly the moving circle itself in its new position (36) and its center;
— touch point 𝑄 (38);
— coordinate grid, the settings of which are placed in a separate file (40).

Finally, after working out the loop, all created frames are recorded in
a PDF-file. To do this, Asymptote sequentially creates separate PDF-files for
each frame, then adds text processed by LATEX (in our case LuaLATEX) to them.
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It is this procedure that takes the main time of the program, the calculations
themselves practically do not take up time in comparison with this.
We also note the peculiarity of the Asymptote syntax, which allows omitting

the * operator when multiplying numeric literal constants and variables, for
example 360turn (24).

4. Creating a video clip

4.1. Launching Asymptote

To run the program discussed above, run the following command

asy -noV -nobatchView -f pdf -globalwrite -u

'R=3;r=1;d=1;N=100' xcycloid.asy -o video/xcycloid.pdf↪

The source code file xcycloid.asy is started for execution and as a result
the file xcycloid.pdf will be created. Consider the options used:

— Options -noV and -nobatchView prevent the newly created image from
opening automatically. The -noV option disables this function when
executed from the command line, and -nobatchView when executing the
script (as in our case).

— Option -f pdf indicates that you should immediately create a PDF-file,
bypassing the postscript-file stage.

— Option -globalwrite makes it possible to save the file xcycloid.pdf
to any directory (in our case video), and not only to the one where the
source file xcycloid.asy is located.

— Option -u allows you to interact with the usersetting() function and
pass the values of variables inside the program. So we pass the values R=3,
r=1, d=1 and N=100. This feature allows you to use a single source code
file to build multiple images, flexibly adjusting any parameters. Note
that this parameter takes exactly a text string, which is then processed
by the usersetting() function, so the passed parameters must be taken
in quotation marks.

4.2. Converting to PNG using GhostScript

To convert the resulting multipage file into a video format, it is neces-
sary to convert its pages into bitmaps. To do this, we suggest using the
GhostScript [10] program. It is available for both Windows and Unix systems
(GNU/Linux, macOS). It also comes with the TEXLive [5] distribution, as
does Asymptote.
To convert a PDF-file, run the command

gs -sDEVICE=png16m -r600 -o video/xcycloid-%04d.png

video/xcycloid.pdf↪

In the case of using GhostScript from the TEXLive distribution, you should
call gs using the rungs script, which is located:

— in the directory texlive\2023\bin\win32 in the case of Windows OS,
— in the texlive/2023/bin/x86_64-linux in the case of GNU/Linux.

The 2023 directory corresponds to the version of the TEXLive distribution
and may differ.



M.N. Gevorkyan et al., Asymptote-based scientific animation 147

4.3. Creating a video using FFmpeg

The process of gluing the resulting bitmap images into one video clip is
carried out using FFmpeg [9]. This program is a command-line utility and
has extensive functionality and, as a result, a huge number of options and
settings. Let’s give an example of creating a video clip from the PNG images
generated in the previous step and give an explanation of the parameters
used:

ffmpeg -r 30 -f image2 -start_number 1 -i

video/xcycloid-%04d.png -c:v libx264 -vf
"pad=ceil(iw/2)*2:ceil(ih/2)*2" video/xcycloid.mp4

↪

↪

— Parameter -r sets the frame rate.
— Parameter -f sets the format of the input file.
— Since a lot of files are submitted to the input, you should specify the

format of their names. The same notation is used as in the case of gs.
The -start_number parameter sets the starting number.

— Parameter -c:v allows you to specify the video encoder used. In our
case libx264, but many other formats are supported.

— The important parameter -vf sets the filter that is applied to the pro-
cessed frame. In our case, we round the width and height of the frame
in pixels to an even number. After converting to PNG, the width and
height of the image may be odd, which is unacceptable for the vast ma-
jority of encoders. The specified filter allows you to avoid this error and
rescale the frame by ffmpeg.

At the output we will get a video packed in a container mp4. The x264
format we have chosen is widespread and can be played by any browser.

5. Conclusion

We have analyzed in detail the way to create vector graphics animation
on a plane using the Asymptote language. This aspect of this language is
poorly covered in the official manual and, in our opinion, this article fills this
gap. Although the result is a video clip containing bitmaps, but thanks to
the vector source (PDF), you can increase the resolution of the video almost
limitlessly. It should also be noted that this method of creating animation is
universal, since almost any data visualization tool can be used to create a set
of image frames. FFmpeg does all the work on creating a video file.
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Научная анимация на основе Asymptote
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Аннотация. В статье рассматривается универсальный способ создания анима-
ции с помощью языка для создания векторной графики Asymptote. В сам язык
Asymptote встроена библиотека для создания анимации, однако практическое её
использование осложнено крайне кратким описанием в официальной документа-
ции и нестабильной работой существующих примеров. Целью статьи является
устранение данного пробела. Излагаемый нами способ основывается на созда-
нии PDF-файла с кадрами с помощью Asymptote с дальнейшей конвертацией
его в набор PNG-изображений и склейкой их в видео с помощью FFmpeg. Все
этапы подробно описываются, что даёт возможность читателю использовать
изложенный метод, не будучи знакомым с используемыми утилитами.

Ключевые слова: векторная графика, TeX, asymptote, научная графика
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Abstract. The spectral collocation method for solving two-point boundary value
problems for second order differential equations is implemented, based on representing
the solution as an expansion in Chebyshev polynomials. The approach allows a stable
calculation of both the spectral representation of the solution and its pointwise
representation on any required grid in the definition domain of the equation and
additional conditions of the multipoint problem. For the effective construction of
SLAE, the solution of which gives the desired coefficients, the Chebyshev matrices of
spectral integration are actively used. The proposed algorithms have a high accuracy
for moderate-dimension systems of linear algebraic equations. The matrix of the
system remains well-conditioned and, with an increase in the number of collocation
points, allows finding solutions with ever-increasing accuracy.

Key words and phrases: ordinary differential equation, spectral methods, two-point
boundary value problems

1. Introduction

Ordinary differential equations (ODEs) and systems of ODEs of the second
order describe most problems in classical mechanics. Most oscillatory processes
are described by second order ODEs or systems of ODEs. Second order
ODE systems describe a number of optical diffraction problems (see, for
example, [1]). The model of adiabatic guided wave propagation of polarized
light in integrated optical waveguides is also described by a system of two
coupled oscillators [2–4].
There are many different methods for exact and approximate solution of

initial/boundary value problems for different classes of second order ordinary
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differential equations. Among them, the spectral methods of expansion in
Chebyshev polynomials consistently occupy a well-deserved place.
In 1991, L. Greengard [5] formulated a method for solving a two-point

boundary value problem for second order ODEs with constant coefficients,
based on expanding the solution into a series of Chebyshev polynomials
of the first kind. The method became stably referred to as the pseudo-
spectral collocation method. In the same paper, mathematical constructions
were introduced, which later received the names “differentiation matrix” and
“integration matrix” (or “antidifferentiation matrix”). A detailed description
of the properties of matrices that determine the relationship between the
expansion coefficients in a series of approximated functions and the expansion
coefficients of their derivatives and antiderivatives in the same set of basis
functions is given in [6]. Greengard obtained estimates for the norms of
these matrices and their condition numbers — large values for differentiation
matrices and small values for integration (antidifferentiation) matrices.
Despite the poor conditionality of differentiation matrices, many authors

used them to solve initial and boundary problems for ODEs of various orders.
This is explained by the more familiar and therefore ‘convenient’ representation
of physical models using the language of mathematical formulas.
The instability of widely used [7, 8] algorithms has been overcome by

applying methods of preconditioning to the corresponding systems of linear
algebraic equations. As a result of numerous studies, methods based on
integration matrices in the physical space and in the spectral representation
turned out to be the most preferable [9].
It is important to note that none of the applied methods for solving ODEs

based on Chebyshev integration matrices [9, 10] allows obtaining systems
of linear equations with sparse matrices [5]. The dense filling of matrices is
a consequence of attempts to introduce boundary conditions into the system
of linear algebraic equations along with differential relations [11]. The high
sparseness of the matrices can be maintained by improving the algorithm by
switching to the two-stage method. In this case, at the first stage, differential
conditions are considered, which allow fixing the leading coefficients in the
expansion of the solution into a series, thus defining the ‘general solution’.
The next step uses boundary/initial conditions to determine a pair (for second
order equations) of missing coefficients. This makes it possible to obtain
a complete set of expansion coefficients for the desired ‘particular’ solution.
The results of studies [5] demonstrate that the method of Chebyshev

collocation that ensures the best accuracy in solving initial and boundary
value problems is the method using Chebyshev integration matrices in the
spectral space. This approach effectively relies on the use of operations with
sparse matrices and its computational costs are quite comparable with the
Fourier spectral discretization.

2. Setting of the problem

We consider an approximate solution to the two-point boundary value
problem for the second-order differential equation having the form [12]

𝑦″(𝑥) + 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) = 𝑟(𝑥), 𝑥 ∈ (−1, 1), (1)
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where 𝑝(𝑥), 𝑞(𝑥), 𝑟(𝑥) are sufficiently regular functions. The uniqueness of the
solution for any 𝛼,𝛽 is ensured by the boundary conditions

𝛼0𝑦(−1) − 𝛼1𝑦′(−1) = 𝛼, 𝛽0𝑦(1) + 𝛽1𝑦′(1) = 𝛽, (2)

the constants 𝛼0,𝛼1,𝛽0,𝛽1 being nonnegative. For example, the condition
of continuous 𝑝(𝑥) and 𝑞(𝑥), positive 𝑞(𝑥) > 0, 𝑥 ∈ [−1, 1], and nonzero
𝛼0 + 𝛼1 ≠ 0, 𝛼0 + 𝛽0 ≠ 0, 𝛽0 + 𝛽1 ≠ 0 ensures the existence of the prob-
lem (1)–(2) [13].

3. Methods

The basic idea of spectral methods is to present the solution as a truncated
series in known basis functions. The linear transformation (differentiation
operator) that transforms the vector of coefficients a = {𝑎𝑘}𝑘⩾0 of the function
expansion 𝑓(𝑥) = ∑𝑘⩾0 𝑎𝑘𝜙𝑘(𝑥) into the vector of coefficients b = {𝑏𝑘}𝑘⩾0
of its derivative expansion 𝑓 ′(𝑥) = ∑𝑘⩾0 𝑏𝑘𝜙𝑘(𝑥) into an analogous series in

the same basis functions is known as the spectral differentiation matrix. The
most widespread is the use of bases of Chebyshev functions of the first kind
or Lagrange functions, which is due to high interpolative properties of these
functions.
Approximation by a finite series (on accuracy when discarding terms of

the series with 𝑛 > 𝑁). The expansion of function 𝑓 ∈ 𝐶𝑛[−1, 1] (𝑛 times
differentiable function) in Chebyshev polynomials 𝑇𝑘(𝑥) ∶ 𝑇𝑘(cos 𝜃) = cos(𝑘𝜃),
is determined by the relation

𝑔(𝑥) = 1
2

𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + … + 𝑎𝑛𝑇𝑛(𝑥) + … , 𝑥 ∈ [−1, 1], (3)

where

𝑎𝑘 = 2
𝜋

∫
1

−1
𝑓(𝑥)𝑇𝑘(𝑥)(1 − 𝑥2)−1/2𝑑𝑥. (4)

The residue of truncation of the series (3) to 𝑁 terms

𝑔𝑁(𝑥) = 1
2

𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + … + 𝑎𝑁𝑇𝑁(𝑥), 𝑥 ∈ [−1, 1], (5)

has an order of 𝑂 ( 1
𝑁𝑛−1 ) at 𝑁 → ∞ and at 𝑓 ∈ 𝐶∞[−1, 1] it tends to zero

superalgebraically [14, 15].

Remark 1. According to Eq. (4), coefficients 𝑎𝑘 are the coefficients of
Fourier cosine transformation, so that all 𝑁 coefficients 𝑎𝑘 can be obtained by
the fast Fourier cosine transformation. And using the inverse Fourier cosine
transformation, it is possible to simply calculate 𝑔𝑛(cos 𝜃𝑗) on a grid uniform

in 𝜃 ∈ [0, 𝜋].

Most often, the approximation of continuous functions is restricted to
a certain fixed number 𝑛 of the Chebyshev series, as a result of discarding
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the components with such 𝑇𝑘(𝑥), 𝑘 > 𝑛, the magnitude of which is small [16,
17]. In contrast to the approximations obtained using other power series, the
approximation using the Chebyshev polynomials minimizes the number of
terms necessary to approximate the function by polynomials with a given
accuracy. Related to this is also the property that the approximation based
on the Chebyshev series turns out to be quite close to the best uniform
approximation (among polynomials of the same degree), but it is easier to
calculate. In addition, it allows you to get rid of the Gibbs effect with
a reasonable choice of interpolation points.
The differentiation matrices in the implicit or explicit form are presented in

many publications related to the use of pseudospectral collocation methods [6–
8]. The ODE solution using nondegenerate differentiation matrices in the
(𝑁 +1)-dimensional physical and/or spectral space quite naturally led to poor
conditioned systems of the linear algebraic equations to be solved. Refs. [5, 6,
18–20] formulate the specific features of the differentiation and integration
matrices, considered on similar or mutually dependent grids. Using explicitly
the differentiation matrices on the Chebyshev–Gauss–Lobatto to solve ODEs
allows proposing stable and economic methods for solving ODEs. WE use
the integration matrices 𝑛 Chebyshev–Gauss–Lobatto grids in the spectral
representation. For more details on the form and properties of these matrices,
see [6, 18–20].

3.1. The algorithm based on using integration matrices

Note first that the derivative of 𝑇𝑘(𝑥) can be explicitly written as an
expansion in Chebyshev polynomials 𝑇0, 𝑇1, … , 𝑇𝑘−1 of lower order [6, 21] as
a sum

𝑑𝑇𝑘(𝑥)
𝑑𝑥

= 𝑘 (−[𝑘 𝑜𝑑𝑑]𝑇0(𝑥) + 2
⌊(𝑘−1)/2⌋

∑
𝑗=0

𝑇𝑘−1−2𝑗(𝑥)) , 𝑥 ∈ [−1, 1], (6)

where the notation ⌊𝑥⌋ means the largest integer less than 𝑥, and the expression
[𝑘 𝑜𝑑𝑑] takes the value equal to 1 when 𝑘 is odd, and 0 when 𝑘 is even.
We represent the desired function 𝑦(𝑥), the future approximate solution

of equation (1), as an expansion of the form (3),(4),(5) in a finite set of
Chebyshev polynomials 𝑇0, 𝑇1, … , 𝑇𝑛:

𝑦(𝑥) =
𝑛

∑
𝑘=0

𝑎𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (7)

By differentiating (7), it is possible to present the first derivative as a series:

𝑦′(𝑥) =
𝑛

∑
𝑘=0

𝑎𝑘𝑇 ′

𝑘(𝑥), 𝑥 ∈ [−1, 1]. (8)

At the same time, the derivative 𝑦′(𝑥) as a polynomial of degree 𝑛 can
be expanded is series with respect to the initial basis 𝑇0, 𝑇1, … , 𝑇𝑛 with
coefficients b = {𝑏0, 𝑏1, … , 𝑏𝑛}:
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𝑦′(𝑥) =
𝑛

∑
𝑘=0

𝑏𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1], (9)

the last expansion coefficient becoming zero, 𝑏𝑛 = 0, in accordance with
formula (6) of a transition to the expansion in lower-order polynomials.

Therefore, Eq. (6) describes the relation between the expansion coefficients
a = {𝑎0, 𝑎1, … , 𝑎𝑛} of a Chebyshev polynomial of the first kind and the
expansion coefficients of its derivative. In matrix form, this relation can
be represented using the differentiation matrix: b = Da, where the infinite
matrix of Chebyshev differentiation has the form:

D ≡ DChebyshev =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 3 0 5 0 7 ⋯
0 4 0 8 0 12 0 ⋯

0 6 0 10 0 14 ⋯
0 8 0 12 0 ⋯

0 10 0 14 ⋯
0 12 0 ⋯

0 14 ⋱
0 ⋱

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

A similar transformation for the coefficients of the second derivative

𝑦″(𝑥) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1] (11)

allows using the formula c = DDa to calculate the expansion coefficients
c = {𝑐0, 𝑐1, … , 𝑐𝑛} in the matrix form.

If an algorithm is needed to determine a part of the coefficients a =
{𝑎0, 𝑎1, … , 𝑎𝑛} of the expansion of function 𝑦(𝑥) from the known coefficients
b = {𝑏0, 𝑏1, … , 𝑏𝑛} of its derivative expansion, the appropriate matrix form for
this operation is a = D+b, where the infinite tridiagonal matrix of integration
(antidifferentiation) has the form [6, 18]:

D+ ≡ D+
Chebyshev =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1 0 −1

21
4

0 −1
41

6
0 −1

6
1
8

0 ⋱
1
10

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12)
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For example, using the spectral integration matrices D+ to determine
coefficients a = {𝑎0, 𝑎1, … , 𝑎𝑛} of function 𝑦(𝑥) for the known coefficients
c = {𝑐0, 𝑐1, … , 𝑐𝑛} of the expansion of its second derivative 𝑦″(𝑥) allows
calculating all coefficients of the function expansion by formula a = D+D+c,
except the first two coefficients. This is because the first row of matrix D+ is
zero.
Multiplying from the left the integration matrix D+ by vector b =

{𝑏0, 𝑏1, … , 𝑏𝑛} of the known coefficients of the derivative expansion allows re-
vealing [6] the following dependence of coefficients a = {𝑎0, 𝑎1, … , 𝑎𝑛} on
b = {𝑏0, 𝑏1, … , 𝑏𝑛}, which can be written in the explicit form:

D+b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋮ 0 0 0 0
1 0 −1

2
0 0 ⋮ 0 0 0 0

0 1
4

0 −1
4

0 ⋮ 0 0 0 0

0 0 1
6

0 −1
6

⋮ 0 0 0 0

0 0 0 1
8

0 ⋮ 0 0 0 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋯
0 0 0 0 0 ⋮ 0 −1/2

(𝑛−3) 0 0

0 0 0 0 0 ⋮ 1/2
(𝑛−2) 0 −1/2

(𝑛−2) 0

0 0 0 0 0 ⋮ 0 1/2
(𝑛−1) 0 −1/2

(𝑛−1)

0 0 0 0 0 ⋮ 0 0 1/2
𝑛 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

⋮
𝑏𝑛−3

𝑏𝑛−2

𝑏𝑛−1

𝑏𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

⋮
𝑎𝑛−3

𝑎𝑛−2

𝑎𝑛−1

𝑎𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

All the above, including relations (6) and (7),(9),(11) expressed through
the representations a = D+D+c and b = D+c, allows us to write equation (1)
in spectral representation in the following matrix form:

Tc+ 𝑑𝑖𝑎𝑔(p)TD+c+ 𝑑𝑖𝑎𝑔(q)TD+D+c = r, 𝑥 ∈ (−1, 1). (13)

Here T is the Chebyshev matrix of mapping a point (vector) from the space
of coefficients to the space of function values [5]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑇0,0 𝑇1,0 𝑇2,0 ⋮ 𝑇𝑛,0

𝑇0,1 𝑇1,1 𝑇2,1 ⋮ 𝑇𝑛,1

𝑇0,2 𝑇1,2 𝑇2,2 ⋮ 𝑇𝑛,2

⋯ ⋯ ⋯ ⋱ ⋯
𝑇0,𝑛 𝑇1,𝑛 𝑇2,𝑛 ⋮ 𝑇𝑛,𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑐0
𝑐1
𝑐2
⋯
𝑐𝑛

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑝0
𝑝1
𝑝2
⋯
𝑝𝑛

⎤
⎥
⎥
⎥
⎥
⎦

, (14)

so that p = Tc is the vector of values of the desired function (also in the
physical space). Here, to reduce formulas, we use the notation 𝑇𝑘𝑗 = 𝑇𝑘(𝑥𝑗),
𝑘, 𝑗 = 0, … , 𝑛.
The system of linear algebraic equations (13) has a well-conditioned

matrix [5] for any number of collocation points. We will use the Chebyshev–
Gauss–Lobatto grid [7, 8], which has proven itself well in the Chebyshev
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pseudospectral collocation method [9]. Since the matrix is not a symmetric
real matrix, instead of the very convenient Cholesky method, we will use the
widely used LU method to solve system (13).

The solution of the system of linear algebraic equations (13) is the vector of
expansion coefficients {𝑐0, 𝑐1, … , 𝑐𝑛} in the (𝑛 + 1)-dimensional space of the
second derivative of the desired solution of equation (1). These components
determine the set of ’general’ solutions to the ordinary differential equation (1).
To single out some specific ’particular’ solution from this set, it is required to
impose additional restrictions on the components {𝑎0, 𝑎1}, which cannot be
determined from the relation a = D+D+c.
The first two components that have not yet been found will have to be

additionally determined (to obtain a ’particular’ solution) from the boundary
conditions (2). The remaining components of the vector a remain unchanged
and allow satisfying equation (1) for any first expansion coefficients in terms
of basis polynomials.

The solution of equation (13) gives us the vector of coefficients {𝑐0, 𝑐1, … , 𝑐𝑛}
of the expansion of the second derivative of the solution of Eq. (1) in Chebyshev
polynomials. Thus, the main problem is reduced to solving the simplest
Poisson equation:

𝑦″(𝑥) = 𝑓(𝑥), −1 < 𝑥 < 1, (15)

where the function 𝑓(𝑥) is calculated at any point of the interval 𝑥 ∈ based
on the known vector of coefficients {𝑐0, 𝑐1, … , 𝑐𝑛}.

𝑓(𝑥) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (16)

The method under consideration makes it possible to solve, depending
on the type of additional conditions, both the Cauchy problem with initial
conditions and the problem with boundary conditions of a general form,
requiring, for example, the use of the iterative shooting method [22]. The
boundary conditions of the original problem (2) allow extending the definition
of the spectral coefficients of the solution. Let us consider some variants,
such, e.g., as the Dirichlet conditions at both ends of the interval

𝑦(−1) = 𝛼, 𝑦(1) = 𝛽. (17)

Neumann–Dirichlet conditions

𝑦′(−1) = 𝛼, 𝑦(1) = 𝛽 (18)

or Dirichlet–Neumann condition

𝑦′(−1) = 𝛼, 𝑦′(1) = 𝛽. (19)

The algorithm for finding a solution to the simplest Poisson equation (15)
with one of the boundary conditions (17),(18),(19) consists of three stages:

— calculation of the coefficients of polynomial interpolation of the vector
𝑓(𝑥) in the right-hand side of Eq. (15) on the Gauss–Lobatto grid; an
efficient method is presented in [23];
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— calculation of those coefficients of the solution (except for the first two),
which are determined by the differential conditions (15) of the problem
(the solution must satisfy the differential conditions), by multiplying the
transposed Chebyshev matrix by the vector of interpolation coefficients
of the function 𝑓(𝑥);

— redefinition of solution coefficients based on boundary (or other indepen-
dent additional) conditions (17),(18),(19).

In the case of Dirichlet boundary conditions (boundary conditions of the
first kind): 𝑝(−1) = 𝛼, 𝑝(1) = 𝛽, the determination of the still unknown
coefficients 𝑎0,𝑎1 is reduced to solving a system of two equations, which can
be, e.g., the equations, which determine the behavior of the solution at the
boundary points 𝑥 = ±1:

𝑎0 + 𝑎1𝑇1,0(−1) +
𝑛

∑
𝑘=2

𝑎𝑘𝑇𝑘,0(−1) = 𝛼,

𝑎0 + 𝑎1𝑇1,𝑛(1) +
𝑛

∑
𝑘=2

𝑎𝑘𝑇𝑘,𝑛(1) = 𝛽.
(20)

If we additionally consider the fact that Chebyshev polynomials of the first
kind take the values 𝑇𝑘,𝑗(±1) = ±1, 𝑗, 𝑘 = 0, 1, … at the boundary of the

interval, then the solution can be written explicitly

𝑎0 = 1
2

(𝛼 + 𝛽 −
𝑛

∑
𝑘=2,𝑘 even

𝑎𝑘) , 𝑎1 = 1
2

(𝛽 − 𝛼 −
𝑛

∑
𝑘=2,𝑘 odd

𝑎𝑘) . (21)

In the case when the boundary conditions contain expressions of higher
degrees of derivatives of the desired function, one can use the relation [7]

𝑑𝑝𝑇𝑛
𝑑𝑥𝑝 ∣

𝑥=±1
= (±1)𝑛+𝑝

𝑝−1

∏
𝑘=0

𝑛2 − 𝑘2

2𝑘 + 1
. (22)

For example, in the case of mixed Neumann–Dirichlet conditions (boundary
conditions of the second and first kind): 𝑝′(−1) = 𝛼, 𝑝(1) = 𝛽, the coefficients
𝑐0, 𝑐1 are determined by the formulas:

𝑎1 = 𝛼 −
𝑛

∑
𝑘=2

(−1)𝑘+1𝑘2𝑎𝑘, 𝑎0 = 𝛽 − 𝑎1 −
𝑛

∑
𝑘=2

𝑎𝑘 (23)

and in the case of Dirichlet–Neumann conditions

𝑎1 = 𝛽 −
𝑛

∑
𝑘=2

𝑘2𝑎𝑘, 𝑎0 = 𝛼 − 𝑎1 −
𝑛

∑
𝑘=2

(−1)𝑘+1𝑘2𝑎𝑘. (24)
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4. Solution of model examples

To illustrate the capabilities of the proposed algorithm, consider as an ex-
ample the solution of the following second order ODE with Dirichlet boundary
conditions 𝑦(−1) = sin 1, 𝑦(1) = sin 1:

⎧{{
⎨{{⎩

𝑦″ + 𝑥𝑦′ = (2 + 𝑥2) cos𝑥, 𝑥 ∈ (−1, 1),
𝑦(−1) = sin 1,
𝑦(1) = sin 1.

(25)

The exact solution is 𝑦(𝑥) = 𝑥 sin𝑥.
The problem was solved by the collocation method using the integration

matrices (see figures 1, 2).

Figure 1. Ten collocation points. Solution is plotted in blue, residual – in red

Figure 2. Five collocation points. Solution is plotted blue, residual – red



K.P. Lovetskiy et al., Chebyshev collocation method… 159

Comparison of the exact solution of the model equation with the numerical
one is given in the table 1.

Table 1

Comparison of the exact solution of the model equation with the numerical one

Number of

collocation

points

Mean deviation

𝑎𝑏𝑠(𝑦exact(𝑥) − 𝑦calc(𝑥))/𝑁
Maximum deviation of the

calculated solution from the

exact one

6 1.82356474757341e-06 4.63901002387395e-06

7 1.50424878363523e-06 3.0061171892859e-06

9 5.23575446557936e-09 1.05369208025419e-08

11 1.19253244714073e-11 2.39715192140721e-11

13 1.91730425714347e-14 3.86046415624311e-14

14 4.4039495190215e-17 1.11022302462516e-16

The error was estimated numerically (see figure 3). The number of accuracy
control points 𝑁 was taken equal to one hundred.

Figure 3. High solution accuracy with the average and maximum deviations of the numerical

solution from the exact one < 10−17 is achieved with a sufficiently small number

of collocation points (𝑛 > 13)

As can be seen from the results, the accuracy of the solution depends
significantly on the number of collocation points: with an increase in the
number of collocation points, the algorithm, in contrast to the method
using differentiation matrices, does not lose stability. Due to the inherent
property of Chebyshev polynomials, when approximating smooth functions,
the accuracy of the solution rapidly increases with a slight increase in the
number of basis functions. In our experiment, the most accurate solution was
obtained with the number of collocation points equal to 14. With a further
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increase in the number of collocation points and, consequently, the number
of approximation terms in the expansion series of the solution in Chebyshev
polynomials, the accuracy does not increase.

5. Conclusion

In traditional algorithms, even in the most favorable cases when using
differentiation matrices on arbitrary grids, the number of arithmetic operations
for solving problems with acceptable accuracy turns out to be large. This
fact is a consequence of the inclusion in the SLAE, obtained by passing from
differential to algebraic relations, of additional equations that specify the
initial and boundary conditions.
The algorithm presented in [23] uses a modified (improved) method of

pseudo-spectral collocation, i.e., the solution of the problem in two stages.
At the first stage, only the ’general’ solution of the ODE is found, which is
determined by the leading coefficients of the spectral expansion of the solution
in the polynomial basis. This approach allows constructing an algorithm
that uses only matrices of a simple structure to obtain the solution of the
corresponding SLAE. The missing expansion coefficients are determined at
the second stage based on the additional (initial or boundary) conditions,
solving a simple system of two linear equations.
In this paper, we use an algorithm based on integration matrices. The

matrix of the SLAE formed in this case turns out to be well conditioned even
for large dimensions of the system. A high accuracy of the solution is achieved
with a sufficiently small number of collocation points. The method based on
integration matrices should be chosen in cases when there is a request for
high and stable accuracy of solving the problem.
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Аннотация. Реализован метод спектральной коллокации для решения двух-
точечных краевых задач для дифференциальных уравнений второго порядка,
основанный на представлении решения в виде разложения по полиномам Чебы-
шева. Подход позволяет устойчиво вычислять как спектральное представление
решения, так и его поточечное представление на любой необходимой сетке в об-
ласти определения уравнения и дополнительных условий многоточечной задачи.
Для эффективного построения СЛАУ, решение которой дает искомые коэффици-
енты, активно используются матрицы Чебышева спектрального интегрирования.
Предложенные алгоритмы обладают высокой точностью для систем линейных
алгебраических уравнений средней размерности. Матрица системы остается хо-
рошо обусловленной и с увеличением количества точек коллокации позволяет
находить решения со все возрастающей точностью.

Ключевые слова: обыкновенное дифференциальное уравнение, спектральные
методы, двухточечные краевые задачи



Discrete & Continuous Models
& Applied Computational Science

ISSN 2658-7149 (online), 2658-4670 (print)

2023, 31 (2) 164–173

http://journals.rudn.ru/miph

Research article
UDC 519.872:519.217

PACS 07.05.Tp, 02.60.Pn, 02.70.Bf

DOI: 10.22363/2658-4670-2023-31-2-164-173

EDN: XDVQBB

Implementation of the Adams method for solving
ordinary differential equations in the Sage computer

algebra system

Mikhail D. Malykh1, 2, Polina S. Chusovitina1

1 RUDN University,
6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation

2Meshcheryakov Laboratory of Information Technologies,
Joint Institute for Nuclear Research,

6, Joliot-Curie St., Dubna, Moscow Region, 141980, Russian Federation

(received: April 25, 2023; revised: May 7, 2023; accepted: June 26, 2023)

Abstract. This work is devoted to the implementation and testing of the Adams
method for solving ordinary differential equations in the Sage computer algebra
system. The Sage computer algebra system has, to some extent, trivial means for
numerical integration of ordinary differential equations, but at the same time, it
is worth noting that this environment is convenient and practical for conducting
computer experiments related to symbolic numerical calculations in it. The article
presents the FDM package developed on the basis of the RUDN, which contains
the developments of recent years, performed by M.D. Malykh and his students, for
numerical integration of differential equations. In this package, attention is paid
to the visualization of the calculation results, including the construction of various
kinds of auxiliary diagrams, such as Richardson diagrams, as well as graphs of
dependence, for example, the value of a function or step from a moment in time. The
implementation of the Adams method will be considered from this package. In this
article, this implementation of the Adams method will be tested on various examples
of input data, and the method will also be compared with the Jacobi system. Exact
and approximate values will be found and compared, and an estimate for the error
will be obtained.

Key words and phrases: differential equations, Adams method, Sage, FDM package,
Cauchy theorem, Taylor series, Richardson diagram

1. Introduction

To describe models in a variety of subject areas from mechanics to economics,
ordinary differential equations are used [1]. These equations admit solutions in
elementary functions only in some very special cases, therefore they are usually

© Malykh M.D., Chusovitina P. S., 2023

This work is licensed under a Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by-nc/4.0/legalcode



M.D. Malykh, P. S. Chusovitina, Implementation of the Adams method… 165

investigated numerically. The finite difference method was proposed by Euler,
the Runge–Kutta method of the 4th order is the most popular numerical
method for solving initial problems for ordinary differential equations [2].
Old authors, including J. Scarborough [3, ch. XIII], mention numerical

methods alternative to the Runge–Kutta method. The method that J. Scar-
borough has associated with the name of the English theoretical astronomer
J.K. Adams, was forgotten for a long time, because it was very inconvenient
to implement on a computer: before its use, a number of preparatory calcu-
lations had to be carried out on paper. However, with the development of
computer computing, it became possible to perform these actions on a com-
puter, which pushes us to study the possibility of implementing the Adams
method in modern computer algebra systems.
Currently, RUDN University is developing an addition to Sage — the

FDM package, which contains the achievements of recent years, made by
M.D. Malykh and his students. The goal of the project is to create a convenient
environment for numerical experiments with ODES in the Sage computer
algebra system. This project is available to everyone on https://github.

com/malykhmd/fdm. The general principles of the package are described in [4].
The purpose of this work is to test the implementation of the Adams

method in FDM.

2. The Adams method and its implementation in FDM

Consider the initial problem

𝑑𝑥
𝑑𝑡

= 𝑓(𝑥, 𝑡), 𝑥(0) = 𝑥0. (1)

Its solution exists by virtue of the Cauchy theorem. Decompose its solution
into a Taylor series at 𝑑𝑡 = 0:

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + ̇𝑥(𝑡)𝑑𝑡 + 1
2

̈𝑥(𝑡)𝑑𝑡2 + … . (2)

Scarborough was forced to search numerically for the coefficients of the
Taylor series, but now we can find them analytically, using the formulas
specified by Cauchy himself. If 𝑓(𝑥, 𝑡) is known, then

̇𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑡), ̈𝑥 = 𝐷𝑓, ⃛𝑥 = 𝐷2𝑓,

where

𝐷𝑔 = 𝑓 𝜕𝑔
𝜕𝑥

+ 𝜕𝑔
𝜕𝑡

.

To calculate the coefficients of the Taylor series using these formulas, it
is required to differentiate the symbolic expression 𝑓 many times, which is
naturally performed in Sage.
The Adams method in our interpretation is as follows. First, according to

the given symbolic expression 𝑓, the Taylor polynomial is compiled

𝑥 + 𝑓(𝑥, 𝑡) ⋅ 𝑑𝑡 + ⋯ + 1
𝑟!

𝐷𝑟−1(𝑓) ⋅ 𝑑𝑡𝑟 (3)
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up to 𝑟-th order members. Its coefficients are calculated explicitly in symbolic
form.
Then the segment 0 < 𝑡 < 𝑇 on which the initial problem is considered is

divided into segments of width 𝑑𝑡. At time 𝑡 = 0, the solution is given to us.
To find a solution at time 𝑡 = 𝑑𝑡, we substitute 𝑡 = 0, 𝑥 = 𝑥0 into the Taylor
polynomial (3) and thus obtain an approximate value of 𝑥1 for 𝑥(𝑑𝑡). To find
a solution at time 𝑡 = 2 ⋅ 𝑑𝑡, we substitute 𝑡 = 𝑑𝑡, 𝑥 = 𝑥1, etc. into the Taylor
polynomial.
FDM implements two versions of the Adams method: with a constant step,

and with a step that becomes smaller the larger the first discarded term

1
(𝑟 + 1)!

𝐷𝑟(𝑓) ⋅ 𝑑𝑡𝑟+1

in the Taylor formula (3).

3. Numerical experiments

We can test the implementation of the Adams method in FDM with a few
examples. We will evaluate the error using the Richardson method [2].

Example 1. Consider the initial problem

𝑑𝑥
𝑑𝑡

= 𝑡2 + 𝑥, 𝑥(0) = 0

on the segment 0 < 𝑡 < 1, its exact solution is known:

var("x,t")
pr1=Initial_problem(x,t^2+x,0,1)
P=adams_adaptive(pr1, h=0.1, field=RealField(500))

We get the value of 𝑥 at the point 𝑡 = 0.8:
P.value(x,0.8)

0.21079360329767660164890230589662678539752960205078125

In figure 1 we see that the exact solution coincides with the approximate
one. In figure 2 we see that the step depends on the moment of time 𝑡, in
this case it decreases monotonically.

0.2 0.4 0.6 0.8 1.0
t
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0.2
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Figure 1. Dependence of 𝑥 on 𝑡
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Figure 2. Dependence of the step on

the moment of time 𝑡
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Figure 3 shows the log–log plot for the dependence of the error 𝐸 on the
value of the variable 𝑥 at time 𝑡 = 0.9 on the parameter ℎ characterizing the
step of the Adams method. Such a figure is known as Richardson diagram [2].

Theoretically, the error 𝐸 = 𝑐ℎ𝑟 + 𝒪(ℎ𝑟+1).
In our experiments we use 3 terms in Taylor series, thus 𝑟 must be equal 3,

so the error must be proportional to ℎ3. In our example (figure 3) there is
a direct proportionality on the logarithmic scale and the slope is equal to 2.99,
which is close to 3, so the error is proportional to ℎ3. To build a Richardson
diagram [2] we used the standard tools of FDM [4]:

L=[adams_adaptive(pr1, h=1/10/2^n, field=RealField(500))
for n in range(10)]

richardson_plot(L,x,0.9)
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|E(x)|

y= 2.99x− 0.460

Figure 3. Richardson diagram

Each element of the list is an approximate solution with respect to the step
ℎ = 0.1 ⋅ (1/2𝑛), 𝑛 = 0, 1, … , 9.
Using standard tools of FDM, we can calculate the values of 𝑥 and the error

and make sure that it is small. For example, at time 𝑡 = 0.8 and ℎ = 1/20:
richardson(L[0], L[1], x, 0.8)

[0.21104359494629298943, -0.000035713092659491899]

If we take the exact solution and subtract the approximate one from it, we
get an error value equal to −0.0000382:
x_exact=-t^2 - 2*t + 2*e^t - 2
L[1].value(x,0.8) - RR (x_exact.subs(t=0.8))

-0.0000382620386425447

It should be noted that the values are almost the same (−0.0000357 and
−0.0000382), which means that Richardson’s method gives an almost correct
estimate for the error.

Example 2. Now we consider the system of two ODEs

̇𝑥1 = 𝑥2, ̇𝑥2 = −𝑥1
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with initial conditions 𝑥1(0) = 0, 𝑥2(0) = 1 at the interval 0 < 𝑡 < 10. Let’s
take the step ℎ = 1/4 and solve the initial problem in FDM:

var("x1,x2,t")
pr2=Initial_problem([x1,x2],[x2,-x1],[0,1],10)
P=adams_adaptive(pr2,h=1/4)

In figure 4 we can see that our points lie on the sine wave. To plot graphs
we use the line:

P.plot(t,x1,color='black') + plot(sin,(0,10),color='grey')

2 4 6 8 10
t

1.0

0.5

0.5

1.0

x1

Figure 4. Dependence of 𝑥 on 𝑡

To plot a Richardson diagram (figure 5) we use the line:

L=[adams_adaptive(pr2,h=1/4/2^n) for n in range(10)]

10 3 10 2 10 1
h
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10 8

10 7

10 6

10 5

10 4

10 3

10 2

|E(x1)|

y= 3.09x+ 0.182

Figure 5. Richardson diagram
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In this Richardson diagram we can see that not all points lie on a straight
line, this is explained by the deviation of the slope value, which is not 3, but
3.09. But the error is also proportional to ℎ3.
Calculate the values of 𝑥 and the error:

richardson (L[-3],L[-2], x 1,9)
[0.412118484375421, -8.69428719494993e-10]

We can compare the received error value by the Richardson method with
the real error:

L[-2].value(x1,9)-sin(9).n()
-8.66335503335591e-10

Note again that the values are almost identical.

Example 3. Now consider the Jacobi oscillator

̇𝑝 = 𝑞𝑟, ̇𝑞 = −𝑝𝑟, ̇𝑟 = −𝑘2𝑝𝑞

with initial conditions 𝑝(0) = 0, 𝑞(0) = 1, 𝑟(0) = 1 at the interval 0 < 𝑡 < 100.
This example is interesting as a nonlinear oscillator. We described the problem
by lines:

var("p,q,r,t")
k=0.99
pr3=Initial_problem([p,q,r], [q*r,-p*r,-k^2*p*q], [0,1,1], 100)
P=adams_adaptive(pr3,h=1/4)

and plot the graphs to compare approximate and exact solutions in Jacobi
elliptic functions (figure 6):

P.plot(t,p,color='grey')+plot(jacobi('sn', t, k^2),(t,0,100),
color='black')
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0.5
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Figure 6. Comparison of values obtained by the Adams method and the Jacobi method
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It is noticeable that the values diverge over a long-time interval, so that
this does not happen, it is necessary to take a smaller step. In figure 7 we
use a small-time interval, and the solutions coincide.

2 4 6 8 10
t

1.0

0.5

0.5

1.0

p

Figure 7. Comparison of exact and approximate solutions

We use adaptive Adams method what is important for nonlinear problems.
In figure 8, we see the dependence of the step on the moment of time, while
in places where the values change smoothly, the step is larger, and where
the function changes quickly, the step is smaller, which indicates that the
chosen method of adaptation according to the last term in the Taylor series
is correct.
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Figure 8. Dependence of the step on the moment of time 𝑡
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At Richardson diagram (figure 9), we can see that the points lie on a straight

line with a slope of 2.99. The error is also proportional to ℎ3. Also we calculate
the value of 𝑥, the error by the Richardson method and the real error, and
again we get identical error values:

richardson(L[3],L[4],p,9)
[-0.983742403638134, -2.91251782518526e-6]

richardson(L[3],L[4],p,9)[0]-jacobi('sn',9,k^2)
-2.91556109444091e-6
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|E(p)|

y= 2.99x− 0.126

Figure 9. Richardson diagram

4. Conclusion

In this article, the Adams method for solving ordinary differential equations
was tested on three examples. Also, shortcomings were identified in the
fdm.sage package, after their correction, the execution of the examples became
correct.
Thus, the computer experiments carried out confirm that the correct

approximation method is indicated in the implementation of the Adams
method in FDM, and this implementation itself allows to search for solutions
with an accuracy close to the rounding error. Also, the achievement of the
method is the natural adaptation of the step to changes in the function, where
the function changes quickly, the step decreases. In this case, the method is
symbolic-numerical, since the Taylor series is calculated symbolically once,
and then used as a formula in which specific numeric values are substituted.
At the beginning of the 20th century, this was considered the main drawback
of the method proposed by Adams, since there were problems with symbolic
computation – many iterations of differentiation led to large and complex
expressions. And now, on the contrary, we can consider the advantage of
the method that it can combine the powers of both symbolic and numerical
methods, but, of course, the implementation of this method can still be refined
and optimized.
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Реализация метода Адамса для решения обычных
дифференциальных уравнений в системе

компьютерной алгебры Sage
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Аннотация. Работа посвящена реализации и тестированию метода Адамса для
решения обыкновенных дифференциальных уравнений в системе компьютерной
алгебры Sage. Система компьютерной алгебры Sage обладает в какой-то степе-
ни тривиальными средствами для численного интегрирования обыкновенных
дифференциальных уравнений, но при этом, стоит заметить, что данная среда
удобна и практична для проведения в ней компьютерных экспериментов, связан-
ных с символьно-численными вычислениями. В работе представлен пакет FDM,
разработанный на базе РУДН, в котором собраны наработки последних лет,
выполненных М.Д. Малых и его учениками, для численного интегрирования
дифференциальных уравнений. В данном пакете уделено внимание визуализации
результатов вычисления, в том числе построению разного рода вспомогательных
диаграмм, например диаграмм Ричардсона, а также графиков зависимости, на-
пример значения функции или шага от момента времени. В статье рассмотрена
реализация метода Адамса, проведено её тестирование на различных примерах
входных данных, а также выполнено сравнение метода с системой Якоби. Най-
дены и точные, и приближённые значения, проведено их сравнение, получена
оценка для ошибки.

Ключевые слова: дифференциальные уравнения, метод Адамса, Sage, пакет
FDM, теорема Коши, ряд Тейлора, диаграмма Ричардсона
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Abstract. The method of numerical integration of Euler problem of buckling of
a homogeneous console with symmetrical cross section in regime of plastic deformation
using Maple 18 is presented. The ordinary differential equation for a transversal
coordinate 𝑦 was deduced which takes into consideration higher geometrical momenta
of cross section area. As an argument in the equation a dimensionless console slope
𝑝 = tg 𝜃 is used which is linked in mutually unique manner with all other linear
displacements. Real strain-stress diagram of metals (steel, titan) and PTFE polymers
were modelled via the Maple nonlinear regression with cubic polynomial to provide
a conditional yield point (𝑡,𝜎𝑓). The console parameters (free length 𝑙0, 𝑚, cross

section area 𝑆 and minimal gyration moment 𝐽𝑥) were chosen so that a critical
buckling forces 𝐹cr corresponded to the stresses 𝜎 close to the yield strength 𝜎𝑓.
To find the key dependence of the final slope 𝑝𝑓 vs load 𝐹 needed for the shape

determination the equality for restored console length was applied. The dependences
𝑝𝑓(𝐹) and shapes 𝑦(𝑧), 𝑧 being a longitudinal coordinate, were determined within
these three approaches: plastic regime with cubic strain-stress diagram, tangent
modulus 𝐸tang approximations and Hook’s law. It was found that critical buckling

load 𝐹cr in plastic range nearly two times less of that for an ideal Hook’s law. A quasi-
identity of calculated console shapes was found for the same final slope 𝑝𝑓 within the

three approaches especially for the metals.
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1. Introduction

The problem of stability loss in a beam under longitudinal load (buckling) in
the range of inelastic strains is actual and important from many points of view
such as sports (pole vaulting), civil engineering (bridges, truss constructions),
aeronautics, robotics and elsewhere the requirements of a small weight and
large strength are imposed on structural elements been designed [1]. Fatigue
of materials, lowering the proportionality and elasticity limit due to the
Bauschinger effect in periodically tensile and compressed elements, hysteresis
etc. — all that results in falling of initially secure loads time into the zone of
serious risk of buckling. Therefore, beginning from the pioneering work of
F.R. Shanley [2] considered so called tangent and reduced moduli approaches
[ibid], Euler’s problem in inelastic range attracts more and more researchers —
from engineers dealing with material strength to pure mechanicians and
mathematicians dealing with bifurcations, nonlinear phenomena etc.

Of course, modern models of buckling are 2- or even 3-dimensional and they
take into account not only bending shift component but a shear one too. To
take all this into account the finite-element modeling (FEM) is widely used and
it is implemented in the commercial software package ABAQUS (see e.g. [3–5])
and similar software. Many features and peculiarities both in thick so called
Timoshenko beams [6] and in sandwich/fiber-composite/lattice/C-columns
(see [7–9]) etc. are explained well in these multidimensional models.

The problem is studied in university courses of material sciences within
a plane cross-sections hypothesis which leads to simple one-dimensional (1D)
Euler ordinary differential equation (ODE) of the II-nd order. However,
the attention is paid mainly to moment of arising of the phenomenon itself
and its possible shapes for various ways of a beam fixation. Unfortunately,
the linearized Euler ODE coupled with boundary condition (BC) on the
beam ends looks like a classical eigenvalue problem with unstable higher
modes corresponding to higher eigenvalues too. This ODE is similar to the
Schröedinger equation for 1D particle in a potential well with infinitely high
walls. This similarity misleads the students to the wrong conclusion that the
non-zero solution of the ODE exists only for a set of “resonant” axial loads
𝐹𝑛, 𝑛 = 1, 2, … just like in the aforementioned case of the well. And it is not
clear whether for “non-resonant” forces from inside the intervals the ODE has
purely compressive solution without any buckling or else power-like formula
or something else. Or, may be, it shoots at some finite value at once just
as the axial force 𝐹 reaches some critical value as we have seen from our
own experience, compressing by the hands a steel ruler? In what way the
non-linear and inelastic properties with yield point on strain-stress diagram of
real materials influence the critical buckling load 𝐹cr and the shape of column
buckled?

This kind of questions inevitably arises by analytically thinking students
which can’t find the answers in many available textbooks where only simplified
explanation of the phenomenon is presented. One of the reasons why it takes
place is traditionally pure mathematical means to describe the buckling
process not expressing in standard algebraic functions. Nowadays, at the
time of rapid development of mathematical software, more and more new
opportunities to study the buckling phenomenon both with practical, scientific
and educational purposes are opening up.
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As for the Maple itself it is permanently improving software package with
simple programming language with commands close to English ones supplied
with comprehensive parameters and easily read option Help. The undeniable
advantage of the package in addition to the extremely broad coverage of
the sciences from Bayesian statistics to Feynman diagram calculations is an
extremely high computational accuracy due to so-called “long Arithmetics”
(Matlab soft uses Maple calculations) and opportunity to choose an alternative
computational method and compare the results to improve their reliability.
All above makes this package most reliable means of numerical modeling
compared to those packages where the control of the calculation process is
reduced only to the choice of the “mouse” option from the menu.
The work is devoted to numerical modeling of the buckling phenomenon

of uniform beam. The main purpose of this work is to present readers
relatively simple and effective calculation algorithm and its realization with
the Maple 2018 relying on which it is possible to learn in what way inelastic and
plastic properties of the material in question influence the basic parameters of
buckling. The versatile skills gained from this activity may be then applied in
up to date theories and experiments in study of buckling of real constructive
elements say within aforementioned FEM and others.
The application of the Maple not only solves many technical difficulties

of mathematical nature but with the algorithm itself and with consequence
of computational procedures it gives students better comprehension of the
mechanism and nature of the phenomenon of buckling. Moreover, as part of
university lessons and practices this kind of investigations may be joined in
one collective interdisciplinary research project which results may be discussed,
analyzed and then presented at student conference/contest.

2. Equation

We neglect in the paper the shear effects and stay within the classical
Euler’s 1D-model of buckling but with the axial compressive loads resulting
in plastic deformations in the material.
Nevertheless, the fundamental properties of the phenomenon are described

adequately both from qualitative and quantitative points of view in the frames.
And the results of modelling with the use of software package Maple 18 fit
well compressive tests for various real materials with non-linear strain-stress
diagram.
We regard for simplicity the vertical column 𝐴𝐵 of free length 𝑙 and uniform

cross-section (𝑆) symmetrical with respect to the axis x of minimal gyration.
The column is made of isotropic material with a typical for metals and
polymers strain-stress diagram with conditional yield point (see later). The
lower end 𝐴 of the column is pinned hardly while the upper one 𝐵 been
exposed to the axial compressive load 𝐹, 𝑁 (figure 1). This vertical force
provides normal stresses 𝜎𝑛 beyond the elastic range on the diagram, and
even greater than yield strength 𝜎𝑓 above.

The choice of the pinned console solves problems with ambiguity of the
bonds between the slope and the axis displacements. So, the transversal
shift 𝑦 of the center of the 𝑧 cross-section and its vertical displacement Δ𝑧
are uniquely related to the current inclination 𝑝 = 𝑑𝑦/𝑑𝑧 of the console axis
(figure 2).
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Figure 1. The uniform beam with pinned lower end 𝐴 and loaded with 𝐹 on the upper 𝐵
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Figure 2. Symmetrical cross-section with zero odd momenta

Let’s write down the fundamental relation between bending torque 𝑀𝑥(𝑧)
and curvature radius 𝜌 (𝑧) in the same section (𝑧). First, within plane-
section hypothesis we represent the normal strain in the layer with the local
coordinate 𝜂 as 𝜀𝜂 = 𝜀𝑎𝑥 + 𝜂/𝜌 where 𝜀𝑎𝑥 is a compressive strain of the axis

crossing the section 𝑧 in the center 𝐶.
Then regarding strain-stress diagram as obeying cubic law with respect to

the access value we have

𝜎(𝜀) = 𝜎(𝜀𝑎𝑥) + 𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

𝜂
𝜌

+ 1
2!

𝑑2𝜎(𝜀𝑎𝑥)
𝑑𝜀2 (𝜂

𝜌
)

2

+ 1
3!

𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3 (𝜂

𝜌
)

3

.

Substituting this expression into the formula for the bending moment and
taking into account the symmetry of the cross-section, we get

𝑀𝑥(𝑧) = ∬ 𝜎𝑧𝜂𝑑𝑆 = 𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

𝐽 (𝐼𝐼)
𝑥

𝜌
+ 1

3!
𝑑3𝜎(𝜀𝑎𝑥)

𝑑𝜀3
𝐽 (𝐼𝑉 )

𝑥

𝜌3 ,

with 𝐽 (𝐼𝐼)
𝑥 and 𝐽 (𝐼𝑉 )

𝑥 being the 2-nd and 4-th momenta of inertia of the
cross-section area. The 3-rd one drops due to the cross-section symmetry and
we may generalize the concept of a cross-section symmetry in this way, i.e.

𝐽 (𝐼𝐼𝐼)
𝑥 = 0.
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Given that 1/𝜌 equals 𝑦″
𝑧𝑧/(1 + 𝑦′2

𝑧 )3/2, we get the left-hand side and writing
down the right-hand side the equation which determines the shape of the
column buckled

𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

𝐽 (𝐼𝐼)
𝑥 𝑦″

𝑧𝑧

(1 + 𝑦′2
𝑧 )

3
2

+ 1
6

𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3

𝐽 (𝐼𝑉 )
𝑥 (𝑦″

𝑧𝑧)3

(1 + 𝑦′2
𝑧 )

9
2

= −(𝐹𝑦 + 𝑀𝐴), (1)

with 𝑀𝐴 = −𝐹𝑏 being a torque on hard seal 𝐴 (figure 1) and the value of 𝑏
as a transversal shift of the upper end 𝐵.
This equation is nonlinear on the senior second derivative but due to its

autonomy, it can be lowered in its order and then solved within the framework
of perturbative approach under the assumption that the second term with

𝐽 (𝐼𝑉 )
𝑥 is much smaller than the first one. Thus, making the substitute 𝑣 = 𝑦−𝑏
we get the equation with boundary condition

⎧{{
⎨{{⎩

𝐽 (𝐼𝐼)
𝑥 𝑣′′

𝑧𝑧

(1 + 𝑣′2
𝑧 )

3
2

(𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

) + 1
6

(𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3 ) 𝐽 (𝐼𝑉 )

𝑥 𝑣′′3
𝑧𝑧

(1 + 𝑣′2
𝑧 )

9
2

= −𝐹𝑣,

𝑣(0) = −𝑏, 𝑣(𝑧𝐵) = 0, 𝑣′
𝑧(0) = 0.

After substitution 𝑣′ = 𝑝 and assigning the 𝑝 as an argument we get
𝑣″

𝑧𝑧 = 𝑝 ⋅ (𝑑𝑝)/(𝑑𝑣) and

⎧{{
⎨{{⎩

𝐽 (𝐼𝐼)
𝑥 𝑝𝑑𝑝

𝑑𝑣

(1 + 𝑝2)
3
2

(𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

) + 1
6

(𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3 )

𝐽 (𝐼𝑉 )
𝑥 (𝑝𝑑𝑝

𝑑𝑣)3

(1 + 𝑝2)
9
2

= −𝐹𝑣,

𝑣(0) = −𝑏, 𝑣(𝑝𝑓) = 0,

where 𝑝𝑓 is a final slope at the end 𝐵.
After simple transformation we receive

⎧{{
⎨{{⎩

𝐽 (𝐼𝐼)
𝑥 𝑑𝑝2

(1 + 𝑝2)
3
2

𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

+ 1
6

𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3

𝐽 (𝐼𝑉 )
𝑥 𝑣2𝑑𝑝2

(1 + 𝑝2)
9
2 (𝑑𝑣2

𝑑𝑝2 )2
= −𝐹𝑑𝑣2,

𝑣2(0) = 𝑏2, 𝑣(𝑝2
𝑓) = 0,

⇔

⇔∣𝑣
2 ≡ 𝑤

𝑝2 ≡ 𝑠
∣
⎧
{
⎨
{
⎩

𝑑𝑤
𝑑𝑠

=− 𝐽 (𝐼𝐼)
𝑥

𝐹(1 + 𝑠)3
2

𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

− 1
6

𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3

𝐽 (𝐼𝑉 )
𝑥 𝑤

𝐹(1 + 𝑠)9
2 (𝑑𝑤

𝑑𝑠 )2 ,

𝑤(0) = 𝑏2, 𝑤(𝑝2
𝑓) = 0.

(2)

In this equation the derivatives (𝑑𝜎(𝜀𝑎𝑥))/(𝑑𝜀) and (𝑑3𝜎(𝜀𝑎𝑥))/(𝑑𝜀3) de-
pend on 𝑝2 = 𝑠 because both the strain 𝜀𝑎𝑥 of the axis and the normal stress
𝜎𝑎𝑥 at certain place caused by it depend the slope 𝑝 as

𝜎𝑎𝑥(𝑝) = 𝐹 cos 𝜃
𝑆

= 𝐹
𝑆(1 + 𝑝2)1

2
= 𝐹

𝑆(1 + 𝑠)1
2

. (3)
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Also, the final slope 𝑝𝑓 is unknown and it should be found from some

condition (see later). To solve (2) we should build and use a model strain-
stress diagram both in direct and inverse type.

3. Modelling strain-stress diagram

We considered the diagrams which contain a) initial proportionality stage
𝜎(𝜀) = 𝐸𝜀, the 𝐸 being Young’s modulus, b) the yield stage containing

conditional yield point (𝜎𝑓, 𝑡), i.e. an inflection point with (𝑑2𝜎(𝑡))/(𝑑𝜀2) = 0,
c) and final densification stage with (𝑑2𝜎(𝜀))/(𝑑𝜀2) > 0.
The cubic formula meeting all the requirements above is as follows

𝜎(𝜀) = 𝐸𝜀 − 3𝐸𝜇
2

𝜀2 + 𝐸𝜇
2𝑡

𝜀2, 𝜇 =
𝐸𝑡 − 𝜎𝑓

𝐸𝑡2 , (4)

and it has the derivatives

𝑑𝜎(𝜀)
𝑑𝜀

= 𝐸 − 3𝐸𝜇𝜀 + 3𝐸𝜇
2𝑡

𝜀2, 𝑑3𝜎(𝜀)
𝑑𝜀3 = 3𝐸𝜇

𝑡
. (5)

(The parameter 𝜇 turns to zero at ideal linear diagram otherwise it describes
in what extent the diagram is nonlinear. Namely, the greater 𝜇 the more
non-linear 𝜎(𝜀)-dependence and it manifests itself at smaller strains 𝜀.)
For the equation (3) it corresponds to reverse approximate formula

𝜀(𝜎) = 𝜎
𝐸

+ 3𝜇𝜎2

2𝐸2 + 𝜇(9𝜇𝑡 − 1)𝜎3

2𝐸3𝑡
(6)

which gives identity with accuracy of 𝑂(𝜀4) when the stress value (3) is
substituted into it.
Application of (4) for regression by Maple 2018 option “Fit” on experimental

data received at students’ practicum for low carbon steel compression test
gives good match on the level of adjusted 𝑅2 = 0.999733 of the data with the
curve (3) (figure 3). An estimated Young’s modulus 𝐸 lies in confidence (95%)
interval (165; 175) GPa a little less of the handbook values of 180 … 220 GPa.
This is surely due to fatigue of the material as a result of numerous tests
fulfilled by many generations of students in the workshop on material science
at Yaroslavl branch of Moscow Institute of Transport Engineers.
The reversed formula (6) also fits well the data within yield stage though it

doesn’t contain a densification stage. Up to the beginning of the densification
stage due to (3), the curves actually merge into a single line with discrepancies
being of order of the residuals of estimation. Also, we see good quasi-linearity
of the data in range of 𝜀𝑠 from about 0.007 to ∼ 0.017 where the conditional
yield point (𝑡 = 0.0134) is localized. This quasi-linearity justifies the use of
the tangent modulus method in solving the Euler equation for buckled beam.
Not only for the steel but for other metals such as titan and wolfram the

simple cubic formulas (4) and (6) fit well the experimental data. For the fluor
polymers they hold too. Thus, for Al/PTFE (aluminum/polytetrafluoroethy-
lene) the experimental data [10] fit well (4) (figure 4). Moreover, we see that
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in the wide enough middle part of the diagram points fit well on a straight
line corresponding to the tangent modulus 𝐸𝑡 of about 50 MPa. Although
the interpolating line does not emphasize this fact.

Figure 3. Cubic model direct (4) (grey solid) and reverse (6) (black long dash) diagrams

built on experimental data (black diamonds) for low carbon steel. Hook’s law (solid thin

grey), yield strain 𝑡 = 0.0134 (black dot), yield stress 𝜎𝑓 = 1.48 ⋅ 109 Pa (grey dash)

Figure 4. Al/PTFE strain-stress diagram: experiment [10] (solid circle); cubic

model 𝜎(𝜀) (4) with the parameters 𝐸 = 400 MPa, 𝜎𝑓 = 44 MPa, 𝑡 = 0.3,
𝐸tang = 55.8 MPa (solid black), Hook’s law (solid thin grey), reversed diagram 𝜀(𝜎) (solid

thick grey), yield strain 𝑡 = 0.3 (black dot), yield strength (grey long dash)
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All examples above confirm the effectiveness of a simple cubic formula for
adequate describing the diagrams of many plastic materials, both metals and
polymer composites, increasingly used in mechanical engineering, aeronautics
and robotics.

4. Solving the equation

To write down the equation describing the buckling in inelastic regime we
should substitute (6) in the formula (5) for the first derivative and limit the
resulting expression to the first four members

𝑑𝜎
𝑑𝜀

= 𝐸 − 3𝜇𝜎 + ( 3𝜇
2𝐸𝑡

− 9𝜇2

2𝐸
)𝜎2 + (6𝜇2

𝐸2𝑡
− 27

2𝐸2 )𝜎3. (7)

Substituting the expression (3) for axial stress in (7) and then in (2) we

receive the equation defining the dependence 𝑤 = 𝑣2 ⋅ 𝑣𝑠 ⋅ 𝑠 = 𝑝2.

𝑑𝑤
𝑑𝑠

= − 𝐽 (𝐼𝐼)
𝑥

𝐹(1 + 𝑠)3
2

+ 3𝐽 (𝐼𝐼)
𝑥 𝜇

𝑆(1 + 𝑠)2 −
𝐽 (𝐼𝐼)

𝑥 ( 3𝜇
2𝐸𝑡 − 9𝜇2

2𝐸 )
𝑆2(1 + 𝑠)5

2
𝐹−

−
𝐽 (𝐼𝐼)

𝑥 (6𝜇2

𝐸2𝑡 − 27
2𝐸2 )

𝑆3(1 + 𝑠)3 𝐹 2 − 𝜇𝐸
2𝑡

𝐽 (𝐼𝑉 )
𝑥 𝑤

𝐹(1 + 𝑠)9
2 (𝑑𝑤

𝑑𝑠 )2 . (8)

Expressing the 𝑤 = 𝑤0 + 𝛿𝑤 as a sum of the 𝑤0 satisfying the equation (8)

with 𝐽 (𝐼𝑉 )
𝑥 = 0 and boundary conditions in (2), and a small additive 𝛿𝑤 fitting

zero boundary conditions at upper end 𝐵, we find formulas for the 𝑤0 and 𝛿𝑤:

𝑤0(𝑠) = 2𝐽 (𝐼𝐼)
𝑥

𝐹(1 + 𝑠)3
2

− 3𝐽 (𝐼𝐼)
𝑥 𝜇

𝑆(1 + 𝑠)2 +
2𝐽 (𝐼𝐼)

𝑥 ( 3𝜇
2𝐸𝑡 − 9𝜇2

2𝐸 )

3𝑆2(1 + 𝑠)5
2

𝐹+

+
𝐽 (𝐼𝐼)

𝑥 (6𝜇2

𝐸2𝑡 − 27
2𝐸2 )

2𝑆3(1 + 𝑠)3 𝐹 2 − 𝑏2, (9)

𝛿𝑤(𝑠) = 𝜇𝐸𝐽 (𝐼𝑉 )
𝑥

2𝐹𝑡

𝑝2
𝑓

∫
𝑠

𝑤0(𝑠′)𝑑𝑠′

(1 + 𝑠′)9
2 (𝑑𝑤0

𝑑𝑠′ )2 . (9′)

From (8) a clear relationship between the transversal displacement 𝑏 of the
upper end B of the console and its final slope 𝑝𝑓 follows

𝑏 = { 2𝐽 (𝐼𝐼)
𝑥

𝐹(1 + 𝑝2
𝑓)1/2 − 3𝐽 (𝐼𝐼)

𝑥

𝑆(1 + 𝑝2
𝑓)2 +

2𝐽 (𝐼𝐼)
𝑥 ( 3𝜇

2𝐸𝑡 − 9𝜇2

2𝐸 )

3𝑆2(1 + 𝑝2
𝑓)5/2 𝐹+
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+
𝐽 (𝐼𝐼)

𝑥 (6𝜇2

𝐸2𝑡 − 27
2𝐸2 )

2𝑆3(1 + 𝑝2
𝑓)3 𝐹 2 + 𝜇𝐸𝐽 (𝐼𝑉 )

𝑥

2𝐹𝑡

𝑝2
𝑓

∫
𝑠

𝑤0(𝑠′)𝑑𝑠′

(1 + 𝑠′)9
2 (𝑑𝑤0

𝑑𝑠′ )2 }
1/2

. (10)

Further calculations (see later) show that for real materials and standard
cross sections (I,L-beam, channel, square, circle, etc.) the addition (9′) is at
least 4 orders less than basic function (8). Thus, for a PTFE Teflon channel
with a length of 𝑙0 = 0.75 m and an area 64 times the area of channel No. 10
at a final slope of 0.5, the additive 𝛿𝑤 was in maximum less than 0.01% of
the basic function 𝑤0(𝑠 = 𝑝2). And since they are added geometrically to
form 𝑣(𝑝) = 𝑦(𝑝) − 𝑏, the contribution will be completely invisible (figure 5).
So, we may easily neglect the integral amendment in (10).

Figure 5. First order function 10−4𝑤0(𝑠 = 𝑝2) (black) (9) and additive 𝛿𝑤 (grey) (9′) due

to 4-th moment of inertia 𝐽 (𝐼𝑉 )
𝑥 for I-beam made of Teflon (PTFE), 0.75 m, 0.077 m2,

𝐽 (𝐼𝐼)
𝑥 = 0.000065124 m4

5. Determining the final slope vs load dependence

Analyzing the expressions (8)–(10) it is easily seen that correct solution of
ODE may be received only for known dependence of the load 𝐹 on the final
slope 𝑝𝑓. To find it we are to compile so called characteristic equation on

restored length of the console.
So, we have a transversal axis shifted coordinate 𝑣0(𝑝) = 𝑦(𝑝) − 𝑏 =

−√𝑤0(𝑝2).
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Figure 6. The 𝑝𝑓(𝐹) dependences for Al/PTFE I-console with 𝑙0 = 0.5 m, 𝑆 = 0.077 m2,

𝐽 (𝐼𝐼)
𝑥 = 0.000065124 m4 within the three approaches: stress due (4) (black), tangent

modulus (thick grey) and Hook’s law (grey thin)

The longitudinal coordinate 𝑧 may be found as 𝑧(𝑝) = ∫
𝑝

0

𝑑𝑣0(𝑝′)
𝑝′ and

elementary length of the axis as

𝑑𝑙(𝑝) = 𝑑𝑣0(𝑝)
𝑝

√1 + 𝑝2 = −
𝑑√𝑤0

𝑑𝑠
⋅ 𝑑𝑤0

𝑑𝑠
⋅ 𝑑𝑠

𝑑𝑝
⋅

√1 + 𝑝2

𝑝
= −𝑑𝑤0

𝑑𝑠
√1 + 𝑝2

√𝑤0
.

Being restored after the load is removed, this value becomes

𝑑𝑙res(𝑝) = 𝑑𝑙(𝑝)
1 − 𝜀(𝑝)

≈ 𝑑𝑤0
𝑑𝑝2 ⋅

√1 + 𝑝2
√𝑤0

(1 + 𝜀(𝑝) + 𝜀2(𝑝) + 𝜀3(𝑝)) ,

where the strain 𝜀(𝑝) taken positive, of the console axis element marked
𝑝 is received by substitution of the stress (3) in the reverse strain-stress
diagram (6). By integrating by 𝑝 and equating the result with the free length
of the console 𝑙0, we obtain the function 𝑝𝑓(𝐹) specified implicitly:

−

𝑝𝑓

∫
0

𝑑𝑤0
𝑑𝑝2 ⋅

√1 + 𝑝2
√𝑤0

(1 + 𝜀(𝑝) + 𝜀2(𝑝) + 𝜀3(𝑝)) 𝑑𝑝 = 𝐿(𝐹 , 𝑝𝑓) = 𝑙0. (11)

This key equation has non-empty solution if and only if the value of load 𝐹
exceeds some critical buckling force 𝐹cr, The Maple package has successful



184 DCM&ACS. 2023, 31 (2) 174–188

option implicitplot which builds precisely the graphs of implicitly specified
functions.
To compare the results obtained at different approximations, dependencies

𝑝𝑓(𝐹) were also calculated for an ideal material with the same Young’s

modulus, as well as in the approximation of a tangent module when the first

derivative in (7) was limited by the first two terms 𝑑𝜎
𝑑𝜀 (𝜎) = 𝐸 − 3𝜇𝜎.

Due to the availability of a quasilinear middle yield stage on the diagrams
(figures 4) for Al/PTFE (aluminum/polytetrafluoroethylene) [ibid], the results
for the cubic formula (4) obtained within the tangent modulus approach were
very close, but hugely differing from the results within Hook’s law (figure 5).

It is worth mentioning that the extremely large loads were chosen exclusively
to reach the stresses close to yield strength 𝜎𝑓. For the same reason, the

geometric parameters of the console were chosen, so that its flexibility 𝜆
varied from ∼ 5 to ∼ 20.
So, we see that regime of plastic deformations diminishes cardinally the

classical critical load 𝐹cr predicted by Hook’s law approach studied in most
universities. Especially it takes place for the materials with low yield strength
such as Teflon, polymers in general and composites based on them.

Also, we see that relatively simple tangent modulus approach gives the
results extremely close to those received by modeling strain-stress diagram
by cubic formula (4) with conditional yield point.

The cross-section symmetry in generalized meaning, i.e., 𝐽 (𝐼𝐼𝐼)
𝑥 = 0 simpli-

fies significantly the calculation due to the absence of a next-in-rank additive.
And as for this for the 4-th gyration moment it occurs quite negligible so
we may limit ourselves to only the terms containing the second moment of
the cross-section. As for widely used non-symmetrical cross-sections such as
L-beam the 3-rd moment doesn’t equal exactly to zero but very close to it
due to the area quasi-anti-symmetry. Thus, the method developed may be
implemented for wide class of constructive profiles.

6. Buckling shape

The shape of the buckled console is easily calculated parametrically from
the above formulas for the longitudinal 𝑧(𝑝) and transversal 𝑦(𝑝) coordinates.
The shape was calculated in all three approximations: the plastic deformations
of the axis due to a model cubic diagram with a conditional yield strength, in
the approximation of the tangent modulus, and for Hook’s law. The load 𝐹
for each case was taken to provide the same final slope 𝑝𝑓 = 0.5 (figures 7, 8).

We see that the shapes are extremely close to each other though the
compressed lengths differ significantly especially for ideal Hook’s case with the
load almost 2 times greater of those for the rest two approaches. As for the
case of the low carbon steel with much greater Young’s modulus the identity
of the shapes was really ideal (figures 8) for different beam lengths. Due
to approximate proportionality of the loads providing the same final slope
within different approaches one may suggest not to solve the unwieldy case
of cubic diagram (4) but to use a simple Hookean case with the subsequent
recalculation of forces.
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Figure 7. Quasi-identity of the shape of the Al/PTFE I-console, 𝑙0 = 0.5 m. 0.077 m2,

𝐽 (𝐼𝐼)
𝑥 = 0.000065124 m4 buckled under the loads 𝐹(𝑝𝑓 = 0.5) within the three

approaches: plastic strain (4) under 𝐹 = 1.932 ⋅ 106𝑁 (black solid), tangent modulus with

𝐹 = 1.97 ⋅ 106𝑁 (black dot) and Hook’s law with 𝐹 = 3.68 ⋅ 106𝑁 (grey)

Figure 8. Really complete shape identity for the steel I-console No 10, 𝑙0 = 0.5 m under

loads resulting in equal 𝑝𝑓 of 0.5 due to ideal Hook’s (black long dash) and cubic (solid grey)

strain-stress diagram

7. Conclusion

So, we prove that the suggested numerical method of Euler problem solution
within a plane section hypothesis using the Maple software is quite effective
and implementable in the range of plastic strains. The software is versatile
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useful for solving many related sub-problems such as bringing together similar
terms, expansion expression into a series, curve fitting, nonlinear estimation of
parameters from experimental data, plotting an implicitly specified function,
3D-plots, etc. The algebraic type of the functions involved which is provided
by a lucky choice of integration variable facilitates the computational process
and gives a gain in speed compared to analogous use of transcendental and
moreover special functions. Therefore, the method may be further generalized
on more complicate case of piecewise uniform beam.
Solving this kind problems, when any even minor invisible error can mislead

student to qualitatively wrong results and conclusions, disciplines him and
eventually makes him a specialist in mathematical modeling in a wide range
of sciences. The specialist who is critical of “ready-made solutions” in the
form of convenient commercial software products which may solve well one
class of problems and occur useless and distractive for another one.
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Продольный изгиб однородной консоли
с симметричным сечением в режиме пластических
деформаций: численное моделирование посредством
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Аннотация. Представлен способ численного моделирования посредством
Maple 2018 продольного изгиба однородной консоли с симметричным сечением
в режиме пластических деформаций. Получено обыкновенное дифференциаль-
ное уравнение для поперечной координаты, учитывающее высшие моменты
инерции сечения. В качестве аргумента в нём служил уникальный для каждого
места безразмерный наклон консоли 𝑝 = tan 𝜃, взаимно однозначно связанный со
всеми перемещениями. Диаграммы сжатия реальных материалов (сталь, титан,
тефлон, алюминий-тефлон) моделировались в Maple при помощи нелинейной
регрессии на экспериментальных и литературных данных с использованием
полинома 3-го порядка, обеспечивающего условный предел текучести (𝑡,𝜎𝑓). Па-
раметры консоли (длина 𝑙0, площадь сечения 𝑆 и минимальный момент инерции
𝐽𝑥) подбирались так, чтобы изгибающая сила обеспечивала напряжение вблизи
предела текучести 𝜎𝑓. Для нахождения ключевой зависимости углового накло-

на свободного конца 𝑝𝑓 от закритической нагрузки 𝐹 > 𝐹cr, что необходимо для

определения формы прогиба, использовалось равенство проинтегрированной
восстановленной элементарной длины её свободному значению 𝑙0. Зависимости
𝑝𝑓(𝐹) и 𝑦(𝑧), 𝑧 — продольная координата, рассчитывались в рамках следующих

трёх подходов: пластический характер деформаций согласно полиномиальной
(𝑛 = 3) диаграмме, приближение касательного модуля 𝐸tang и приближение

идеальной выполнимости закона Гука. Обнаружено, что в реальном случае
пластических деформаций критическая нагрузка 𝐹cr почти вдвое меньше, чем
в идеальном случае. При этом наблюдается почти идентичность формы изги-
ба консоли в рамках этих трёх подходов при одинаковом конечном наклоне 𝑝𝑓,
особенно для металлов.

Ключевые слова: проблема Эйлера, гипотеза плоских сечений, выгибание,
консоль, пластические деформации, диаграмма сжатия, условный предел теку-
чести, критическая выгибающая сила, программирование на Maple, нелинейная
оценка, тефлон Al/PTFE, сталь


