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On the application of the Fourier method to solve
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Abstract. The work is devoted to the construction of computational algorithms im-
plementing the method of correction of thermographic images. The correction is
carried out on the basis of solving some ill-posed mixed problem for the Laplace equa-
tion in a cylindrical region of rectangular cross-section. This problem corresponds to
the problem of the analytical continuation of the stationary temperature distribution
as a harmonic function from the surface of the object under study towards the heat
sources. The cylindrical region is bounded by an arbitrary surface and plane. On
an arbitrary surface, a temperature distribution is measured (and thus is known).
It is called a thermogram and reproduces an image of the internal heat-generating
structure. On this surface, which is the boundary of the object under study, convec-
tive heat exchange with the external environment of a given temperature takes place,
which is described by Newton’s law. This is the third boundary condition, which to-
gether with the first boundary condition corresponds to the Cauchy conditions — the
boundary values of the desired function and its normal derivative. The problem is
ill-posed. In this paper, using the Tikhonov regularization method, an approximate
solution of the problem was obtained, stable with respect to the error in the Cauchy
data, and which can be used to build effective computational algorithms. The paper
considers algorithms that can significantly reduce the amount of calculations.

Key words and phrases: thermogram, ill-posed problem, Cauchy problem for the
Laplace equation, integral equation of the first kind, Tikhonov regularization method

1. Introduction

Improving the quality and information content of images obtained by
thermal imaging methods using a thermal imager that registers thermal
electromagnetic radiation from the surface of the object under study in the
infrared range by their mathematical (digital) processing is an urgent problem.
In particular, in medicine, thermal imaging has become an effective diagnostic
tool [1–4]. The image on the thermogram, which is a visualization of the
temperature distribution on the surface of the patient’s body, makes it possible
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to assess functional anomalies in the state of his internal organs. At the
same time, the image on the thermogram in some cases turns out to be
somewhat distorted due to the processes of thermal conductivity and heat
exchange. The paper proposes a method of image correction on a thermogram
within a certain mathematical model. As an adjusted thermogram, the image
of the temperature field on the plane near the density of heat sources is
considered as more accurately transmitting the image of heat sources. It
is proposed to obtain this field as a result of the continuation (similar to
the continuation of gravitational fields in geophysics problems [5]) of the
temperature distribution from the surface from which the initial thermogram
is taken. The problem under consideration is ill-posed, since small errors in
the initial data (the initial thermogram) may correspond to significant errors
in solving the inverse problem. To construct its stable approximate solution,
the Tikhonov regularization method [6] is used.

2. Mathematical model and problem statement

Let’s consider a physical and mathematical model, in which we set the task
of continuing from the boundary of the stationary temperature distribution.
The physical model is a homogeneous heat-conducting body in the form of

a rectangular cylinder, bounded by the surface 𝑆 and containing heat sources
with a time-independent density function that create a stationary temperature
distribution in the body. We associate the density function of heat sources
with the object under study. We assume that a given temperature distribution
(equal to zero) is maintained on the lateral faces of the cylinder, and on the
surface 𝑆 there is convective heat exchange with the external environment of
temperature 𝑈0, described by Newton’s law, according to which the density
of the heat flux at the point of the surface 𝑆 is directly proportional to the
temperature difference inside and outside.
Let’s move on to the mathematical model. In a rectangular cylinder

𝐷∞ = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, −∞ < 𝑧 < ∞} ⊂ ℝ3 (1)

consider a cylindrical region

𝐷(𝐹, ∞) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹 (𝑥, 𝑦) < 𝑧 < ∞}, (2)

limited by the surface

𝑆 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐹(𝑥, 𝑦) < 𝐻}. (3)

We’ll assume that we also know that

𝑎1 < 𝐹(𝑥, 𝑦) < 𝑎2 < 𝐻, (𝑥, 𝑦) ∈ Π, (4)

Π = {(𝑥, 𝑦) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦}. (5)

Let Γ be the set of side faces of the domain 𝐷(𝐹, ∞). In the domain
𝐷(𝐹, ∞) we consider the following mixed boundary value problem for the
Laplace equation
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⎧{{{
⎨{{{⎩

Δ𝑢(𝑀) = 𝜌(𝑀), 𝑀 ∈ 𝐷(𝐹 , ∞),
𝜕𝑢
𝜕𝑛

∣
𝑆

= ℎ(𝑈0 − 𝑢)∣
𝑆
,

𝑢|Γ = 0,
𝑢 limited at 𝑧 → ∞.

(6)

The problem (6) corresponds to the steady-state temperature distribution
created by heat sources with the distribution density function 𝜌, on the
surface 𝑆 — a third boundary condition is set corresponding to convective
heat exchange with a medium of temperature 𝑈0 with a coefficient ℎ, zero
temperature is set at the boundary Γ.
We assume that the function 𝜌 is such that the solution of the problem (6)

exists in 𝐶2(𝐷(𝐹 , ∞)) ⋂ 𝐶1(𝐷(𝐹 , ∞)). In particular, the solution of the
problem (6) allows us to find 𝑢|𝑆, i.e. the temperature distribution of 𝑢 on
the surface 𝑆, which we will call a thermogram.
Now let the thermogram be obtained as a result of measurements. Let

us now set the inverse problem. We set the problem of continuation of the
temperature distribution from the surface towards the sources in order to
obtain an adjusted thermogram as the temperature distribution 𝑢|𝑧=𝐻 on the
plane 𝑧 = 𝐻, closer to the density carrier than the surface 𝑆.
We assume that the carrier of the function 𝜌 is located in the domain

𝑧 > 𝐻, then the solution of the problem (6) in the domain

𝐷(𝐹, 𝐻) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹 (𝑥, 𝑦) < 𝑧 < 𝐻} (7)

satisfies the Laplace equation. The set of side faces of the domain 𝐷(𝐹, 𝐻) is
denoted by Γ𝐻.
Inverse problem. Let the function be given within the framework of the

model (6)

𝑓 = 𝑢∣
𝑆
. (8)

It is required to find 𝑢∣
𝑧=𝐻

. Since the value of 𝐻 sufficiently arbitrarily

defines the plane between the support of 𝜌 and the surface 𝑆, then in fact the
inverse problem consists in obtaining a solution 𝑢 in the domain 𝐷(𝐹, 𝐻) of
the boundary value problem

⎧
{{{
⎨
{{{
⎩

Δ𝑢(𝑀) = 0, 𝑀 ∈ 𝐷(𝐹 , 𝐻),
𝑢∣

𝑆
= 𝑓,

𝜕𝑢
𝜕𝑛

∣
𝑆

= ℎ(𝑈0 − 𝑓)∣
𝑆
,

𝑢∣
Γ𝐻

= 0.

(9)

We assume that the function 𝑓 in (8), (9) is taken from the set of solutions
to the direct problem (6), so the solution to the inverse problem exists in

𝐶2(𝐷(𝐹 , 𝐻)) ⋂ 𝐶1(𝐷(𝐹 , 𝐻)).
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Note that in the problem (9) on the surface 𝑆 of the form (3), Cauchy
conditions are set, that is, the boundary values 𝑓 of the desired function 𝑢 and
the values of its normal derivative are set, so the problem (9) has a unique
solution. The boundary 𝑧 = 𝐻 of the domain 𝐷(𝐹, 𝐻) is free and, thus, the
problem (9) is unstable with respect to errors in the data, i.e. ill-posed.

The function 𝑢|𝑧=𝐻 will be considered as an adjusted thermogram. Since
the plane 𝑧 = 𝐻 is located closer to the support of density 𝜌, it should be
expected that the corrected thermogram more accurately conveys information
about the distribution of heat sources than the original thermogram.
Further we give an explicit representation of the exact solution of the

problem (9).

3. Exact solution of the inverse problem

Based on the [7] scheme, an exact solution of the problem (9) is constructed
in [8].

Let 𝜑(𝑀, 𝑃) be the source function of the Dirichlet problem in the cylinder
𝐷∞:

Δ𝑢(𝑃 ) = −𝜌(𝑃 ), 𝑃 ∈ 𝐷∞,
𝑢∣

𝑥=0, 𝑙𝑥
= 0, 𝑢∣

𝑦=0, 𝑙𝑦
= 0,

𝑢 → 0 at |𝑧| → ∞.
(10)

In the domain 𝑧𝑀 < 𝐻 in the cylinder (1), we introduce the notation

Φ(𝑀) = ∫
𝑆

[ℎ(𝑈0 − 𝑓(𝑃 ))𝜑(𝑀, 𝑃) − 𝑓(𝑃) 𝜕𝜑
𝜕𝑛𝑃

(𝑀, 𝑃)] 𝑑𝜎𝑃. (11)

In [8], the following representation of the solution of the problem is ob-
tained (9)

𝑢(𝑀) = 𝑣(𝑀) + Φ(𝑀), 𝑀 ∈ 𝐷(𝐹 , 𝐻), (12)

where the function Φ is calculated on the known functions 𝑓 and 𝑓1, and the
function 𝑣 has the form:

𝑣(𝑀) = −
∞

∑
𝑛,𝑚=1

Φ̃𝑛𝑚(𝑎) exp {𝑘𝑛𝑚(𝑧 − 𝑎)} sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

,

𝑀(𝑥, 𝑦, 𝑧) ∈ 𝐷(−∞, 𝐻),
(13)

where

𝑘𝑛𝑚 = 𝜋(𝑛2

𝑙2𝑥
+ 𝑚2

𝑙2𝑦
)

1/2

(14)

and Φ̃𝑛𝑚(𝑎) — Fourier coefficients of the function Φ(𝑀)

Φ̃𝑛𝑚(𝑎) = 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

Φ(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 (15)
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on the auxiliary plane:

Π(𝑎) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝑎}, 𝑎 < 𝑎1. (16)

For a Φ function of the form (11) considering that 𝑑𝜎𝑃 = 𝑛1(𝑥𝑃, 𝑦𝑃)𝑑𝑥𝑃𝑑𝑦𝑃,
where the normal n1 to the surface 𝑆 is calculated by the formula

n1 = grad (𝐹(𝑥, 𝑦) − 𝑧) = ∇𝑥𝑦𝐹 − k, 𝑛1 = |n1|, (17)

we will use the representation

Φ(𝑀) = ∫
Π

[ℎ(𝑈0 − 𝑓(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃 )∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)−

− 𝑓(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

]𝑑𝑥𝑃𝑑𝑦𝑃. (18)

When calculating the function Φ(𝑀)|𝑀∈Π(𝑎) on the rectangle Π(𝑎) for the
source function 𝜑(𝑀, 𝑃), you can use the formula

𝜑(𝑀, 𝑃) =

= 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚|𝑧𝑀−𝑧𝑃|

𝑘𝑛𝑚
sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
, (19)

which for 𝑧𝑀 = 𝑎 and 𝑃 ∈ 𝑆 takes the form

𝜑(𝑀, 𝑃) = 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛𝑚
×

× sin 𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
. (20)

The series converges uniformly, since the exponent is estimated by
exp{−𝑘𝑛𝑚(𝑎1 − 𝑎)}. When calculating the function Φ in (12), the source
function at 𝑎2 < 𝑧𝑀 < 𝐻 and 𝑃 ∈ 𝑆 takes the form

𝜑(𝑀, 𝑃) = 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚(𝑧𝑀−𝐹(𝑥𝑃,𝑦𝑃))

𝑘𝑛𝑚
×

× sin 𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
. (21)

The series converges uniformly on any fixed plane 𝑧𝑀 = const, since
the exponent is estimated by exp{−𝑘𝑛𝑚(𝑧𝑀 − 𝑎2)}, that is important for
applications. At the points 𝑧𝑀 < 𝑎2, the source function can be calculated
by the reflection method.
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4. Construction of an approximate solution
to the problem

Let the function 𝑓 in the problem (9) be given with an error, that is, instead
of 𝑓, the function 𝑓𝛿 is given, so that

‖𝑓𝛿 − 𝑓‖𝐿2(Π) ⩽ 𝛿. (22)

In this case, the function (11) is calculated approximately

Φ𝛿(𝑀) = ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃)∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)−

− 𝑓𝛿(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

]𝑑𝑥𝑃𝑑𝑦𝑃. (23)

The approximate solution to the problem (9) is constructed using the
Tikhonov regularization method [6] and in accordance with (12) has the form

𝑢𝛿
𝛼(𝑀) = 𝑣𝛿

𝛼(𝑀) + Φ𝛿(𝑀), 𝑀 ∈ 𝐷(𝐹 , 𝐻), (24)

where Φ𝛿 is a function of the form (23) and

𝑣𝛿
𝛼(𝑀) = −

∞
∑

𝑛,𝑚=1

Φ̃𝛿
𝑛𝑚(𝑎) exp{𝑘𝑛𝑚(𝑧𝑀 − 𝑎)}

1 + 𝛼 exp{2𝑘𝑛𝑚(𝐻 − 𝑎)}
sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
. (25)

Note that the members of the series (25) differs from the members of the

series (13) by the regularizing factor (1 + 𝛼 exp{2𝑘𝑛𝑚(𝐻 − 𝑎)})−1, ensuring
the convergence of the series.
In the numerical solution, the bulk of the calculations is related to the

calculation of the Fourier coefficients of the function Φ𝛿 by the formula (15).
The next section is devoted to the calculation of Fourier coefficients with
a significant reduction in the amount of calculations.

5. Calculation of Fourier coefficients

As follows from the formulas (15), (23), (20), when calculating the Fourier
coefficient for each pair of indices 𝑛 and 𝑚, a superposition of the following
calculations is required: summation of the series for 𝜑, integration on the
surface 𝑆, integration on the rectangle Π(𝑎). Thus, when discretizing [9] the
problem (𝑁𝑥 points on the variable 𝑥, 𝑁𝑦 points on the variable 𝑦) when
calculating Fourier coefficients, about 𝑂(𝑁𝑥𝑁𝑦)4 operations are required.
This is the largest volume of operations when constructing a solution to the
problem (9), during which, in addition to time, there is a loss of accuracy
and an additional error is formed in calculating the Fourier coefficients and
solving the problem as a whole.
It seems advisable to carry out some of these operations analytically,

reducing the subsequent amount of calculations, namely. Let us carry out the
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integration in the formula for calculating the Fourier coefficients (15) under
the sign of the integral in (23) and under the sign of the sum in (20), and use
the orthogonality of the complete system of functions

{sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

}
∞

𝑛,𝑚=1

. (26)

Calculate the Fourier coefficient from the first term in (23)

Φ̃1,𝑛𝑚(𝑎) = 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

Φ1(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 =

= 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦×

× ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃)∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)]𝑑𝑥𝑃𝑑𝑦𝑃. (27)

By integrating on the rectangle Π(𝑎) under the sign of the integral on the
rectangle Π, using the representation (20), we calculate the value

4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦𝜑(𝑀, 𝑃 )∣
𝑃∈𝑆

=

= 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1

𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛′𝑚′
×

× sin 𝜋𝑛′𝑥
𝑙𝑥

sin
𝜋𝑚′𝑦

𝑙𝑦
sin

𝜋𝑛′𝑥𝑃
𝑙𝑥

sin
𝜋𝑚′𝑦𝑃

𝑙𝑦
. (28)

By performing integration under the sign of the sum of uniformly convergent
series and using the orthogonality of the system (26), we obtain

4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦𝜑(𝑀, 𝑃 )∣
𝑃∈𝑆

=

= 4
𝑙𝑥𝑙𝑦

2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1

𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛′𝑚′

𝑙𝑥𝑙𝑦
4

𝛿𝑛𝑛′𝛿𝑚𝑚′ sin
𝜋𝑛′𝑥𝑃

𝑙𝑥
sin

𝜋𝑚′𝑦𝑃
𝑙𝑦

=

= 2
𝑙𝑥𝑙𝑦

𝑒−𝑘𝑛𝑚(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛𝑚
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
. (29)

Using (29), for the Fourier coefficients (27), replacing integration variables
𝑥𝑃 and 𝑦𝑃 with 𝑥 and 𝑦, we get
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Φ̃1,𝑛𝑚(𝑎) = 2
𝑙𝑥𝑙𝑦𝑘𝑛𝑚

×

× ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥, 𝑦))𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)𝑛1(𝑥, 𝑦) sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

] 𝑑𝑥𝑑𝑦. (30)

From the formula (30) it follows that to calculate the Fourier coefficient of
the function Φ on the rectangle Π(𝑎) there is no need to calculate the function
itself. You can use the formula (30), which formally coincides with the formula
(15) for the Fourier coefficients on the system (26) of some function depending
on the Fourier indices and including information about the surface 𝑆 in the
form of a function 𝐹 and the normal 𝑛1 calculated by the formula

𝑛1(𝑥, 𝑦) = √(𝐹 ′
𝑥(𝑥, 𝑦))2 + (𝐹 ′

𝑦(𝑥, 𝑦))2 + 1.

In this case, the number of operations has the order of 𝑂(𝑁𝑥𝑁𝑦)2, that is,
the second order in terms of the number of points, which is two orders of
magnitude less than the direct calculation of the Fourier coefficients by the
formulas (15), (23), (20).

Similarly, the Fourier coefficient of the second term is calculated in the
formula (23)

Φ̃2,𝑛𝑚(𝑎) = 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

Φ2(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 =

= 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦×

× ∫
Π

[𝑓𝛿(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

] 𝑑𝑥𝑃𝑑𝑦𝑃. (31)

Using the representation (20), we calculate the value

(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆,𝑀∈Π(𝑎)

=

= 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1

𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛′𝑚′
sin

𝜋𝑛′𝑥
𝑙𝑥

×

× sin 𝜋𝑚′𝑦
𝑙𝑦

cos
𝜋𝑛′𝑥𝑃

𝑙𝑥
sin

𝜋𝑚′𝑦𝑃
𝑙𝑦

𝜋𝑛′

𝑙𝑥
𝐹 ′

𝑥(𝑥𝑃, 𝑦𝑃)+

+ 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1

𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛′𝑚′
sin

𝜋𝑛′𝑥
𝑙𝑥

×

× sin 𝜋𝑚′𝑦
𝑙𝑦

sin
𝜋𝑛′𝑥𝑃

𝑙𝑥
cos

𝜋𝑚′𝑦𝑃
𝑙𝑦

𝜋𝑚′

𝑙𝑦
𝐹 ′

𝑦(𝑥𝑃, 𝑦𝑃)+
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+ 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1
𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎) sin

𝜋𝑛′𝑥
𝑙𝑥

×

× sin 𝜋𝑚′𝑦
𝑙𝑦

sin
𝜋𝑛′𝑥𝑃

𝑙𝑥
sin

𝜋𝑚′𝑦𝑃
𝑙𝑦

. (32)

By integrating on the rectangle Π(𝑎) under the sign of the integral on the
rectangle Π, performing integration under the sign of the sum of a uniformly
convergent series and using the orthogonality of the system (26), we obtain

4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 (n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

=

= 2
𝑙𝑥𝑙𝑦

𝑒−𝑘𝑛𝑚(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛𝑚
[cos 𝜋𝑛𝑥𝑃

𝑙𝑥
sin

𝜋𝑚𝑦𝑃
𝑙𝑦

𝜋𝑛
𝑙𝑥

𝐹 ′
𝑥(𝑥𝑃, 𝑦𝑃) +

+ sin
𝜋𝑛𝑥𝑃

𝑙𝑥
cos

𝜋𝑚𝑦𝑃
𝑙𝑦

𝜋𝑚
𝑙𝑦

𝐹 ′
𝑦(𝑥𝑃, 𝑦𝑃) + 𝑘𝑛𝑚 sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
] . (33)

Hence and from (31) follows

Φ̃2,𝑛𝑚(𝑎) = 2𝜋𝑛
𝑙2𝑥𝑙𝑦𝑘𝑛𝑚

∫
Π

𝑓𝛿(𝑥, 𝑦)𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)×

× 𝐹 ′
𝑥(𝑥, 𝑦) cos 𝜋𝑛𝑥

𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦+

+ 2𝜋𝑚
𝑙𝑥𝑙2𝑦𝑘𝑛𝑚

∫
Π

𝑓𝛿(𝑥, 𝑦)𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)𝐹 ′
𝑦(𝑥, 𝑦) sin 𝜋𝑛𝑥

𝑙𝑥
cos

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦+

+ 2
𝑙𝑥𝑙𝑦

∫
Π

𝑓𝛿(𝑥, 𝑦)𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎) sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦. (34)

Thus, the Fourier coefficient Φ̃2,𝑛𝑚(𝑎) is calculated as the sum of formally

calculated Fourier coefficients over orthogonal systems

{sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

}
∞

𝑛,𝑚=1

, {cos 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

}
∞

𝑛,𝑚=1

,

{sin 𝜋𝑛𝑥
𝑙𝑥
cos

𝜋𝑚𝑦
𝑙𝑦

}
∞

𝑛,𝑚=1

.
(35)

of functions depending, among other things, on the indices of the Fourier
coefficients. In this case, as well as when calculating the Fourier coefficient
from the first term, the number of operations has the order of 𝑂(𝑁𝑥𝑁𝑦)2,
that is, the second order in terms of the number of points, which is two orders
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of magnitude less than the direct calculation of the Fourier coefficients by the
formulas (15), (23), (20).
Summing (30), (34), we get the Fourier coefficient

Φ̃𝑛𝑚(𝑎) = Φ̃1,𝑛𝑚(𝑎) + Φ̃2,𝑛𝑚(𝑎). (36)

According to the remarks to the formulas (30), (34) in general, the number
of operations when calculating the Fourier coefficients using these formulas
relative to the number of 𝑁𝑥𝑁𝑦 points on the thermogram has the order of

𝑂(𝑁𝑥𝑁𝑦)2.

To calculate the Fourier coefficients using the formulas (30), (34), the
Hamming method [10] is used.

6. Conclusion and discussion

Stable solution of the inverse problem (9) can be used for mathematical
processing of thermograms taken with a thermal imager, in particular, in
medicine [4], in order to correct the image on the thermogram. Note that
taking into account the blood flow leads to the need to use the metaharmonic
equation [11, 12] in problem (9). As already mentioned, a thermogram, with
one or another reliability, convey an image of the structure of heat sources
inside the body. Refinement of the image on the thermogram can be carried
out within the framework of the problem (9). In this case, the function 𝑓 is
associated with the original thermogram, and the function 𝑢𝐻 is considered
the result of processing the thermogram. Since the function 𝑢𝐻 represents
the temperature distribution on a plane closer to the studied heat sources
than the original surface 𝑆, we can expect a more accurate reproduction of
the image of the sources on the calculated thermogram 𝑢𝐻. The results of
calculations carried out on a model example show the effectiveness of the
proposed method and algorithm based on the formulas (24), (25), (23), (36),
which can be used to process thermographic images.
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О применении метода Фурье для решения задачи
коррекции термографических изображений
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Аннотация. Работа посвящена построению вычислительных алгоритмов, ре-
ализующих метод коррекции термографических изображений. Коррекция
осуществляется на основе решения некоторой некорректно поставленной смешан-
ной задачи для уравнения Лапласа в цилиндрической области прямоугольного
сечения. Эта задача соответствует задаче аналитического продолжения стацио-
нарного распределения температуры как гармонической функции с поверхности
исследуемого объекта в сторону источников тепла. Цилиндрическая область огра-
ничена произвольной поверхностью и плоскостью. На произвольной поверхности
измеряется (и таким образом, задано) распределение температуры, называемое
термограммой и воспроизводящее изображение внутренней тепловыделяющей
структуры. На этой поверхности — границе исследуемого объекта — имеет место
конвективный теплообмен с внешней средой заданной температуры, который
описывается законом Ньютона. Это третье краевое условие, которое в сово-
купности с первым краевым условием соответствует заданию условий Коши —
граничным значениям искомой функции и ее нормальной производной. Задача
некорректно поставлена. В статье применением метода регуляризации Тихонова
получено приближённое решение поставленной задачи, устойчивое по отношению
к погрешности к данным Коши, и которое может быть использовано для постро-
ения эффективных вычислительных алгоритмов. В работе рассматриваются
алгоритмы, позволяющие существенно уменьшить объем вычислений.

Ключевые слова: термограмма, некорректная задача, задача Коши для урав-
нения Лапласа, интегральное уравнение первого рода, метод регуляризации
Тихонова
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Abstract. Due to the emergence and active development of new areas of application
of powerful and super-powerful microwave vacuum devices, interest in studying
the behavior of ensembles of charged particles moving in the interaction space
has increased. An example is an electron beam formed in a coaxial diode with
magnetic isolation. Numerical simulation of emission in such a diode is traditionally
carried out using particle-in-cell methods. They are based on the simultaneous
calculation of the equations of motion of particles and the Maxwell’s equations
for the electromagnetic field. In the present work, a new computational approach
called the point macroparticle method is proposed. In it, the motion of particles
is described by the equations of relativistic mechanics, and explicit expressions are
written out for fields in a quasi-static approximation. Calculations of the formation of
a relativistic electron beam in a coaxial diode with magnetic isolation are performed
and a comparison is made with the known theoretical relations for the electron
velocity in the beam and for the beam current. Excellent agreement of calculation
results with theoretical formulas is obtained.

Key words and phrases: coaxial diode with magnetic isolation, cold emission,
point macroparticles

1. Introduction

Relativistic electron beams. The existing plasma relativistic microwave
generators and amplifiers (plasma masers) are based on the interaction of
tubular plasma with tubular high-current relativistic electron beam (REB) [1].
The explosive-emission cathode [2] forms a tubular REB with an internal
radius of ∼2 cm and a thickness of ∼0.15 cm, which propagates in a magnetic
field of 1 T created by a solenoid. The electron energy in such a beam

is ∼106 eV, the electron current density is 103–104 A/cm2. The power of
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the REB, as a rule, exceeds 109 W, the current pulse lasts from several
nanoseconds to several microseconds [3].

High-current relativistic electron beams are formed directly in the diode,
which is supplied with a voltage pulse from the primary energy storage.
Electrons receive energy only in the diode, no additional means of particle
acceleration (similar to sections of linear inductive or resonant accelerators)
are used. Installations for generating high-current REB are also, in some
works, called direct-acting accelerators [4].

The creation of controlled beams (streams) of charged particles is carried
out using a variety of devices, the main element of which is a source of charged
particles. A fairly common element of such a system that provides an intense,
well-focused electron beam is an electron gun. The most commonly used are
thermionic guns, in which the primary element is a vacuum diode [5].

Calculation methods. To calculate the dynamics of electron beams, a gas-
dynamic approximation is used (see, for example, [6]). As is known, the system
of equations of gas dynamics is valid for thermodynamically equilibrium
continuous media. Various types of equilibrium violation are taken into
account using additional model assumptions. The success of this approach
depends on how well the nonequilibrium model is chosen. Models that have
proven themselves well in some applications (for example, nonequilibrium
electronic processes of solid-state electronics) may not be applicable in other
applications.
A more general approach is the kinetic Vlasov equation with respect to the

distribution function [7], supplemented by a system of Maxwell’s equations
for electromagnetic fields. This model leads to a partial differential equation
of the first order; it is a mathematical formulation of the well-known Liouville
theorem on the conservation of phase volume [8]. The properties of the
medium, such as particle concentration, charge density, average velocity, etc.
are moments of the distribution function.
For the numerical solution of the kinetic equation, methods such as Particle-

in-Cell (PiC) and Cloud-in-Cell (CiC) [9] are used. In these methods,
the medium is replaced by a set of a finite number of particles possess-
ing macrocharge that interact with each other. Each particle is attributed
to the characteristics of the medium: charge, mass, momentum, energy, etc.
The average values of these quantities are calculated as the sum of all model
particles located in the considered region.
Macroparticles have a finite size, within which the spatial distribution of

charge, mass, etc. is set. Most often, this distribution is chosen piecewise
constant. In this case, the geometric dimensions of all particles are considered
the same. In some works, more complex form-factors of the particles are
considered.
The motion of macroparticles obeys the equations of Newtonian mechanics

(or relativistic Lorentz equations). This leads to a system of ordinary differ-
ential equations (ODEs) for the coordinates and velocities of particles and
a system of the Maxwell’s equations for electromagnetic fields. For this sys-
tem, the «leap-frog» scheme is traditionally used. First, electromagnetic fields
are set and the change in the coordinates and velocities of the macroparticles
is calculated in one time step. Then, according to the changed coordinates
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and velocities, the electromagnetic fields are refined. After that, coordinates
and velocities are calculated at the next time step, etc.

Based on this approach, Tarakanov developed the KARAT [10] code, which
was widely applied to solving various problems of plasma physics. Among
them are formation of a virtual cathode, formation of an electron beam in
a coaxial diode with magnetic isolation, dynamics of a laser target and the
initiation of deuterium-deuterium reactions, focusing of an electron beam and
the development of hose instability, anisotropic Waibel instability and many
others. We also note the works of Borodachev (see [11] and other works of this
author). He proposed several improvements to this approach and performed
calculations of a large number of tasks.

The main difficulty of the particle (cloud) method in a cell is the need to
introduce space-time discretization separately for particles and separately
for electromagnetic fields. This leads to a number of numerical artifacts.
Among them are the stroboscopic effect (the onslaught of the phase of the
electromagnetic field when its frequency does not match with the sampling
frequency in time), non-conservativeness (either the momentum conservation
law or the energy conservation law is fulfilled, but not simultaneously), the
grid dispersion of the medium, the parasitic increase of shot and grid noise,
and some others. This limits the accuracy of this method.

In the present work, a new method for calculating the emission problem
of a coaxial diode with magnetic isolation is proposed. Instead of particles
of finite size, it uses point macroparticles. Their motion is described by
relativistic Lorentz equations. The electromagnetic field of the beam is
calculated in a static approximation based on the instantaneous position of
the particles: the electrostatic field is taken according to the Coulomb law
and the magnetic field is according to the Biot–Savart–Laplace law. Edge
effects at the cathode boundary are considered insignificant. Test emission
calculations are performed and the beam velocity and current are compared
with the well-known Fedosov’s law. This comparison shows excellent accuracy
of the proposed method: the discrepancy between the calculation and the
specified theoretical law is no more than 1%. Such accuracy is obviously
sufficient for applied calculations.

2. Problem statement

Consider the problem of infinite electron emission in the model of a coaxial
diode with magnetic isolation (CDMI) in a strong magnetic field [12]. A solid
cylindrical conductive cathode with a radius of 𝑅𝐶 with a negative potential
of −𝑈 is located in a cylindrical conductor-anode with a radius of 𝑅𝐴 with
zero potential in a strong longitudinal magnetic field (figure 1). The entire
surface of the cathode, lateral cylindrical and end plane, has the property of
infinite emission. As a result, a thin tubular electron beam with a radius of
𝑅𝐵 ≈ 𝑅𝐶 should be formed.

The parameters of the problem are: magnetic field 𝐵 = 1 T = 104 Gs, diode
length 𝐿 = 30 cm, cathode radius 𝑅𝐶 = 1 cm, anode radius 𝑅𝐴 = 2.72 cm,
cathode potential 𝑈 = 511 kV = 1.70 ⋅ 103 CGS.
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Figure 1. Scheme of the coaxial diode with magnetic isolation

For the current 𝐼 of a steady beam, the Fedosov’s empirical law is valid
(see [13] and the cited literature)

𝐼 [kA] = 17.02
ln(𝑅𝐴/𝑅𝐶)

𝛾 − 𝛾𝑏
𝛾𝑏

√𝛾2
𝑏 − 1,

𝛾 = 1 + 𝑈 [kV]
511

, 𝛾𝑏 = √1/4 + 2𝛾 − 1/2.
(1)

A theoretical estimate of the 𝑧-components of the electron beam velocity is
also known

𝑣𝑧 = 𝑐√1 − 1/𝛾2
𝑏 . (2)

Here 𝑐 is the speed of light in vacuum. With the specified task parameters,
we have 𝐼 ≈ 2.7 kA, 𝑣𝑧 ≈ 2.3 ⋅ 1010 cm/s.

3. The method of point macroparticles

3.1. Point macroparticles

Let the axis 𝑧 of the coordinate system be directed along the magnetic field
and the origin 𝑥 = 𝑦 = 𝑧 = 0 correspond to the center of the cathode end
face.

On the end surface of the cathode, we select 𝐽 points 𝑀 𝑗 = (𝑥𝑗
0, 𝑦𝑗

0), evenly
distributed over this surface. At the initial moment of time, macroparticles
containing 𝑍𝑗 electrons fly out of all points. Their initial velocities are
supposed to equal zero (i.e., the emission is cold). The emission at a given
point of the cathode should be the stronger, the greater the magnitude of
the cathode-anode field at this point. Therefore, we choose the value of 𝑍𝑗

proportional to the value of 𝑧-components of the cathode-anode field at the
point 𝑀 𝑗, i.e.,

𝑍𝑗 = 𝐽𝑍0 𝐸𝑧(𝑀 𝑗)
∑
𝑗

𝐸𝑧(𝑀 𝑗)
. (3)

Here 𝑍0 is the average charge of one particle. Since in practice 𝑍0 ≫ 1, such
a particle can be called a macroparticle.
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Macroparticles are considered point-size (i.e., the interaction of electrons
with each other inside one particle is not taken into account). Macroparticles
interact with each other and with external electric and magnetic fields.
Further, at the moment of time 𝑡 = 𝜏, the second portion of macroparticles

flies out of all points 𝑀 𝑗. For them, the electrostatic field of the first portion
of macroparticles partially shields the cathode-anode field. If by the time
𝑡 = 𝜏 the particles from the first portion do not have time to gain more speed,
then they are located relatively close to the end of the cathode, and the
shielding turns out to be stronger. Then, at the corresponding points 𝑀 𝑗, the
emission of particles of the second portion weakens. This can be taken into
account by reducing the value of 𝑍𝑗 for the second portion. Conversely, if by
the time of the second emission, the particles of the first portion managed
to gain more speed, then the shielding turns out to be weaker. Then, at the
corresponding points 𝑀 𝑗, the highest charge is emitted, and the value of 𝑍𝑗

for these points must be increased.
The particle movement obeys relativistic equations of motion which are

written in terms of momentum, not velocity. Therefore, it is convenient to
use the following rule for calculating new 𝑍𝑗

𝑍𝑗 = 𝐽𝑍0 𝑝𝑗
𝑧

∑
𝑗

𝑝𝑗
𝑧
. (4)

3.2. System of equations

Let us write down the equations of motion of the 𝑗-th macroparticle. We
choose momentum and radius vector as unknowns

𝑑r𝑗

𝑑𝑡
= p𝑗

√(𝑝𝑗)2/𝑐2 + (𝑚𝑗)2
, 𝑚𝑗 = 𝑍𝑗𝑚, (5)

𝑑p𝑗

𝑑𝑡
= 𝑒𝑗E+ 𝑒𝑗

𝑐
[p𝑗 ×B]

√(𝑝𝑗)2/𝑐2 + (𝑚𝑗)2
, 𝑒𝑗 = 𝑍𝑗𝑒. (6)

Here 𝑚, 𝑒 are the mass and charge of the electron, E, B are the total electric
and magnetic fields in which the 𝑗-th particle moves.
Electric field E = Eext + E𝑒𝑙 is the sum of the external cathode-anode field

Eext and the electrostatic field E𝑒𝑙 created by other electrons. According to
the Coulomb law, we have

E𝑒𝑙 = ∑
𝑖≠𝑗, 𝑍𝑖≠0

𝑒𝑗 r𝑗 − r𝑖

|r𝑗 − r𝑖|3
. (7)

The sum is taken for all particles that have flown out of the cathode at a given
time.
Magnetic field B = Bext + B𝑒𝑙 consists of an external solenoid field Bext

and a field B𝑒𝑙, which is created by other electrons when moving. The field
B𝑒𝑙 is described by the Biot–Savart–Laplace law
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B𝑒𝑙 = ∑
𝑖≠𝑗, 𝑍𝑖≠0

𝑒𝑗

𝑐
[v𝑖, r𝑗 − r𝑖]
|r𝑗 − r𝑖|3

. (8)

3.3. Numerical method

The equations of motion are solved numerically according to the explicit
Runge–Kutta scheme of the 4th order of accuracy. To increase the mathe-
matical accuracy of the difference scheme, the time interval 𝜏 can be divided
into several steps, during which the number of particles does not change.
The potential of the cathode-anode field is found by solving the boundary

value problem for the Laplace equation. It is considered in a cylindrically
symmetric formulation. On the walls of the anode, the potential is assumed
to be zero, and on the cathode — equal to −𝑈. The solution uses the package
FreeFem++[14]. Figure 2 shows potential isolines and field strength vectors

in coordinates 𝑧 − 𝜌, where 𝜌 = √𝑥2 + 𝑦2 is the polar radius. For clarity,
the range of variation of 𝑧 is limited to the value of 𝑧 = 5. Note that this
cathode-anode field decreases rapidly as 𝑧 increases. The maximum voltage
is reached near the cathode rib.

Figure 2. The potential and the cathode-anode field strength in units of CGS.

Solid line is the boundary of the computational domain

3.4. Remarks

1) The fundamental difference between the proposed approach and the
traditional PiC/CiC method is that macroparticles are considered point-like.
This makes it possible to write out explicit expressions for the electric and
magnetic fields created by particles. Therefore, during the calculation, it
is not necessary to solve the system of the Maxwell’s equations. This not
only gives a gain in efficiency, but also eliminates the previously mentioned
numerical artifacts that arise in the traditional particle method. This is an
advantage of the point macroparticle method.
2) Quasi-static expressions for the fields (7) and (8) are approximate.

They do not take into account the boundary effects at the anode boundaries.
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The interaction of charges with walls can be taken into account by the method
of electro- and magnetostatic images [15]. A separate issue is the accuracy with
which the timebase of the fields (7) and (8) satisfy the Maxwell’s equations.
Related to the period of the REB formation, this issue requires additional
research and is beyond the scope of this work. After the REB is formed
and can be considered steady, temporal dependence of the field vanishes
(at least, in some vicinity of the cathode). In this case, fulfillment of the
Maxwell’s equations is provided by employment of the Coulomb and the
Biot–Savart–Laplace laws.

4. Calculation results

Let us take 𝐽 = 3000, 𝜏 = 10−11 s. Then 𝑍0 = 5.956 ⋅ 107. The location of
the points 𝑀 𝑗 at the end of the cathode corresponds to figure 3 (far left).

The calculation was carried out up to the time 𝑡 = 10−9 s, i.e., at the end
of the calculation, the number of macroparticles reached ∼ 3 ⋅ 105. At the
same time, the particles of the first portion reached the section 𝑧 ≈ 28, the
steady beam corresponds to the segment 0 ⩽ 𝑧 ⩽ 8.

Figure 3. Cross sections of the beam with a plane 𝑧 = 0 at time moments
𝑡 = 0.035, 0.055, 0.075, 0.095 ns (from left to right)

Figure 3 shows the cross sections of the beam with the plane 𝑧 = 0 at several
consecutive moments of time. These moments are indicated above the graphs.
The points are the intersection of the trajectories of the macroparticles with
the specified plane. The size of the markers is proportional to the charge of the
macroparticles. Particles with a charge less than 10−3𝑍0 are not displayed.
It can be seen that at the initial moment of time, emission occurs from the

entire surface of the cathode end face. Over time, the emission is suppressed
first in the center of the cathode, and a tubular beam begins to form. Then
the area in which the emission is suppressed expands, and the tube wall
becomes thinner. Finally, a thin-walled beam is installed.
In figure 4, the dependence of the average 𝑧 component of the electron

velocity in a steady beam on the 𝑧 coordinate is presented. It can be seen
that with an increase in 𝑧, the value of 𝑣𝑧 increases rapidly and at 𝑧 ≈ 3 cm
goes to a constant value of 𝑣𝑧 = 2.30 ⋅ 1010 cm/s. This value perfectly agrees
with the theoretical value obtained from the Fedosov’s law: the difference is
only 0.01%.
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Figure 4. Average component 𝑣𝑧 of the electron velocity. Solid line is calculation for

𝑅𝐴/𝑅𝐶 = 2.72, dotted line is calculation for 𝑅𝐴/𝑅𝐶 = 5.44 (upper axis of abscissa),
dashed line is theoretical estimate from the Fedosov’s law. The numbers near the lines are

the value of the cathode-anode potential 𝑈

Figure 5 shows the dependence of the beam current 𝐼 on the coordinate 𝑧.
It is clearly seen that with the growth of 𝑧, the current value increases rapidly
and reaches a constant value of 𝐼 = 2.86 kA, which perfectly agrees with the
Fedosov’ law. The deviation of the right end of the curve from the horizontal
is due to the fact that the beam is not fully established.

Figure 5. Beam current. Solid line is calculation for 𝑅𝐴/𝑅𝐶 = 2.72, dotted line is
calculation for 𝑅𝐴/𝑅𝐶 = 5.44 (upper axis of abscissa), dashed line is theoretical estimate
from the Fedosov’ law. The numbers near the lines are the value of the cathode-anode

potential 𝑈
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5. Parameter selection

In this section, we show that the velocity and current of the steady-state
beam practically do not depend on the values of the user-defined parameters
𝐽 and 𝜏.

5.1. Number of particles

Let us perform the calculation with 𝐽 = 120, 𝜏 = 10−11 s. Then 𝑍0 =
1.489 ⋅ 109. This value is 25 times different from the one specified in section
4. Figure 6 shows a comparison of the profiles of the average 𝑧-velocity
components depending on 𝑧 for calculations with 𝐽 = 3000 and 𝐽 = 120. It
can be seen that the qualitative behavior of both curves coincides. The initial
sections corresponding to a sharp increase in 𝑣𝑧 are somewhat different. But
at 𝑧 ⩾ 2, both curves come out to the same constant value that coincides
with the theoretical value (2). The calculated velocities of the steady-state
beam are consistent with the theoretical estimate with an accuracy better
than 0.5%.

Figure 6. The average 𝑧 speed component for 𝑈 = 511 kV, 𝑅𝐴/𝑅𝐶 = 2.72. Solid line is
calculation with 𝐽 = 3000, 𝜏 = 10−11 s, dotted line is calculation with 𝐽 = 120,

𝜏 = 10−11 s, dashed line is calculation with 𝐽 = 120, 𝜏 = 2 ⋅ 10−11 s, dashed line is

theoretical estimate from the Fedosov’s law

In figure 7, a similar comparison of beam current profiles for calculations
with 𝐽 = 3000 and 𝐽 = 120 is presented. It can be seen that both curves
practically coincide and quickly tend to the theoretical value determined by
the Fedosov’s law (1). The calculated values of the steady-state beam current
are consistent with the theoretical estimate with an accuracy better than
0.3%.
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Figure 7. Beam current for 𝑈0 = 511 kV, 𝑅𝐴/𝑅𝐶 = 2.72. The designations correspond to
figure 6

5.2. Time interval between particle portions

Let us perform the calculation with 𝐽 = 120, 𝜏 = 2⋅10−11 s. To increase the
mathematical accuracy, we divide the interval 𝜏 into 2 intermediate steps of
the difference scheme. In this calculation, 𝑍0 = 2.978 ⋅ 109. This value differs
by 2 times from the one specified in 5.1. Figure 6 shows a comparison of 𝑣𝑧
profiles depending on 𝑧 for calculations with 𝜏 = 10−11 s and 𝜏 = 2 ⋅ 10−11 s.
It can be seen that both curves increase rapidly and tend to constant values
that coincide with the theoretical estimate (2). The agreement with the
theoretical estimate turns out to be better than 1%.
Figure 7 shows a similar comparison of beam current profiles for calculations

with 𝜏 = 10−11 s and 𝜏 = 2⋅10−11 s. It can be seen that both curves practically
coincide and quickly reach the theoretical value of the current determined
by the Fedosov’s law. The accuracy with which the calculation is consistent
with the theoretical estimate turns out to be better than 0.5%.

6. Verification of the model

6.1. Cathode-anode potential

To test the model, we will perform similar calculations for other values of the
cathode-anode potential 𝑈 = 511/2 = 255.5 kV and 𝑈 = 511/4 = 127.75 kV.
In both calculations, we put 𝐽 = 120, 𝜏 = 10−11 s. The dependence of the
𝑧-components of the electron velocity on the 𝑧 coordinate for both calculations
is shown in figure 4. It can be seen that with an increase in 𝑧, the value
of 𝑣𝑧 increases from zero to 1.95 ⋅ 1010 cm/s in the first calculation and to
1.52 ⋅ 1010 cm/s in the second calculation. The obtained velocities are in
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excellent agreement with the theoretical values: the difference does not exceed
0.3%.
Figure 5 shows the dependence of the beam current on the 𝑧 coordinate in

both calculations. It can be seen that with the growth of 𝑧, the current value
increases rapidly and reaches a constant value of 𝐼 = 1.07 kA for 𝑈 = 255.5 kV
and 𝐼 = 0.39 kA for 𝑈 = 127.75 kV. From figure 5, it can be seen that these
values perfectly agree with the Fedosov current: in both calculations, the
discrepancy does not exceed 0.5%.

6.2. Ratio of cathode and anode radii

Let us make calculations for a different ratio of the radii of the anode and
cathode 𝑅𝐴/𝑅𝐶 = 2.72 ⋅ 2 = 5.44. We take 𝐽 = 120, 𝜏 = 10−11 s. The
dependence of the average 𝑧-velocity component on the 𝑧 coordinate is shown
in figure 4. Since the beam is established at a significantly greater distance
from the cathode than in the calculations of 4, a separate abscissa axis was
used. It can be seen that with an increase in 𝑧, the value of 𝑣𝑧 increases,
passes through the maximum, then decreases and tends to a constant value.
The latter perfectly agrees with the estimate from the Fedosov’s law: the
discrepancy does not exceed 0.5%.
Figure 5 shows the dependence of the beam current on the 𝑧 coordinate

(the upper axis of the abscissa). It can be seen that the current quickly tends
to a constant value that coincides with the Fedosov current with an accuracy
not worse than 0.6%.

7. Conclusion

The proposed algorithm provides self-consistent emission suppression in
the center of the cathode and the formation of a tubular electron beam. The
dependence of the average 𝑧 component of the macroparticles velocity and
the beam current on 𝑧 reproduces the known quantitative regularities with
good accuracy. This confirms the correctness of the calculation results. It is
shown that the calculated particle velocity and current in a steady beam do
not depend on the parameters set by the user.
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Численное моделирование холодной эмиссии
в коаксиальном диоде с магнитной изоляцией
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Аннотация. В связи с появлением и активным развитием новых областей приме-
нения мощных и сверхмощных электровакуумных приборов СВЧ возрос интерес
к изучению особенностей поведения ансамблей заряженных частиц, движущихся
в пространстве взаимодействия. Примером является пучок электронов, форми-
руемый в коаксиальном диоде с магнитной изоляцией. Численное моделирование
эмиссии в таком диоде традиционно проводится с помощью методов типа «ча-
стица в ячейке». Они основаны на одновременном расчете уравнений движения
частиц и уравнений Максвелла для электромагнитного поля. В данной работе
предложен новый вычислительный подход, названный методом точечных мак-
рочастиц. В нем движение частиц описывается уравнениями релятивистской
механики, а для полей выписываются явные выражения в квазистатическом
приближении. Выполнены расчеты формирования релятивистского электронно-
го пучка в коаксиальном диоде с магнитной изоляцией и проведено сравнение
с известными теоретическими соотношениями для скорости электронов в пуч-
ке и для тока пучка. Получено отличное согласование результатов расчета
с теоретическими формулами.

Ключевые слова: коаксиальный диод с магнитной изоляцией, холодная эмис-
сия, точечные макрочастицы
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Abstract. The article considers the application of the method of continued boundary
conditions to the two-dimensional problem of diffraction of electromagnetic waves by
a dielectric body with a cross section of complex geometry and to the problem of
diffraction by a Janus sphere in the form of a permeable sphere partially covered by an
absolutely soft or an absolutely rigid spherical screen. The results of calculating the
scattering pattern for a large set of bodies of different geometry, including fractal-like
scatterers, are obtained. It is illustrated that in the case of a smooth body boundary,
the algorithm based on the Fredholm equations of the 1st kind makes it possible
to obtain results with greater accuracy than for equations of the 2nd kind. The
correctness of the method was confirmed by verifying the implementation of the
optical theorem for various bodies and by comparing with the results of calculations
obtained by other methods.

Key words and phrases: the method of continued boundary conditions, diffraction
of waves on bodies of complex geometry, Janus sphere

1. Introduction

In the modern theory of diffraction, there is a growing need for the effective
solution of increasingly complex problems, the construction of adequate
mathematical models for a wide range of phenomena and processes. This, in
turn, requires the development of increasingly universal methods for solving
diffraction problems.
In this paper, the method of continued boundary conditions (MCBC) [1] is

considered. In MCBC, the surface on which the observation point is chosen,
denoted by 𝑆𝛿, is located outside the scatterer at some sufficiently small
distance 𝛿 from its boundary 𝑆, which is the carrier of the (auxiliary) current
and over which integration is carried out. Due to the analyticity of the
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wave field, the boundary condition will be approximately satisfied on the
surface 𝑆𝛿, and as a result, the diffraction problem is solved in an approximate
formulation.
The advantages of MCBC are its versatility and simplicity. Moreover, the

universality of the MCBC manifests itself, firstly, in the absence of restrictions
on the geometry of the scatterer (including it is applicable both for scatterers
with border breaks and for thin screens), and secondly, in the possibility of
reducing the boundary value problem to Fredholm integral equations of the
1st, and of the 2nd kind [2]. In addition, when solving problems of diffraction
on thin screens with the help of MCBC, it is easy to reduce the original
boundary value problem to integral equations, both in the case of E- and
in the case of H-polarization of the incident field (or problems of diffraction
by bodies, on the boundary of which both the Dirichlet conditions and the
Neumann conditions are satisfied). This is much more difficult to do, for
example, when using the method of current integral equations. Another
advantage of the MCBC is the ability to use various basis functions when
solving the corresponding integral equations.
However, MCBC is an approximate approach, and computational algorithms

based on MCBC have a lower convergence rate than, for example, algorithms
based on discrete source method (in cases where the latter is applicable). At
the same time, it is possible to improve the accuracy when using various basic
functions (for example, splines) within the framework of the MCBC.

As an example of the application of MCBC, the problem of wave diffraction
by a dielectric body of complex geometry is considered, which is very relevant
and remains relatively poorly studied due to the complexity of its solution.
The results of modeling the characteristics of wave scattering by dielectric
bodies are of great interest in such areas as, for example, the optics of
inhomogeneous media, laser flaw detection, the design of absorbing coatings,
etc. [3].

The problem of diffraction on the Janus sphere in the form of a penetra-
ble sphere partially covered by an absolutely soft or absolutely rigid spherical
screen is also considered. Janus particles are of great interest in antenna en-
gineering, medicine, and biology [4, 5]. Despite the practical significance of
Janus particles, the scattering of waves by such structures has been stud-
ied rather poorly. There are a number of works in the literature devoted
to both acoustic and electromagnetic problems of diffraction on the Janus
sphere [6–9].

2. Solution of the problem of wave diffraction
by a dielectric body of complex geometry

Let primary electromagnetic field E0,H0, be incident on an infinitely long
magnetodielectric cylinder with a generator parallel to axis 𝑂𝑧 and guide 𝑆.
The geometry of the problem is shown in figure 1. Consider the case of
E-polarization, when electric field intensity vector E has only one compo-
nent 𝐸𝑧 (below denoted by the letter 𝑈− or 𝑈+) parallel to the cylindrical
body generator. The following coupling conditions will then take place at
the boundary of the scatterer:
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𝑈+∣
𝑆

= 𝑈−|𝑆 ,
𝜕𝑈+
𝜕𝑛

∣
𝑆

= 𝜅𝜕𝑈−
𝜕𝑛

∣
𝑆

, (1)

where 𝑈+ is the field inside the cylinder; 𝑈− = 𝑈0 +𝑈1 is the full field outside

the body, where 𝑈0 is falling and 𝑈1 is scattered (secondary) fields; 𝜕/𝜕𝑛 is
differentiation in the direction of the normal internal to 𝑆; and 𝜅 = 𝜇𝑖/𝜇𝑒,
where 𝜇𝑖 and 𝜇𝑒 are the relative magnetic permeabilities of the media inside

and outside the body, respectively. The external medium (𝐷𝑒 = ℝ2\𝐷̄,
𝐷̄ = 𝐷 ∪ 𝑆, where 𝐷 is the area bounded by curve 𝑆) and the medium inside
the cylinder are assumed to be homogeneous, linear, and isotropic. At infinity,
the standard radiation conditions for the scattered field are assumed to be
met.

Figure 1. The geometry of the diffraction problem

Let us use the following representations to solve the Helmholtz equation in
regions 𝐷 and 𝐷𝑒, respectively [10]:

𝑈−(r) = 𝑈0(r) + ∫
𝑆

{𝜕𝑈−(r′)
𝜕𝑛′ 𝐺−(r; r′) − 𝑈−(r′)𝜕𝐺−(r; r′)

𝜕𝑛′ } 𝑑𝑠′,

𝑈+(r) = − ∫
𝑆

{
𝜕𝑈+(r′)

𝜕𝑛′ 𝐺+(r; r′) − 𝑈+(r′)
𝜕𝐺+(r; r′)

𝜕𝑛′ } 𝑑𝑠′,
(2)

in which 𝐺±(r; r′) = 1
4𝑖

𝐻(2)
0 (𝑘±|r− r′|) are the fundamental solutions of the

scalar Helmholtz equation in ℝ2 with material parameters of the media 𝐷𝑒
and 𝐷, respectively, 𝑘+ and 𝑘− are the wavenumbers of the medium inside and
outside the scatterer. Demanding, in accordance with MCBC, the fulfillment

of conditions Eqs. (1) to be met on contour 𝑆−
𝛿 located in ℝ2\𝐷̄, and on

contour 𝑆+
𝛿 located in area 𝐷 (see figure 1) using equations (2), we obtain

the following systems of the Fredholm integral equations of the first or second
kind, respectively:



234 DCM&ACS. 2022, 30 (3) 231–243

∫
𝑆

{𝜕𝑈(r′)
𝜕𝑛′ (𝐺−(r−; r′) + 𝜅𝐺+(r+; r′)) −

−𝑈(r′) (𝜕𝐺−(r−; r′)
𝜕𝑛′ +

𝜕𝐺+(r+; r′)
𝜕𝑛′ )} 𝑑𝑠′ = −𝑈0(r−),

∫
𝑆

{𝜕𝑈(r′)
𝜕𝑛′ (𝜕𝐺−(r−; r′)

𝜕𝑛
+

𝜕𝐺+(r+; r′)
𝜕𝑛

) −

−𝑈(r′) (𝜕2𝐺−(r−; r′)
𝜕𝑛𝜕𝑛′ + 1

𝜅
𝜕2𝐺+(r+; r′)

𝜕𝑛𝜕𝑛′ )} 𝑑𝑠′ = −𝜕𝑈0(r−)
𝜕𝑛

,

(3)

𝑈(r) = 1
2

𝑈0(r−) + 1
2

∫
𝑆

{𝜕𝑈(r′)
𝜕𝑛′ (𝐺−(r−; r′) − 𝜅𝐺+(r+; r′)) −

−𝑈(r′) (𝜕𝐺−(r−; r′)
𝜕𝑛′ −

𝜕𝐺+(r+; r′)
𝜕𝑛′ )} 𝑑𝑠′,

𝜕𝑈(r)
𝜕𝑛

= 1
1 + 𝜅

𝜕𝑈0(r−)
𝜕𝑛

+ 1
1 + 𝜅

∫
𝑆

{𝜕𝑈(r′)
𝜕𝑛′ (𝜕𝐺−(r−; r′)

𝜕𝑛
−

−𝜅
𝜕𝐺+(r+; r′)

𝜕𝑛
) − 𝑈(r′) (𝜕2𝐺−(r−; r′)

𝜕𝑛𝜕𝑛′ −
𝜕2𝐺+(r+; r′)

𝜕𝑛𝜕𝑛′ )} 𝑑𝑠′,

(4)

where observation points 𝑀(r±) belong to contours 𝑆±
𝛿 and point 𝑀(r) ∈ 𝑆

and it is denoted that 𝑈 = 𝑈−. Note that the contours that are separated from
𝑆 by a fairly small distance 𝛿 are most often chosen as 𝑆±

𝛿 ; i.e., equidistant
contours are considered [1, 10]. Further, to solve system of equations (3), (4),
the Krylov–Bogolyubov method is used. A generalization of the method to
the problem of diffraction by a cylindrical body located in a homogeneous
magnetodielectric half-space is given in [11].

Let us consider the results of numerical modeling. Thereafter, we will
assume that the body is irradiated by a plane wave. As an example, let us
first consider the diffraction problem on an elliptical cylinder, a cylinder with
a quadrifolium cross section, and a cylinder with a rectangular cross-section.
Figure 2 shows the angular dependences of the scattering pattern for the
corresponding geometry obtained for the following values of the problem

parameters: 𝑘𝛿 = 10−4, 𝜑0 = 0, 𝜇𝑖 = 1, 𝜀𝑖 = 4 (the material parameters of
the external medium are 𝜇𝑒 = 1, 𝜀𝑒 = 1 everywhere). The dimensions of the
bodies had the following values: the semiaxis or half the side lengths of the
rectangle 𝑘𝑎 = 5, 𝑘𝑏 = 1 and the 𝑘𝑎 = 5, 𝜏 = 0.5 parameters for the body
with a cross section in the form of a quadrifolium. The results were compared
with the patterns constructed using the modified discrete source method [10,
12]. Note that the modified discrete source method cannot be directly applied
to the problem of the diffraction on bodies that have boundary breaks, and so
the contour of the axial section of the body was approximated by a smooth
contour to solve the problem using the modified discrete source method [12].
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Note also that the modified discrete source method provides high accuracy of
calculation for bodies with a smooth border, such as ellipses, multifoil, etc.

(a) Elliptical cylinder (b) Body with a cross section in the

form of a quadrifolium

(c) Body with a rectangular cross

section

Figure 2. The angular dependence of the scattering pattern for different bodies:

(1) the modified discrete source method and (2) the continued boundary conditions method

Figures 3 and 4 illustrate the angular dependences of the scattering pattern
for the fractal-like cylinders with a cross section in the form of a Koch
snowflake and Sierpinski curve (first iteration) [13] at the problem parameters

of 𝑘𝛿 = 10−4, 𝜇𝑖 = 1, 𝜀𝑖 = 4. The maximum cross-sectional size of a body
with a cross section in the form of the Koch snowflake and a body with a cross
section in the form of the Sierpinski curve on the 𝑥 axis was 𝑘𝐿 = 10. Two
different angles of incidence 𝜑0 = 0 and 𝜑0 = 45∘ were considered. As follows
from the figures for the geometry under study, the maximum points of the
angular dependences of the scattering pattern roughly coincide with the angles
of incidence of the plane wave. It can also be seen that the dependences of
the pattern for both a body with a section in the form of the Koch snowflake
and a body with a section in the form of the Sierpinski curve have quite large
side lobes.

Figure 3. The angular dependence

of the scattering pattern for a body with

a cross section in the form of a Koch

snowflake. The angle of incidence of

the wave (1) 𝜑0 = 0 and (2) 𝜑0 = 45∘

Figure 4. The angular dependence

of the scattering pattern for a body with

a cross section in the form of a Sierpinski

curve. The angle of incidence of the wave

(1) 𝜑0 = 0 and (2) 𝜑0 = 45∘
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Table 1 shows the differences in the scattering pattern modules of the
specified geometry obtained by two methods: using the modified discrete
source method and the continued boundary conditions method. As can be
seen from the table 1, the difference in results decreases as the number of
basic functions used increases. It also follows from the given data that for
bodies with a smooth boundary, the use of the Fredholm equations of the 1st
kind is more preferable, due to faster convergence. In the case of a body with
a rectangular section, the use of Fredholm equations of the 2nd kind gives
better results.

Table 1

Comparison of the results obtained using the modified discrete source method

and the continued boundary conditions method

N

System of integral equations

of the first kind

System of integral equations

of the second kind

absolute error relative error absolute error relative error

Diffraction on an elliptical cylinder

48 1.295⋅10-2 2.038% 1.453⋅10-1 24.297%

96 1.904⋅10-3 0.230% 4.183⋅10-2 7.238%

192 6.096⋅10-4 0.067% 1.144⋅10-2 2.003%

288 5.834⋅10-4 0.075% 5.539⋅10-3 0.977%

384 5.607⋅10-4 0.075% 3.450⋅10-3 0.612%

Diffraction on a body with a cross section in the form of a quadrifolium

48 1.643⋅10-1 10.411% 3.836⋅10-1 21.169%

96 2.499⋅10-2 1.442% 9.462⋅10-2 5.125%

192 5.802⋅10-3 0.325% 2.534⋅10-2 1.370%

288 2.984⋅10-3 0.166% 1.143⋅10-2 0.619%

384 2.176⋅10-3 0.121% 6.474⋅10-3 0.351%

Diffraction on a body with a rectangular cross section

48 3.498⋅10-2 4.781% 5.035⋅10-2 6.795%

96 1.466⋅10-2 1.956% 1.417⋅10-2 1.715%

192 7.358⋅10-3 0.879% 4.773⋅10-3 0.466%

288 5.229⋅10-3 0.561% 3.122⋅10-3 0.248%

384 4.219⋅10-3 0.429% 2.641⋅10-3 0.208%
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3. Solution to the problem of wave diffraction
on the Janus sphere

Let us consider the mathematical formulation of the problem. Let a ho-
mogenous sphere of radius 𝑎 be covered with an infinitely thin spherical screen
𝑆 with an opening angle 2𝜃𝐽. We introduce a spherical coordinate system in
which the 𝑧 is directed along the axis of the considered body of revolution
(the Janus sphere). The geometry of the problem is depicted in figure 5.

Figure 5. Axial section of a Janus sphere

We suppose that the wavenumbers and medium densities outside and inside
the sphere are equal to 𝑘1, 𝜇1 and 𝑘2, 𝜇2, respectively. Thus, the wave field
outside and inside the sphere satisfies the homogeneous Helmholtz equations

Δ𝑈 + 𝑘2
1𝑈 = 0, 𝑟 > 𝑎,

Δ𝑈 + 𝑘2
2𝑈 = 0, 0 < 𝑟 < 𝑎,

(5)

where 𝑟 is the radial coordinate in the spherical coordinate system. For the
sake of brevity, we consider only the case of an absolutely soft spherical screen.
Then the boundary conditions on the surface of the screen have the form

𝑈∣
𝑟=𝑎, 𝜃<𝜃𝐽

= 0. (6)

At 𝜃 ∈ (𝜃𝐽, 𝜋), the matching conditions are satisfied:

[𝑈] = 0, [ 1
𝜇

𝜕𝑈
𝜕𝑟

] = 0, (7)

where 𝜇 is the density (𝜇 = 𝜇1 for 𝑟 > 𝑎, 𝜇 = 𝜇2 for 𝑟 < 𝑎) and the square
brackets indicate a jump of the corresponding quantity. We assume that the
Janus sphere is irradiated by a plane wave, which has the form

𝑈inc = exp (−𝑖𝑘1𝑟 (sin 𝜃 sin 𝜃0 cos𝜑 + cos 𝜃 cos 𝜃0)) . (8)

Here, 𝜃0 is the angle of incidence of the plane wave. The scattered field 𝑈1

satisfies the radiation condition at infinity. The total field also satisfies the
Meixner condition at the edge of the spherical screen.



238 DCM&ACS. 2022, 30 (3) 231–243

Let us apply the MCBC for solving the posed diffraction problem. For this
purpose, we represent the field outside the permeable sphere in the form

𝑈(r) = 𝑈0(r) − ∫
𝑆

𝐽(r′)𝐺(r, r′)𝑑𝑠′. (9)

Here, 𝑈0(r) is the primary field determined from the solution of the diffraction
problem on the sphere in the absence of the screen,

𝐽(r′) ≡ 𝐽(𝜃′, 𝜑′) = [ 𝜕𝑈
𝜕𝑟′ ]

𝑟=𝑎
𝜃<𝜃𝐽

.

In equations (9) 𝐺(r, r′) is the Green function of the permeable sphere; for
𝑟 > 𝑎, it has the form

𝐺 = 𝐺0 + 𝐺1, (10)

where

𝐺0 = 𝑒−𝑖𝑘1𝑅

4𝜋𝑅
, 𝑅 = |r− r′| , (11)

𝐺1 = 𝑘1
4𝜋𝑖

∞
∑
𝑛=0

(2𝑛 + 1)𝑉𝑛𝐻(2)
𝑛 (𝑘1𝑟′)𝐻(2)

𝑛 (𝑘1𝑟)𝑃𝑛(cos 𝛾), (12)

cos 𝛾 = sin 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) + cos 𝜃 cos 𝜃′, (13)

𝑉𝑛 = 𝜇12𝐽𝑛(𝑘1𝑎)𝜂𝑛(𝑘2𝑎) − 𝜂𝑛(𝑘1𝑎)𝐽𝑛(𝑘2𝑎)
𝜉𝑛(𝑘1𝑎)𝐽𝑛(𝑘2𝑎) − 𝜇12𝐻(2)

𝑛 (𝑘1𝑎)𝜂𝑛(𝑘2𝑎)
, (14)

𝜇12 = 𝜇1
𝜇2

, 𝜂𝑛(𝑥) = 𝑥𝐽 ′
𝑛(𝑥), 𝜉𝑛(𝑥) = 𝑥𝐻(2)′

𝑛 (𝑥), (15)

and 𝐽𝑛(𝑥), 𝐻(2)
𝑛 (𝑥) are the spherical Bessel and Hankel functions, respectively,

𝑃𝑛(𝑥) — Legendre polynomials. Note that the primary field outside the
sphere has the form

𝑈0(r) = 𝑈inc(r) +
∞

∑
𝑛=−∞

𝑖−𝑛(2𝑛 + 1)𝑉𝑛𝐻(2)
𝑛 (𝑘1𝑟)𝑃𝑛(cos 𝛾0), (16)

where cos 𝛾0(𝜃, 𝜑) = sin 𝜃 sin 𝜃0 cos𝜑 + cos 𝜃 cos 𝜃0.

According to the standard scheme of the MCBC, we then substitute for-
mula (9) into boundary condition (6) imposed on the auxiliary surface 𝑆𝛿
shifted by a small distance 𝛿 from the surface 𝑆 [1, 10, 14]. As a result,
the problem will be reduced to solving a two-dimensional Fredholm inte-
gral equation of the first kind, which has the following form in spherical
coordinates:

2𝜋

∫
0

𝜃𝐽

∫
0

𝐾(𝜃, 𝜑, 𝜃′, 𝜑′)𝐽(𝜃′, 𝜑′) sin 𝜃′𝑑𝜃′𝑑𝜑′ = 𝐵(𝜃, 𝜑),

𝜃 ∈ [0, 𝜃𝐽] , 𝜑 ∈ [0, 2𝜋] ,

(17)
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where 𝐾(𝜃, 𝜑, 𝜃′, 𝜑′) = 𝑎2 𝐺|𝑟′=𝑎,𝑟=𝑎+𝛿, 𝐵(𝜃, 𝜑) = 𝑈0∣
𝑟=𝑎+𝛿

.

Equation (17) was solved using a piecewise-constant approximation of an
unknown function with subsequent application of the Krylov–Bogolyubov
method. The kernel of Eq. (17) was found using the acceleration of the con-
vergence of series (12). In order to speed up the convergence of this series,
the asymptotic behavior of the n-th term of the series as 𝑛 → ∞ was distin-
guished (this quantity can be called the singular part of the Green’s function).
The singular part of the Green’s function was summarized analytically using
the generating function of the Legendre polynomials. The remaining (regular)
part of the Green’s function was a fairly fast convergent series. A detailed
derivation of the main relations, as well as the case of an absolutely rigid
screen, was considered in [15].
Let us consider results of the numerical simulation. The results of calculating

the intensity of the scattered field in the far zone for the Janus sphere were
compared with the results obtained using the T-matrix method, which are
given in [9]. The acoustic problem of diffraction was considered [9]. The
wavenumbers and densities of the media inside and outside the sphere were
equal to 𝑘1 = 1, 𝜇1 = 1 and 𝑘2 = 1.5, 𝜇2 = 1.5, respectively. Parameter 𝛿 in
using the MCBC was taken to be 10−3 in all cases. The angle of incidence
of the primary wave 𝜃0 = 0∘. Sphere radius 𝑘1𝑎 = 6. The half-opening angle
was equal to 𝜃𝐽 = 90∘. The number of collocation points along both angular
coordinates 𝑁1 = 25, 𝑁2 = 100. Figure 6 shows the angular dependences of
the scattered field intensity obtained using the T-matrix method (curve 1)
and using the proposed approach based on the MCBC (curve 2). It can be
seen from Fig. 6 that the results coincide with graphic accuracy in the case of
the Dirichlet condition. Due to the presence of the second normal derivative
of the Green’s function in the case of the Neumann condition on the screen,
the accuracy of calculating the diagram using the MCBC is somewhat lower
than in the case of the Dirichlet condition. For the considered problem, the
accuracy of the optical theorem was verified. Calculations showed that the
relative error in the fulfillment of the optical theorem did not exceed 2%.

(a) absolutely soft spherical screen (b) absolutely rigid spherical screen

Figure 6. Angular dependences of the intensity of the scattered field of a Janus sphere

in the form of a penetrable sphere partially covered with spherical screen, obtained using

the T-matrix method and using an algorithm based on MCBC
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Figure 7 depicts angular dependences of the scattered field intensity on the
opening angle of the spherical screen. Curve 1 corresponds to diffraction by
a permeable sphere not covered by a screen. Curve 6 in the figures shows
the dependences obtained for the intensity upon diffraction of a plane wave
by an absolutely soft (Fig. 7a) or absolutely rigid (Fig. 7b) sphere of the
corresponding wave size using the modified discrete source method (MDSM)
[16]. Curves 2–5 correspond to screen half-opening angles equal to 45°, 90°,
135°, and 179°. The wave size of the Janus sphere and the angle of incidence
of the wave are 𝑘1𝑎 = 6, 𝜃0 = 0. The material parameters of the media and
wavenumbers are the same as for previous figure. It can be seen from the
figure that in the case when the screen almost completely covers the sphere
(curve 5), the scattered field intensity graph coincides with the results for
a perfectly reflecting sphere, which corresponds to the physical picture of
the phenomenon under consideration. It is also seen that in all cases there
is a sharp intensity maximum in the direction of the angle of incidence of
the plane wave. In the case of a soft screen, the magnitude of the maximum
has the greatest value for 𝜃𝐽 = 179∘ (that is, when the screen degenerates
into a sphere). In the absence of a screen (that is, in the case of diffraction
by a permeable sphere), the maximum in the direction of wave incidence is
even greater (than for a covered sphere). In the backscattering direction (at
𝜃 = 180∘), there is also an intensity maximum, which takes on the largest
values at 𝜃𝐽 = 45∘ and 𝜃𝐽 = 90∘. In the case of an absolutely rigid screen,
the value of the intensity maximum in the direction of incidence of a plane
wave is much greater for 𝜃𝐽 = 45∘ compared to other screen opening angles.
The backscatter level is also maximum at 𝜃𝐽 = 45∘.

(a) Absolutely soft spherical screen (b) Absolutely rigid spherical screen

Figure 7. Angular dependences of the intensity of the scattered field of the Janus sphere

for different opening angles of a spherical screen covering it

4. Conclusions

Based on the method of continued boundary conditions, an algorithm for
solving the two-dimensional problem of plane wave diffraction by dielectric
bodies with complex cross-sectional geometry is shown. A comparison is made
with the results obtained using modified discrete source method. It is shown



D.V. Krysanov, Application of the method of continued boundary… 241

that the MCBC makes it possible to obtain the results of scattering diagram
calculations with a sufficiently high accuracy. The results of calculating the
scattering diagram for a large set of bodies of different geometry, including
fractal-like scatterers, are obtained. It is illustrated that in the case of
a smooth body boundary, the algorithm based on the Fredholm equations of
the 1st kind allows obtaining results with greater accuracy than for equations
of the 2nd kind.
An algorithm for solving the scalar diffraction problem on the Janus sphere

is shown on the basis of the MCBC. The results of calculating the intensity of
the scattered field obtained using the proposed method are compared with the
results found using the T-matrix method. It has been shown that the results
coincide well. The angular dependences of the intensity of the scattered
field for various opening angles of the reflecting screen are constructed and
studied. A significant difference is shown between the behavior of the angular
dependences of the intensity in the case of an absolutely soft and absolutely
rigid screen.

References

[1] A. G. Kyurkchan and A. P. Anyutin, “The method of continued boundary
conditions and wavelets,” Doklady Mathematics, vol. 66, no. 1, pp. 132–
135, 2002.

[2] A. G. Kyurkchan and A. P. Anyutin, “The well-posedness of the formu-
lation of diffraction problems reduced to Fredholm integral equations of
the first kind with a smooth kernel,” Journal of Communications Tech-
nology and Electronics, vol. 51, no. 7, pp. 48–51, 2006. DOI: 10.1134/
S1064226906010062.

[3] M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, G. Videen,
and T. Wriedt, “Comprehensive thematic T-matrix reference database:
A 2015–2017 update,” Journal of Quantitative Spectroscopy and Radia-
tive Transfer, vol. 202, pp. 240–246, 2017. DOI: 10.1016/j.jqsrt.2017.
08.007.

[4] J. Zhang, B. A. Grzybowski, and S. Granick, “Janus particle synthesis,
assembly, and application,” Langmuir, vol. 33, no. 28, pp. 6964–6977,
2017. DOI: 10.1021/acs.langmuir.7b01123.

[5] M. Lattuada and T. A. Hatton, “Synthesis, properties and applications
of Janus nanoparticles,” Nano Today, vol. 6, no. 3, pp. 286–308, 2011.
DOI: 10.1016/j.nantod.2011.04.008.

[6] D. Kim, E. J. Avital, and T. Miloh, “Sound scattering and its reduction
by a Janus sphere type,” Advances in Acoustics and Vibration, vol. 2014,
no. 392138, 2014. DOI: 10.1155/2014/392138.

[7] A. Gillman, “An integral equation technique for scattering problems with
mixed boundary conditions,” Advances in Computational Mathematics,
vol. 43, no. 2, pp. 351–364, 2017. DOI: 10.1007/s10444-016-9488-6.

[8] S. C. Hawkins, T. Rother, and J. Wauer, “A numerical study of acoustic
scattering by Janus spheres,” The Journal of the Acoustical Society
of America, vol. 147, no. 6, pp. 4097–4105, 2020. DOI: 10.1121/10.
0001472.



242 DCM&ACS. 2022, 30 (3) 231–243

[9] T. Rother, Sound scattering on spherical objects. Heidelberg: Springer,
2020.

[10] A. G. Kyurkchan and N. I. Smirnova, Mathematical modeling in diffrac-
tion theory: based on a priori information on the analytical properties of
the solution. Amsterdam: Elsevier, 2015.

[11] D. V. Krysanov, A. G. Kyurkchan, and S. A. Manenkov, “Application
of the method of continued boundary conditions to the solution of the
problem of wave diffraction on scatterers of complex geometry located
in homogeneous and heterogeneous media,” Optics and Spectroscopy,
vol. 128, no. 4, pp. 481–489, 2020. DOI: 10.1134/S0030400X20040141.

[12] A. G. Kyurkchan and S. A. Manenkov, “Application of different orthog-
onal coordinates using modified method of discrete sources for solving
a problem of wave diffraction on a body of revolution,” Journal of Quan-
titative Spectroscopy and Radiative Transfer, vol. 113, no. 18, pp. 2368–
2378, 2012. DOI: 10.1016/j.jqsrt.2012.05.010.

[13] R. M. Crownover, Intoduction to fractals and chaos. Boston: Jones and
Bartlett Publishers, 1995.

[14] A. G. Kyurkchan and S. A. Manenkov, “Solution of the problem of
diffraction by a plane screen in a plane layered medium with the help
of the method of continued boundary conditions,” Journal of Commu-
nications Technology and Electronics, vol. 65, no. 7, pp. 778–786, 2020.
DOI: 10.1134/S1064226920060200.

[15] D. V. Krysanov, A. G. Kyurkchan, and S. A. Manenkov, “Two ap-
proaches to solving the problem of diffraction on a Janus sphere,”
Acoustical Physics, vol. 67, no. 2, pp. 108–119, 2021. DOI: 10.1134/
S1063771021020020.

[16] S. A. Manenkov, “A new version of the modified method of discrete
sources in application to the problem of diffraction by a body of rev-
olution,” Acoustical Physics, vol. 60, no. 2, pp. 127–133, 2014. DOI:
10.1134/S1063771014010102.

For citation:

D.V. Krysanov, Application of the method of continued boundary conditions
to the solution of the problems of wave diffraction on various types of scat-
terers with complex structure, Discrete and Continuous Models and Applied
Computational Science 30 (3) (2022) 231–243. DOI: 10.22363/2658-4670-
2022-30-3-231-243.

Information about the authors:

Krysanov, Dmitry V. — postgraduate student of Department of
Probability Theory and Applied Mathematics of Moscow Technical Univer-
sity of Communications and Informatics (e-mail: d.v.krysanov@mtuci.ru,
phone: +7(903)5418711, ORCID: https://orcid.org/0000-0001-5100-3007)



D.V. Krysanov, Application of the method of continued boundary… 243

УДК 621.371.333:537.874.6

PACS 42.25.Fx

DOI: 10.22363/2658-4670-2022-30-3-231-243

Применение метода продолженных граничных
условий к решению задач дифракции на различных

типах частиц сложной структуры

Д. В. Крысанов

Московский технический университет связи и информатики,
ул. Авиамоторная, д. 8а, Москва, 111024, Россия

Аннотация. В статье рассмотрено применение метода продолженных граничных
условий к двумерной задаче дифракции электромагнитных волн на диэлектриче-
ском теле с поперечным сечением сложной геометрии и к задаче дифракции на
сфере Януса в виде проницаемого шара, частично покрытого абсолютно мягким
или абсолютно жёстким сферическим экраном. Получены результаты расчёта
диаграммы рассеяния для большого набора тел разной геометрии, в том числе
фракталоподобных рассеивателей. Проиллюстрировано, что в случае гладкой
границы тела алгоритм на основе уравнений Фредгольма 1-го рода позволя-
ет получать результаты с большей точностью, чем для уравнений 2-го рода.
Корректность метода подтверждена при помощи проверки выполнения оптиче-
ской теоремы для различных тел и путём сравнения с результатами расчётов,
полученных другими методами.

Ключевые слова: метод продолженных граничных условий, дифракция волн
на телах сложной геометрии, сфера Януса
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Abstract. Online video services are among the most popular ways of content
consumption. Video hosting servers have a very high load every day, which we
propose to reduce by migrating the application with the video content in demand
to the local Multi-access Edge Computing (MEC) server of the target. This makes
it possible to improve the quality of services (QoS) provided to users by reducing
the transmission delay. Therefore, an architecture has been proposed that allows, at
times of increased demand for the same video content, to migrate the video service
application to the edge servers of the network operator. To evaluate the performance
of this approach, a mathematical model was developed in the form of a queuing
system. The results of the numerical experiment make it possible to optimize the
time of using local MEC servers to provide video content.

Key words and phrases: queuing system, service migration, MEC, Markov process,
truncated Markov process, video content

1. Introduction

In the modern world, demand for various multimedia services is increasing
every year. For example, services for providing online video content are very
popular and allow us to access information in a simple way anytime and
anywhere from a device with Internet connection. However, with the growth
in the amounts of video content and an increase in its demand, requirements
for the quality of the services (QoS) are as well increased. Video service
providers, in turn, are trying to reduce transmission delays and improve the
quality of the video, which increases the size of video files and requires more
channel bandwidth to be transmitted to the end user.
The idea of decentralized content placement by a video service provider

is not new. In most countries, large cities, operators use the services of
geographically distributed content delivery network architecture (CDN). It
allows for the video data delivery optimization by using servers, located
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much closer to the end user. Multi-access Edge Computing (MEC) servers
utilization allows service providers to optimize the transmission process by
placing the user-requested content on servers not only within a specific city,
but also within a specific district or street. In the same way it solves the
problem of high load on transport networks, which is beneficial for the video
service provider, who gets the opportunity to provide high-quality content.
Thus, the transport network operator can reduce network operation costs and
receive additional profit for renting edge computing servers.
MEC introduces the cloud computing capabilities and IT service environ-

ment at the edge of the mobile network. The network edge includes base
station infrastructure and data centers close to the radio network.
In work [1], the authors have presented a classification of application

models and a study of the latest models of mobile cloud applications. In [2],
a brief analysis of the requirements for mobile cloud computing (MCC) have
been done, the main applications and upload technologies, the classification
of contexts and context management methods. In [3], the authors have
provided an overview of the definitions, architectures, and applications of
MCC, as well as common problems and some existing solutions. In reference
[4] a study of existing work on MCC platforms and intelligent access schemes
can be found. Another group of scientists in [5] has investigated a detailed
taxonomy of mobile cloud computing based on key issues and approaches
to address them. Work [6] has introduced a comprehensive overview of the
current MCC authentication mechanism and compared cloud computing. The
authors in [7] have studied a taxonomy of MEC based on various aspects,
including its characteristics, access technologies, applications, purposes, etc.
Reference [8] has categorized deployed applications in MEC according to
the technical metrics of MEC and the benefit brought by MEC to network
stakeholders. A discussion of threats and security in boundary paradigms, as
well as possible solution for each specific problem, can be found in [9]. In [10],
representative applications and various aspects of the study of fog computing
problems are highlighted. An overview on emerging security and privacy
issues in fog computing, as well as cloud computing issues is closely discussed
in [11]. A study of web caching and prefetching methods for improving
network performance, as well as a classification of web caching policies, can
be found in [12]. A description of the advantages and disadvantages of cache
replacement strategies can be found in [13]. The model of interaction between
the edge computing based on Software-defined networking (SDN) and Network
functions virtualization (NFV) technology and the cloud computing in the
next generation Internet of Things (IoT) is presented in [14]. In [15] authors
consider the usage of a MEC server for processing home health monitoring
data locally, making it possible to optimize the system-wide cost and the
number of patients benefiting from MEC.

2. System description

As described above, the consumption of online video content is growing
every year, since any information presented by a video sequence with sound
accompaniment makes it easier to perceive or just spend leisure time. Requests
for the provision of such services, especially of an entertainment nature, do
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not have a constant intensity, but in most cases occur in avalanche bursts
at different times or days. For example, in the evening, most people come
home from work and watch their favorite series, talk shows, etc. This section
describes the process of providing online video and possible scenarios for
optimizing content delivery to users.

Figure 1. Network architecture for connecting users to a video content service

The figure 1 shows a diagram for providing online video services to users.
On the left side the service provider’s servers are shown. These servers host
and process videos to provide the users on demand. On the right is the
operator’s last mile access network, which provides end users with access to
the global network, and, in particular, connections to the service provider’s
servers. This network is presented in more detail and consists of

— 1st segment — it includes all elements of the operator’s network core and,
is responsible for routing traffic within the network and outside of it;

— 2nd segment — it consists of terminal switching devices for wired con-
nection of users and/or base stations of a cellular network for a wireless
connection of mobile users (this segment is variable and changes depend-
ing on the task).

Between the service provider and the network operator, there are backbone
operators and traffic exchange points, which are shown as a direct connection,
since they mainly just make data transfer delay, and are also not the main
beneficiaries in optimizing the process of providing a service to users.
We consider the process of providing a service to users. The very process

of establishing a connection for an online video service has been described
and studied in detail in work [16]. Thus it is proposed to focus on the main
points presented in the figure 2:

1) a user in the carrier’s network sends a video viewing request to a service
provider;

2) the service provider processes the request and sends a connection confir-
mation to the user;

3) a connection is established and the user starts watching the video.

The network operator serves several zones (districts) with 𝑁 users who can
potentially start watching video content. Most of the time, this service is
not in great demand, which means that it does not process a large load on
the operator’s network and service provider’s servers (the content delivery
method shown in the figure 2). Nevertheless, at some point, a large number
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of users start watching the same video content at the same time (for example,
the release of a popular series or talk show), thereby a very high load on
the servers and the network takes place.

Figure 2. Data transmission for centralized online video providing

Such an avalanche surge of requests leads to an increase in the delay in the
transmission of video content and a decrease in bandwidth available for each
user, due to the limited bandwidth of the operator’s network channel.
To reduce the load on the resources of the service provider and the operator’s

network, we propose placing MEC servers (figure 3) in each boundary switching
zone. This allows us to temporarily migrate the application with access to
the video to the facilities of the network operator, located close to the users.
Then, the process of content delivery comes down to establishing a connection
and transmitting video from MEC server for each high load zone.

Figure 3. Data transmission for local online video providing with MEC

To formulate a system model, let’s consider a single zone of the network
operator in which there are 𝑁 users who can potentially request the same
service. 𝐻 < 𝑁 users can watch video content directly from the service
operator’s servers. As soon as 𝑛 > 𝐻 users request the service, the video
service application is migrated to the MEC server, and all users are already
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watching video from the local MEC server. Eventually, the demand for a large
number of users in the service disappears, then when the number of active
users 𝑛 ⩽ 𝐿 (𝐿 — the threshold for the appropriate use of the MEC server) is
reached, the process of deleting the service from the MEC server and switching
the remaining users to the service provider’s main server is initiated. The
process of deleting and switching does not occur immediately if the number
of users becomes 𝑛 ⩽ 𝐿 during a certain period of time.
Figure 4 shows the sets of states of the system model and the transitions

between them:

— 𝒳0 — serving users directly from the service provider’s servers, without
using MEC;

— 𝒳1(𝐿) — disable MEC, switch users to the main server;
— 𝒳1(𝐿, 𝐻) — services from the MEC server without the ability to switch
to the main server.

Figure 4. The set of system states for migrating a video service application to MEC

3. Queuing model service migration with hysteresis loop

To analyze the performance of the described system, we model it in the
form of a queuing system (QS) model for migration of an application from
a remote service provider server to the network operator’s MEC server. The
system receives a flow of user requests to provide streaming video services.
This flow is assumed to be Poisson distributed with mean 𝜆. When serving in
the 𝒳0 group and reaching the number of users in the system 𝑛 > 𝐻, users
are served in the states 𝒳1(𝐿, 𝐻). Video content viewing duration by one
user is exponentially distributed with average 𝜇−1 minutes. When the system
switches to the 𝒳1(𝐿) state group, the process of disabling the MEC server
and switching user services to the service provider’s server in the 𝒳0 state
group is initialized. It takes an average of 𝛼−1 minutes to shut down the
MEC server correctly, and this parameter is also exponentially distributed.
To analyze the queuing system, we introduce the Markov process 𝒳(𝑡),

which describes the behavior of the system at time 𝑡, with the state space:

𝒳 = 𝒳0 + 𝒳1,

where
𝒳0 = {(𝑠, 𝑛) ∈ 𝒳0 ∶ 𝑠 = 0, 𝑛 = (0, 𝐻)},
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𝒳1 = {(𝑠, 𝑛) ∈ (𝒳1(𝐿) ∪ 𝒳1(𝐿, 𝐻)) ∶ 𝑠 = 1, 𝑛 = (1, 𝑁)}.
The state transition diagram of the Markov process 𝒳(𝑡) is shown in

figure 5.

Figure 5. The state transition diagram of the Markov process 𝒳(𝑡)

Using the diagram, we write the infinitesimal generator A(𝑎(𝑠,𝑛),(𝑠′,𝑛′) ∶
(𝑠, 𝑛)(𝑠′, 𝑛′) ∈ 𝒳) of Markov process 𝒳(𝑡). Elements 𝑎(𝑠,𝑛),(𝑠′,𝑛′) are defined

as follows:

𝑎(𝑠,𝑛),(𝑠′,𝑛′) =

⎧
{{{{
⎨
{{{{
⎩

𝜆, 𝑠′ = 𝑠, 𝑛′ = 𝑛 + 1 or 𝑠′ = 𝑠 + 1, 𝑛′ = 𝑛 + 1 = 𝐻 + 1,
𝑛𝜇, 𝑠′ = 𝑠, 𝑛′ = 𝑛 − 1 or 𝑠′ = 𝑠 − 1, 𝑛′ = 𝑛 − 1 = 0,
𝛼, 𝑠′ = 𝑠 − 1, 𝑛′ = 𝑛 ⩽ 𝐿,
∗, 𝑠′ = 𝑠, 𝑛′ = 𝑛,
0, otherwise,

where ∗ = −(𝜆 ⋅ 1{𝑛 < 𝑁} + 𝑛𝜇 + 𝑠𝛼 ⋅ 1{𝑛 ⩽ 𝐿}).
The system probability distribution 𝑝𝑠,𝑛 states (𝑠, 𝑛) ∈ 𝒳 is numerically

calculated using the system of equilibrium equations

⎧{{{{{
⎨{{{{{⎩

𝜆𝑝0,0 = 𝜇𝑝0,1 + 𝜇𝑝1,1,

(𝜆 + 𝑛𝜇)𝑝0,𝑛 = 𝑛𝜇𝑝0,𝑛+1 ⋅ 1𝑛<𝐻 + 𝜆𝑝0,𝑛−1 + 𝛼𝑝1,𝑛 ⋅ 1𝑛⩽𝐿, 𝑛 = (1, 𝐻),

(𝜆 + 𝑛𝜇 + 𝛼)𝑝1,𝑛 = 𝑛𝜇𝑝1,𝑛+1 ⋅ 1𝑛<𝑁+

+𝜆𝑝1,𝑛−1 ⋅ 1𝑛>1 + 𝜆𝑝0,𝐻 ⋅ 1𝑛=𝐻+1, 𝑛 = (1, 𝑁),

∑
(𝑠,𝑛)∈𝑋

𝑝(𝑠, 𝑛) = 1.
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An important performance metric of the considered system is the time
spent by users in the set of 𝒳1 states, which in the system model corresponds
to the time that users watch video content from the MEC server until it is
turned off. That is the lifetime of the service provider application after its
migration to MEC. In the mathematical model, this is equal to the time
interval from the moment when the Markov process 𝒳(𝑡) reached the number
of customers in the system 𝐻 and passed into the set 𝒳1, i.e. into the state
(1, 𝐻 + 1), until the moment when the process returned back to the set 𝒳0.
Let us denote 𝜏1 a random variable of the sojourn time of requests in the

set 𝒳1. In order to find the cumulative distribution function (CDF) 𝐹𝜏1
of

the random variable 𝜏1, we can describe our systems by a truncated Markov

process 𝒳̂(𝑡), which describes the behavior of the system at time 𝑡 > 0 with
the state space:

𝒳̂ = 𝒳0 + 𝒳̂𝐵
1 ,

where 𝒳̂𝐵
1 = {(0, 𝑛) ∶ 𝑛 = 1, … , 𝐿}.

The state transition diagram of the truncated Markov process 𝒳̂(𝑡) is shown
in figure 6.

Figure 6. The state transition diagram of the truncated Markov process 𝒳̂(𝑡)

The matrix ̂P(𝑡) of transition probabilities can be written as follows:

̂P(𝑡) = 𝑒Â =
∞

∑
𝑛=0

̂A𝑡𝑛

𝑛!
, 𝑡 ⩾ 0, (1)

where ̂A is the infinitesimal operator of process 𝒳̂(𝑡). The distribution p̂(𝑡)
of truncated process 𝒳̂(𝑡) satisfies the following equations:

p̂𝑇(𝑡) = p̂𝑇(0) ̂𝑃 (𝑡), (2)
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𝑑
𝑑𝑡

̂p𝑇(𝑡) = p̂𝑇(0) ̂A𝑒Â𝑡, 𝑡 ⩾ 0. (3)

Initial probability vector p̂𝑇(0):

p̂(𝑠,𝑛)(0) =
⎧{
⎨{⎩

1, (𝑠, 𝑛) = (1, 𝐻 + 1),
0, otherwise.

(4)

Afterwards, we can find the cumulative distribution function 𝐹𝜏1
(𝑡) of the

random variable 𝜏1 which equals

𝐹𝜏1
(𝑡) =

𝐿
∑
𝑖=1

𝑝(𝑠,𝑛)(𝑡), 𝑡 ⩾ 0. (5)

The probability density function (PDF) of the random variable 𝜏1 is
given by:

𝑓𝜏1
(𝑡) = 𝜇𝑝(0,0)(𝑡) + 𝜆

𝐿
∑
𝑖=1

𝑝(0,𝑖)(𝑡). (6)

We calculate the average time before the MEC shutdowns through the
expectation of the random variable 𝜏1:

𝑊𝜏1
= 𝐸(𝜏1) =

∞

∫
0

𝑡𝑓𝜏1
(𝑡)𝑑𝑡 = 𝜇

∞

∫
0

𝑡𝑝(0,0)(𝑡)𝑑𝑡 + 𝜆
𝐿

∑
𝑖=1

∞

∫
0

𝑡𝑝(0,𝑖)(𝑡)𝑑𝑡. (7)

4. Numerical analysis

For numerical analysis, consider the network operator’s service area, which
is home to 𝑁 users who are fans of the same series. New episodes of the series
are released once a week and most users try to watch it as soon as it’s possible,
thereby creating a high load on the service provider’s servers. In our scenario,
every 𝜆−1 minute there is a request to watch a video content. The duration of
watching a video depends on the length and fascination of the episode, which
takes 𝜇−1 minute on average. The allowable load on the service provider’s
servers equals to 𝐻 of user requests, when the limit is reached, the video
content application is migrated to the nearest MEC server of the network
operator. At some point, many users stop watching the series and the number
of active users decreases. As soon as their number reaches the 𝐿 threshold
of active sessions, it becomes unreasonable to provide the service through
the local MEC server and the disconnection process begins, which takes 𝛼−1

minutes on average.

For a more accurate estimate of the system, we introduce the parameter
𝜌 = 𝜆/𝜇 describing the ratio of the rate of requests to watch a video to its
average duration. This way, it is possible to determine the load created by
users, which in our case correlates with the average number of active sessions.
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We consider how the video viewing time through MEC changes at different
values of the threshold for the start of its shutdown. The initial data is
presented in the table 1.

Table 1

Initial data

Notation Value Description

𝑁 300 Maximum number of users watching

videos

𝐻 100 The max number of active user sessions

on the service provider’s server

𝐿 85–100 MEC server disable threshold

𝜇−1 45 Average video watch time, min

𝜌 95, 100, 105, 110, 115 System load, number of active sessions

𝛼−1 15 average MEC disabling time, min

Figure 7 shows a plot of the average user service time through the MEC
server depending on the threshold 𝐿 value for the start of its disconnection at
different loads (number of active sessions). It can be seen that as 𝐿 increases,
the MEC usage time decreases non-linearly, and the closer to the threshold 𝐻,
the less significant the change. Periods of high load at which it is necessary
to use MEC usually occur in the evening hours, therefore, it is proposed to
choose the optimal time to use the MEC server in the range from 120 minutes
(2 hours) to 300 minutes (5 hours), which is marked with a dotted line. With
a value of 110 and 115 average number of active sessions, the disconnect
threshold required to fall within the specified range is 97–100 users, which is
quite close to threshold 𝐻. This shows the effectiveness of using MEC under
such a load, but imposes increased costs on the service provider.
It is also important to evaluate the impact of the average duration of video

viewing and the duration of the MEC server shutdown on the time the service
is provided through MEC. To do this, consider an optimally loaded system
with a load 𝜌 = 100 and several threshold values 𝐿 = 85, 90, 95, 100, at which
the average service time through MEC falls within the interval in figure 7.
The figure 8 depicts MEC server runtime under different values of threshold

𝐿. The average video viewing time is between 45 minutes and 2 hours, which
corresponds to typical episodes of a TV series or a full-length film. It can
be seen that while maintaining the average number of active sessions, an
increase in the duration of each session can significantly affect the time of
using MEC, especially at sufficiently low values of the threshold 𝐿. This is
due to the fact that the total audience capture time becomes longer, and
the possibility of disconnecting several users is lower. Although when using
𝐿 = 𝐻, the average MEC usage time does not change significantly, which
indicates frequent service switching between the service provider’s servers and
the local MEC servers.
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Figure 7. MEC server runtime against the threshold disable value for different 𝜌

Figure 8. MEC server runtime against the average watch time for different 𝐿

Therefore, it is worth taking an assessment of the impact of the MEC
disable delay on the duration of its use. In figure 9 this dependence is shown,
with similar values of 𝜌 and 𝐿 for figure 8, average viewing time is 45 minutes
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and average time required to disable MEC varies between 5–30 minutes.
A similar behavior of the curves can be observed, which shows the expected
increase in MEC usage time. It also allows, depending on the 𝐿 threshold
used, to select a more optimal time required to switch service back to the
service provider’s server.

Figure 9. MEC server runtime against the MEC server disabling time for different 𝐿

5. Conclusions

The presented paper has investigated the scenario of providing services by
a service provider of video content to users using the local MEC servers of
the telecommunication operator under high service load. A mathematical
model of the interaction for the case described in the scenario in the form of
a Markov queuing system with hysteresis control using the MEC server has
been developed. The resulting equation was derived for calculating the average
time the MEC server is used to provide a video content depending on time.
A numerical analysis of the scenario was carried out for one highly loaded
zone of the telecommunication operator, in which users massively request to
watch a video on an example of a popular TV series. It is shown how the
changes in the MEC server disable initialization threshold, the duration of
a video viewing and the duration of the MEC disabling have an effect on the
average time of using local edge servers. This allows to set the optimization
problem for various scenarios in the future.
Also, this work can be considered a continuation of [17], which allows, by

placing the MEC server on the UAV, not only to reduce the load on the
servers of the video content provider, but also to increase the QoS and QoE
parameters for the mobile users.
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Разработка и анализ моделей гистерезисного
управления миграцией сервисов на сервер граничных

вычислений
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Российский университет дружбы народов,
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Аннотация. Сервисы онлайн-видео являются одними из самых популярных спо-
собов потребления контента. На серверы видео хостинга приходится ежедневно
колоссальная нагрузка, которую нами предложено снизить за счёт миграции
приложения востребованным видеоконтентом на локальный сервер MEC целевой
зоны. Это позволит повысить качество предоставляемых услуг пользователям
за счёт сокращения задержки на передачу. Поэтому предложена архитектура,
дающая возможность в моменты повышенного спроса на одинаковый видеокон-
тент производить миграцию приложения видеосервиса на граничные серверы
оператора сети. Для оценки показателей эффективности такого подхода была
построена математическая модель в виде системы массового обслуживания. Ре-
зультаты численного эксперимента позволяют произвести оптимизацию времени
использования локальных серверов MEC для предоставления видеоконтента.

Ключевые слова: миграция сервисов, граничные вычисления, марковский
процесс, MEC, онлайн-видео, усечённый марковский процесс
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Abstract. Modern smart energy grids combine advanced information and communi-
cation technologies into traditional energy systems for a more efficient and sustainable
supply of electricity, which creates vulnerabilities in their security systems that can
be used by attackers to conduct cyber-attacks that cause serious consequences, such
as massive power outages and infrastructure damage. Existing machine learning
methods for detecting cyber-attacks in intelligent energy networks mainly use classi-
cal classification algorithms, which require data markup, which is sometimes difficult,
if not impossible. This article presents a new method for detecting cyber-attacks
in intelligent energy networks based on weak machine learning methods for detect-
ing anomalies. Semi-supervised anomaly detection uses only instances of normal
events to train detection models, which makes it suitable for searching for unknown
attack events. A number of popular methods for detecting anomalies with semi-
supervised algorithms were investigated in study using publicly available data sets
on cyber-attacks on power systems to determine the most effective ones. A perfor-
mance comparison with popular controlled algorithms shows that semi-controlled
algorithms are more capable of detecting attack events than controlled algorithms.
Our results also show that the performance of semi-supervised anomaly detection
algorithms can be further improved by enhancing deep autoencoder model.

Key words and phrases: smart energy grids, cyber-attacks, semi-supervised anom-
aly detection, deep learning, autoencoder

1. Introduction

There are many problems in traditional power grids, such as the lack
of automated analysis and situational awareness, poor visibility and slow
response time, which makes them unable to meet the significantly increased
demand and consumption of electricity in the 21st century [1]. With the
help of modern information and communication technologies, intelligent
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networks provide a bidirectional flow of electricity and information, which
ensures a more efficient and stable supply of electricity and better demand
management [2, 3]. The intelligent energy network consists of four main
components: generation, transmission, distribution and consumption, which
are connected through a three-level hierarchical structured communication
network [4] (see figure 1). The first level of the communication network is the
home network, which is responsible for communication at the consumption
stage to connect smart devices in consumers’ homes to the smart grid with
smart meters for more efficient energy management and demand response.
The second level of the communication network, the district network, is
responsible for communication at the distribution stage, which collects data
from smart meters and sends back control commands for advanced accounting
applications.

Figure 1. Diagram of smart grid energy consumption system

At the last level, the global network connects with utility management
centers, forming the basis of an intelligent network for the communication
needs of the stages of electricity production and transmission. Although the
integration of advanced ICTs into traditional power grids brings significant
benefits for the delivery and management of electricity, it also creates new
vulnerabilities in security systems [5]. Cyber-attacks can target any of the
four components of a smart grid — from smart home gateways in HAN to
control rooms in the global network [6].
In this work, we used measurements from the Power Measurement Units

(PMU) to detect cyber-attacks. PMU is a sensor device deployed at the
global network level of the smart grid network, which provides real-time
measurements of the state of the power system for a wide range of monitoring,
protection and control. In the Global Monitoring System (GMS), several
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PMUs are connected to a phasor data hub. The GMS central authority
then collects information from the PDCS. PMU measurements combine both
physical and cyber domains, making them a suitable choice for detecting
cyber-attacks targeting the physical domain of an intelligent network, such as
False Data Entry (FDE) attacks and malicious shutdown attacks.
In most widely used models have been built to detect cyber-attacks in

intelligent networks using controlled learning algorithms. To train supervised
algorithms, both normal and attacking data are required. However, collecting
representative instances of various attack events is usually a difficult task, if
not impossible, which can lead to poor model performance when detecting
certain attacks, especially types of attacks not represented in the training
data.
In this article, we proposed a method for detecting cyber-attacks in power

smart grids with semi-supervised anomaly detection. Unlike supervised
models, semi-supervised anomaly detection algorithms use only data from
normal events to train a detection model that is capable of detecting unknown
types of attacks. We have investigated a number of anomaly detection
algorithms and identified the most effective ones for detecting cyber-attacks
in smart energy grids. The performance of semi-supervised algorithms was
compared with the characteristics of popular supervised algorithms to show
their superiority in finding attack events. We have also supplemented semi-
supervised anomaly detection with deep learning to extract features to further
improve attack detection performance.

2. Related work

Traditional approaches use PMU measurements to assess the state of the
power system and compare the difference between the observed and estimated
measurements with a threshold for detecting cyber-attacks. A lightweight
scheme was proposed in the paper [4], which explores the spatial-temporal
correlations between network state estimates and applies confidence voting to
detect abnormal state estimates in intelligent networks caused by real-time
FDI attacks.
Recently, machine learning has been widely used to detect cyber-attacks in

smart grids, where most of the proposed approaches are based on supervised
learning algorithms. In the paper [7] a number of supervised learning algo-
rithms were investigated for recognizing violations in the power system and
cyber-attacks. A One-Class SVM (OC-SVM) was used in [8] to create an in-
trusion detection module for detecting malicious attacks in a dispatch control
system and data collection system using network traces. The paper [9] ap-
plied several popular supervised algorithms, including perceptron, 𝑘-nearest
neighbor (KNN), support vector machines (SVM) and logistic regression (LR)
with ensemble training and combining functions at the object level to predict
FDI attacks. Their experimental results demonstrate that machine learn-
ing algorithms are superior to state-based algorithms. Singh [10] compared
SVM, KNN models for detecting both direct and covert attacks in intelligent
networks. Compared to number of methods based on supervised learning al-
gorithms, only a limited number of studies have been conducted on the use
of unsupervised anomaly detection algorithms to detect attacks in intelligent
networks.
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The data sets studied in our study were created based on the structure of
the power system, consisting of intelligent electronic devices, dispatch control
systems and network monitoring devices. The power system framework can
simulate several operational scenarios to generate data corresponding to three
types of events: absence of events, natural events, and attack events. The six
types of events are described as follows:

— No event: Normal readings.
— Short circuit: There has been a single ground fault, which can be deter-
mined by reading the percentage range in the data.

— Line maintenance: Operators switch one or more IEDs to perform main-
tenance on certain parts of the power system and its components.

— Remote Shutdown Command Implementation Attack: Attackers can send
commands that switch Improvised Explosive devices to switch switches
when they can get into the system.

— Attack with changing relay settings: Attackers change the settings, for
example, disable the main functions of the settings, as a result of which
the IEDs do not switch the switches whenever an acceptable error or
command occurs.

— Data Intrusion attack: Attackers modify PMU measurements such as
voltage, current, and sequence components to simulate a real malfunction
resulting in the disconnection of switches.

The system has four PMUs integrated with relays, where each PMI mea-
sures 29 features. A total of 116 functions were obtained from four PMUs.
Depending on how to group the scenarios, three groups of datasets were cre-
ated based on the generated data — binary class data and multi-class data
from the framework. Since the purpose of our study was to distinguish attack
events from other types of events, we adopted a binary group of datasets in
which no events and normal events are treated as ordinary events.

3. Methodology

The proposed method contains two main components: deep representation
learning and semi-supervised anomaly detection [11–15]. The first step of the
proposed method is to prepare a training dataset that contains only examples
of normal events. The dimension of the object space is then reduced by
deep representation learning, when a low-dimensional hidden representation
is extracted from the input data using a deep autoencoder. Finally, a semi-
supervised anomaly detection algorithm using the representation of the studied
features is used to train the detection model. At the detection stage, a hidden
representation is first created from an unknown input instance by the deep
autoencoder, which is then fed into the trained detection model to classify
the instance as a normal event or an attack event.
In our study, deep autoencoder is used to extract features, which used to

learn robust low-dimensional representations from multidimensional input
data. PCA, a popular feature extraction method was used as a method for
comparison. After training the autoencoder with the training dataset, the
encoder and code layer are retained for feature extraction, while the decoder
has been removed from the network. The hidden code-level representation
will be used as input for a semi-supervised anomaly detection algorithm.
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4. Performance evaluation and results

The binary group of data sets on attacks on power systems adopted in our
study contains 15 data sets covering 37 scenarios [16–18]. We used min–max
normalization to normalize the data. The parameters used by the algorithms
investigated in our study are listed in the table 1. The characteristics of
semi-supervised anomaly detection algorithms using all 116 PMU functions
were investigated first. Among the usual instances of the dataset, 50% were
randomly selected to train the detection algorithm. The remaining 50% of
normal instances and all attack instances were then used for testing. Examples
of ROC curves obtained using eight algorithms on datasets 1 and 11 at one
stage of the experiment are shown in the figure 2. The average AUC values
of the algorithms calculated from the results of 10 runs for each of the 15
data sets are shown in the figure 2.

Table 1

Parameters used by the semi-supervised and supervised algorithms investigated in our study

Model Parameters

OCSVM RBF kernel, degree=3

LOF K=25

KNN K=10

IForest iTrees=100

SVM RBF kernel, degree=3, C=10

Deep Autoencoder Batch_size=8

Figure 2 shows that three most effective algorithms in terms of average
AUC are OCSVM, KNN and IForest. These algorithms show significantly
better performance than the other four algorithms. Then we used the distance
to the angle 𝑑 to determine the detection threshold of the algorithm to obtain
accuracy. The three best algorithms in terms of F1 average score are OCSVM,
KNN and iForest.

In our study, two metrics were used to evaluate the effectiveness: the area
under the ROC curve (AUC) and the F1 score. The ROC curve shows the
relationship between the true positive rate (TPR) and the false positive rate
(FPR) by changing the detection threshold. Equations (1) and (2) define
TPR and FPR, where TP, TN, FP, and FN are true positive, true negative,
false positive and false negative, respectively:

𝑅 = TP

(TP+ FN)
, (1)

𝑅 = FP

(FP+ TN)
. (2)
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Figure 2. Examples of ROC curves obtained by semi-supervised and supervised algorithms

AUC measures the area under the ROC curve to indicate the performance
of the model on distinguishing normal and attack events. A higher AUC value
means that model has a better capability to distinguish normal and attack
events. F1 score is defined as the harmonic mean of the precision and recall:

Precision = TP

(TP+ FP)
, (3)

Recall = TP

(TP+ FN)
, (4)

F1− score = 2 ⋅ Precision ⋅ Recall
(Precision+ Recall)

. (5)

We adopted the distance to corner (D) as the criterion, which determines
the optimal threshold as the point on the ROC curve closest to the corner
point (0, 1):

𝐷 = √(1 − TPR)2 + FPR2. (6)

Then we compared three most effective semi-supervised algorithms in terms
of AUC (OCSVM, LOF, IForest) with two popular controlled algorithms —
KNN and SVM, which were used to detect cyber-attacks in power smart grids.
For each of the 15 datasets, a training dataset for semi-supervised algorithms
was generated by randomly selecting 50% of the regular instances. These
regular instances were combined with the same number of randomly selected
attack instances to form a training dataset for controlled algorithms. The
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remaining 50% of normal instances and attack instances were used to form
a test dataset for both semi-supervised and supervised algorithms.
Examples of ROC curves are shown in figures 2, which were obtained

using five unsupervised and supervised algorithms. Examples of F1-scores are
shown in figures 3, which were obtained using five unsupervised and supervised
algorithms. Among all the algorithms, SVM had the worst performance, while
the KNN algorithm has significantly better average AUC than other algorithms.
The good performance of the controlled KNN algorithm in terms of AUC is
due to its significantly better TPR compared to the three semi-supervised
algorithms when the FPR is low. On the other hand, one of figure 2 also
shows that as the FPR increases, the three semi-controlled algorithms can
achieve a high TPR much faster than the controlled KNN algorithm.

Figure 3. Performance comparison of the semi-supervised algorithms with supervised

algorithms in terms of average precision, recall, and F1 score

5. Performance improvement using a deep autoencoder

Finally, the impact of DAE-based deep representation training on the
performance of semi-supervised anomaly detection algorithms for detecting
cyber-attacks in power smart grids was investigated. The PCA method has
been adopted as a reference method for comparison. We set the number
of extracted objects to 30 for both DAE and PCA. The input and hidden
encoder layers in the DAE have 116 and 60 nodes, respectively. The three
most efficient semi-supervised algorithms OCSVM, KNN and IForest in terms
of AUC, F1-score accuracy metrics were included in this study. The results
in terms of the average AUC are shown in figure 4, which were obtained by
averaging the results of all runs of all 15 datasets. Figures 4, 5 show that DAE
can further improve the performance of three semi-controlled algorithms in
terms of both performance indicators. Statistical tests (paired t-test with two
samples, 𝛼 = 0.05) show that the AUC obtained using three semi-controlled
algorithms with deep learning representation is significantly higher than when
using all functions. The F1 scores obtained by OCSVM and KNN using
deep representation learning are also significantly higher than when using all
functions.
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Figure 4. Performance of semi-supervised algorithms with and without feature extraction

in terms of average AUC

Figure 5. Performance of semi-supervised algorithms with and without feature extraction

in terms of average F1 score

6. Conclusion

Smart grids ensure efficient supply of electricity to various facilities and
its management through the introduction of advanced digital technologies
into traditional power grids. On the other hand, the vulnerabilities that
have appeared in their security can be used to carry out cyber-attacks that
lead to devastating damage. Using PMU measurements that connect the
physical and cybernetic domains, the article develops a method based on
semi-controlled anomaly detection and deep learning to detect cyber-attacks
in smart energy grids. Unlike supervised algorithms, semi-supervised anomaly
detection algorithms use only instances of normal events to train detection
models, which makes them capable of detecting events of unknown types of
attacks.
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In our experiments, the most effective semi-supervised algorithms were
identified using publicly available datasets on attacks on intelligent energy
systems. A comparison of performance with popular controlled algorithms
has shown that semi-supervised algorithms have a better ability to detect
cyber-attacks. In addition, our results showed that the detection performance
of semi-supervised algorithms can be further enhanced by deep representation
training based on DAE.
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Обнаружение кибератак на интеллектуальные
энергосистемы с использованием неконтролируемых

моделей глубокого обучения
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2 Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Аннотация. Современные интеллектуальные энергосети объединяют передовые
информационные и коммуникационные технологии в традиционные энергоси-
стемы для более эффективного и устойчивого снабжения электроэнергией, что
создаёт уязвимости в их системах безопасности, которые могут быть использо-
ваны злоумышленниками для проведения кибератак, вызывающих серьезные
последствия, такие как массовые перебои в подаче электроэнергии и повреждение
инфраструктуры. Существующие методы машинного обучения для обнаруже-
ния кибератак в интеллектуальных энергетических сетях в основном используют
классические алгоритмы классификации, которые требуют разметки данных,
что иногда сложно, а то и невозможно. В данной статье представлен новый метод
обнаружения кибератак в интеллектуальных энергетических сетях, основанный
на слабых методах машинного обучения для обнаружения аномалий. Полукон-
тролируемое обнаружение аномалий использует только экземпляры обычных
событий для обучения моделей обнаружения, что делает его подходящим для
поиска неизвестных событий атак. В ходе исследования был проанализирован
ряд популярных методов обнаружения аномалий с полууправляемыми алго-
ритмами с использованием общедоступных наборов данных о кибератаках на
энергосистемы для определения наиболее эффективных из них. Сравнение про-
изводительности с популярными управляемыми алгоритмами показывает, что
полууправляемые алгоритмы лучше способны обнаруживать события атак, чем
управляемые алгоритмы. Наши результаты также показывают, что произво-
дительность полуконтролируемых алгоритмов обнаружения аномалий может
быть дополнительно улучшена за счёт усовершенствования модели глубокого
автоэнкодера.

Ключевые слова: интеллектуальные энергетические сети, кибератаки, частич-
но контролируемое обнаружение аномалий, глубокое обучение, автоэнкодер
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