
DISCRETE AND CONTINUOUS MODELS
AND APPLIED COMPUTATIONAL

SCIENCE

Volume 30 Number 2 (2022)

Founded in 1993

Founder: PEOPLES’ FRIENDSHIP UNIVERSITY OF RUSSIA

DOI: 10.22363/2658-4670-2022-30-2

Edition registered by the Federal Service for Supervision of Communications,
Information Technology and Mass Media

Registration Certificate: ПИ № ФС 77-76317, 19.07.2019



ISSN 2658-7149 (online); 2658-4670 (print)
4 issues per year.

Language: English.

Publisher: Peoples’ Friendship University of Russia (RUDN University).
Indexed by Ulrich’s Periodicals Directory (http://www.ulrichsweb.com),
Directory of Open Access Journals (DOAJ) (https://doaj.org/), Russian
Index of Science Citation (https://elibrary.ru), EBSCOhost (https://
www.ebsco.com), CyberLeninka (https://cyberleninka.ru).

Aim and Scope

Discrete and Continuous Models and Applied Computational Science arose
in 2019 as a continuation of RUDN Journal of Mathematics, Information
Sciences and Physics. RUDN Journal of Mathematics, Information Sciences
and Physics arose in 2006 as a merger and continuation of the series “Physics”,
“Mathematics”, “Applied Mathematics and Computer Science”, “Applied Math-
ematics and Computer Mathematics”.

Discussed issues affecting modern problems of physics, mathematics, queu-
ing theory, the Teletraffic theory, computer science, software and databases
development.

It’s an international journal regarding both the editorial board and con-
tributing authors as well as research and topics of publications. Its authors
are leading researchers possessing PhD and PhDr degrees, and PhD and MA
students from Russia and abroad. Articles are indexed in the Russian and
foreign databases. Each paper is reviewed by at least two reviewers, the
composition of which includes PhDs, are well known in their circles. Author’s
part of the magazine includes both young scientists, graduate students and
talented students, who publish their works, and famous giants of world science.

The Journal is published in accordance with the policies of COPE (Commit-
tee on Publication Ethics). The editors are open to thematic issue initiatives
with guest editors. Further information regarding notes for contributors, sub-
scription, and back volumes is available at http://journals.rudn.ru/miph.

E-mail: miphj@rudn.ru, dcm@sci.pfu.edu.ru.

© Peoples’ Friendship University of Russia, 2022



EDITORIAL BOARD

Editor-in-Chief
Yury P. Rybakov, Doctor of Sciences in Physics and Mathematics, Professor, Honored
Scientist of Russia, Professor of the Institute of Physical Research & Technologies, Peoples’
Friendship University of Russia (RUDN University), Moscow, Russian Federation

Vice Editors-in-Chief
Leonid A. Sevastianov, Doctor of Sciences in Physics and Mathematics, Professor, Professor
of the Department of Applied Probability and Informatics, Peoples’ Friendship University of
Russia (RUDN University), Moscow, Russian Federation

Dmitry S. Kulyabov, Doctor of Sciences in Physics and Mathematics, Docent, Professor of
the Department of Applied Probability and Informatics, Peoples’ Friendship University of
Russia (RUDN University), Moscow, Russian Federation

Members of the editorial board

Konstantin E. Samouylov, Doctor of Sciences in Technical Sciences, Professor, Head
of Department of Applied Probability and Informatics of Peoples’ Friendship University
of Russia (RUDN University), Moscow, Russian Federation
Yulia V. Gaidamaka, Doctor of Sciences in Physics and Mathematics, Professor, Professor
of the Department of Applied Probability and Informatics of Peoples’ Friendship University
of Russia (RUDN University), Moscow, Russian Federation
Gleb Beliakov, PhD, Professor of Mathematics at Deakin University, Melbourne, Australia
Michal Hnatič, DrSc., Professor of Pavol Jozef Safarik University in Košice, Košice, Slovakia
Datta Gupta Subhashish, PhD in Physics and Mathematics, Professor of Hyderabad
University, Hyderabad, India
Martikainen, Olli Erkki, PhD in Engineering, member of the Research Institute of the
Finnish Economy, Helsinki, Finland
Mikhail V. Medvedev, Doctor of Sciences in Physics and Mathematics, Professor
of the Kansas University, Lawrence, USA
Raphael Orlando Ramírez Inostroza, PhD professor of Rovira i Virgili University (Uni-
versitat Rovira i Virgili), Tarragona, Spain
Bijan Saha, Doctor of Sciences in Physics and Mathematics, Leading researcher in Laboratory
of Information Technologies of the Joint Institute for Nuclear Research, Dubna, Russian
Federation
Ochbadrah Chuluunbaatar, Doctor of Sciences in Physics and Mathematics, Leading
researcher in the Institute of Mathematics, State University of Mongolia, Ulaanbaatar,
Mongolia

Computer Design: A.V. Korolkova, D. S. Kulyabov

English text editors: Nikolay. E. Nikolaev, Ivan. S. Zaryadov, KonstantinP. Lovetskiy

Address of editorial board:
Ordzhonikidze St., 3, Moscow, Russia, 115419

Tel. +7 (495) 955-07-16, e-mail: publishing@rudn.ru
Editorial office:

Tel. +7 (495) 952-02-50, miphj@rudn.ru, dcm@sci.pfu.edu.ru
site: http://journals.rudn.ru/miph

Paper size 70×100/16. Offset paper. Offset printing. Typeface “Computer Modern”.
Conventional printed sheet 6,61. Printing run 500 copies. Open price. The order 419.

PEOPLES’ FRIENDSHIP UNIVERSITY OF RUSSIA
6 Miklukho-Maklaya St., 117198 Moscow, Russia

Printed at RUDN Publishing House:
3 Ordzhonikidze St., 115419 Moscow, Russia,

Ph. +7 (495) 952-04-41; e-mail: publishing@rudn.ru



Discrete & Continuous Models
& Applied Computational Science

ISSN 2658-7149 (online), 2658-4670 (print)

2022, 30 (2) 104

http://journals.rudn.ru/miph

Contents
AleksandrA. Belov, NikolayN. Kalitkin, Numerical solution of
Cauchy problems with multiple poles of integer order . . . . . . . . . . 105

ZhannaO. Dombrovskaya, Optimization of an isotropic metasurface
on a substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

KonstantinP. Lovetskiy, DmitryS. Kulyabov, AliWeddeye His-
sein, Multistage pseudo-spectral method (method of collocations)
for the approximate solution of an ordinary differential equation
of the first order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

AlexanderV. Zorin, MikhailD. Malykh, LeonidA. Sevastianov,
Complex eigenvalues in Kuryshkin–Wodkiewicz quantum mechanics . 139

AntonL. Sevastyanov, Investigation of adiabatic waveguide modes
model for smoothly irregular integrated optical waveguides . . . . . . 149

IvanS. Zaryadov, HilquiasC. C. Viana, TatianaA. Milovanova,
Analysis of queuing systems with threshold renovation mechanism and
inverse service discipline . . . . . . . . . . . . . . . . . . . . . . . . . . 160

© Peoples’ Friendship University of Russia, 2022



Discrete & Continuous Models
& Applied Computational Science

ISSN 2658-7149 (online), 2658-4670 (print)

2022, 30 (2) 105–114

http://journals.rudn.ru/miph

Research article
UDC 519.872:519.217

PACS 07.05.Tp, 02.60.Pn, 02.70.Bf

DOI: 10.22363/2658-4670-2022-30-2-105-114

Numerical solution of Cauchy problems with multiple
poles of integer order

Aleksandr A. Belov1, 2, Nikolay N. Kalitkin3

1 Lomonosov Moscow State University,
1, bld. 2, Leninskie Gory, Moscow, 119991, Russian Federation
2 Peoples’ Friendship University of Russia (RUDN University),
6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation

3 Keldysh Institute of Applied Mathematics RAS,
4 A, Miusskaia Sq., Moscow, 125047, Russian Federation

(received: March 12, 2022; revised: April 18, 2022; accepted: April 19, 2022)

Abstract. We consider Cauchy problem for ordinary differential equation with
solution possessing a sequence of multiple poles. We propose the generalized reciprocal
function method. It reduces calculation of a multiple pole to retrieval of a simple
zero of accordingly chosen function. Advantages of this approach are illustrated by
numerical examples. We propose two representative test problems which constitute
interest for verification of other numerical methods for problems with poles.

Key words and phrases: Cauchy problem, singularities, continuation through
a pole, multiple poles

1. Introduction

There are a number of important applied problems in which the solution
has multiple singularities. In such problems, it is required to find a chain of
sequentially located singularities. Similar problems are often found in the
theory of special functions (elliptic functions, gamma function, etc.).

Numerical methods are widely used to compile tables of special functions [1]
and for standard direct calculation programs [2]. Standard schemes (for
example, Runge–Kutta schemes) allow one to calculate smooth sections of the
solution with good accuracy. However, near the singularity, the error of such
schemes increases catastrophically. Direct continuation of the solution beyond
the pole, as a rule, is impossible. Therefore, the solution is continued beyond
the pole with some artificial techniques. Continuation through a number
of poles is an even greater problem and requires the development of special
procedures.

The literature describes methods based on the Pade approximation [3]–[5]
and on the approximation of the solution by chain fractions [6]. Abramov and
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Yukhno proposed a special replacement for an unknown function that trans-
lates the solution into a non-singular one, see [7] and the bibliography there.
However, these methods are applicable only for calculating the transcenden-
tal Painleves, for which there is a lot of a priori information. In addition, the
coefficients of the Pade approximation are calculated from the coefficients of
the Taylor series, and to find the latter, you need to solve the original prob-
lem with some difference scheme. The problems that arise along this path
are described above.

In [8], we have constructed the reciprocal function method which for the
first time allowed to perform highly accurate calculations through a sequence
of first-order poles. However, for poles of order 𝑘 > 1, accuracy sharply
deteriorated. The reason was as follows: the reciprocal function had a zero of
order 𝑘 > 1. Calculation of such zero is an ill-conditioned problem conjuncted
with considerable loss of accuracy.

In the present work, we propose the generalized reciprocal function method
which overcomes the mentioned difficulty. It provides high accuracy in
computation of a sequence of poles with multiplicity 𝑘 > 1 if the differential
equation is autonomous.

2. Generalized reciprocal function

2.1. Method

Let us write down the Cauchy problem for an ordinary differential equation
of the first order

𝑑𝑢/𝑑𝑡 = 𝑓(𝑢, 𝑡), 𝑢(0) = 𝑢0. (1)

Its solution is assumed to have a sequence of poles at points 𝑡∗
𝑚 of integer

orders 𝑘𝑚. The orders of the different poles may not be the same. At the
same time, we assume that the solution does not have special points of other
types.

Let us introduce some fine enough mesh 𝑡𝑛. Let us choose some one-step
method of numerical integration. A large number of such methods is given
in the monographs [9], [10]. One can detect approach to the nearest pole by
rapid increase of the numerical solution 𝑢𝑛. However, this does not allow us
to determine the position of the pole with sufficient accuracy, calculate the
solution in its vicinity, and continue the solution beyond the pole.

To overcome this difficulty in the case of first-order poles, we proposed the
reciprocal function method [8]. Let adjusting parameter 𝑈 > 0 be introduced.
If the condition |𝑢𝑛| > 𝑈 is met, then the calculation proceeds from the

function 𝑢(𝑡) to the reciprocal function 𝑣(𝑡) = [𝑢(𝑡)]−1. It satisfies the
following equation:

𝑑𝑣/𝑑𝑡 = −𝑣2𝑓(𝑣−1, 𝑡). (2)

The initial condition at the transition point is assumed to be 𝑣𝑛 = (𝑢𝑛)−1.
Note that such a transition at any mesh node is possible only when using
one-step schemes (for example, explicit Runge–Kutta methods).

The pole of the original function 𝑢(𝑡) of multiplicity 𝑘 corresponds to the
zero of the reciprocal function 𝑣(𝑡) of the same multiplicity. For 𝑘 = 1, this
is a simple zero, in which the solution of the equation (2) does not present
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any problem. This is illustrated by examples of numerical calculations in [8].
In this case, the solution is calculated with good accuracy in the vicinity of
the pole and continues beyond it. This makes it possible to perform through
calculations of the sequence of poles of the first order with good accuracy.

However, for multiplicity 𝑘 > 1, the zero 𝑣(𝑡) turns out to be a special
point of the equation (2). At this point, the reciprocal function itself and all
its derivatives up to the (𝑘 − 1)th inclusive turn to zero. Numerical solution
through this feature leads to a strong decrease in accuracy and even failure
of the calculation. The solution cannot be confidently continued even beyond
the first pole.

To overcome this difficulty, we propose to introduce a generalized reciprocal
function 𝑤(𝑡). Suppose the multiplicity of the nearest pole 𝑘 is known. Then
for any 𝑘, we can put

𝑤(𝑡) = [𝑣(𝑡)]1/𝑘. (3)

This expression has 𝑘 complex branches. We choose the only real one from
them. The generalized reciprocal function satisfies the following differential
equation:

𝑑𝑤/𝑑𝑡 = −𝑘−1𝑤1+𝑘𝑓(𝑤−𝑘, 𝑡). (4)

For it, this zero turns out to be simple, and its calculation does not cause
fundamental difficulties. After passing this zero, one can return to calculation
of the 𝑢(𝑡) function.

2.2. Multiplicity determination

Sometimes, from a theoretical study of the Cauchy problem, it is possible
to determine a priori the multiplicities of the poles 𝑘𝑚. In general case, one
has to find 𝑘𝑚 a posteriori in the course of calculation. To do this, we propose
the following procedure.

Near the pole, the following relation holds: 𝑣(𝑡) ≈ 𝐴(𝑡∗ − 𝑡)𝑘. Then in two

adjacent nodes, 𝑣𝑛 ≈ 𝐴(𝑡∗ − 𝑡𝑛)𝑘, 𝑣𝑛+1 ≈ 𝐴(𝑡∗ − 𝑡𝑛+1)𝑘, 𝑓𝑛 =, 𝑓𝑛+1. This is
an over-determined system in unknowns 𝐴, 𝑡∗, 𝑘. Excluding 𝐴 and 𝑡∗, one
obtains

𝑘 ≈ [1 −
ln(𝑓𝑛𝑓−1

𝑛+1)
ln(𝑣𝑛𝑣−1

𝑛+1)
]

−1

. (5)

If the resulting 𝑘 is close enough to some integer on several sequential mesh
steps, this integer number can be taken as the pole multiplicity.

Note that in order to apply the formula (5), the following conditions are
necessary (although not sufficient):

𝑣𝑛𝑣𝑛+1 > 0, 𝑓𝑛𝑓𝑛+1 > 0, 𝑣𝑛𝑓𝑛 < 0, |𝑣𝑛| > |𝑣𝑛+1|. (6)

2.3. Test problem

Let us construct Cauchy problem with the following exact solution:

𝑢(𝑡) = sin 𝑡 cos−𝑘 𝑡. (7)
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This function has poles at 𝑡∗
𝑚 = 0.5𝜋 + 𝜋𝑚. Its derivative equals

𝑑𝑢/𝑑𝑡 = cos1−𝑘 𝑡 + 𝑘 sin2 𝑡 cos−𝑘−1 𝑡. (8)

In the intervals between neighboring poles, the derivative preserves the
sign. For odd 𝑘, the derivative is always positive, and for even 𝑘, its signs
are opposite in neighboring intervals separated by a pole. Therefore, in both
cases, the solution (7) and has no special points other than poles.

The equation (8) is of no interest to be considered as Cauchy problem, since
the solution is reduced to quadrature calculation. However, in the case of an
odd 𝑘 ⩾ 1, the solution (7) and equation (8) can be converted to the form

𝑢(𝑡) = tan 𝑡(1 + tan2 𝑡)(𝑘−1)/2, (9)

𝑑𝑢/𝑑𝑡 = (1 + 𝑘 tan2 𝑡)(1 + tan2 𝑡)(𝑘−1)/2. (10)

Let us consider (9) as equation in tan 𝑡 and express tan 𝑡 in terms of 𝑢.
Next, we substitute the obtained expression into (10) and obtain autonomous
form of the equation.

Practically, explicit relations expressed in elementary functions can be
derived only in two cases. The first one corresponding to 𝑘 = 1 is trivial

𝑢(𝑡) = tan 𝑡, 𝑑𝑢/𝑑𝑡 = 1 + 𝑢2. (11)

This example was used in [8] as a test for simple pole.
The second case with 𝑘 = 3 is non-trivial

𝑢(𝑡) = tan 𝑡 + tan3 𝑡,
𝑑𝑢/𝑑𝑡 = (1 + 𝜉(𝑢)2)(1 + 3𝜉(𝑢)2),

𝜉(𝑢) = −2 ⋅ 3−0.5sign(𝑢) sinh 𝜑(𝑢), 𝜑(𝑢) = 3−1 arsinh(0.5 ⋅ 31.5|𝑢|).
(12)

This test is used in the present work.

2.4. Numerical example

Calculation of the test (12) was performed on the segment 0 ⩽ 𝑡 ⩽ 15
containing 5 poles of the third order. The calculation was performed on
a sequence of uniform meshes using an explicit Runge–Kutta scheme of the
fourth order of accuracy (ERK4). The first grid had a step of 𝜏 = 0.15, the
remaining grids were obtained by successive decreasing of all steps by the
factor of 2 from mesh to mesh. Figure 1 compares the numerical solution
on the first grid (markers) with the exact one (solid line). The vertical lines
show the asymptotes of the exact solution. Even with such a large step, one
can see good agreement between the numerical solution and the exact one.

Figure 2 shows the solution error in mean-squared analogue of the Hausdorff
metrics [11] as function of the mesh step. The plot is given in double
logarithmic scale. The calculated points lie on a straight line with a slope
of −4. This corresponds to the power-law nature of convergence with the
theoretical order of accuracy 𝑝 = 4. One can see that the error reaches
round-off errors ∼ 10−14 (which is only 100 times greater than the error of
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Figure 1. Calculation of the test (12) with step 𝜏 = 0.15 using the ERK4 scheme.

Comparison of the numerical solution on the first grid (markers) with the exact one (solid

line)

a single rounding equal 10−16) at 𝑁 ≈ 105 of grid nodes. This indicates
high accuracy and reliability of the method. The position of the poles is
determined by interpolation of 𝑤𝑛 at two points to the right and left of zero.
This procedure is described in [8]. The error of the fifth pole position is shown
in figure 2 with triangles.

Figure 2. Dependence of the error of the solution and the fifth pole position (triangles)

on the step size for the test (12)
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3. Non-autonomous problems

3.1. Difficulties

For illustration, we used a test in which the differential equation was
autonomous. However, in applied problems we also have to deal with non-
autonomous equations. For such problems, the reliability of numerical methods
deteriorates. In the vicinity of the pole, the calculated profile 𝑣𝑛 may look
like an alternating “saw”, which does not allow to determine the position of
zero. Let’s explain the reason of this phenomenon.

Take, for example, the non-autonomous equation (8). The zero of the
grid solution 𝑣𝑛, understood in the sense of different signs of this value in
neighboring nodes, does not coincide with the exact pole. At the same time,
the sign of the right side (8) that depends only on 𝑡 is determined by the
position of the exact pole. The value 𝑣𝑛 changes sign when passing through the
“mesh” pole, and the right part does so when passing through the exact pole.
This lack of synchronization can lead to an unpredictable sign of increment of
the value 𝑣𝑛 at the next step. The higher is the pole multiplicity the stronger
is this effect.

These effects usually reveal on insufficiently fine meshes. To overcome
these difficulties, we recommend to choose fine enough mesh. Increasing digit
capacity is also a helpful strategy.

3.2. Even multiplicity

For a pole of even multiplicity, the Cauchy problem can be non-autonomous

only. In fact, near the pole 𝑢 ≈ 𝐴(𝑡 − 𝑡∗)−𝑘, and 𝑑𝑢/𝑑𝑡 ≈ −𝑘𝐴(𝑡∗ − 𝑡)−𝑘−1.
For even 𝑘, 𝑑𝑢/𝑑𝑡 has different signs on different sides of the pole. Therefore,
it cannot be an unambiguous function of 𝑓(𝑢). Thus, any problems for an
even 𝑘 face all the difficulties that are typical for non-autonomous problems.
The ways to overcome them are also indicated above.

3.3. Example

Consider the following non-autonomous problem

𝑑𝑢/𝑑𝑡 = (0.5 + √0.25 + 𝑢2 + 2𝑢2) cos 𝑡, 𝑢(0) = 0. (13)

The exact solution is as follows:

𝑢(𝑡) = sin 𝑡 cos−2 𝑡. (14)

It has poles of the order 𝑘 = 2 at 𝑡∗
𝑚 = 𝜋/2 + 𝜋𝑚.

Calculations were performed using the ERK4 scheme. Figure 3 shows the
numerical solution for 𝜏 = and the exact solution (the notation corresponds
to figure 1). One can see that the numerical calculation through 5 poles
is successful, although the visual difference at the end of the calculation is
somewhat greater than for the autonomous problem in figure 1.

Figure 4 shows the dependence of the error of the solution itself and the
one of the fifth pole position on the mesh step. The notations correspond to
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figure 2. One can see that the calculated points are slightly scattered around
the average line. This is a manifestation of the difficulties associated with
solving non-autonomous problems. However, the average slope of the straight
line corresponds to the theoretical order of accuracy 𝑝 = 4, and very high
accuracy is achieved on moderate meshes, close to unit rounding errors.

Figure 3. Calculation of the test (13) with step 𝜏 = 0.15 using the ERK4 scheme.

The notations correspond to figure 1

Figure 4. Dependence of the error of the solution and the fifth pole position on the step size

for the test (13). The notations correspond to figure 2
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3.4. Note

The same exact solution may correspond to different non-autonomous
problem formulations. For example, the function (14) is the exact solution of
a differential equation

𝑑𝑢/𝑑𝑡 = cos−1 𝑡 + 2 sin2 𝑡 cos−3 𝑡. (15)

However, all attempts to calculate this equation using various quadrature
formulas were unsuccessful due to “blow up” of the calculation.

Therefore, the tests (12) and (13) constructed here are of value themselves.
Solutions have sequences of poles of the specified orders, special points of other
types are absent, and the influence of non-autonomy is minimized. These
problems are recommended for validation of other methods of calculation
through poles.
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Аннотация. Рассмотрена задачи Коши для обыкновенного дифференциального
уравнения с решением, обладающим последовательностью кратных полюсов це-
лого порядка. Предложен обобщённый метод обратной функции, который сводит
вычисление кратного полюса к расчёту простого нуля соответственно выбранной
функции. Преимущества такого подхода проиллюстрированы на численных при-
мерах. Предложены сложные тестовые задачи, которые представляют интерес
для проверки других численных методов для задач с полюсами.
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ные полюсы



Discrete & Continuous Models
& Applied Computational Science

ISSN 2658-7149 (online), 2658-4670 (print)

2022, 30 (2) 115–126

http://journals.rudn.ru/miph

Research article
UDC 519.872:519.217

PACS 07.05.Tp, 02.60.Pn, 02.70.Bf

DOI: 10.22363/2658-4670-2022-30-2-115-126

Optimization of an isotropic metasurface on a substrate

Zhanna O. Dombrovskaya

Lomonosov Moscow State University,
1, bld. 2, Leninskie Gory, Moscow, 119991, Russian Federation

(received: March 12, 2022; revised: April 18, 2022; accepted: April 19, 2022)

Abstract. Mathematical statement of one-wavelength antireflective coating based
on two-dimensional metamaterial is formulated for the first time. The constraints
on geometric parameters of the structure are found. We propose a penalty function,
which ensures the applicability of physical model and provides the uniqueness of
the desired minimum. As an example, we consider the optimization of metasurface
composed of PbTe spheres located on germanium substrate. It is shown that the
accuracy of the minimization with properly chosen penalty term is the same as for
the objective function without it.

Key words and phrases: antireflective coating optimization, penalty function
method, constrains on geometric parameters, all-dielectric metasurface on a substrate

1. Introduction

Last few years the designs of nanostructured coatings with the reflection
coefficient close to zero attract a great attention. Such coatings are promising
for solar cells and other photovoltaic elements which work both in the visible
and in the infrared ranges. Nowadays, high refractive index all-dielectric
meta-atoms are used [1], [2] instead of plasmonics [3], [4] in order to reduce
Joule losses.

Commonly, the properties of substrated metasurfaces are calculated numeri-
cally. The computations are complicated due to big divergence of characteristic
scales: resonator size can be 3–20 times smaller then the wavelength 𝜆. Con-
sequently, it is necessary to choose nonuniform grids with extra fine steps
to describe all areas accurately. It makes computations ineffective for opti-
mization problems. To increase the productivity, we propose to use analytical
formulas from a combination of physical models [4]–[6]. However, each model
has its applicability limitations. Moreover, there are restrictions on struc-
ture geometric parameters caused by fabrication limitations. They should be
taken into account to obtain reasonable solutions. As a result, optimization
parameters vary only in some ranges. The optimization problem should be
stated as a nonlinear inverse problem of conditional minimization.
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Due to resonant response of the particle array, there are numerous peaks
and dips in the metasurface spectrum. Therefore, the result of objective
function minimization strongly depends on the initial approximation. By
performing calculations with several raffled off initial guesses, it is impossible
to guarantee that the deepest of minima we found is global rather than a local
one [7]. We cannot be sure that another deeper minimum does not exist. In
this paper, basing on the idea of the penalty function method, we propose
a well-posed statement of the inverse problem of one-wavelength antireflective
coating based on isotropic two-dimensional metamaterial. The formulation
allows to find global extremum, the location of which is approximately known
from physical considerations. To solve the problem, we use the interior point
method [8]. Its stability and accuracy are discussed.

2. Problem of one-wavelength antireflective coating

Depending on the specific formulation of the problem, it is required to
minimize or maximize reflectance, transmittance, absorptance or their combi-
nation. Commonly, a list of materials used for fabrication of particles and
a substrate is known in advance. The parameters to be determined are period
𝑝 of the structure and radius 𝑟 of the meta-atoms.

According to the Sveshnikov–Ilinskiy approach [9], the solution of the
optimization problem is reduced to multiple solutions of the direct problem (in
our case, calculations of electrodynamic characteristics of the substrated meta-
surface) with directionally modified optimization parameters. To simplify
calculations, it is preferable to model the structure under study by combining
numerical algorithm (for the objective function minimization) with simple
analytical formulas (to solve the direct problem). Similar joint approach is
often used for designing multilayer coatings with the given properties [10],
[11].

2.1. Physical statement of the problem

To start with, consider square periodic array composed of spherical dielectric
scatterers with refractive index 𝑛 and radius 𝑟. The one-layer structure is
located at “air-dielectric” interface with refractive index 𝑛𝑠 of the dielectric
substrate. Such isotropic metasurface (MS) with periodicity 𝑝 is normally
illuminated by an external plane electromagnetic wave (figure 1).

Figure 1. Schematic representation of a metasurface consisting of spherical particles on

a semi-infinite substrate. The structure is normally irradiated by an electromagnetic wave
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To describe electrodynamic properties of MS in air, A.B. Evlyukhin pro-
posed the model of interacting induced dipoles [6]. According to the model,
each sphere is replaced by a pair of electric and magnetic dipoles. To account
for the interaction with other particles, Green’s tensor of the medium is con-
structed. Such approach seems to be general since there is no homogenization
of the structure [12]. In the case of normal incidence, the reflection 𝑅 and
transmission 𝑇 Fresnel coefficients are

𝑅 = 𝑖𝑘0
2𝑝2 (𝛼eff

e − 𝛼eff
m ) , 𝑇 = 1 + 𝑖𝑘0

2𝑝2 (𝛼eff
e + 𝛼eff

m ) , (1)

where 𝑘0 = 2𝜋/𝜆 is the free-space wave number, 𝛼eff
e and 𝛼eff

m are effective
electric and magnetic polarizabilities that take into account interaction be-
tween the meta-atoms in the lattice. Here and after temporal dependence is
assumed to be 𝑒−𝑖𝜔𝑡.

The presence of dielectric substrate influences on the field amplitude at
electric (EDR) and magnetic (MDR) dipole resonances [13]. It was shown that
for all-dielectric MSs, even if the refractive indexes 𝑛 and 𝑛𝑠 are high, the
interaction between spherical particle and the substrate is weak enough [2].
For this reason, the MS located on the interface is modeled as imaginary sheet
described with surface susceptibility electric 𝜒e and magnetic 𝜒m densities
depending on 𝑅 and 𝑇 from (1). The reflection 𝑅s and transmission 𝑇s

coefficients of substrated MS in the uncoupled-element model [4] are as
follows:

𝑅s = (1 + 𝑒) (1 −
√

𝜀𝑚) − (
√

𝜀 − 𝑒) (1 + 𝑚)
(1 − 𝑒) (1 −

√
𝜀𝑚) + (𝜀 − 𝑒) (1 − 𝑚)

,

𝑇s = (1 + 𝑒) (1 + 𝑚) + (1 − 𝑒) (1 + 𝑚)
(1 − 𝑒) (1 −

√
𝜀𝑚) + (𝜀 − 𝑒) (1 − 𝑚)

,
(2)

where 𝜀 = 𝑛2
s is a relative dielectric constant of the substrate, 𝑒 = 𝑖𝑘0𝜒e/ 2

and 𝑚 = 𝑖𝑘0𝜒m/ 2.
The above described approach gives a good qualitative description of the

properties of isotropic all-dielectric MS on a substrate. Namely, it predicts
the number of maxima and minima in the spectrum and dipole resonances
positions [2]. This is quite enough to use it as a block for a direct problem
solution. However, if more accurate model is proposed, formulas (2) will be
easily replaced by the refined ones.

2.2. Constraints on geometric parameters

Limitations on structure periodicity and meta-atom size can be of several
types. Firstly, there are conditions imposed from physical considerations.
Obviously, the geometric parameters of the MS are positive quantities 𝑝 > 0
and 𝑟 > 0 and the particles do not touch each other 𝑝 > 2𝑟. Secondly,
there are limitations associated with the fabrication process. Thus, radius
of identical spherical particles manufactured by dielectric material is usually
not less than 50 nm. They are not located on the substrate closely, but with
the interval equals to the particle diameter or more, therefore, 𝑝 ⩾ 4𝑟. And,
thirdly, it is necessary to take into account the conditions when the physical
model works.
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In our case, we should keep in mind that the Evlyukhin model gives correct
results only when the dipole approximation is applicable. In [6], the condition
for the minimal period is derived

𝑝min = √𝑘0
2

|𝛼eff
e |2 + |𝛼eff

m |2
Im (𝛼eff

e ) + Im (𝛼eff
m )

. (3)

The maximum radius for lossless materials can be found from the criterion
which requires that the dipole contribution to the scattered radiation is greater
than or equal to 95% [14], [15]:

𝑟max ≈ 𝜆
1.3𝑛 + 1

. (4)

Some conditions listed in this subsection are overlapped. To find physical
solutions, the strongest ones should be used. In addition, as upper limit on 𝑝,
it seems reasonable to choose 𝑝 ⩽ 𝜆 in order to exclude far-located and, thus,
weakly interacting meta-atoms.

2.3. Objective functions and mathematical statement of the problem

Consider the simplest formulation of the problem: the reflectance should
be minimized at some fixed wavelength 𝜆 = 𝜆∗. We introduce the vector
x = {𝑝, 𝑟} describing the optimization parameters. Denote the reflectivity

of the structure |𝑅s(x, 𝜆)|2 as 𝑓(x, 𝜆). Let 𝐸2 be a two-dimensional vector
space, 𝐶2 is the closed convex set

𝐶2 = {x ∈ 𝐸2 ∶ 4𝑟 ⩽ 𝑝 ⩽ 𝜆max, 𝑟fabric ⩽ 𝑟 ⩽ 𝑟max}. (5)

Then our goal is to determine the vector x which minimizes the function

𝑓(x, 𝜆) = min, x ∈ 𝐶2. (6)

A preliminary analysis of the function 𝑓(x, 𝜆) behavior shows that it strongly
depends on the particle radius (figure 2). For small 𝑟, its values practically
do not change. The presence of such a horizontal plateau, which is a local
minimum, leads to computation looping and further breakdown. At resonant
radii, there are deep “ravines”. Imposing restrictions on 𝑟, we exclude needless
ravines: only dipole resonance is located to the left of 𝑟max. However, such
limitation does not eliminate the plateau. Therefore, the problem remains
multi-extremal.

To make the desired minimum unique, we modify 𝑓(x, 𝜆) by adding a term

in the form 𝑦(𝑟) = (𝐴𝑟 + 𝐵)𝛽, where 𝛽 is an even natural number. Simple
estimation for the radius 𝑟0, corresponding to MDR at the wavelength 𝜆∗,
is known [16], [17]. The figure 3 shows a symmetric “gutter” centered at
𝑟0 ≈ 𝜆∗/(2𝑛) with width equal to (𝑟max − 𝑟0). Changing the value of 𝛽, it is
possible to control the slope of walls and the flatness of its bottom.
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Figure 2. Dependence of |𝑅s|2 on period 𝑝 and radius 𝑟 at 𝜆 = 10 𝜇m

Figure 3. Penalty function 𝑦(𝑟) for different values of power 𝛽

Assume that 𝑦(𝑟0) = 0 and 𝑦(𝑟max) = 1 on the wall of the gutter, then the
proposed term is

𝑦(𝑟) = ( 𝑟 − 𝑟0
𝑟max − 𝑟0

)
𝛽

. (7)

Due to 𝑦(𝑟) selection in the form (7), we discard minima at large radii
(for which the dipole approximation does not work) and make the plateau at
small radii non-horizontal, see the figure 4. Thus, 𝑦(𝑟) is a penalty function
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that keeps one of optimization parameters within certain range. Finally,
mathematical statement of the problem is the following

𝐹 𝛽[x] = 𝑓(x, 𝜆) + 𝑦(𝑟), x ∈ 𝐶2. (8)

Figure 4. Dependencies of the objective functions (8) with different values of 𝛽 (colored

curves) and (6) (black curve) on radius 𝑟 for fixed period 𝑝 = 5.4676 𝜇m

3. Optimization of the structure

Calculations were carried out for substrated MS (figure 1) with 𝑛 = 5 (lead
telluride PbTe) and 𝑛𝑠 = 4 (germanium Ge) at the wavelength 𝜆∗ = 10 𝜇m,
which approximately corresponds to the human body temperature. The
direct problem (i.e., one of the optimization algorithm blocks) is solved

using analytical formulas (1)–(2). To find global minimum of |𝑅s|2 for 𝑝 ∈
[4𝑟, 12] 𝜇m and 𝑟 ∈ [0.05, 1.1983] 𝜇m, the standard function fmincon from
MATLAB Optimization Toolbox was used. It solves minimization problem of
a scalar nonlinear function of multiple variables with constraints using the
interior point method.

3.1. Practical recommendations

For a prevailing part of software packages, the number of function evalua-
tions is limited by default (i.e., there is the maximum number of iterations).
For example, fmincon permits only 3000 evaluations. This measure prevents
cycling. However, in the case of low gradient of the objective function, it
stops the calculations before some minimum is found.

In the figure 5, the percentage of the initial approximations, for which
numerical calculations converge to the minimum, is indicated near the points.
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For small values of 𝛽, this value is 100%, and while 𝛽 grows it decreases. The
reason for this is as follows. In the objective function (8) with the penalty
term, between the steep wall for large (𝑟 − 𝑟0) and the minimum there are
quite flat areas (minimum “sides”), which become flatter with increasing of 𝛽
(figure 4). These areas require more steps than available. Computations are
interrupted and fmincon returns an error. In this case, it is recommended
to take the last obtained values of 𝑝 and 𝑟 as new initial approximations
and continue minimization. Since these sides are flat, but not horizontal,
calculations converge to the minimum point.

Figure 5. Minimal values of |𝑅s|2 at logarithmic scale for computations with proposed

penalty function (dotted curve) and without it (straight line). The percents of initial

approximations, for which fmincon function converges to the minimum (see text), are

indicated nearby

3.2. Comparison of the objective functions

To demonstrate the advantages of our approach, we compared the results of
minimization with two objective functions (6) and (8). Initial approximations
were chosen randomly: 10 computations were carried out with 100 points.

Their coordinates had Gaussian distribution, the average and the standard
deviation were 𝑟0 for meta-atom radius and 4𝑟0 for structure periodicity. Each
of these initial approximations was used for both objective functions.

For the minimum of |𝑅s|2, the dependence of the depth on 𝛽 is shown in
the figure 5. For comparison, black line corresponding to the averaged value
of minimum for the objective function (6) is added. It is clear that, using the
penalty function with power 𝛽 ∈ [2, 6], we make the depth smaller because
the center of the gutter 𝑟0 does not exactly coincide with the coordinate
of minimum point (figure 4). With the growth of 𝛽, bottom of the gutter
becomes flatter, and the depth increases. Starting from 𝛽 = 10, the minimum
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depth is almost independent of 𝛽 and does not differ from the value obtained
without the penalty term (7).

3.3. Choice of the penalty function power

To choose the value of 𝛽, we were guided by the following considerations.
The penalty function is introduced in order to eliminate all local minima
that are not located near to MDR (approximately 𝑟0) and EDR (close to
𝑟max) or between them. Therefore, the power 𝛽 should satisfy the following
conditions. On the one hand, the value 𝑦(𝑟) has to be be greater than 1
outside the specified range (all extra minima are automatically excluded from
consideration). On the other hand, the penalty term should not distort the
objective function (8) outside the range. These requirements are satisfied for
𝛽 = 10 best of all.

Note that the usage of the penalty function (7) with power 𝛽 = 10 practically
does not affect the accuracy of obtained geometric parameters 𝑝 and 𝑟, since
it has a very flat bottom and does not distort the objective function (8). The
figure 6 illustrates the accuracy 𝛿 of the obtained solutions using the interior
point method versus the power 𝛽 of the penalty term 𝑦(𝑟). The accuracy is the
distance between the minimum points of the objective functions (6) and (8)

under consideration 𝛿 = √(𝑝 − 𝑝(𝛽))2 + (𝑟 − 𝑟(𝛽))2, where 𝑝 and 𝑟 are the
coordinates of the best result of minimization without the penalty function
(|𝑅s|2 ≈ 8.0579 ⋅ 1015). Here 𝑝(𝛽) and 𝑟(𝛽) denote minimum coordinates
of (8).

Figure 6. Accuracy of the minimization for different values of the penalty function power

Because of the presence of the penalty term 𝑦(𝑟) with insufficiently at
bottom at the vicinity of the desired minimum, for small values of 𝛽 ∈ [2, 6],
the accuracy, with which 𝑝 and 𝑟 are found, is not high enough (figure 6).
Beginning with 𝛽 = 8, the accuracy of the results of minimization 𝛿 coincides
with the tolerance of fmincon function that is 10−6.



Z.O. Dombrovskaya, Optimization of an isotropic metasurface on … 123

3.4. Results of the minimization

The results of one of the computations with 100 random initial approxi-
mations for 𝛽 = 10 are depicted on the graph of |𝑅s(𝑝, 𝑟)|2| (figure 7). The
domain of the arguments is shown by red lines. The results of minimization
are marked with light dots for the objective function (8) and with dark ones
for (6) without the penalty function. It is clearly seen that in the first case all
100 points converge to the same answer that is the global minimum. However,
in the second case, 43 points “get stuck” on the plateau and 1 point on the
horizontal area near the right boundary of the domain. They do not reach
the desired minimum.

Figure 7. Results of the minimization of substrated metasurface at the wavelength

𝜆 = 10 𝜇m. Found minima of the objective functions (8) and (6) are pointed out on

the graph of the reflectance |𝑅s(𝑝, 𝑟)|2 with white and black markers, respectively.

The number of points is indicated beside them. Red lines are the boundaries of 𝐶2

To sum up, minimization of the first objective function is complicated
and unstable (it depends on the choice of the initial approximation very
strongly). Because of the existence of horizontal areas, in half of the cases the
computations do not provide the correct answer for the position of narrow dip
to be found. On the contrary, the objective function with power-law penalty
term that we have constructed allows to find the desired global minimum
without reference to the position of initial points. For default number of
iterations, not more than 7–10 initial approximations are required.

4. Conclusions

The paper is devoted to the optimization of the geometric parameters of
all-dielectric high refractive index isotropic metasurface placed on a semi-
infinite dielectric substrate. To solve a direct problem, it is suggested to
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use an analytical model combining several approaches of different authors.
Constraints on period of the structure and radius of spherical meta-atoms are
discussed. To construct the domain of geometric parameters, technological
limitations and the conditions for physical model applicability were taken
into account.

For the first time, the formulation of the problem of one-wavelength antire-
flective substrated metasurface is proposed, based on preliminary physical
considerations about the location of narrow global minimum. Using the idea
of the penalty functions, we suggest new objective function, which allows to
cut off all minima except the desired one: a horizontal wide region at small
radii and the local minima for large particles beyond the applicability of the
dipole approximation. The results of minimization with power-law penalty
term and without it are compared. The choice of the power for the penalty
function providing the best result of optimization is described.

The developed technique is illustrated by the example of calculating a an-
tireflective metasurface from PbTe on a Ge substrate for a wavelength of
10 𝜇m when both materials are non-absorbent. The reflection spectrum of
the structure under consideration is constructed in the range relevant for ap-
plications from 8 to 12 𝜇m. It is shown that for non-absorbing materials,
zero reflection occurs between the magnetic dipole resonance and the zero
reflection region of the same metasurface, but located in the air.
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Аннотация. Впервые приведена математическая формулировка одноволнового
безотражательного покрытия на основе двумерного метаматериала. Найдены
ограничения на геометрические параметры конструкции. Предложена штрафная
функция, которая обеспечивает применимость физической модели и обеспечивает
единственность искомого минимума. В качестве примера рассмотрена оптимиза-
ция метаповерхности, состоящей из сфер PbTe, расположенных на германиевой
подложке. Показано, что точность минимизации с правильно выбранным штраф-
ным термином такая же, как и для целевой функции без него.

Ключевые слова: оптимизация безотражательного покрытия, метод штраф-
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Abstract. The classical pseudospectral collocation method based on the expansion
of the solution in a basis of Chebyshev polynomials is considered. A new approach
to constructing systems of linear algebraic equations for solving ordinary differential
equations with variable coefficients and with initial (and/or boundary) conditions
makes possible a significant simplification of the structure of matrices, reducing
it to a diagonal form. The solution of the system is reduced to multiplying the
matrix of values of the Chebyshev polynomials on the selected collocation grid by
the vector of values of the function describing the given derivative at the collocation
points. The subsequent multiplication of the obtained vector by the two-diagonal
spectral matrix, ‘inverse’ with respect to the Chebyshev differentiation matrix, yields
all the expansion coefficients of the sought solution except for the first one. This
first coefficient is determined at the second stage based on a given initial (and/or
boundary) condition. The novelty of the approach is to first select a class (set) of
functions that satisfy the differential equation, using a stable and computationally
simple method of interpolation (collocation) of the derivative of the future solution.
Then the coefficients (except for the first one) of the expansion of the future solution
are determined in terms of the calculated expansion coefficients of the derivative
using the integration matrix. Finally, from this set of solutions only those that
correspond to the given initial conditions are selected.

Key words and phrases: initial value problems, pseudo spectral collocation method,
Chebyshev polynomials, Gauss–Lobatto sets, numerical stability

1. Introduction

Spectral methods are a class of methods used in applied mathematics and
scientific computing to solve many differential equations numerically [1]–
[4]. The main idea of the method is to represent the desired solution of
a differential equation as a sum of certain ‘basis functions’ [5] (e.g., as an
expansion into a sum in power functions — a Taylor series, or a sum of
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sinusoids, which is a Fourier series), and then calculate the coefficients in the
sum to satisfy the differential equation in the best possible way.

Spectral and finite element methods are closely related and are based on the
same ideas. The main difference between them is that spectral methods use
nonzero basis functions over the entire domain, while finite element methods
use nonzero basis functions only on small subdomains. In other words,
spectral methods use a global approach, while finite element methods use
a local approach. It is for this reason that spectral methods provide excellent
convergence, their ‘exponential convergence’ being the fastest possible when
the solution is smooth.

Spectral methods for the numerical solution of ordinary differential equa-
tions with given initial conditions are often reduced to solving a system of
linear algebraic equations (SLAE), which includes both the initial conditions
and conditions that ensure the fulfillment of differential relations [6]. How-
ever, a priori embedding of the initial (boundary) conditions into the system
of linear equations leads to a significant increase in the filling of the matri-
ces and, consequently, to the complication of the algorithm and method for
solving the problem [7].

A more interesting approach is to select a basis that automatically takes
into account the boundary conditions [1], [5], [6]. This is a frequently used
trick when formulating the SLAE of the initial problem, and it reduces to
taking into account the required initial/boundary conditions when creating
the basis (a set of good basis functions-orthogonal, etc.) in a natural way, i.e.,
a basis is selected in which each basis function satisfies the initial conditions.
The solution obtained using this approach is automatically sought in the class
of functions satisfying the initial conditions. However, in this case it becomes
much more difficult to work with new basis functions.

The novelty of the approach proposed by the authors is that first, a class
(set) of functions that satisfy the differential equation is selected using a stable
and computationally simple method of interpolation (collocation) of the
derivative of the future solution. Then the coefficients (except for some) of
the expansion of the future solution are determined in terms of the calculated
expansion coefficients of the derivative using the integration matrix. Only
after that, from this set of solutions those that correspond to the given initial
conditions are selected.

Here we propose to divide the main problem into independent subproblems
and to calculate the solution components in parts — separately those that
determine the behavior of the derivative of the solution, and separately those
that are determined by the boundary conditions. Thus, the problem is divided
into two independent subproblems, each allowing stable and simple solution.
The solution of the first problem in the simplest case is reduced to multiplying
the vector of the right-hand side by the matrix of the Chebyshev functions
values on the Gauss–Lobatto grid. At the next step, we solve the SLAE with
a diagonal positive definite matrix and, multiplying the resulting vector on
the left by the two-diagonal matrix, inverse (anti–derivative) with respect to
the spectral Chebyshev matrix of differentiation, we obtain all the expansion
coefficients of the desired solution, except for the first one. At the second,
‘most difficult’ stage, we determine the first coefficient of the expansion of the
solution in terms of basis polynomials, solving a linear algebraic equation of
the first order with respect to this coefficient.
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2. Numerical solution of ordinary differential equations

Exact solution of a trivial ordinary differential equation for a given initial
(boundary) condition

𝑦′ = 𝑓(𝑥), 𝑥 ⩾ 𝑥0, 𝑦(𝑥) = 𝑦0, (1)

the right–hand side of which is independent of 𝑦, can be presented in the form

𝑦0 + ∫𝑡
𝑡0

𝑓(𝜏)𝑑𝜏.
Since the numerical methods for integrating functions are well developed

from theoretical and practical points of view, it seems natural to apply them
to the numerical solution of ordinary differential equations of general form

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 𝑥 ⩾ 𝑥0, 𝑦(𝑥0) = 𝑦0, (2)

and this is exactly the fact that naturally explains the development and wide
use of the methods of the Runge–Kutta type.

Usually, the method implies obtaining the solution in the interval
[𝑥0, 𝑥0 + 𝑐𝑘ℎ]. The coefficients 0⩽𝑐1 < 𝑐2 < … < 𝑐𝑛⩽1 are chosen. Then, us-
ing the method of polynomial collocation, the solution is approximated by
a polynomial 𝑝 of the degree 𝑛, which satisfies two types of conditions

— the initial condition: 𝑝(𝑥0) = 𝑦0, and
— the differential equation, 𝑝′(𝑥𝑘) = 𝑓 (𝑥𝑘, 𝑝(𝑥𝑘)), at all the collocation

points [𝑥𝑘 = 𝑥0 + 𝑐𝑘ℎ], 𝑘 = 1, … , n.

Satisfying these (𝑛 + 1) conditions allows calculating (𝑛 + 1) coefficients of
the expansion of the sought polynomial 𝑝 of the degree 𝑛.

Thus, the collocation methods are actually implicit Runge–Kutta meth-
ods [8].

It is important to note that to solve the approximation problem, it is not
necessary to try solving Eq. (1) with simultaneous satisfaction of both the
initial condition and the differential equation at the collocation points. In
some cases, a fast and stable result can be achieved in two stages. First, to find
those coefficients of the sought solution expansion that satisfy the differential
equation at the collocation points. Then, to determine the deficient coefficients
of the sought function expansion using the initial (final or intermediate) value.

3. Approximation of derivative. Cauchy problem

First, consider the problem of determining (recovering) a function from
its derivative and some (one) additional condition. In this formulation, the
problem naturally splits into two sub-problems:

— polynomial interpolation of the derivative (calculating the coefficients of
the expansion of the derivative into a finite series in basis functions) and

— calculation of the coefficients of the required function by the initial
(boundary, etc.) condition and the coefficients of the derivative expansion.

Without loss of generality, we assume that the domain of definition of the
solution is the interval [−1, 1].
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Most often, the approximation of continuous functions is obtained by
discarding the terms of the Chebyshev series, the magnitude of which is
small [9], [10]. In contrast to the approximations obtained using other power
series, the approximation in Chebyshev polynomials (having the property of
being almost optimal) minimizes the number of terms required to approximate
a function by polynomials with a given accuracy. This is also related to the
property that the approximation based on the Chebyshev series turns out to
be close to the best uniform approximation (among polynomials of the same
degree), but easier to find. In addition, it allows avoiding the Gibbs effect
with a reasonable choice of interpolation points.

Let us consider in more detail the problem of finding the derivative of
the desired function, or rather the approximating polynomial 𝑝(𝑥), satisfy-
ing condition (1) at a given number of points in the interval [−1, 1]. The
pseudospectral (collocation) method [11] for solving the problem consists in
representing the desired approximating function in the form of an expansion
in a finite series in Chebyshev polynomials

𝑝(𝑥) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑥∈[−1, 1] (3)

using the basis of Chebyshev polynomials of the first kind {𝑇𝑘(𝑥)}∞
𝑘=0, defined

in the Hilbert space of functions on the segment [−1, 1].

Let us differentiate the function (3). The derivative is expressed as

𝑝′(𝑥) = 𝑑
𝑑𝑥

(
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥)) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇 ′
𝑘(𝑥) =

𝑛
∑
𝑘=0

𝑏𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (4)

Using the recurrence relations, which are satisfied by the Chebyshev poly-
nomials of the first kind and their derivatives [3], [12] and equating the
coefficients at the same polynomials in (4), we come [3] to the following
dependence of the coefficients 𝑐𝑘 on 𝑏𝑘:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −1/2 0 … 0 0
0 1/4 0 −1/4 … 0 0
0 0 1/6 0 … 0 0
0 0 0 1/8 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … 1

2(𝑛 − 1)
0

0 0 0 0 … 0 1/(2𝑛)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏0
𝑏1
𝑏2
𝑏3
⋮

𝑏𝑛−2
𝑏𝑛−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐1
𝑐2
𝑐3
𝑐4
⋮

𝑐𝑛−1
𝑐𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

That is, the vector calculation of the coefficients {𝑐1, 𝑐2, … , 𝑐𝑛} is the
result of multiplying a simple tridiagonal matrix by a vector and it can be
implemented by the following explicit formulas
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⎧{
⎨{⎩

𝑐1 = 𝑏0 − 𝑏2/2, 𝑘 = 1,
𝑐𝑘 = (𝑏𝑘−1 − 𝑏𝑘+1) /2𝑘, 𝑘 > 1, 𝑘 < 𝑛 − 1,
𝑐𝑘 = 𝑏𝑘−1/2𝑘, 𝑘 = 𝑛 − 1, 𝑛.

(6)

Thus, known the expansion coefficients 𝑏𝑘 of the function 𝑓(𝑥) of problem (1)
in Chebyshev polynomials of the first kind, we can recover the last 𝑁 expansion
coefficients of the sought function in the same basis functions by formulas
(2.1.3) from [3].

Therefore, the first part of the problem is to calculate the coefficients
{𝑏0, 𝑏1, … , 𝑏𝑛} of the representation of the right–hand side of (1) on the
interval [−1, 1]

𝑛−1
∑
𝑘=0

𝑏𝑘𝑇𝑘(𝑥) = 𝑓(𝑥).

The collocation method consists in the selection of such coefficients
{𝑏0, 𝑏1, … , 𝑏𝑛} of the expansion of the interpolation polynomial 𝑝′(𝑥) that
the following equalities are satisfied for the desired coefficients 𝑏𝑘, 𝑘 =
0, 1, … , 𝑛 − 1.

𝑛−1
∑
𝑘=0

𝑏𝑘𝑇𝑘 (𝑥𝑗) = 𝑓 (𝑥𝑗) , 𝑗 = 0, … , 𝑛 − 1 (7)

at the collocation points {𝑥0, 𝑥1, … , 𝑥𝑛}.

The last statement is equivalent to the fact that the coefficients 𝑏𝑘, 𝑘 =
0, … , 𝑛 must be a solution to the system of linear algebraic equations (7) of
the collocation method. In matrix form, this can be written as

Tb = 𝑓. (8)

The choice of collocation points should ensure the nondegeneracy of the
system of Eqs. (7); for this it is sufficient that all grid points are different, and
otherwise their choice is arbitrary, that is, the solution of system (7) on an
arbitrary grid of the interval [−1, 1] determines the required approximation.
For an arbitrary grid, the matrix 𝑇 is completely filled and the solution of such
a system is rather laborious. To simplify the form of the matrix and speed
up the search for the vector 𝑏, we use the discrete orthogonality property
of the Chebyshev matrix 𝑇 on the Gauss–Lobatto grid. Consider the set
𝑥𝑗 = cos(j/𝑛), 𝑗 = 0, … , 𝑛 as collocation points. To further improve the

properties of the system of linear equations, the solution of which will be
the vector {𝑏0, 𝑏1, … , 𝑏𝑛}, we multiply the first and last equations (7) by the

factor 1/
√

2. We obtain an equivalent ‘modified’ system with a new matrix
̃𝑇 (instead of 𝑇) and a vector ̃𝑓 instead of 𝑓. The good thing about the new

system is that it has the property of discrete ‘orthogonality’ and multiplying

it on the left by the transposed ̃𝑇 𝑇 gives a diagonal matrix:
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̃𝑇 𝑇 ̃𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑛 0 0 … 0
0 𝑛/2 0 … 0
0 0 𝑛/2 … 0
… … … ⋱ …
0 0 0 … 𝑛

⎤
⎥
⎥
⎥
⎥
⎦

.

We transform system (8), multiplying it on the left by the transposed

matrix ̃𝑇 𝑇. As a result, we obtain a simple matrix equation with a diagonal
matrix to determine the required expansion coefficients {𝑏0, 𝑏1, … , 𝑏𝑛}:

⎡
⎢
⎢
⎢
⎢
⎣

𝑛 0 0 … 0
0 𝑛/2 0 … 0
0 0 𝑛/2 … 0
… … … ⋱ …
0 0 0 … 𝑛

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑏0
𝑏1
𝑏2
…
𝑏𝑛

⎤
⎥
⎥
⎥
⎥
⎦

= ̃𝑇 𝑇

⎡
⎢
⎢
⎢
⎢
⎣

𝑓0/
√

2
𝑓1
𝑓2
…

𝑓𝑛/
√

2

⎤
⎥
⎥
⎥
⎥
⎦

. (9)

Denoting by ( ̃𝑓0, ̃𝑓1, … , ̃𝑓𝑛−1, ̃𝑓𝑛)
𝑇

the product of matrix ̃𝑇 𝑇 by vector

(𝑓0/
√

2, 𝑓1, … , 𝑓𝑛−1, 𝑓𝑛/
√

2)
𝑇

in the right–hand side of equation (9), we write

down the required expansion coefficients of the derivative of the solution –
the function 𝑓(𝑥) — in the explicit form

⎧
{
{
{
{
{
{
⎨
{
{
{
{
{
{
⎩

𝑏0 =
̃𝑓0

𝑛
,

𝑏1 = 2 ̃𝑓1
𝑛

,

𝑏2 = 2 ̃𝑓2
𝑛

,
…

𝑏𝑛 =
̃𝑓𝑛

𝑛
.

(10)

Consequently, relations (10), (6) uniquely determine the last n coefficients
{𝑐1, 𝑐2, … , 𝑐𝑛} of the expansion of the sought function 𝑝(𝑥), and to determine
one more coefficient 𝑐0 it is necessary to involve at least one more additional
condition. This can be both a boundary condition at the left or right end of
the interval of consideration of a function, or a condition for the passage of
the desired function through any given point within the interval of specifying
the function.

That is, the considered method makes it possible to solve, depending on
the type of the additional condition, both the Cauchy problem with initial
conditions and problems with boundary conditions of a general form, requiring,
for example, the use of the iterative shooting method [4].
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In the case when the boundary condition is specified at the left end of the
integration interval, the zero coefficient is determined from the equation

𝑐0 +
𝑛

∑
𝑘=1

𝑐𝑘𝑇𝑘(−1) = 𝑦0 (11)

by the formula (taking into account that 𝑇𝑘(−1) = (−1)𝑘) for any Chebyshev
polynomial

𝑐0 = 𝑦0 −
𝑛

∑
𝑘=1

𝑐𝑘𝑇𝑘(−1) = 𝑦0 −
𝑛

∑
𝑘=1

𝑐𝑘(−1)𝑘. (12)

If the additional ‘boundary’ condition is specified at an arbitrary point
of the integration interval, 𝑦𝑏 = 𝑦 (𝑥𝑏), 𝑥𝑏∈[−1, 1], then the coefficient 𝑐0 is
determined by the formula

𝑐0 = 𝑦𝑏 −
𝑛

∑
𝑘=1

𝑐𝑘𝑇𝑘 (𝑥𝑏) . (13)

At the right–hand end of the integration interval 𝑦𝑟 = 𝑦(1), 𝑥𝑟 = 1, the
Chebyshev polynomials of any order take the value equal to 1 (𝑇𝑘(1) = 1).
Therefore, the coefficient 𝑐0 is determined by the formula

𝑐0 = 𝑦𝑟 −
𝑛

∑
𝑘=1

𝑐𝑘𝑇𝑘 (𝑥𝑟) = 𝑦𝑟 −
𝑛

∑
𝑘=1

𝑐𝑘. (14)

4. Examples with simplest differential equations

Reconstructing a function from its derivative and a boundary condition.
Comparison with the Runge–Kutta–Fehlberg method [13]

dy

dx
= 𝑓(𝑥), 𝑦(0) = 𝑦0, 𝑥∈[𝑎, 𝑏].

Let us compare the solutions obtained by the Runge–Kutta method (sub-
routine RKF45) and the solutions obtained as previously described.

Let us specify a grid in the interval [𝑎, 𝑏], calculated by the formula

𝑥𝑗 = 𝑏 − 𝑎
2

cos ( j

𝑁 − 1
) + 𝑏 + 𝑎

2
, 𝑗 = 0, 1, … , 𝑁 − 1,

and related to the chosen Gauss–Lobatto grid in the interval [−1, 1]. The
number of grid points equals 𝑁, i.e., to recover the function from the given
derivative and additional condition by our method, only 𝑁 calculations of
the function (the right–hand side) are needed, and the recalculation of these
values into the expansion coefficients in Chebyshev polynomials will require
only 2𝑁 divisions and 2𝑁 additions.

To solve the Cauchy problem by the Runge–Kutta–Fehlberg method, we
applied the RKF45 algorithm on each subinterval of the grid calculated above
on [𝑎, 𝑏].



134 DCM&ACS. 2022, 30 (2) 127–138

Algorithms are compared when looking for a solution to the simplest
problem

dy

dx
= cos(𝑥), 𝑦(0) = 0, 𝑥 ∈ [−𝜋, 𝜋].

The calculation carried out by the Runge–Kutta method with automatic
control of accuracy (not worse than 10−9) required about 800 calculations of
the function values over the entire interval.

For the two–stage method of separation of unknowns, the results of the
deviation of the calculated values from the exact ones at the grid points are
given in the table 1.

Table 1

Deviation of the calculated values from the exact ones

Number of grid points 11 13 15 30

Maximum deviation < 4 ⋅ 10−7 < 5 ⋅ 10−9 < 2 ⋅ 10−13 < 10−19

Consider a few more model examples of solving the Cauchy problem, i.e.,
recovering functions from given derivatives and an initial condition. Functions
from [14], in which the accuracy of calculating derivatives with the help
of Chebyshev matrices of differentiation in physical space, were studied as
model ones. The selected examples systematically illustrate the accuracy of
calculating derivatives as a function of the number of approximation points
(see the figure 1).

Four functions characterized by different smoothness are considered: |𝑥3|,
exp(−𝑥−2), 1/(1 + 𝑥2), and 𝑥10. The first function has the third derivative
of bounded variation, the second function is smooth, but not analytical, the
third one is analytical in the vicinity of [−1, 1], and the fourth function is
a polynomial. The accuracy of solutions obtained by us is by 1.5–3 orders of
magnitude better than Trefethen’s solutions [14] when using a similar number
of collocation points.

5. Discussion and conclusion

There are methods based mainly on the local approximation of the solution,
which primarily use the initial approximation (boundary conditions) when
solving differential equations. These are methods like Euler, Runge–Kutta
method, etc. Other methods based on the approximation of the solution
using global functions [global collocation methods — Mason, Boyd, Fornberg,
Iserles, Townsend] are based on the construction of such systems of equations
that simultaneously include both initial (boundary) conditions and conditions
specifying the behavior of the derivatives of the desired solution.

In our study (within the framework of the pseudospectral collocation
method), the problem is divided into two independent subproblems. The first
is to select a set of solutions that satisfies the differential equation. However,
it does not necessarily satisfy the initial (boundary) conditions. The choice
of suitable bases for representing the solution in the form of an expansion
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(a) 𝑢(𝑥) = ∣𝑥3∣ , 𝑢(−1) = 1 (b) 𝑢(𝑥) = exp (−𝑥−2) , 𝑢(−1) = 𝑒−1

(c) 𝑢(𝑥) = 1
1 + 𝑥2 , 𝑢 (−1) = 1

2 (d) 𝑢(𝑥) = 𝑥10, 𝑢(−1) = 1

Figure 1. The accuracy of derivative recovering for four functions with increasing

smoothness depending on the number of approximation points

in polynomials, e.g., Jacobi ones, and grids taking into account the discrete
orthogonality of the considered bases, makes it possible to use highly efficient
algorithms.

Perhaps, the most promising from the point of view of the application of
numerical methods is the use of a particular case of Jacobi polynomials —
Chebyshev polynomials, as specific basis functions [15]. The Chebyshev poly-
nomials provide an almost optimal approximation of the ODE solution, the
ease of calculating the Gauss–Lobatto grid for using the discrete orthogonal-
ity condition, and three-term relations determining the ease of constructing
differentiation and integration matrices of the sought solutions [16].

The initial (boundary) conditions are considered at the second stage of
solving the original problem, which is actually reduced to solving a linear
equation with one unknown coefficient.

The solution of the first problem is reduced to multiplying the matrix of
values of the Chebyshev functions on the Gauss–Lobatto grid by the vector of
values of the function that defines the right-hand side of the original differential
equation to determine the expansion coefficients of the solution derivative.
Further, the multiplication of the two-diagonal integration matrix [3] by the
vector of coefficients yields all the coefficients of the desired solution, except for
the first one. At the second stage, the use of the initial (boundary) condition
makes it possible to determine the first coefficient of the solution expansion.
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The approach based on dividing the problem of solving first–order ODEs
into two subproblems seems to be very promising. The authors will continue
to develop approaches and algorithms for the application of the multistage
pseudospectral method for solving initial and boundary value problems with
differential equations of higher orders.
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Многостадийный псевдоспектральный метод (метод
коллокаций) приближенного решения обыкновенного
дифференциального уравнения первого порядка

К. П. Ловецкий1, Д. С. Кулябов1, 2, Али Уэддей Хиссен1

1 Российский университет дружбы народов,
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2 Объединённый институт ядерных исследований,

ул. Жолио-Кюри, д. 6, Дубна, Московская обл., 141980, Россия

Аннотация. Рассмотрен классический псевдоспектральный метод коллокации,
основанный на разложении решения по базису из полиномов Чебышева. Но-
вый подход к формированию систем линейных алгебраических уравнений для
решения обыкновенных дифференциальных уравнений с переменными коэффи-
циентами и с начальными (и/или граничными) условиями позволяет значительно
упростить структуру матриц, приводя её к диагональной форме. Решение систе-
мы сводится к умножению матрицы значений полиномов Чебышева на выбранной
сетке коллокации на вектор значений функции, описывающей заданную производ-
ную в точках коллокации. Следующее за этой операцией умножение полученного
вектора на двухдиагональную спектральную «обратную» по отношению к матри-
це дифференцирования Чебышева приводит к получению всех коэффициентов
разложения искомого решения за исключением первого. Этот первый коэффи-
циент определяется на втором этапе исходя из заданного начального (и/или
граничного) условия. Новизна подхода заключается в том, чтобы сначала вы-
делить класс (множество) функций, удовлетворяющих дифференциальному
уравнению, с помощью устойчивого и простого с вычислительной точки зре-
ния метода интерполяции (коллокации) производной будущего решения. Затем
рассчитать коэффициенты (кроме первого) разложения будущего решения по
вычисленным коэффициентам разложения производной с помощью матрицы ин-
тегрирования. И лишь после этого выделять из этого множества решений те,
которые соответствуют заданным начальным условиям.

Ключевые слова: начальные задачи, метод псевдоспектральных коллокаций,
многочлены Чебышева, множества Гаусса–Лобатто, численная устойчивость
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Abstract. One of the possible versions of quantum mechanics, known as Kuryshkin–
Wodkiewicz quantum mechanics, is considered. In this version, the quantum
distribution function is positive, but, as a retribution for this, the von Neumann
quantization rule is replaced by a more complicated rule, in which an observed value

𝐴 is associated with a pseudodifferential operator �̂�(𝐴). This version is an example
of a dissipative quantum system and, therefore, it was expected that the eigenvalues
of the Hamiltonian should have imaginary parts. However, the discrete spectrum of
the Hamiltonian of a hydrogen-like atom in this theory turned out to be real-valued.
In this paper, we propose the following explanation for this paradox. It is tradition-
ally assumed that in some state 𝜓 the quantity 𝐴 is equal to 𝜆 if 𝜓 is an eigenfunction

of the operator �̂�(𝐴). In this case, the variance �̂�((𝐴 − 𝜆)2)𝜓 is zero in the standard
version of quantum mechanics, but nonzero in Kuryshkin’s mechanics. Therefore,
it is possible to consider such a range of values and states corresponding to them

for which the variance �̂�((𝐴 − 𝜆)2) is zero. The spectrum of the quadratic pen-

cil �̂�(𝐴2) − 2�̂�(𝐴)𝜆 + 𝜆2 ̂𝐸 is studied by the methods of perturbation theory under

the assumption of small variance �̂�(𝐴) = �̂�(𝐴2) − �̂�(𝐴)2 of the observable 𝐴. It

is shown that in the neighborhood of the real eigenvalue 𝜆 of the operator �̂�(𝐴),
there are two eigenvalues of the operator pencil, which differ in the first order of

perturbation theory by ±𝑖√⟨�̂�⟩.

Key words and phrases: models of quantum measurements, perturbation of discrete
spectrum, complex eigenvalues, operator pencils

1. Introduction

The Kuryshkin–Wodkiewicz quantum mechanics [1] is an example of a dis-
sipative quantum system. The quantum part of the measuring device is the
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‘environment of an open quantum system’. In the process of quantum mea-
surement, an open quantum system interacts with its ‘environment’. We
study the result of this interaction [2]–[12]. Therefore, wave vectors must have
a finite lifetime, inversely proportional to the imaginary part of eigenvalues.

In this version of quantum mechanics, the von Neumann quantization rule
was abandoned and observable quantities are assigned to pseudo-differential
operators, not necessarily self-adjoint. Therefore, the appearance of the
imaginary part of the eigenvalues is not surprising. However, our studies
of hydrogen-like atoms have shown that the operator corresponding to the
Hamiltonian is essentially self-adjoint, so its discrete spectrum turned out to
be real [13], [14].

This is quite surprising, since the von Neumann rule can be derived from
general considerations, if we assume that the relation between the quantities

𝐴 = 𝑔(𝐵) is inherited by their operators ̂𝐴 = 𝑔(�̂�) [15, P. 36]. Violation
of this property inevitably means that the Kuryshkin–Wodkiewicz theory
must be interpreted within the framework of the measurement theory and
imaginary eigenvalues must appear. In this paper, we point out a spectral
problem that has properties that are correct from this point of view.

2. Quantization in Kuryshkin–Wodkiewicz mechanics

Consider a Hamiltonian system with coordinates 𝑞 ∈ ℝ𝑛, momenta 𝑞 ∈ ℝ𝑛,
and Hamiltonian 𝐻. We will assume that the Hamiltonian and all observables
considered below belong to a commutative ring ℳ, for example, to the
polynomial ring ℝ[𝑝, 𝑞] or the ring 𝐶∞(ℝ𝑛)[𝑝].

In classical statistical mechanics, the state of the system is described by
the distribution function 𝑓, in quantum mechanics by the wave function
𝜓 ∈ 𝐿2(ℝ𝑛). In statistical mechanics, the mean value of the observable
quantity 𝐴 ∈ ℳ is given by

⟨𝐴⟩ = ∬
ℝ2𝑛

𝐴(𝑝, 𝑞)𝑓𝑑𝑝𝑑𝑞,

and in quantum mechanics by the expression

⟨𝐴⟩ = ∫
ℝ𝑛

𝜓∗(𝑞) ̂𝐴𝜓(𝑞)𝑑𝑞,

where ̂𝐴 is the operator corresponding to the observable 𝐴. In 1966, Cohen
[16] proved that these two equalities for the mean cannot be combined in one
theory, if it is assumed that the density takes strictly positive values, and the
transition from mechanical quantities to operators is carried out according to
the von Neumann rule.

However, if this rule of ‘quantization’ of mechanical quantities is abandoned,
then it is possible to construct a version of quantum mechanics in which the
average can be calculated by both formulas and the density takes positive
values. Instead of the von Neumann rule, this theory uses a more complicated
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mapping of the commutative ring ℳ into the ring of linear operators on the

space 𝐿2(ℝ𝑛): �̂� ∶ ℳ → 𝐿(𝐿2(ℝ𝑛) → 𝐿2(ℝ𝑛)).
This correspondence does not satisfy the Neumann rule, i.e., generally

speaking, �̂�(𝐴) ≠ 𝐴( ̂𝑝, ̂𝑞), but it is linear, namely: for any 𝐴, 𝐵 ∈ ℳ and
any 𝑘 ∈ ℂ

1. �̂�(𝐴 + 𝐵) = �̂�(𝐴) + �̂�(𝐵),
2. �̂�(𝑘𝐴) = 𝑘�̂�(𝐴),
3. �̂�(0) = 0,

4. �̂�(1) = ̂𝐸.

In the early 1970s, V.V. Kuryshkin [1] not only proved the existence of
such mappings, but also proposed an explicit construction for them. In
doing so, it was necessary to extend the class of operators, in which the

mapping �̂� takes value, from the class of self-adjoint differential operators to
a non-commutative ring of non-self-adjoint pseudo-differential operators. The
resulting new version of quantum mechanics was called Kuryshkin–Wodkiewicz
mechanics.

It turned out that ‘perturbed operators’ satisfy a certain condition for the
proximity of the new quantization rule to the von Neumann rule:

�̂�(𝐴) = 𝐴( ̂𝑝, ̂𝑞) + ̂𝑉 ,

where the addition of ̂𝑉 to the standard quantization rule is an operator
compact in the sense of Jorgens [17]. Therefore, the lower bounds of the

essential spectra of the operators �̂�(𝐴) and 𝐴( ̂𝑝, ̂𝑞), as well as the points of
the discrete spectra of these operators, may not coincide, but the structure of
the spectrum is preserved: the points of the discrete spectrum lie below the
continuous spectrum [18].

For what follows, the explicit form of the mapping �̂� is not important.

For hydrogen-like atoms, we explicitly computed �̂�(𝑝𝑖) and �̂�(𝑔) for any
function 𝑔 of coordinates 𝑞 [14]. It turned out that in all these cases self-
adjoint operators are obtained. This implies, in particular, that the spectrum

of the operator �̂�(𝐻) consists of a continuous part, which coincides with the
spectrum 𝐻( ̂𝑝, ̂𝑞), found in standard quantum mechanics, below the lower
boundary of which lie the discrete spectrum points, which are slightly different
from the points of the discrete spectrum of the operator 𝐻( ̂𝑝, ̂𝑞). However,

all these points are real due to the self-adjointness of the operator �̂�(𝐻).

3. Spectral problem for a quadratic pencil

Let 𝐴 ∈ ℳ be an arbitrary observable. For brevity, we take

�̂�(𝐴) = ̂𝐴, �̂�(𝐴2) = ̂𝐴2 + �̂�.

If the von Neumann rule is not satisfied, then two eigenvalue problems arise
here:
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1) classic problem

�̂�(𝐴 − 𝜆)𝜓 = 0
or

̂𝐴𝜓 = 𝜆𝜓;
2) eigenvalue problem for a quadratic operator pencil

�̂�((𝐴 − 𝜆)2)𝜓 = 0

or
( ̂𝐴 − 𝜆 ̂𝐸)2𝜓 + �̂�𝜓 = 0.

In standard quantum mechanics, �̂� = 0 and these problems are indistin-
guishable. The meaning of the first one has been discussed many times, but
the second problem has a clear meaning. Expression

(𝜓, 𝑂((𝐴 − 𝜆)2)𝜓) = ⟨(𝐴 − 𝜆)2⟩

is the mean square deviation of the observable value 𝐴 from the value 𝜆 for
the system in the 𝜓 state. In mechanics with a positive distribution function,
which is the Kuryshkin–Wodkiewicz mechanics, this value coincides with

⟨(𝐴 − 𝜆)2⟩ = ∬
ℝ2𝑛

(𝐴(𝑝, 𝑞) − 𝜆)2𝑓𝑑𝑝𝑑𝑞

and therefore is non-negative. The same is true in standard quantum mechan-
ics, but for a different reason:

⟨(𝐴 − 𝜆)2⟩ = ∫
ℝ

(𝜇 − 𝜆)2𝑑(𝜓, �̂�𝜇𝜓) ⩾ 0.

If we assume that �̂� is small, then the eigenvalues of these spectral problems
are close to each other. Let us study this circumstance in more detail.

But first, we note that in [19] we were looking for the 𝜓 states that provide
a minimum to this expression for fixed values of the parameter 𝜆, for which

we took the eigenvalues of the operator ̂𝐴. It turned out that the minimum
values are nonzero, that is, there is some nonzero variance. However, the
problem can be formulated differently: to find the values of 𝜆 and the states
𝜓, at which the mean square deviation of the observed value 𝐴 from 𝜆 is

minimal. On the eigenfunctions of the pencil �̂�((𝐴 − 𝜆)2), this standard
deviation is zero, therefore, on the pencil eigenfunctions, the mean square
deviation of the observable 𝐴 from the eigenvalue 𝜆 has a minimum, i.e., zero
value. Thus, we can observe the value 𝐴 in ‘pure’ states corresponding to

the eigenfunctions of the operator ̂𝐴, or in ‘pure’ states that provide zero
root-mean-square deviation 𝐴 from some value other than ⟨𝐴⟩.

We have already used perturbation theory [19] to find states with minimal
variance, but now we will apply it to finding eigenfunctions of a quadratic
pencil.
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4. Spectrum of a quadratic pencil

Let us introduce a small parameter 𝜀 and consider the problem

( ̂𝐴 − 𝜆 ̂𝐸)2𝜓 + 𝜀�̂�𝜓 = 0. (1)

Let 𝜆0 be a single eigenvalue of the operator ̂𝐴, and 𝜓0 be the normalized
eigenfunction corresponding to it. Let us study the eigenvalues of a quadratic
pencil lying in a small neighborhood of this eigenvalue.

If the space under consideration is finite-dimensional, then all eigenvalues
are roots of the determinant

det(( ̂𝐴 − 𝜆 ̂𝐸)2 + 𝜀�̂�) = 0.

In a neighborhood of the point (𝜆, 𝜀) = (𝜆0, 0) the determinant

det( ̂𝐴 − 𝜆 ̂𝐸)
2

= det( ̂𝐴 − 𝜆 ̂𝐸)
2

has a zero of multiplicity 2, so

det(( ̂𝐴 − 𝜆 ̂𝐸)2 + 𝜀�̂�) = 𝑎(𝜆0 − 𝜆)2 + 𝜀𝑏 + … .

As is known from the theory of uniformization of curves [20], the curve

𝑎(𝜆0 − 𝜆)2 + 𝜀𝑏 + ⋯ = 0

in the plane 𝜆𝜀 has a node at the point (𝜆0, 0) through which two arcs of this
curve pass, which can be represented as two Puiseux series:

𝜆 − 𝜆0 = ±𝑐
√

𝜀 + … .

Thus, in the vicinity of a single eigenvalue of the operator ̂𝐴 there are two
eigenvalues of the quadratic pencil:

𝜆 = 𝜆0 ± 𝜆1
√

𝜀 + … . (2)

This can be justified in the case of infinite-dimensional spaces, for completely

continuous operators ̂𝐴, �̂� this can be done using the well-known results of the
perturbation theory of multiple eigenvalues [21]. Of course, in quantum theory,

the operator ̂𝐴 is pseudo-differential, and the question requires additional
study. For the time being, we assume without further justification that
the formally developed perturbation theory can be justified for this class of
operators as well.

To find the first coefficient in the expansion, as in regular perturbation
theory, we multiply (1) by 𝜓0:

(𝜓0, ( ̂𝐴 − 𝜆 ̂𝐸)2𝜓) = −𝜀(𝜓0, �̂�𝜓). (3)
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Since the operator 𝐴 is self-adjoint, we have

(𝜓0, ( ̂𝐴 − 𝜆 ̂𝐸)2𝜓) = (( ̂𝐴 − 𝜆∗ ̂𝐸)2𝜓0, 𝜓) = (𝜆0 − 𝜆)2(𝜓0, 𝜓) = 𝜀𝜆2
1(𝜓0, 𝜓).

Substituting this expression into (3) and reducing by 𝜀, we get

𝜆2
1(𝜓0, 𝜓) = −(𝜓0, �̂�𝜓).

Hence, in the limit 𝜀 → 0, we have 𝜆2
1 = −(𝜓0, �̂�𝜓0).

Substituting this expression into (2) and setting 𝜀 = 1, we have: in the

neighborhood of eigenvalue 𝜆0 of the operator ̂𝐴 there are two eigenvalues of

the quadratic pencil �̂�((𝐴 − 𝜆)2), namely 𝜆 = 𝜆0 ± 𝑖√(𝜓0, �̂�𝜓0) + … where

�̂� = �̂�(𝐴2) − ̂𝐴2.

5. Conclusion and discussion

Let us now discuss the physical meaning of the resulting splitting of the

eigenvalue of the operator �̂�(𝐴). The standard deviation of the observed
value 𝐴 from the value 𝜆 for a system in the 𝜓 state is given by

(𝜓, �̂�((𝐴 − 𝜆)2)𝜓) = ⟨(𝐴 − 𝜆)2⟩.

This expression is non-negative both in standard quantum mechanics and
in Kuryshkin–Wodkiewicz mechanics. It reaches zero on the eigenvectors of

the quadratic pencil �̂�((𝐴 − 𝜆)2).
In standard quantum mechanics

�̂�((𝐴 − 𝜆)2) = ( ̂𝐴 − 𝜆)2

and therefore the eigenvectors of the pencil coincide with the eigenvectors of

the operator ̂𝐴. Therefore, the minimum standard deviation will be on those

values of 𝜆 that are eigenvalues of the operator ̂𝐴. They are traditionally
considered as observed values of 𝐴.

In the mechanics of Kuryshkin–Wodkiewicz

�̂�((𝐴 − 𝜆)2) = ( ̂𝐴 − 𝜆)2 + �̂�

and, as we just found out, the minimum standard deviation will be at

those values of 𝜆 that differ from the eigenvalues 𝜆𝑛 of the operator ̂𝐴
by ±𝑖√(𝜓𝑛, �̂�𝜓𝑛).

Thus, the observed values of 𝐴 will slightly differ from the eigenvalues of

the operator ̂𝐴. If ⟨�̂�⟩ > 0, then this difference will manifest itself in the
appearance of an imaginary additive, as one would expect in a dissipative
quantum system. From this, two conclusions can be drawn.
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Firstly, the transition to the root-mean-square deviation makes it possible to
remove the difficulty with the reality of the spectrum of self-adjoint operators
and obtain the expected dissipation in the Kuryshkin–Wodkiewicz mechanics.

Secondly, one of the two eigenvalues into which the eigenvalue ̂𝐴 splits has
the sign of the imaginary part corresponding to dissipation, and the second
inevitably has a sign indicating antidissipation. We have already encountered
a similar circumstance in the development of perturbation theory in the
mathematical theory of waveguides [22], [23]: the spectral parameter 𝜆 should
be considered as a point on the Riemann surface, only one sheet of which is
physical, to which attention has been first drawn by V.P. Shestopalov [24]. In
the case of Kuryshkin–Wodkiewicz mechanics, the eigenvalues of the operator

�̂�(𝐴) are branch points on the Riemann surface, one of whose sheets describes
a dissipative quantum system.
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Комплексные собственные значения в квантовой
механике Курышкина–Вудкевича

А. В. Зорин 1, М. Д. Малых1, 2, Л. А. Севастьянов1, 2

1 Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2 Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская обл., Россия, 141980

Аннотация. Рассматривается одна из возможных версий квантовой механики,
известная как квантовая механика Курышкина–Вудкевича. В этой версии су-
ществует положительная квантовая функция распределения, но, в расплату за
это, правило квантования фон Неймана заменено более сложным правилом, при
котором наблюдаемой величине 𝐴 ставится в соответствие псевдодифференци-

альный оператор �̂�(𝐴). Эта версия представляет собой пример диссипативной
квантовой системы и поэтому ожидалось, что собственные значения гамильто-
ниана должны иметь мнимые части. Однако точечный спектр гамильтониана
водородоподобного атома в этой теории оказался вещественным. В настоящей
статье мы предлагаем следующее объяснение этого парадокса. Традиционно при-
нимают, что в некотором состоянии 𝜓 величина 𝐴 равна 𝜆, если 𝜓 — собственная

функция оператора �̂�(𝐴). При этом дисперсия �̂�((𝐴 − 𝜆)2)𝜓 равна нулю в стан-
дартной версии квантовой механике, но не равна нулю в механике Курышкина.
Поэтому можно рассмотреть такой спектр значений и соответствующих им со-

стояний, при которых дисперсия �̂�((𝐴 − 𝜆)2) равна нулю. В статье исследован

спектр квадратичного пучка �̂�(𝐴2) − 2�̂�(𝐴)𝜆 + 𝜆2 ̂𝐸 методами теории возмуще-

ний в предположении малости дисперсии �̂�(𝐴) = �̂�(𝐴2)−�̂�(𝐴)2 наблюдаемой 𝐴.
Показано, что в окрестности вещественного собственного значения 𝜆 оператора

�̂�(𝐴), имеется два собственных значения операторного пучка, которые в первом

порядке теории возмущений различаются на величину ±𝑖√⟨�̂�⟩.
Ключевые слова: модели квантовых измерений, возмущение дискретного спек-
тра, комплексные собственные значения, пучки операторов
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Abstract. The model of adiabatic waveguide modes (AWMs) in a smoothly irregular
integrated optical waveguide is studied. The model explicitly takes into account the
dependence on the rapidly varying transverse coordinate and on the slowly varying
horizontal coordinates. Equations are formulated for the strengths of the AWM fields
in the approximations of zero and first order of smallness. The contributions of the
first order of smallness introduce depolarization and complex values characteristic of
leaky modes into the expressions of the AWM electromagnetic fields. A stable method
is proposed for calculating the vertical distribution of the electromagnetic field of
guided modes in regular multilayer waveguides, including those with a variable number
of layers. A stable method for solving a nonlinear equation in partial derivatives of
the first order (dispersion equation) for the thickness profile of a smoothly irregular
integrated optical waveguide in models of adiabatic waveguide modes of zero and
first orders of smallness is described. Stable regularized methods for calculating the
AWM field strengths depending on vertical and horizontal coordinates are described.
Within the framework of the listed matrix models, the same methods and algorithms
for the approximate solution of problems arising in these models are used. Verification
of approximate solutions of models of adiabatic waveguide modes of the first and
zero orders is proposed; we compare them with the results obtained by other authors
in the study of more crude models.

Key words and phrases: smoothly irregular thin–film dielectric waveguides, adia-
batic waveguide modes, regularized methods for calculating field strengths

1. Introduction

The adiabatic waveguide propagation of optical radiation was previously
described in optical fibers using the method of cross sections in the papers
by B. Z. Katsenelenbaum [1], V.V. Shevchenko [2], M.V. Fedoruk [3], and
in integrated optical waveguides using the method of adiabatic waveguide
modes — in the papers by A.A. Egorov, L.A. Sevastyanov and their co-
authors [4]–[6]. In the papers by A. L. Sevastyanov [7], [8], the model of
adiabatic waveguide modes was substantiated.

It should be noted that in the last decade there has been an interest in the
adiabatic waveguide propagation of electromagnetic radiation for the study
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of coherent quantum effects in atomic, molecular or condensed matter sys-
tems. These effects are difficult to investigate because of dephasing effects or
fast temporal dynamics. Optical Bloch oscillations [9], quantum-mechanical
analogy of dynamic mode stabilization and radiation loss suppression [10],
quantum enhancement and suppression of tunneling in directional optical cou-
plers [11], [12], as well as Landau–Zener tunneling in coupled waveguides [13]
can serve as optical models of coherent quantum effects. An interesting ex-
ample is the three-level system with stimulated Raman adiabatic passage
(STIRAP), which vividly illustrates counterintuitive quantum effects [14]–
[19].

2. Model of adiabatic waveguide modes in a multilayer
waveguide

Let us specify the class of integrated optical waveguides to be considered
and the electromagnetic radiation propagating through them.

1. Electromagnetic radiation is polarized, monochromatic with a given
wavelength 𝜆 ∈ [ 380; 780 ], nm.

2. The thickness of the guiding layer of the base thin-film waveguide is
comparable to the wavelength of the propagating monochromatic elec-
tromagnetic radiation 𝑑 ∼ 𝜆.

3. The surface of the additional guiding layer (𝑥 = ℎ(𝑦, 𝑧)) satisfies the

following restrictions: ∣𝜕ℎ
𝜕𝑦

, 𝜕ℎ
𝜕𝑧

∣ ≪ ℎ𝑘0
2𝜋

, ∣Δ𝜑
∇𝜑

∣ ≪ 𝑘0
2𝜋

.
4. The integrated optical waveguide is a material medium consisting of

dielectric subregions, which together fill the entire three-dimensional
space.

5. The permittivities of the subregions are different and real-valued, and
the permeability is everywhere equal to that of vacuum.

6. There are no external currents and charges. Therefore, in the absence of
foreign currents and charges, the induced currents and charges are zero.

7. The Cartesian coordinate system is introduced as follows: the interfaces
between the dielectric media of the basic three-layer waveguide are parallel
to the 𝑦𝑂𝑧 plane. The subdomains of the space corresponding to the
cover and substrate layers are infinite; the additional guiding layers are
asymptotically parallel to the 𝑦𝑂𝑧 plane. Therefore, 𝜀 = 𝜀(𝑥).

In Cartesian coordinates associated with the geometry of the substrate
(or a three-layer planar dielectric waveguide underlying a smoothly irregular
integrated optical waveguide), with the introduced restrictions taken into
account, the Maxwell equations have the form

𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦

𝜕𝑧
= 𝜀

𝑐
𝜕𝐸𝑥
𝜕𝑡

, 𝜕𝐸𝑧
𝜕𝑦

−
𝜕𝐸𝑦

𝜕𝑧
= −𝜇

𝑐
𝜕𝐻𝑥
𝜕𝑡

,

𝜕𝐻𝑥
𝜕𝑧

− 𝜕𝐻𝑧
𝜕𝑥

= 𝜀
𝑐

𝜕𝐸𝑦

𝜕𝑡
, 𝜕𝐸𝑥

𝜕𝑧
− 𝜕𝐸𝑧

𝜕𝑥
= −𝜇

𝑐
𝜕𝐻𝑦

𝜕𝑡
,

𝜕𝐻𝑦

𝜕𝑥
− 𝜕𝐻𝑥

𝜕𝑦
= 𝜀

𝑐
𝜕𝐸𝑧
𝜕𝑡

,
𝜕𝐸𝑦

𝜕𝑥
− 𝜕𝐸𝑥

𝜕𝑦
= −𝜇

𝑐
𝜕𝐻𝑧
𝜕𝑡

.

(1)
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Note that variable 𝑥 is fast, and variables 𝑦, 𝑧 are slow with respect to the
small dimensioned parameter 1/𝜔. The approximate solutions to the Maxwell
equations (1) within the asymptotic method [20], [21], with the separation of
slow and fast variables taken into account are sought in the form

⃗𝐸(𝑥, 𝑦, 𝑧, 𝑡) =
∞

∑
𝑠=0

⃗𝐸𝑠(𝑥; 𝑦, 𝑧)
(−𝑖𝜔)𝛾+𝑠 exp {𝑖𝜔𝑡 − 𝑖𝑘0𝜑(𝑦, 𝑧)} , (2)

�⃗�(𝑥, 𝑦, 𝑧, 𝑡) =
∞

∑
𝑠=0

�⃗�𝑠(𝑥; 𝑦, 𝑧)
(−𝑖𝜔)𝛾+𝑠 exp {𝑖𝜔𝑡 − 𝑖𝑘0𝜑(𝑦, 𝑧)} . (3)

Keeping in the solution (2), (3) the terms of the zero and first order of
smallness leads to the model of adiabatic waveguide modes (AWMs) that
describes the guided-wave propagation of a polarized optical radiation through
irregular segments of smoothly irregular (multilayer) optical waveguides.
In regular parts, the adiabatic waveguide modes become normal modes of
a regular planar optical waveguide.

In the notation ⃗𝐸𝑠(𝑥; 𝑦, 𝑧), �⃗�𝑠(𝑥; 𝑦, 𝑧), the separation by a semicolon means
the following assumptions:

∥𝜕 ⃗𝐸𝑠 (𝑥; 𝑦, 𝑧)
𝜕𝑦

∥ , ∥𝜕 ⃗𝐸𝑠(𝑥; 𝑦, 𝑧)
𝜕𝑧

∥ ∼ 1
𝜔

∥𝜕 ⃗𝐸𝑠 (𝑥; 𝑦, 𝑧)
𝜕𝑥

∥ (4)

and

∥𝜕�⃗�𝑠(𝑥; 𝑦, 𝑧)
𝜕𝑦

∥ , ∥𝜕�⃗�𝑠 (𝑥; 𝑦, 𝑧)
𝜕𝑧

∥ ∼ 1
𝜔

∥𝜕�⃗�𝑠(𝑥; 𝑦, 𝑧)
𝜕𝑥

∥ (5)

for each 𝑠, where ‖‖ is the Hilbert norm of functions of 𝑥, and 𝜔 is the circular
frequency of the propagating monochromatic electromagnetic radiation.

2.1. AWM model equations in the zero-order approximation

In Ref. [7] it was shown that the zero-order approximation (within the
asymptotic approach) of the waveguide solution to the Maxwell equations is
given by the following relations:

{
⃗𝐸(𝑥, 𝑦, 𝑧, 𝑡)

�⃗�(𝑥, 𝑦, 𝑧, 𝑡)
} = {

⃗𝐸0(𝑥; 𝑦, 𝑧)
�⃗�0(𝑥; 𝑦, 𝑧)

} exp {𝑖𝜔𝑡 − 𝑖𝜑(𝑦, 𝑧)} , (6)

with

𝜀
𝜕𝐸𝑦

0
𝜕𝑥

= −𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐻𝑦
0 − 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐻𝑧

0 , (7)

𝜀𝜕𝐸𝑧
0

𝜕𝑥
= 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐻𝑦

0 + 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐻𝑧
0 , (8)
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𝜇
𝜕𝐻𝑦

0
𝜕𝑥

= 𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐸𝑦
0 + 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐸𝑧

0 , (9)

𝜇𝜕𝐻𝑧
0

𝜕𝑥
= −𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐸𝑦

0 − 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐸𝑧
0 (10)

and

𝐸𝑥
0 = −𝜕𝜑

𝜕𝑦
1
𝜀

𝐻𝑧
0 + 𝜕𝜑

𝜕𝑧
1
𝜀

𝐻𝑦
0 , (11)

𝐻𝑥
0 = 𝜕𝜑

𝜕𝑦
1
𝜇

𝐸𝑧
0 − 𝜕𝜑

𝜕𝑧
1
𝜇

𝐸𝑦
0 , (12)

as well as

(𝜕𝜑
𝜕𝑦

(𝑦, 𝑧))
2

+ (𝜕𝜑
𝜕𝑧

(𝑦, 𝑧))
2

= 𝑛2
eff(𝑦, 𝑧). (13)

For a thin-film multilayer waveguide consisting of optically homogeneous
layers, the conditions for matching the electromagnetic field at the interfaces
between the media are valid, namely

�⃗� × ⃗𝐸− + �⃗� × ⃗𝐸+ = 0, (14)

�⃗� × �⃗�− + �⃗� × �⃗�+ = 0. (15)

In addition, the asymptotic conditions

𝐸0
𝑦 , 𝐸0

𝑧 , 𝐻0
𝑦 , 𝐻0

𝑧 −−−−→
𝑥→±∞

0 (16)

are fulfilled.
The system of Eqs. (7)–(10), (16) for any fixed (𝑦, 𝑧) defines the problem of

finding eigenvalues (∇⃗𝜑)
2

𝑗
(𝑦, 𝑧) and eigenfunctions (𝐸𝑗

𝑦, 𝐸𝑗
𝑧, 𝐻𝑗

𝑦, 𝐻𝑗
𝑧)

𝑇
(𝑦, 𝑧),

normalized to unity:

∞

∫
−∞

∣𝐸𝑗
𝑦∣

2
𝑑𝑥 = 1,

∞

∫
−∞

∣𝐻𝑗
𝑦∣

2
𝑑𝑥 = 1. (17)

2.2. AWM model equations in the first approximation

We continue to apply the approach based on the small parameter expansion
and arrive at the system of equations in the first approximation of the method:

− 𝜕𝐸𝑧
1

𝜕𝑥
+ 𝑖𝑘0

𝜀
𝜕𝜑
𝜕𝑧

(𝜕𝜑
𝜕𝑦

𝐻𝑧
1 − 𝜕𝜑

𝜕𝑧
𝐻𝑦

1 ) + 𝑖𝑘0𝜇𝐻𝑦
1 =

= 𝑖𝜔𝜕𝐸𝑥
0

𝜕𝑧
+ 𝑖𝜔

𝜀
𝜕𝜑
𝜕𝑧

(
𝜕𝐻𝑦

0
𝜕𝑧

− 𝜕𝐻𝑧
0

𝜕𝑦
) , (18)
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𝜕𝐸𝑦
1

𝜕𝑥
− 𝑖𝑘0

𝜀
𝜕𝜑
𝜕𝑦

(𝜕𝜑
𝜕𝑦

𝐻𝑧
1 − 𝜕𝜑

𝜕𝑧
𝐻𝑦

1 ) + 𝑖𝑘0𝜇𝐻𝑧
1 =

= −𝑖𝜔𝜕𝐸𝑥
0

𝜕𝑦
− 𝑖𝜔

𝜀
𝜕𝜑
𝜕𝑦

(
𝜕𝐻𝑦

0
𝜕𝑧

− 𝜕𝐻𝑧
0

𝜕𝑦
) , (19)

− 𝜕𝐻𝑧
1

𝜕𝑥
+ 𝑖𝑘0

𝜇
𝜕𝜑
𝜕𝑧

(𝜕𝜑
𝜕𝑧

𝐸𝑦
1 − 𝜕𝜑

𝜕𝑦
𝐸𝑧

1) − 𝑖𝑘0𝜀𝐸𝑦
1 =

= 𝑖𝜔𝜕𝐻𝑥
0

𝜕𝑧
− 𝑖𝜔

𝜇
𝜕𝜑
𝜕𝑧

(
𝜕𝐸𝑦

0
𝜕𝑧

− 𝜕𝐸𝑧
0

𝜕𝑦
) , (20)

𝜕𝐻𝑦
1

𝜕𝑥
− 𝑖𝑘0

𝜇
𝜕𝜑
𝜕𝑦

(𝜕𝜑
𝜕𝑧

𝐸𝑦
1 − 𝜕𝜑

𝜕𝑦
𝐸𝑧

1) − 𝑖𝑘0𝜀𝐸𝑧
1 =

= −𝑖𝜔𝜕𝐻𝑥
0

𝜕𝑦
+ 𝑖𝜔

𝜇
𝜕𝜑
𝜕𝑦

(
𝜕𝐸𝑦

0
𝜕𝑧

− 𝜕𝐸𝑧
0

𝜕𝑦
) , (21)

𝐸𝑥
1 + 1

𝜀
(𝜕𝜑

𝜕𝑦
𝐻𝑧

1 − 𝜕𝜑
𝜕𝑧

𝐻𝑦
1 ) = 1

𝜀
𝜔
𝑘0

(
𝜕𝐻𝑦

0
𝜕𝑧

− 𝜕𝐻𝑧
0

𝜕𝑦
) , (22)

𝐻𝑥
1 + 1

𝜇
(𝜕𝜑

𝜕𝑧
𝐸𝑦

1 − 𝜕𝜑
𝜕𝑦

𝐸𝑧
1) = − 1

𝜇
𝜔
𝑘0

(
𝜕𝐸𝑦

0
𝜕𝑧

− 𝜕𝐸𝑧
0

𝜕𝑦
) . (23)

The system of zero order equations (7)–(12) coincides with the system of
equations (18)–(23), if in the latter we put zero into the right-hand sides (the
contributions with zero-order quantities).

Substituting the solutions of system (7)–(12) into the right-hand sides of
equations (18)–(23) leads to the following form of expressions for electromag-
netic fields in the first (plus zero) approximation

⃗𝐸(𝑥; 𝑦, 𝑧) = ⃗𝐸0(𝑥; 𝑦, 𝑧) + 𝑖
𝜔

⃗𝐸1(𝑥; 𝑦, 𝑧),

�⃗�(𝑥; 𝑦, 𝑧) = �⃗�0(𝑥; 𝑦, 𝑧) + 𝑖
𝜔

�⃗�1(𝑥; 𝑦, 𝑧).

These fields are necessarily complex-valued. Thus, the contributions of
the first order of smallness introduce into the expressions for the AWM
electromagnetic fields the characteristic features of leaky modes.

3. Implementation of numerical experiment

In Ref. [22], an hierarchy of mathematical models for the adiabatic waveg-
uide propagation of optical radiation in integrated optical waveguides was
proposed. The AWM model consists in representing the electromagnetic field
in the form (6). The dependences of the field strengths on the fast vari-
able have the form (7)–(12) in the zero approximation and (18)–(23) in the
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first approximation. Of course, the rigging conditions (13)–(17) of the AWM
mathematical model are assumed to be fulfilled.

3.1. Algorithm for calculating the AWM electromagnetic field

А. Stage 1: reconstructing the dependence of the AWM electromagnetic
field on the fast variable at fixed values of the slow variables

1. Solve the system (7)–(12) for ⃗𝐸0, �⃗�0 describing the AWM model in
the zero order of smallness in 1/𝜔, rigged with (6), (18)–(23) using the
method, asymptotic with respect to 𝛿, to obtain systems for contributions
of different orders of smallness with respect to 𝛿.

2. Solve the system (13)–(17) for ⃗𝐸1, �⃗�1 describing the AWM model in
the first order of smallness in 1/𝜔, rigged with (6), (18)–(23) using the
method, asymptotic with respect to 𝛿, to obtain systems for contributions
of different orders of smallness with respect to 𝛿.

В. Stage 2: reconstructing the dependence of the AWM electromagnetic
field on the slow variables.

In Ref. [7] it is shown how the general solutions of the system of
ODEs (7)–(12) and (13)–(17), represented in the form of expansion in the

fundamental system of solutions with indefinite coefficients ( ⃗𝐴, �⃗�)
𝑇
, can be

reduced to a homogeneous system of linear algebraic equations (SLAE) with
respect to these indefinite coefficients using the conditions (14)–(16).

3. Implement stable methods of approximate solutions of the homogeneous
SLAE

�̂�0[(𝑧, 𝑦), ℎ(𝑧, 𝑦), 𝜑(𝑧, 𝑦), ∇⃗𝜑(𝑧, 𝑦)]( ⃗𝐴0(𝑧, 𝑦), �⃗�0(𝑧, 𝑦))
𝑇

= ( ⃗0, ⃗0)
𝑇
, (24)

satisfying the conditions

det{�̂�0} [(𝑧, 𝑦), ℎ(𝑧, 𝑦), 𝜑(𝑧, 𝑦), ∇⃗𝜑(𝑧, 𝑦)] = 0. (25)

4. Implement stable methods of approximate solutions of the homogeneous
SLAE

�̂�1 [(𝑧, 𝑦), ℎ(𝑧, 𝑦), 𝜑(𝑧, 𝑦), ∇⃗𝜑(𝑧, 𝑦)] ( ⃗𝐴1(𝑧, 𝑦), �⃗�1(𝑧, 𝑦))
𝑇

= ( ⃗0, ⃗0)
𝑇

(26)

satisfying the conditions

det{�̂�1} [(𝑧, 𝑦), ℎ(𝑧, 𝑦), 𝜑(𝑧, 𝑦), ∇⃗𝜑(𝑧, 𝑦)] = 0. (27)

In both cases, the solution for the field strengths depending on the fast
variable 𝑥 for a fixed value of the slow variables 𝑦, 𝑧 makes it possible, using
the rigging (6), (18)–(23), to find the dependence of the AWM electromagnetic
field for all values of the slow variables (see, e.g., Ref. [8]).

Homogeneous systems of linear algebraic equations (24) and (26) are
uniquely solvable under conditions (25) and (27). In both cases, these equa-

tions with respect to the derivative ∇⃗𝜑(𝑧, 𝑦) are partial differential equations
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of the form
𝐹 0 (∇⃗𝜑(𝑧, 𝑦); ℎ(𝑧, 𝑦), ∇⃗ℎ(𝑧, 𝑦)) = 0 (28)

and
𝐹 1 (∇⃗𝜑(𝑧, 𝑦); ℎ(𝑧, 𝑦), ∇⃗ℎ(𝑧, 𝑦)) = 0. (29)

5. Solve Eqs. (28) and (29) numeric-symbolically using the Cauchy method
(see, e.g. [23], [24]).

6. For each ∇⃗𝜑(𝑧, 𝑦) calculate ( ⃗𝐴0 (𝑧, 𝑦, ∇⃗𝜑(𝑧, 𝑦)) , �⃗�0 (𝑧, 𝑦, ∇⃗𝜑(𝑧, 𝑦)))
𝑇

using the Tikhonov regularization method, which consists in minimizing
the Nelder–Mead functional:

𝐹 0 (𝛽) = ∥�̂�0 [(𝑧, 𝑦), ℎ(𝑧, 𝑦), 𝜑(𝑧, 𝑦), ∇⃗𝜑(𝑧, 𝑦)] ( ⃗𝐴0(𝑧, 𝑦), �⃗�0(𝑧, 𝑦))
𝑇
∥
2
+

+𝛼∥(( ⃗𝐴0(𝑧, 𝑦)− ⃗𝐴0 (𝑧 − Δ𝑧, 𝑦 − Δ𝑦)) ,(�⃗�0(𝑧, 𝑦)−�⃗�0 (𝑧 − Δ𝑧, 𝑦 − Δ𝑦)))
𝑇
∥
2
.

С. Stage 3: verifying the obtained numerical results and AWM models of
the first and zero orders of smallness.

The validation of the asymptotic method of constructing AWM models is

carried out by comparing solutions ⃗𝐸1, �⃗�1 and ⃗𝐸0, �⃗�0.
The formulation of the third condition from the set of conditions 1–7 implic-

itly implies the presence of the second small parameter 𝛿 ≡ max
𝑦,𝑧

|Δ𝜑|
𝑘0 ∣∇⃗𝜑∣

≪ 1

(see the beginning of the first section).
To verify the obtained approximate solutions of the zero-order model of

adiabatic modes, we compare them with the results obtained by other authors
using more crude models:

— matrix model of adiabatic modes in the approximation of horizontal
boundary conditions (a stepped set of plates for a Luneburg thin-film
generalized waveguide lens)

Such configurations are impossible in optical fibers and can be imple-
mented in the case of adiabatic waveguide propagation of a nonparallel
(converging or diverging) 2D beam of rays, normal to a nonplanar (2D)
wave front.

— matrix model of comparison waveguides (passing to the horizontal bound-
ary conditions + replacement 𝛽𝑦 → 0, 𝛽𝑧 → 𝛽).

Thus, three levels of making the AWM model cruder were used.

4. Discussion and conclusion

In the paper, we consider three levels of making the AWM model cruder:

— replacing the first-order AWM model with the zero-order one;
— replacing the tangential boundary conditions with the horizontal ones —

the matrix model still having no name;
— replacing the tangential boundary conditions with the horizontal ones

and 𝛽𝑦 → 0, 𝛽𝑧 → 𝛽 — the matrix model of comparison waveguides.
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Two latter approximations have been used by other authors.
Within the listed matrix models, similar methods and algorithms are used

for the approximate solution of problems, arising in the models. The method
of studying the matrix model of adiabatic waveguide modes in the zero
and first approximation of a smoothly irregular multilayer integrated optical
waveguide is proposed for the first time. It allows to grade the crudeness of
the approximate models used by other authors and approximate solutions in
the adiabatic mode models of different order of smallness.
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Исследование модели адиабатических волноводных
мод для плавно-нерегулярных

интегрально-оптических волноводов

А. Л. Севастьянов

Национальный исследовательский университет «Высшая школа экономики»,
Покровский бульвар, д. 11, Москва, 109028, Россия

Аннотация. Проведено исследование модели адиабатических волноводных
мод плавно-нерегулярного интегрально-оптического волновода. В модели яв-
но учтена зависимость от быстропеременной поперечной координаты и от
медленно-переменных горизонтальных координат. Сформулированы уравнения
для напряженностей полей АВМ в приближениях нулевого и первого порядка
малости. Вклады первого порядка малости вносят в выражения электромаг-
нитных полей АВМ деполяризацию и комлекснозначность, т.е. характерные
черты вытекающих мод. Предложен устойчивый метод вычисления вертикаль-
ного распределения электромагнитного поля направляемых мод регулярных
многослойных волноводов, в том числе с переменным числом слоев. Описан
устойчивый метод решения нелинейного уравнения в частных производных
первого порядка (дисперсионного уравнения) для профиля толщины плавно-
нерегулярного интегрально-оптического волновода в моделях адиабатических
волноводных мод нулевого и первого порядков малости. Описаны устойчивые ре-
гуляризованные методы вычисления напряженностей полей АВМ в зависимости
от вертикальных и горизонтальных координат. В рамках перечисленных мат-
ричных моделей используются одинаковые методы и алгоритмы приближенного
решения задач, возникающих в этих моделях. Предложена верификация прибли-
женных решений моделей адиабатических волноводных мод первого и нулевого
порядков; проведено сравнение их с результатами других авторов, полученных
при исследовании более грубых моделей.

Ключевые слова: модели квантовых измерений, возмущение дискретного спек-
тра, комплексные собственные значения, пучки операторов
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Abstract. The paper presents a study of three queuing systems with a threshold
renovation mechanism and an inverse service discipline. In the model of the first type,
the threshold value is only responsible for activating the renovation mechanism (the
mechanism for probabilistic reset of claims). In the second model, the threshold value
not only turns on the renovation mechanism, but also determines the boundaries of
the area in the queue from which claims that have entered the system cannot be
dropped. In the model of the third type (generalizing the previous two models), two
threshold values   are used: one to activate the mechanism for dropping requests, the
second — to set a safe zone in the queue. Based on the results obtained earlier, the
main time-probabilistic characteristics of these models are presented. With the help
of simulation modeling, the analysis and comparison of the behavior of the considered
models were carried out.

Key words and phrases: queuing system, active queue management, renovation
mechanism, threshold, time-probabilistic characteristics, GPSS modelling

1. Introduction

According to [1] the problem of congestion avoidance for communication
networks does not have a satisfying solution, so the development and the
analysis of new active queue management (AQM) algorithms appears to be
the actual task for researches [2]–[13] and practitioners [14]–[24].

In this paper we will consider queuing systems with probabilistic renovation
mechanism, which allows to adjust the number of packets in the system
by dropping (resetting) them from the queue depending on the ratio of
a certain control parameter with specified thresholds [25], [26] at the moment
of the end of service on the device (server) [27]–[29] in contrast to standard
RED algorithm, when a possible reset occurs at the time of the next packet
arrival and the control parameter is an exponentially weighted average queue
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length [30]–[34]. In our models the renovation mechanism uses one or two
thresholds (which determine as the place in the buffer from which the packets
are dropped, but also the place to which the reset of packets occurs).

The previous works devoted to the analysis of queuing systems with thresh-
old based renovation are [35]–[38]. In [35], [36] some aspects of using the
renovation mechanism (different types of renovation, definitions and brief
overview were also given) with one or several thresholds as the mathematical
models of active queue management mechanisms were considered. Some re-
sults of comparing classic RED algorithm with renovation mechanism were
presented. In [37] two queuing models with threshold based renovation mecha-
nism were presented: in the first model the threshold value is only responsible
for activating the renovation mechanism (the mechanism for probabilistic re-
set of claims), in the second model the threshold value not only turns on the
renovation mechanism, but also determines the boundaries of the area in the
queue from which claims that have entered the system cannot be dropped.
In [38] the queuing system with two threshold values (one to activate the
mechanism for dropping requests, the second — to set a safe zone in the
queue) for renovation mechanism was investigated. All three queuing systems
have been studied for the service discipline FCFS (First Come First Served),
and in this article we will present some results for the discipline LCFS (Last
Come First Served). The study will again be carried out using embedded
Markov chains. We will not consider in detail the derivation of the stationary
distribution of the number of customers (which does not depend on the ser-
vice discipline and presented in [37], [38]) and will focus only on the service
(reset) probabilities and on time characteristics.

The structure of the article is following. In the section 2 the results for the
queuing model, where the threshold value is only responsible for activating
the renovation mechanism, are presented; the section 3 is devoted to the
queuing model, in which the threshold value not only turns on the renovation
mechanism, but also determines the boundaries of the area in the queue from
which claims that have entered the system cannot be dropped. In section 4
the characteristics for the queuing system with two threshold values (one to
activate the mechanism for dropping requests, the second — to set a safe
zone in the queue) for renovation mechanism are presented. In section 5 the
results of GPSS simulation are considered. The last section 6 concludes the
paper with the short discussion.

2. The first model

Consider the 𝐺𝐼/𝑀/1/∞ queuing system, shown in the figure 1, with
the implemented renovation mechanism and a threshold value 𝑄1, which
determines the boundary in the queue, starting from which the dropping of
customers begins. If the current number of packets in the system 𝑖 ⩽ 𝑄1 + 1
(the threshold value 𝑄1 is not been overcome), then none of the packets will
be dropped from the queue. If the current number of packets in the system
𝑖 ⩾ 𝑄1 + 1, then with probability 𝑞 the packet finishing the service can drop
all packets from the queue and leave the system, or with probability 𝑝 = 1 − 𝑞
the serviced packet simply leaves the system.
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Figure 1. Queuing system model

2.1. The service probability and the loss probability for a received
packet

Let 𝑝(loss) be the probability that the packet received in the system will

be dropped by renovation mechanism and let 𝑝(loss)

𝑖 be the probability that
a packet arriving and finding in the system exactly 𝑖 packets will be dropped.

Let 𝑝(loss)

𝑖 (𝑥) be the probability that in a time less than 𝑥 a packet that
finds other 𝑖 packets in the system will be dropped. Then:

𝑝(loss)

𝑖 =
∞

∫
0

𝑝(loss)

𝑖,0 (𝑥)𝑑𝑥,

where 𝑝(loss)

𝑖,𝑗 (𝑥) is the probability that in time less than 𝑥 the packet, before

which there are 𝑖 other packets in the queue and after which there are other 𝑗
packets, will be dropped, 𝑖, 𝑗 ⩾ 0.

Let 𝜏 (loss)

𝑖,𝑗 (𝑥) be the probability density functions and let 𝜌(loss)

𝑖,𝑗 (𝑠) be the

Laplace–Stieltjes transforms. Then:

𝜏 (loss)

𝑖,𝑗 (𝑥) = (𝑝(loss)

𝑖,𝑗 (𝑥))
′

𝑥
, 𝜌(loss)

𝑖,𝑗 (𝑠) =
∞

∫
0

𝜏 (loss)

𝑖,𝑗 (𝑥)𝑑𝑥.

a) If 𝑖 + 𝑗 + 1 ⩽ 𝑄1 the threshold is not crossed, then:

𝜏 (loss)

𝑖,𝑗 (𝑥) =
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦)𝜏 (loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b.1) If 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 ⩽ 𝑄1, then:

𝜏 (loss)

𝑖,𝑗 (𝑥) =
min(𝑗,𝑖+𝑗+1−𝑄1)

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑘−1 ⋅ 𝑞 ⋅ 𝐴(𝑥)+

+
𝑦

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝min(𝑘,𝑖+1+𝑗−𝑄1)𝑑𝐴(𝑦)𝜏 (loss)

𝑖,𝑗 (𝑥 − 𝑦).
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b.2) If 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 > 𝑄1, then:

𝜏 (loss)

𝑖,𝑗 (𝑥) =
𝑗

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑘−1 ⋅ 𝑞 ⋅ 𝐴(𝑥)+

+
𝑦

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑘𝑑𝐴(𝑦)𝜏 (loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

Then for the Laplace–Stieltjes transforms 𝜌(loss)

𝑖,𝑗 (𝑠) we have:

a) If 𝑖 + 𝑗 + 1 ⩽ 𝑄1, then:

𝜌(loss)

𝑖,𝑗 (𝑠) =
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜌(loss)

𝑖,𝑗−𝑘+1(𝑠).

b.1) If 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 ⩽ 𝑄1, then:

𝜌(loss)

𝑖,𝑗 (𝑠) =
min(𝑗,𝑖+1+𝑗−𝑄1)

∑
𝑘=1

(−1)𝑘−1𝜇𝑘

(𝑘 − 1)!
𝛼(𝑘−1)(𝜇 + 𝑠) ⋅ 𝑝𝑘−1 ⋅ 𝑞+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝑝min(𝑘,𝑖+𝑗+1−𝑄1)𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜌(loss)

𝑖,𝑗−𝑘+1(𝑠).

b.2) If 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 > 𝑄1, then:

𝜌(loss)

𝑖,𝑗 (𝑠) =
𝑗

∑
𝑘=1

(−1)𝑘−1𝜇𝑘

(𝑘 − 1)!
𝛼(𝑘−1)(𝜇 + 𝑠) ⋅ 𝑝𝑘−1 ⋅ 𝑞+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝑝𝑘𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜌(loss)

𝑖,𝑗−𝑘+1(𝑠).

2.2. Time characteristics of the system

Let 𝑊 (serv)(𝑥) and 𝑊 (loss)(𝑥) be the distribution functions of the time spent
in the queue by the served and dropped packets.

2.2.1. Time characteristics for a served packet

𝑊 (serv)

𝑖,𝑗 (𝑥) — the intermediary distribution function of the time spent by

the served packet in the queue, if there are 𝑖 other packets in the queue before
the considered one and there are 𝑗 others after it. Then

𝑊 (serv)(𝑥) = (
∞

∑
𝑖=0

𝜋𝑖𝑊
(serv)

𝑖,0 (𝑥)) ⋅ 1
𝑝(serv)

,
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where steady-state probabilities 𝜋𝑖 (𝑖 ⩾ 0𝑓) are defined in [37], [38]. For

densities 𝑤(serv)

𝑖,𝑗 (𝑥) = (𝑊 (serv)

𝑖,𝑗 (𝑥))
′
, we will consider several cases.

a) Consider the case when 𝑖 + 𝑗 + 1 > 𝑄1, 0 ⩽ 𝑖 < 𝑄1

𝑤(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝(serv)

𝑖+1,𝑗𝐴(𝑥)+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝min(𝑘,𝑗+𝑖+1−𝑄1)𝑑𝐴(𝑦)𝑤(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

𝑝min(𝑘,𝑗+𝑖+1−𝑄1) =
⎧{
⎨{⎩

𝑝𝑘, 𝑘 ⩽ 𝑗 + 𝑖 + 1 − 𝑄1,
𝑝𝑗+1+𝑖−𝑄1,𝑘>𝑗+𝑖−𝑄1 .

b) Let’s move on to the case when 𝑖 ⩾ 𝑄1

𝑤(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝𝑗𝐴(𝑥) +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦)𝑤(serv)

𝑖,𝑗 (𝑥 − 𝑦).

If 𝑖 + 𝑗 + 1 ⩾ 𝑄1 the threshold is not crossed, then:

𝑤(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝐴(𝑥) +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦)𝑤(serv)

𝑖,𝑗 (𝑥 − 𝑦).

The Laplase–Stieltjes transforms for derived densities.

If 𝑖 + 𝑗 + 1 ⩽ 𝑄1, then:

𝜔(serv)

𝑖,𝑗 (𝑠) = (−1)𝑗𝜇𝑗+1

𝑗!
𝛼(𝑗)(𝜇 + 𝑠) +

𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇 + 𝑠)𝜔(serv)

𝑖,𝑗−𝑘+1(𝑠),

𝜔(serv)

𝑖,𝑗 (𝑠) =
∞

∫
0

𝑤(serv)

𝑖,𝑗 (𝑥)𝑒−𝑠𝑥𝑑𝑥 — Laplace–Stieltjes transform.

If 0 ⩽ 𝑖 < 𝑄1, but 𝑖 + 𝑗 + 1 > 𝑄1, then:

𝜔(serv)

𝑖,𝑗 (𝑠) = (−1)𝑗𝜇𝑗+1

𝑗!
𝛼(𝑗)(𝜇 + 𝑠) ⋅ 𝑝𝑗+𝑖+1−𝑄1+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝑝min(𝑘,𝑗+𝑖+1−𝑄1) ⋅ 𝜔(serv)

𝑖,𝑗−𝑘+1(𝑠).
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If 𝑖 ⩾ 𝑄1, then:

𝜔(serv)

𝑖,𝑗 (𝑠) = (−1)𝑗𝜇𝑗+1

𝑗!
𝛼(𝑗)(𝜇+𝑠)⋅𝑝𝑗 +

𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇+𝑠)⋅𝑝𝑘 ⋅𝜔(serv)

𝑖,𝑗−𝑘+1(𝑠).

2.2.2. Time characteristics for a dropped packet

𝑊 (loss)

𝑖,𝑗 (𝑥) — the intermediary distribution function of the time spent by

the dropped packet in the queue, if there are 𝑖 other packets in the queue
before the considered one and there are 𝑗 others after it. Then

𝑊 (loss)(𝑥) = (
∞

∑
𝑖=0

𝜋𝑖𝑊
(loss)

𝑖,0 (𝑥)) ⋅ 1
𝑝(loss)

.

For densities 𝑤(loss)

𝑖,𝑗 (𝑥) = (𝑊 (loss)

𝑖,𝑗 (𝑥))
′
, we also will consider several cases.

a) The first case is when 𝑖+1+𝑗 ⩽ 𝑄1, so the selected packet can be dropped
only due to the reception of new packets in the system and overcoming the
threshold value

𝑤(loss)

𝑖,𝑗 (𝑥) =
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦)𝑤(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b) for the second case, when 𝑖 + 1 + 𝑗 > 𝑄1, (𝑖 + 1 ⩽ 𝑄1), several subcases
should be considered:

b.1)

𝑤(loss)

𝑖,𝑗 (𝑥) =
min(𝑖,𝑖+1+𝑗−𝑄1)

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑘−1 ⋅ 𝑞 ⋅ 𝐴(𝑥)+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝min(𝑘,𝑖+1+𝑗−𝑄1)𝑑𝐴(𝑦)𝑤(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b.2) If 𝑖 + 1 > 𝑄1, then:

𝑤(loss)

𝑖,𝑗 (𝑥) =
𝑗

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑘−1 ⋅ 𝑞 ⋅ 𝐴(𝑥)+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑘𝑑𝐴(𝑦)𝑤(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

The Laplase–Stieltjes transforms for derived densities.
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a) For the case when 𝑖 + 𝑗 + 1 ⩽ 𝑄1 we have

𝜔(loss)

𝑖,𝑗 (𝑠) =
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜔(loss)

𝑖,𝑗−𝑘+1(𝑠).

b) For the case when 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 ⩽ 𝑄1 we obtain:

b.1)

𝜔(loss)

𝑖,𝑗 (𝑠) =
min(𝑗,𝑖+1+𝑗−𝑄1)

∑
𝑘=1

(−1)𝑘−1𝜇𝑘

(𝑘 − 1)!
𝛼(𝑘−1)(𝜇 + 𝑠) ⋅ 𝑝𝑘−1 ⋅ 𝑞+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝑝min(𝑘,𝑖+𝑗+1−𝑄1)𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜔(loss)

𝑖,𝑗−𝑘+1(𝑠).

b.2)

𝜔(loss)

𝑖,𝑗 (𝑠) =
𝑗

∑
𝑘=1

(−1)𝑘−1𝜇𝑘

(𝑘 − 1)!
𝛼(𝑘−1)(𝜇 + 𝑠) ⋅ 𝑝𝑘−1 ⋅ 𝑞+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝑝𝑘𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜔(loss)

𝑖,𝑗−𝑘+1(𝑠).

3. The second model

The second queuing model is also 𝐺𝐼/𝑀/1/∞ queuing system, shown in
the figure 2, with the implemented renovation mechanism, but the threshold
value 𝑄1 determines the boundary in the queue, starting from which the
dropping of customers begins and also determines the safe zone from where
packets cannot be dropped.

Figure 2. Queuing system model 2

If the current number of packets in the system 𝑖 is less or equal to 𝑄1 + 1
(the threshold value 𝑄1 has not been overcome), then none of the packets will
be dropped from the queue. If the current number of packets in the system
𝑖 is greater then 𝑄1 + 1, then with probability 𝑞 the packet, finishing the
service and leaving the system, will drop all packets from the queue (outside
the safe zone), or with probability 𝑝 = 1 − 𝑞 the serviced packet simply leaves
the system.
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Let 𝜋𝑖 be the steady-state probability distribution of the embedded Markov
chain that the packet comming into the system will find in it 𝑖 other packets
(𝑖 ⩾ 0) [37], [38].

Let 𝑝(loss) and 𝑝(serv) be the probability that the received packet in the
system will be dropped from the queue or will be transferred to service device.

The 𝑝(serv)

𝑖 is the auxiliary probability that the packet will be served if it
finds other 𝑖 packets in the system.

𝑝(serv) =
∞

∑
𝑖=0

𝑝(serv)

𝑖 ⋅ 𝜋𝑖 = 1 − 𝜋𝑄1+1 ⋅ 𝑞
(1 − 𝑔)(1 − 𝑝𝑔)

.

𝑝(loss) = 1 − 𝑝(serv) = 1 − (1 − 𝜋𝑄1+1 ⋅ 𝑞
(1 − 𝑔)(1 − 𝑝𝑔)

) ,

𝑝(loss) = 𝜋𝑄1+1 ⋅ 𝑞
(1 − 𝑔)(1 − 𝑝𝑔)

.

3.1. Time characteristics of the system

3.1.1. Time characteristics for serviced packets

𝑊 (serv)(𝑥) is the cumulative waiting time distribution function for the

accepted into the system packet, 𝑊 (serv)

𝑖 (𝑥) is the cumulative waiting time
distribution function for the accepted into the system packet, if at the moment
of its arrival there were 𝑖 other packets in the system. Then:

𝑊 (serv)(𝑥) = 1
𝑝(serv)

∞
∑
𝑖=0

𝑊 (serv)

𝑖 (𝑥) ⋅ 𝜋𝑖,

w
(serv)

𝑖 (𝑥) = (𝑊 (serv)

𝑖 (𝑥))
′

— probability density function.

The auxiliary functions 𝑊 (serv)

𝑖,𝑗 (𝑥) and w
(serv)

𝑖,𝑗 (𝑥) = (𝑊 (serv)

𝑖,𝑗 (𝑥))
′
(𝑖, 𝑗 ⩾ 0)

are the distribution functions and the densities of distribution functions of
the time spent by the served packet in the queue, if there were 𝑖 other packets
in the queue before the considered one and 𝑗 others after it.

a) If 𝑖 = 0, then the cumulative distribution functions 𝑊 (serv)

𝑖 (𝑥) = 1, (𝑥 =
0). b) If 0 < 𝑖 ⩽ 𝑄1 — (the safe zone is not completely filled) then the
received in the system packet will be in the safe zone (cannot be dropped).
Then

w
(serv)

𝑖 (𝑥) = 𝜇𝑒−𝜇𝑥 ⋅ 𝐴(𝑥) +
𝑥

∫
0

𝑒−𝜇𝑦𝑑(𝑦) ⋅ w
(serv)

𝑖,1 (𝑥 − 𝑦).

b.1) 0 < 𝑖 + 𝑗 ⩽ 𝑄1, 𝑗 > 0 (taking into account the packets that came after
ours), the threshold value 𝑄1 has not been overcome in the queue, that is,
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the renovation mechanism has not turned on. Then

w
(serv)

𝑖𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥 ⋅ 𝐴(𝑥) +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b.2) 𝑄1 < 𝑗 + 1 (𝑗 > 0) the renovation mechanism was activated, but our
packet is in a safe zone. Then

w
(serv)

𝑖𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑝𝑗−(𝑄1−𝑖)+1 ⋅ 𝐴(𝑥) + 𝜇𝑄1−𝑖+1𝑥𝑄1−𝑖

(𝑄1 − 𝑖)!
⋅ 𝑞𝑒−𝜇𝑥 ⋅ 𝐴(𝑥)+

+
1+(𝑗−(𝑄1−𝑖)−1)

∑
𝑘=1

̃𝜋𝑘(𝑗 − (𝑄1 − 𝑖) − 𝑘) ⋅ 𝜇𝑘+𝑄1−𝑖𝑥𝑘+𝑄1−𝑖−1

(𝑘 + 𝑄1 − 𝑖 − 1)!
𝑒−𝜇𝑥 ⋅ 𝐴(𝑥)+

+
𝑥

∫
0

𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w
(serv)

𝑖,𝑗+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗−(𝑄1−𝑖)−1

∑
𝑘=1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑘𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=1−(𝑄1−𝑖)

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑖−𝑄1−𝑖𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

w
(serv)

𝑖𝑗 (𝑥) =
𝑗−(𝑄1−1)

∑
𝑘=1

̃𝜋𝑘(𝑗 − (𝑄1 − 𝑖) − 𝑘) ⋅ 𝜇𝑘+𝑄1−𝑖𝑥𝑘+𝑄1−𝑖−1

(𝑘 + 𝑄1 − 𝑖 − 1)!
𝑒−𝜇𝑥 ⋅ 𝐴(𝑥)

+
𝑥

∫
0

𝑗−(𝑄1−𝑖)−1

∑
𝑘=1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑘𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=1−(𝑄1−𝑖)

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑖−𝑄1−𝑖𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

c) 𝑖 ⩾ 𝑄1 + 1 — at the time of receipt of our packet, the safe zone is filled
and there are packets outside the safe zone — the renovation mechanism is
enabled. Then

w
(serv)

𝑖,0 (𝑥) = 𝜇𝑒−𝜇𝑥𝑝 ⋅ 𝐴(𝑥) +
𝑥

∫
0

𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w
(serv)

𝑖,1 (𝑥 − 𝑦),

w
(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝𝑗+1𝐴(𝑥)+

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦⋅𝑝𝑘𝑑𝐴(𝑦)⋅w(serv)

𝑖,𝑗−𝑘+1(𝑥−𝑦).
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3.1.2. Time characteristics for dropped packets

Let 𝑊 (loss)(𝑥) be the cumulative distribution functions of the time spent
by the packet in the queue before dropping.

𝑊 (loss)(𝑥) = 1
𝑝(loss)

⋅
∞

∑
𝑖=0

𝑊 (loss)

𝑖 (𝑥)𝜋𝑖.

𝑊 (loss)

𝑖 (𝑥) is the conditional probability that in a time less than 𝑥 the packet
that has found exactly 𝑖 of other packets in the system will be dropped from

the queue. The auxiliary functions 𝑊 (loss)

𝑖,𝑗 (𝑥) and w
(loss)

𝑖,𝑗 (𝑥) = (𝑊 (loss)

𝑖,𝑗 (𝑥))
′

(𝑖, 𝑗 ⩾ 0) are the distribution functions and the densities of distribution
functions of the time spent by the dropped packet in the system, if there were
𝑖 other packets in the queue before the considered one and 𝑗 others after it.
a) 0 ⩽ 𝑖 ⩽ 𝑄1 (that is, the system was either empty, or at least there was

one free space in the safe zone)

𝑊 (loss)

𝑖 (𝑥) = 0.

b) 𝑄1 < 𝑖 (𝑖 ⩾ 𝑄1 + 1)

w
(loss)

𝑖,0 (𝑥) = 𝜇𝑒−𝜇𝑥𝑞 ⋅ 𝐴(𝑥) +
𝑥

∫
0

𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w
(loss)

𝑖,1 (𝑥 − 𝑦),

w
(loss)

𝑖,𝑗 (𝑥)
𝑗+1

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ ̃𝜋𝑘(𝑗 + 𝑖 − 𝑄1 − 𝑘)𝐴(𝑥)+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅

𝑗−𝑘

∑
𝑙=0

𝜋𝑘(𝑙)𝑑𝐴(𝑦) ⋅ w
(loss)

𝑖,𝑗−𝑘−𝑙+1(𝑥).

4. The third model

Consider the 𝐺𝐼/𝑀/1/∞ queuing system, shown in the figure 3.

Figure 3. Queuing system model 3

In this section, a single-server queueing system with an infinite queue
capacity and two threshold values is considered. Threshold values:
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— 𝑄1 — the threshold value in the queue, when overcoming which by the
queue length packets (from 𝑄1 + 1) will be dropped from the queue with
a probability 𝑞.

— 𝑄2 — the threshold value in the queue to which packets are dropped (i.e.
packets standing in the queue up to the 𝑄2 threshold are not dropped).

4.1. The service probability and loss probability of the received
packet

Let’s introduce the probability 𝑝(serv) that the packet, entering the system,

will be served, auxiliary probabilities 𝑝(serv)

𝑖 (𝑖 ⩾ 0) of incoming packet to
be served if there were other 𝑖 (𝑖 ⩾ 0) packets in the system, and auxiliary

probabilities 𝑝(serv)

𝑖,𝑗 (𝑥) that during the time 𝑥 the packet, which found exactly

𝑖 other packets in the system at the moment of arrival and behind which
there are 𝑗 more packets, will be served

𝑝(serv) =
∞

∑
𝑖=0

𝑝(serv)

𝑖 𝜋𝑖,

where 𝜋𝑖 — the stationary probabilities [37], [38].

Let’s consider several cases

a) The first one, when the system is empty: 𝑝(serv)

0 = 1.

b) The second case is when 1 ⩽ 𝑖 ⩽ 𝑄2, so 𝑝(serv)

𝑖 = 1.

c) The third case 𝑄2 < 𝑖 ⩽ 𝑄1 includes two subcases:

c.1) the first subcase, 𝑄2 + 1 ⩽ 𝑖 + 1 + 𝑗 ⩽ 𝑄1 + 1 — the 𝑄1 threshold in
the queue has not been overcome (taking into account the packets after the
considered one), that is, the renovation mechanism has not turned on

𝑝(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥) ⋅ (𝜇𝑥)𝑗+1

(𝑗 + 1)!
𝑒−𝜇𝑥 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ 𝑝(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

c.2) the second subcase, 𝑖 + 1 + 𝑗 > 𝑄1 + 1 — the 𝑄1 threshold in the
queue has been overcome, so the renovation mechanism has been activated

𝑝(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥) ⋅ (𝜇𝑥)𝑗+1

(𝑗 + 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑖+𝑗+1−(𝑄1+1)+

+
𝑥

∫
0

𝑖+𝑗−𝑄1

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦) ⋅ 𝑝(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗−𝑄1+1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑖+𝑗−𝑄1𝑑𝐴(𝑦) ⋅ 𝑝(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).
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d) the fourth case is when the 𝑄1 threshold in the queue has been overcome
at the moment of the arrival of the considered packet, (𝑖 > 𝑄1) so the
renovation mechanism has been already activated

𝑝(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥) ⋅ (𝜇𝑥)𝑗+1

(𝑗 + 1)!
𝑒−𝜇𝑥𝑝𝑗+1 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦) ⋅ 𝑝(serv)

𝑖,𝑗−𝑘(𝑥 − 𝑦),

𝑝(serv)

𝑖 =
∞

∫
0

𝑝(serv)

𝑖,0 (𝑥)𝑑𝑥.

Loss probability of the received packet

𝑝(loss) =
∞

∑
𝑖=0

𝑝(loss)

𝑖 𝜋𝑖,

where 𝑝(loss)

𝑖 — the probability that the incoming packet will be dropped if
at the moment of its arrival there were 𝑖, 𝑖 ⩾ 0 other packets in the system,

and 𝑝(loss)

𝑖,𝑗 (𝑥) is the probability that in time less than 𝑥 the packet, before

which there are 𝑖 other packets in the queue and after which there are other 𝑗
packets, will be dropped, 𝑖, 𝑗 ⩾ 0.

a) 𝑝(loss)

1 = 0, 𝑖 = 0, 𝑄2;
b) 𝑄2 < 𝑖 ⩽ 𝑄1 the threshold value of 𝑄1 has not been reached at the time

of receipt;
b.1) 𝑖 + 1 + 𝑗 ⩽ 𝑄1 + 1 — (the threshold has not been crossed even taking

into account the application that came later)

𝑝(loss)

𝑖,𝑗 (𝑥) =
𝑦

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ 𝑝(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b.2) 𝑖+1+𝑗 > 𝑄1+1 — (the 𝑄1 threshold was overcome due to applications
after the incoming one)

𝑝(loss)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)
𝑖+𝑗+1−(𝑄1+1)

∑
𝑘=1

(𝜇𝑥)𝑘

𝑘!
𝑒−𝜇𝑥𝑝𝑘−1𝑞+

+
𝑥

∫
0

𝑖+𝑗−𝑄1

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦)𝑝(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗−𝑄1+1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑖+𝑗−𝑄1𝑑𝐴(𝑦)𝑝(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).
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c) 𝑖 > 𝑄1

𝑝(loss)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)
𝑗+1

∑
𝑘=1

(𝜇𝑥)𝑘

𝑘!
𝑒−𝜇𝑥𝑝𝑘−1𝑞+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
⋅ 𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦)𝑝(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦);

𝑝(loss)

𝑖 =
∞

∫
0

𝑝(loss)

𝑖,0 (𝑥)𝑑𝑥.

4.2. Time characteristics of the system

Let 𝑊 (loss)(𝑥) and 𝑊 (serv)(𝑥) be the cumulative distribution functions of
the time spent in the system by the packet before being dropped or served.

The auxiliary functions 𝑊 (serv)

𝑖,𝑗 (𝑥) and w
(serv)

𝑖,𝑗 (𝑥) = (𝑊 (serv)

𝑖,𝑗 (𝑥))
′
, 𝑊 (loss)

𝑖,𝑗 (𝑥)

and w
(loss)

𝑖,𝑗 (𝑥) = (𝑊 (serv)

𝑖,𝑗 (𝑥))
′

(𝑖, 𝑗 ⩾ 0) are the distribution functions and the

densities of distribution functions of the time spent by the served (lossed)
packet in the queue, if there were 𝑖 other packets in the queue before the
considered one and 𝑗 others after it. Then

𝑊 (serv)(𝑥) = 1
𝑝(serv)

∞
∑
𝑖=0

𝑊 (serv)

𝑖,𝑗 (𝑥) ⋅ 𝜋𝑖,

𝑊 (loss)(𝑥) = 1
𝑝(loss)

∞
∑
𝑖=0

𝑊 (loss)

𝑖,𝑗 (𝑥) ⋅ 𝜋𝑖.

a) If a packet enters the empty system (𝑖 = 0), it immediately starts to be
served.

w
(serv)

0,0 (𝑥) =
⎧{
⎨{⎩

0, 𝑥 < 0,
1, 𝑥 ⩾ 0,

𝜔(serv)

0,0 (𝑠) =
∞

∫
0

𝑒−𝑠𝑥w
(serv)

0,0 (𝑥)𝑑(𝑥) = 1,

w
(loss)

0,0 (𝑥) = 0.

b) If the total number of packets in the system has not overcome the
threshold 𝑄2 (0 < 𝑖 ⩽ 𝑄1, 𝑖 + 𝑗 + 1 ⩽ 𝑄1), then the considered packet will
be in the safe area and the renovation mechanism is not enabled.

w
(serv)

𝑖,0 (𝑥) = 𝐴(𝑥) ⋅ 𝜇𝑒−𝜇𝑥 +
𝑥

∫
0

𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w
(serv)

𝑖,1 (𝑥 − 𝑦).



I. S. Zaryadov et al., Analysis of queuing systems with threshold … 173

w
(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

𝜔(serv)

𝑖,𝑗 (𝑠) = (−1)𝑗𝜇𝑗+1

𝑗!
𝛼(𝑗)(𝑠 + 𝜇) +

𝑗

∑
𝑘=0

(−𝜇)𝑘

𝑘!
× 𝛼(𝑘)(𝑠 + 𝜇) ⋅ 𝜔(serv)

𝑖,𝑗−𝑘+1(𝑠),

w
(loss)

𝑖,𝑗 (𝑥) = 0.

c) The case, when at the moment of arrival of the considered packet there
were 0 < 𝑖 < 𝑄2 other packets in the system (our packet was in the safe
area), but currently the total number of packets in the system is equal to
𝑖 + 𝑗 + 1 > 𝑄1 (so the renovation mechanism is enabled)

w
(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑖+𝑗𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝𝑖+𝑗+1−𝑄1𝐴(𝑥)+

+ 𝐴(𝑥)
𝑥

∫
0

𝑖+𝑗+1−𝑄1

∑
𝑘=1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘−1𝑞𝜇𝑑𝑦(𝜇(𝑥 − 𝑦))𝑄2−𝑖−1

(𝑄2 − 𝑖 − 1)
𝑒−𝜇(𝑥−𝑦)+

+
𝑥

∫
0

𝑖+𝑗+1−𝑄1

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑥𝑝𝑘−1𝑞𝑑𝐴(𝑦)w(serv)

𝑖,𝑄2−𝑖−1+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗+1−𝑄1−1

(𝜇𝑦)𝑘

𝑘!
𝑒𝜇𝑦𝑝𝑖+𝑗+1−𝑄1𝑑𝐴(𝑦)w(serv)

𝑖,𝑗−𝑘(𝑥),

w
(loss)

𝑖,𝑗 (𝑥) = 0.

d) The case, when at the moment of arrival of the considered packet there
were 𝑄2 < 𝑖 < 𝑄1 other packets in the system (our packet was out of the safe
area), includes several subcases.

d.1) The first subcase — currently the total number of packets in the system
is 𝑄2 < 𝑖 + 𝑗 + 1 ⩽ 𝑄1 (the renovation mechanism is not enabled)

w
(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
× 𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

w
(loss)

𝑖,𝑗 (𝑥) =
𝑥

∫
0

𝑖+𝑗+1−𝑄2

∑
𝑘=0

𝜇𝑦
𝑘!

𝑒−𝜇𝑦𝑑𝐴𝑦 ⋅ w
(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

d.2) The second subcase, when currently the total number of packets in
the system has overcome the threshold 𝑄1 (𝑖 + 𝑗 + 1 > 𝑄1), so the renovation
mechanism is activated
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w
(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)𝜇𝑗+𝑖𝑥𝑗

𝑗!
𝑒−𝜇𝑦 ⋅ 𝑝𝑖+𝑗+1−𝑄1+

+
𝑥

∫
0

𝑖+𝑗+1−𝑄1

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗+1−𝑄1+1

(𝜇𝑦)𝑘

𝑘!
⋅ 𝑝𝑖+𝑗+1−𝑄1𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

w
(loss)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)
𝑖+𝑗+1−𝑄1

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑝𝑘−1𝑞𝑒−𝜇𝑥+

+
𝑥

∫
0

𝑖+𝑗+1−𝑄1

∑
𝑘=0

(𝜇𝑢)𝑘

𝑘!
𝑝𝑘𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗+1−𝑄1+1

(𝜇𝑦)𝑘

𝑘!
⋅ 𝑝𝑖+𝑗+1−𝑄1𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

e) The last case, when the threshold 𝑄1 was overcome (𝑖 > 𝑄1) at the
moment of our packet arrival

w
(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝𝑗+1 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦)⋅w(serv)

𝑖,𝑗−𝑘+1(𝑥−𝑦),

w
(loss)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)
𝑗+1

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥𝑝𝑘−1𝑞+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦) ⋅ w

(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

5. GPSS simulation results

Below (see table 1) is presented a table with GPSS simulation results that
was performed with the following initial parameters: threshold value 𝑄1 = 30,
arrival rate — 14 task per 1 unit of time, service rate — 16 task per 1 unit
of time, and the simulation time is 100000 units of time) for different drop
probabilities.

The table 2 shows the results of GPSS simulation that was performed with
the following initial parameters: arrival rate — 14 task per 1 unit of time,
service rate — 16 task per 1 unit of time, 𝑞 = 0.01, and the simulation time
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is 100000 units of time) for different threshold values. For the third model
the threshold value 𝑄2 = 10.

Table 1

Simulation results for different drop probabilities

𝑞 propability 0.0025 0.005 0.01 0.025 0.05 0.1 0.15

Generated

tasks

sys.1 1401525 1401566 1401134 1400127 1400915 1399127 1398795

sys.2 1400992 1401374 1401547 1400816 1401421 1400971 1401135

sys.3 1401647 1401379 1400564 1400333 1400889 1400251 1399581

Serviced

tasks

sys.1 1400084 1398863 1396791 1394210 1393457 1389597 1389540

sys.2 1400752 1400843 1400879 1399692 1399428 1399166 1399030

sys.3 1400537 1399411 1397201 1395975 1395643 1393555 1393104

Serviced tasks

without calling

the renv. mech.

sys.1 1379233 1381969 1385859 1388162 1388647 1386899 1387651

sys.2 1378347 1381669 1385318 1388493 1387780 1391338 1391897

sys.3 1379887 1382616 1385828 1389605 1390628 1390814 1391166

Dropped

tasks

sys.1 1436 2698 4332 5917 7456 9530 9249

sys.2 240 527 663 1117 1984 1803 2104

sys.3 1091 1967 3357 4357 5240 6696 6472

Service

Probability

sys.1 0.9990 0.9981 0.9969 0.9958 0.9947 0.9932 0.9934

sys.2 0.9998 0.9996 0.9995 0.9992 0.9986 0.9987 0.9985

sys.3 0.9992 0.9986 0.9976 0.9969 0.9963 0.9952 0.9954

Drop

Probability

sys.1 0.0010 0.0019 0.0031 0.0042 0.0053 0.0068 0.0066

sys.2 0.0002 0.0004 0.0005 0.0008 0.0014 0.0013 0.0015

sys.3 0.0008 0.0014 0.0024 0.0031 0.0037 0.0048 0.0046

Average

queue length

sys.1 6.0930 5.9230 5.7090 5.5240 5.4820 5.3080 5.2360

sys.2 6.1800 6.0780 6.0220 5.8580 5.9530 5.7980 5.8550

sys.3 6.1230 5.9360 5.7330 5.5720 5.5560 5.4120 5.3290

Maximum

queue length

sys.1 92 71 63 67 54 46 43

sys.2 92 64 61 65 60 51 49

sys.3 92 71 71 67 54 46 43

Average

waiting time

sys.1 0.497 0.483 0.467 0.453 0.449 0.437 0.431

sys.2 0.503 0.495 0.491 0.478 0.485 0.473 0.478

sys.3 0.499 0.484 0.469 0.456 0.454 0.444 0.438
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Table 2

Simulation results for different threshold values

Threshold

value 𝑄1

10 20 25 30 40 50 75

Generated

tasks

sys.1 1399202 1401573 1401188 1401134 1399645 1400335 1400451

sys.2 1399603 1400523 1399393 1401547 1402003 1400032 1399596

sys.3 1399603 1400753 1400647 1400564 1399680 1400321 1400448

Serviced

tasks

sys.1 1368353 1389618 1393927 1396791 1398462 1399917 1400367

sys.2 1387180 1397457 1397721 1400879 1401813 1399986 1399562

sys.3 1387180 1393344 1395743 1397201 1398764 1399969 1400374

Serviced tasks

without calling

the renv. mech.

sys.1 1166280 1343186 1370099 1385859 1394747 1398969 1400319

sys.2 1145456 1336931 1365038 1385318 1396545 1398819 1399341

sys.3 1145456 1346681 1372422 1385828 1395050 1399021 1400326

Dropped

tasks

sys.1 30833 11955 7261 4332 1176 407 83

sys.2 12423 3065 1672 663 190 42 33

sys.3 12423 7409 4902 3357 916 337 73

Service

Probability

sys.1 0.9780 0.9915 0.9948 0.9969 0.9992 0.9997 0.9999

sys.2 0.9911 0.9978 0.9988 0.9995 0.9999 1.0000 1.0000

sys.3 0.9911 0.9947 0.9965 0.9976 0.9993 0.9997 0.9999

Drop

Probability

sys.1 0.0220 0.0085 0.0052 0.0031 0.0008 0.0003 0.0001

sys.2 0.0089 0.0022 0.0012 0.0005 0.0001 0.0000 0.0000

sys.3 0.0089 0.0053 0.0035 0.0024 0.0007 0.0002 0.0001

Average

queue length

sys.1 4.564 5.273 5.5330 5.7090 5.9110 5.934 6.158

sys.2 5.069 5.7 5.8540 6.0220 6.0780 6.014 6.089

sys.3 5.069 5.37 5.5630 5.7330 5.9210 5.933 6.158

Maximum

queue length

sys.1 67 64 71 63 80 76 89

sys.2 67 75 62 61 64 76 102

sys.3 67 75 59 71 80 76 89

Average

waiting time

sys.1 0.381 0.433 0.454 0.467 0.484 0.485 0.502

sys.2 0.418 0.466 0.479 0.491 0.496 0.491 0.497

sys.3 0.418 0.441 0.456 0.469 0.485 0.485 0.502
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6. Conclusion

Based on the simulation results 1, the following conclusions can be drawn.
The largest number of dropped packets, as expected, is observed in the first
model, the smallest — in the second model (due to the safe zone). The third
model shows an average result compared to the first and the second models.
The largest number of serviced packets is in the second model, then — in the
third model. The smallest number of serviced packets is in the first model.

The probability of a packet to be dropped is about five times greater for
the first model than for the second model, and 20–30 percent more than for
the third model.

The average waiting time for the second model is about 5–10 percent greater
than the same characteristic for the first and third models.

As the value of the renovation probability 𝑞 increases, the drop probability
increases for all three models, and the service probability decreases accordingly.
Also, with an increase of the renovation probability 𝑞, both the average and
maximum queue lengths decrease, and the average waiting time also decreases.

Based on the simulation results 2, the following conclusions can be drawn.
With an increase of the threshold value 𝑄1 responsible for switching on the
renovation mechanism, the number of dropped packets decreases for all three
models (the second model is characterized by the smallest number of dropped
packets), the service probability increases to unity (the second model), and
the drop probability decreases almost to zero. The average and maximum
queue lengths increase, and the values   for the first and third models become
approximately the same. The average waiting time also increases, and again
for the first and third models, the values   become approximately the same.

The third model, which generalizes the first and the second models, shows
average results compared to the above models, and is more preferable for use
as a queue length management model.
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Анализ систем массового обслуживания с пороговым
механизмом обновления и инверсионной дисциплиной

обслуживания

И. С. Зарядов1, 2, Илкиаш К. К. Виана1, Т. А. Милованова1

1 Российский университет дружбы народов,
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Аннотация. В работе представлено исследование трёх систем массового обслу-
живания с пороговым механизмом обновления и инверсионной дисциплиной
обслуживания. В модели первого типа пороговое значение отвечает только за ак-
тивацию механизма обновления — механизма вероятностного сброса заявок. Во
второй модели пороговое значение не только включает механизм обновления, но
и определяет в накопителе границы области, из которой поступившие в систему
заявки не могут быть сброшены. В модели третьего типа, обобщающей преды-
дущие две модели, используются два пороговых значения: одно для активации
механизма сброса заявок, второе — для задания безопасной зоны в накопителе.
На основе полученных ранее результатов представлены основные вероятностно-
временные характеристики рассмотренных моделей. С помощью имитационного
моделирования проведён анализ и сравнение поведения изученных моделей.

Ключевые слова: система массового обслуживания, активное управление оче-
редью, механизм обновления, пороговое значение, временные характеристики,
GPSS


