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Abstract. A new era is opening for the world of information and communication
technologies with the 5G networks’ release. Indeed 5G networks appear in modern
wireless systems as solutions to “traditional” networks’ inflexibility and lack of radio
resources problems. Using these networks the operators can expand their services’
range at will and, therefore, manage daily operations by monitoring ‘key performance
indicators’ (KPIs) — helping meet the quality of service (QoS) requirements much
easily. To meet the QoS requirements 5G networks can be implemented alongside
priority scheduling algorithms. This paper considers the operation of a wireless
network slicing model under two scheduling algorithms. A comparative analysis of
main performance measures is provided.

Key words and phrases: 5G networks, slicing, QoS, KPIs, priority scheduling,
retrial queueing, iteration method

1. Introduction

The advent of new generation 5G networks with their flagship slicing
technology have highly influenced the telecommunications sector in the best
way. Network operators have now the latitude to manage their assets and
therefore, are able to propose new types of services to customers [1]–[3].
Businesses and enterprises can now access network connectivity that fits their
specific needs [4]–[6]. 3GPP defines slicing as a technology that offers on
shared infrastructures the advantageous option to build fully dedicated logical
networks, known as ‘network slices’, with very diverse quality of service (QoS)
capabilities and requirements [7], [8]. Normally, meeting QoS requirements
and extending capabilities are difficult tasks for network operators who can
be helped by monitoring the ‘key performance indicators’ (KPIs) [9]–[12].
Essentially, monitoring the KPIs can allow network operators to significantly
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reduce service interruptions or even prevent them in the best cases [13], [14].
Since the first release of slicing technology few years ago, the vast majority
of researchers, scientists and organizations in the telecommunications industry
is focused on developing methods and techniques to flexibly and efficiently
share available radio resources within its framework [15]–[19]. In modern
wireless networks, one of the possible solutions to meet the QoS requirements
is the implementation of priority scheduling algorithms [20]–[23]. Models
implementing such algorithms within slicing framework could be described
using the mathematical apparatus of retrial queueing theory [24]–[26],
where retrial queues, also known as ‘orbits’, can be used to address service’s
interruptions problem.
In this paper we consider one of the possible models for implementing

slicing with priority scheduling algorithms. More precisely, we provide
a comparative analysis of model’s performance measures under preemptive
and non-preemptive scheduling algorithms. For that we use the mathe-
matical apparatus of queueing theory and describe the model as a retrial
queueing system coupled with a buffer [27]–[29].
The paper is organized as follows. Section 2 provides the system’s general

description and proposes a mathematical model for its construction. Sec-
tion 3 suggests formulas to compute the stationary probability distributions
under preemptive and non-preemptive scheduling algorithms respectively.
Section 4 proposes formulas to calculate the main performance measures un-
der each priority scheduling algorithm. Section 5 provides a numerical
example of system’s model operation. Section 6 concludes the paper.

2. Mathematical model

Let us consider a single server retrial queueing system [25] coupled with
a buffer. We assume two types of requests arrival in system according to
Poisson process with rates 𝜆1 and 𝜆2 respectively. The average service times
are exponentially distributed with means 𝜇1 and 𝜇2.
Let us assume that first type requests have access to server and buffer,

while second type requests — to server and orbit. Let us consider two types
of priority scheduling algorithms — preemptive and non-preemptive

scheduling [20], [21], [29], [30].

The radio admission control (RAC) mechanism for first type requests is
organized differently depending on the priority scheduling algorithm.

Preemptive scheduling. The RAC mechanism for first type requests is
organized in such a way that:
1) when server is “vacant” or “occupied” by one second type request, the

first type request immediately obtains service, i.e. the second type
request occupying server at such moments automatically joins the
orbit;

2) otherwise, the first type request awaits server’s non-utilization in
buffer with first-come, first-served (FCFS) service discipline [24]–[26].

Non-preemptive scheduling. The RAC mechanism for first type requests
is organized in such a way that:
1) when server is “vacant”, the request immediately obtains service;
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2) otherwise, the request awaits server’s non-utilization in buffer with
FCFS service discipline.

Whether preemptive or non-preemptive scheduling algorithm, awaiting
in buffer first type requests are always given priority when it comes to service
once server is “vacant”.
The RAC mechanism for second type requests is organized in such a way

that:

1) when server is “vacant”, the request immediately obtains service;
2) otherwise, the request either leaves the system with probability 𝜋 or joins

the orbit with probability 1 − 𝜋.
A second type request that joined the orbit becomes a “retrial” second type

request. A retrial second type request, as the name stipulates, retries to
obtain service after some amount of time. The number of retrials is unlimited
and time interval between two consecutive ones is exponentially distributed
with rate 𝜎−1. Note that, as the “primary” second type request, the retrial
second type request either leaves the system with probability 𝜋 or returns
to the orbit with probability 1 − 𝜋 after an unsuccessful attempt to occupy
server.
The scheme model of considered single server retrial queueing system

coupled with a buffer is given in figure 1.

BUFFER

SERVER

ORBIT

λ1, µ1

λ2, µ2

σ, µ2

1− πLOSS (π)

Figure 1. Scheme model of considered single server retrial queueing system coupled

with an unlimited buffer

We describe system behavior using a three-dimensional vector n ∶= (𝑖, 𝑗, 𝑘)
over “infinite” state spaces 𝒳 and 𝒴 under preemptive and non-preemptive
scheduling algorithms respectively:

𝒳 = {n ∈ ℕ3 ∶ (𝑖 = 0 ∧ 𝑘 ∈ {0, 2}) ∨ 𝑘 = 1} , (1a)

𝒴 = {n ∈ ℕ3 ∶ (𝑖 = 0 ∧ 𝑘 = 0) ∨ 𝑘 ∈ {1, 2}} , (1b)

where ℕ3 represents the state space of all three-dimensional vectors with
natural elements; 𝑖 — the current number of first type requests in buffer; 𝑗 —
the current number of second type requests in orbit; and 𝑘 — the current
state of server (i.e., value “0” means server is “vacant”; value “1” — server is
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“occupied” by one first type request; and value “2” — server is “occupied” by
one second type request).
The corresponding state transition diagrams are shown in figures 2, 3. The

transition diagrams from random state are clarified in figures 4, 5.
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Figure 2. State transition diagram of considered single server retrial queueing system

coupled with a buffer under preemptive scheduling algorithm
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coupled with a buffer under non-preemptive scheduling algorithm
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system coupled with a buffer under preemptive scheduling algorithm
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According to investigated priority scheduling algorithms and considering
the transition diagrams from random state (i.e., figures 4, 5) one can obtain
the equilibrium equations systems given below that describe the discussed
Markov processes 𝑋(𝑡) and 𝑌 (𝑡), where 𝑡 > 0:

[𝜆1 + 𝜆2𝐼 (𝑖, 𝑘 ∈ {0}) + 𝜆2 (1 − 𝜋) 𝐼 (𝑘 ≠ 0) + 𝜇𝑘𝐼 (𝑘 ≠ 0) +
+ 𝑗𝜎𝐼 (𝑖, 𝑘 ∈ {0}) + 𝑗𝜎𝜋𝐼 (𝑘 ≠ 0) ]𝑃 (n) = 𝜆1𝐼 (𝑖 = 0, 𝑘 = 1) 𝑃(n− e3)+

+ 𝜆1𝐼 (𝑖 > 0, 𝑘 = 1) 𝑃(n− e1) + 𝜆2𝐼 (𝑖 = 0, 𝑘 = 2) 𝑃(n− 2e3)+
+ 𝜆2 (1 − 𝜋) 𝐼 (𝑗 > 0, 𝑘 ≠ 0) 𝑃 (n− e2) + 𝜇1𝐼 (𝑖, 𝑘 ∈ {0}) 𝑃(n+ e3)+

+ 𝜇1𝐼 (𝑘 = 1) 𝑃(n+ e1) + 𝜇2𝐼 (𝑖, 𝑘 ∈ {0}) 𝑃(n+ 2e3)+
+ (𝑗 + 1) 𝜎𝐼 (𝑖 = 0, 𝑘 = 2) 𝑃(n+ e2 − 2e3) + (𝑗 + 1)𝜎𝜋𝐼 (𝑘 ≠ 0) 𝑃(n+ e2)+

+ 𝜆1𝐼 (𝑖 = 0, 𝑗 > 0, 𝑘 = 1) 𝑃(n− e2 + e3), (2a)

[𝜆1 + 𝜆2𝐼 (𝑖, 𝑘 ∈ {0}) + 𝜆2 (1 − 𝜋) 𝐼 (𝑘 ≠ 0) + 𝜇𝑘𝐼 (𝑘 ≠ 0) +
+ 𝑗𝜎𝐼 (𝑖, 𝑘 ∈ {0}) + 𝑗𝜎𝜋𝐼 (𝑘 ≠ 0) ]𝑄(n) = 𝜆1𝐼 (𝑖 = 0, 𝑘 = 1) 𝑄(n− e3)+

+ 𝜆1𝐼 (𝑖 > 0, 𝑘 = 1) 𝑄(n− e1) + 𝜆2𝐼 (𝑖 = 0, 𝑘 = 2) 𝑄(n− 2e3)+
+ 𝜆2 (1 − 𝜋) 𝐼 (𝑗 > 0, 𝑘 ≠ 0) 𝑄(n− e2) + 𝜇1𝐼 (𝑖, 𝑘 ∈ {0}) 𝑄(n+ e3)+

+ 𝜇1𝐼 (𝑘 ∈ {1, 2}) 𝑄(n+ e1) + 𝜇2𝐼 (𝑖, 𝑘 ∈ {0}) 𝑄(n+ 2e3)+
+ (𝑗 + 1) 𝜎𝐼 (𝑖 = 0, 𝑘 = 2) 𝑄(n+ e2 − 2e3) + (𝑗 + 1)𝜎𝜋𝐼 (𝑘 ≠ 0) 𝑄(n+ e2)+

+ 𝜇2𝐼 (𝑖 = 0, 𝑘 = 1) 𝑄(n+ e1 + e3), (2b)

where 𝑃(n)n∈𝒳 and 𝑄(n)n∈𝒴 are the stationary probability distributions
under preemptive and non-preemptive scheduling algorithms respectively;
e𝑠∈{1,2,3} — the 𝑠-th row of identity matrix of size 3 × 3; and 𝐼 (⋅) — the

function indicator equaling value “1” when condition is met, and value “0”
otherwise.

3. Stationary probability distribution

Due to the “infinite” sizes of buffer and orbit, the stationary probability dis-
tributions P = (𝑃 (n))

n∈𝒳 and Q = (𝑄(n))
n∈𝒴 should be computed through

generating function-based approaches [25], [27], [29]. However, one can
compute them using iteration methods [31], [32] by simply adding limita-
tions to the storage sizes, setting these to random maximum values. Thus, we
set buffer’s maximum size to 𝑖max and orbit’s to 𝑗max. Therefore, we obtain
the “finite” state spaces 𝒳 and ̃𝒴 under preemptive and non-preemptive
scheduling algorithms respectively:

𝒳 = {n ∈ 𝒳 ∶ 𝑖 ⩽ 𝑖max ∧ 𝑗 ⩽ 𝑗max} , ̃𝒴 = {n ∈ 𝒴 ∶ 𝑖 ⩽ 𝑖max ∧ 𝑗 ⩽ 𝑗max} .

The process describing considered system is not a reversible Markov pro-
cess whether under preemptive or non-preemptive scheduling algorithm.
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Therefore, one can compute either stationary probability distribution P or Q
using iteration method on respective equilibrium’s equations system, i.e.

P ⋅A[|𝒳|×|𝒳|] = 0[1×|𝒳|], Q ⋅B[|𝒴|×|𝒴|] = 0[1×|𝒴|],

where A and B are the infinitesimal generators of Markov process under
preemptive and non-preemptive scheduling algorithms respectively.

The elements 𝐴n,n̂ of the infinitesimal generator A are computed using (3a).

Equation (3b) calculates the elements 𝐵n,n̂ of the infinitesimal generator B.

𝐴n,n̂ =

⎧
{{{{{{{{{
⎨
{{{{{{{{{
⎩

𝜆1, if n̂ = n+ e3, s.t. 𝑖, 𝑘 ∈ {0},
or n̂ = n+ e1, s.t. 𝑖 < 𝑖max ∧ 𝑘 = 1,
or n̂ = n+ e2 − e3, s.t. 𝑖 = 0 ∧ 𝑗 < 𝑗max ∧ 𝑘 = 2,

𝜆2, if n̂ = n+ 2e3, s.t. 𝑖, 𝑘 ∈ {0},
𝜆2 (1 − 𝜋) , if n̂ = n+ e2, s.t. 𝑗 < 𝑗max ∧ 𝑘 ∈ {1, 2},
𝜇1, if n̂ = n− e3, s.t. 𝑖 = 0 ∧ 𝑘 = 1,
or n̂ = n− e1, s.t. 𝑖 > 0 ∧ 𝑘 = 1,

𝜇2, if n̂ = n− 2e3, s.t. 𝑖 = 0 ∧ 𝑘 = 2,
𝑗𝜎, if n̂ = n+ 2e3 − e2, s.t. 𝑗 > 0 ∧ 𝑖, 𝑘 ∈ {0},
𝑗𝜎𝜋, if n̂ = n− e2, s.t. 𝑗 > 0 ∧ 𝑘 ∈ {1, 2},
0, otherwise,

(3a)

with n ∈ 𝒳, and 𝐴n,n = − ∑
̂n∈𝒳{n}

𝐴n,n̂.

𝐵n,n̂ =

⎧
{{{{{{{{{
⎨
{{{{{{{{{
⎩

𝜆1, if n̂ = n+ e3, s.t. 𝑖, 𝑘 ∈ {0},
or n̂ = n+ e1, s.t. 𝑖 < 𝑖max ∧ 𝑘 ∈ {1, 2},

𝜆2, if n̂ = n+ 2e3, s.t. 𝑖, 𝑘 ∈ {0},
𝜆2 (1 − 𝜋) , if n̂ = n+ e2, s.t. 𝑗 < 𝑗max ∧ 𝑘 ∈ {1, 2},
𝜇1, if n̂ = n− e3, s.t. 𝑖 = 0 ∧ 𝑘 = 1,
or n̂ = n− e1, s.t. 𝑖 > 0 ∧ 𝑘 = 1,

𝜇2, if n̂ = n− 2e3, s.t. 𝑖 = 0 ∧ 𝑘 = 2,
or n̂ = n− e1 − e3, s.t. 𝑖 > 0 ∧ 𝑘 = 2,

𝑗𝜎, if n̂ = n+ 2e3 − e2, s.t. 𝑗 > 0 ∧ 𝑖, 𝑘 ∈ {0},
𝑗𝜎𝜋, if n̂ = n− e2, s.t. 𝑗 > 0 ∧ 𝑘 ∈ {1, 2},
0, otherwise,

(3b)

with n ∈ ̃𝒴, and 𝐵n,n = − ∑
̂n∈𝒴{n}

𝐵n,n̂.
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4. Performance measures

After computing the stationary probability distributions P and Q one
can calculate system’s performance measures under preemptive and non-
preemptive scheduling algorithms respectively. Let us consider following
main performance measures:

1. The mean number of first type requests in buffer

∑
n∈𝒳

𝑖 ⋅ 𝑃 (n) , ∑
n∈𝒴

𝑖 ⋅ 𝑄 (n) , (4)

2. The mean number of second type requests in orbit

∑
n∈𝒳

𝑗 ⋅ 𝑃 (n) , ∑
n∈𝒴

𝑗 ⋅ 𝑄 (n) , (5)

3. The server’s vacancy probability

∑
n∈𝒳∶𝑘=0

𝑃 (n) , ∑
n∈𝒴∶𝑘=0

𝑄 (n) , (6)

4. The server’s occupancy probability by one first type request

∑
n∈𝒳∶𝑘=1

𝑃 (n) , ∑
n∈𝒴∶𝑘=1

𝑄 (n) , (7)

5. The server’s occupancy probability by one second type request

∑
n∈𝒳∶𝑘=2

𝑃 (n) , ∑
n∈𝒴∶𝑘=2

𝑄 (n) . (8)

Since limitations were applied to storage sizes, i.e. buffer and orbit, one
may find it necessary to also compute following performance measures:

1. The buffer’s saturation probability

∑
n∈𝒳∶𝑖=𝑖max

𝑃 (n) , ∑
n∈𝒴∶𝑖=𝑖max

𝑄 (n) , (9)

2. The orbit’s saturation probability

∑
n∈𝒳∶𝑗=𝑗max

𝑃 (n) , ∑
n∈𝒴∶𝑗=𝑗max

𝑄 (n) . (10)

5. Numerical example

Let us illustrate the behavior of performance measures, computed in pre-
vious section 4, depending on various system’s parameters. To implement
iteration method one must set the error tolerance 𝜀 and, for ergonomic
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features, limit the number of iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑠. Since second type re-
quests are apparently more affected by implemented priority scheduling
algorithms, one may build the example around performance measures “di-
rectly” related to them:

— the mean number of second type requests in orbit, i.e. equations (5);
— the server’s vacancy probability, i.e. equations (6);
— the server’s occupancy probability by one second type request, i.e. equa-

tions (8);
— the orbit’s saturation probability, i.e. equations (10).

Summaries of the numerical examples results are provided in tables 1 to 4.

Table 1

Mean number of second type requests in orbit depending on triplet (𝑗max, 𝜆1, 𝜆2) with
𝑖max = 10, 𝜇1 = 𝜇2 = 2, 𝜋 = 0.001, 𝜎 = 1, 𝜀 = 10−12 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑠 = 1000

- - Preemptive scheduling Non-preemptive scheduling

𝑗max
PPPPPPPP𝜆1

𝜆2 1 2 3 1 2 3

5

1 2.5438 3.3625 3.8375 2.4659 3.4162 3.9503

2 3.9805 4.1998 4.3897 4.0846 4.3046 4.4961

3 4.5566 4.6908 4.7835 4.6314 4.7437 4.8230

10

1 4.9052 7.2944 8.3800 4.7192 7.3611 8.5276

2 8.5649 8.9173 9.2121 8.7040 9.0528 9.3429

3 9.4234 9.5984 9.7193 9.5149 9.6616 9.7651

15

1 6.9305 11.4591 13.1148 6.6439 11.5360 13.2783

2 13.3191 13.7555 14.1114 13.4738 13.9025 14.2497

3 14.3427 14.5381 14.6738 14.4387 14.6034 14.7205

Table 1 shows that when the arrival rate 𝜆1 of first type requests or 𝜆2
of second type requests increases, the mean number of second type requests
in orbit also increases. That performance measure is greater under non-
preemptive scheduling algorithm. This may be explained by the fact that,
we have more second type requests in system, and consequently, the orbit
tends to saturation. This situation is also illustrated by table 2 showing the
increase of orbit’s saturation probability under the same circumstances.
Table 3 shows that when the arrival rate 𝜆1 of first type requests or 𝜆2

of second type requests increases, the server’s vacancy probability decreases.
As one can see from that table, and according to table 1, that performance
measure is less under non-preemptive scheduling algorithm. This may be
explained by the fact that the more requests we have in system, the less server
will be “vacant”.
Table 4 shows that when fixing arrival rate 𝜆1 of first type requests to

value “1” and increasing arrival rate 𝜆2 of second type requests, the server’s
occupancy probability increases.
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Table 2

Saturation probability of orbit depending on triplet (𝑗max, 𝜆1, 𝜆2) with 𝑖max = 10,
𝜇1 = 𝜇2 = 2, 𝜋 = 0.001, 𝜎 = 1, 𝜀 = 10−12 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑠 = 1000

- - Preemptive scheduling Non-preemptive scheduling

𝑗max
PPPPPPPP𝜆1

𝜆2 1 2 3 1 2 3

5

1 0.2229 0.3647 0.4686 0.2256 0.3990 0.5262

2 0.5322 0.6105 0.6796 0.5862 0.6654 0.7372

3 0.7602 0.8236 0.8687 0.8015 0.8537 0.8919

10

1 0.1197 0.2889 0.4174 0.1223 0.3216 0.4750

2 0.4801 0.5653 0.6425 0.5346 0.6210 0.7007

3 0.7247 0.7913 0.8401 0.7664 0.8215 0.8633

15

1 0.0690 0.2473 0.3889 0.0702 0.2766 0.4436

2 0.4490 0.5363 0.6171 0.5007 0.5893 0.6729

3 0.6978 0.7649 0.8154 0.7375 0.7936 0.8374

Table 3

Vacancy probability of server depending on triplet (𝑗max, 𝜆1, 𝜆2) with 𝑖max = 10,
𝜇1 = 𝜇2 = 2, 𝜋 = 0.001, 𝜎 = 1, 𝜀 = 10−12 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑠 = 1000

- - Preemptive scheduling Non-preemptive scheduling

𝑗max
PPPPPPPP𝜆1

𝜆2 1 2 3 1 2 3

5

1 0.1394 0.0803 0.0556 0.1242 0.0630 0.0395

2 0.0465 0.0361 0.0285 0.0310 0.0223 0.0162

3 0.0198 0.0137 0.0098 0.0107 0.0071 0.0048

10

1 0.0923 0.0351 0.0220 0.0847 0.0269 0.0148

2 0.0183 0.0143 0.0118 0.0114 0.0083 0.0063

3 0.0082 0.0058 0.0043 0.0042 0.0028 0.0020

15

1 0.0735 0.0197 0.0128 0.0685 0.0146 0.0084

2 0.0106 0.0086 0.0073 0.0064 0.0048 0.0039

3 0.0051 0.0037 0.0027 0.0026 0.0018 0.0013

But, when fixing 𝜆1 to values “2” or “3” that probability decreases. That
performance measure is less under non-preemptive scheduling algorithm.
This may be explained by the fact that the more first type requests we have
in system, the less server will be occupied by one second type request, since
RAC mechanism suggests that priority is always given to first type requests
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once server is “vacant”. Furthermore, when fixing 𝜆2 and increasing 𝜆1 the
server’s occupancy probability decreases generally except under preemptive
scheduling algorithm for one case, where orbit’s maximum size 𝑗max equals
value “5” and 𝜆2 equals value “1”. In that case, that probability increases to
a maximum value and then decreases.

Table 4

Occupancy probability of server by one second type request depending on triplet

(𝑗max, 𝜆1, 𝜆2) with 𝑖max = 10, 𝜇1 = 𝜇2 = 2, 𝜋 = 0.001, 𝜎 = 1, 𝜀 = 10−12

and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑠 = 1000

- - Preemptive scheduling Non-preemptive scheduling

𝑗max
PPPPPPPP𝜆1

𝜆2 1 2 3 1 2 3

5

1 0.3779 0.4655 0.5232 0.3760 0.4372 0.4608

2 0.3973 0.3372 0.3070 0.3461 0.2836 0.2446

3 0.2056 0.1463 0.1112 0.1639 0.1155 0.0857

10

1 0.4163 0.4992 0.5457 0.4156 0.4734 0.4854

2 0.4157 0.3503 0.3156 0.3657 0.2977 0.2546

3 0.2113 0.1498 0.1132 0.1706 0.1199 0.0887

15

1 0.4312 0.5087 0.5487 0.4317 0.4856 0.4919

2 0.4178 0.3509 0.3150 0.3707 0.3012 0.2571

3 0.2107 0.1491 0.1124 0.1723 0.1211 0.0895

6. Conclusion

One considered a possible model for implementing slicing technology
with priority scheduling algorithms. A comparative analysis of computed
main performance measures — mean number of first type requests in buffer,
mean number of second type requests in orbit, server’s vacancy probability,
server’s occupancy probability by one first type request, server’s occupancy
probability by one second type request, buffer’s saturation probability and
orbit’s saturation probability — was provided. That analysis showed that
system load is higher under non-preemptive scheduling algorithm with
very low probability of leaving system after an unsuccessful attempt to occupy
server.
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К анализу системы массового обслуживания для сети
5G с технологией NS и приоритетным управлением

доступом к радиоресурсам

К. И. Б. Аду, Е. В. Маркова, Е. А. Жбанкова
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Аннотация. Переход к беспроводным сетям пятого поколения 5G ознамено-
вал новый этап развития информационных и коммуникационных технологий.
Сети пятого поколения должны решить такие проблемы, как негибкость «тра-
диционных» сетей и нехватка частотных радиоресурсов для качественного
предоставления услуг. Предполагается, что, используя эти сети, мобильные
операторы смогут значительно расширить спектр услуг и обеспечить требуемое
качество их предоставления. Для удовлетворения требований к качеству обслу-
живания (англ. Quality of Service — QoS) операторам необходимо выполнение
«ключевых показателей эффективности» (англ. Key Performance Indicators —
KPI), описанных в стандартах связи. Для этой цели могут быть использованы
алгоритмы приоритетного облуживания. В статье рассмотрена модель беспро-
водной сети 5G, поддерживающая технологию нарезки сети и реализующая
управление доступом к сетевым радиоресурсам при помощи введения приорите-
тов. Изучена работа модели в рамках двух алгоритмов. Проведён сравнительный
анализ основных показателей эффективности модели.

Ключевые слова: сети 5G, нарезка сети NS, QoS, KPI, приоритетное управле-
ние доступом, СМО с повторными заявками, итерационный метод
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Abstract. In this paper, we analyze a multi-server queue with customers’ impatience
and Bernoulli feedback under a variant of multiple vacations. On arrival, a customer
decides whether to join or balk the system, based on the observation of the system size
as well as the status of the servers. It is supposed that customer impatience can arise
both during busy and vacation period because of the long wait already experienced
in the system. The latter can be retained via certain mechanism used by the system.
The feedback occurs as returning a part of serviced customers to get a new service.
The queue under consideration can be used to model the processes of information
transmission in telecommunication networks. We develop the Chapman–Kolmogorov
equations for the steady-state probabilities and solve the differential equations by
using the probability generating function method. In addition, we obtain explicit
expressions of some important system characteristics. Different queueing indices are
derived such as the probabilities when the servers are in different states, the mean
number of customers served per unit of time, and the average rates of balking and
reneging.

Key words and phrases: Markovian multi-server queue, probability generating
function, impatient phenomena, server vacations, Bernoulli feedback

1. Introduction

Queueing models with server vacation have been efficiently studied by many
researchers in the last decades and successfully applied in various practical
problems such as telecommunication system design and control, manufacturing
industries, and other related systems. There are two basic vacation queueing
models namely, multiple vacation, and single vacation. In multiple vacation
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queueing models, the server continues to take successive vacations until it
finds at least one customer waiting in a queue at a vacation completion
epoch [1], [2]. Nevertheless, in single vacation queueing models, the server
precisely takes one vacation between two consecutive busy periods. These
two types of vacation models were first introduced by Levy and Yechiali [3].
Eminent literature on the subject is found in [4]–[8] and others.
Over the past few years, queueing models with Bernoulli feedback have

increasingly attracted the attention of many researchers [9]–[14]. Taking
into account the feedback effect makes it possible to bring the considered
models closer to a real situation, where the claims once serviced may require
repeat service for different reasons. For example, in communication networks
erroneously transmitted, a data is retransmitted.
In recent years, a growing body of literature has emerged on the analysis of

queueing systems with impatient customers [15]. This is due to their potential
applications in many related areas, see for instance [16], [17]. Balking is one
form of impatience, which is the reluctance of a customer to join a queue
upon arrival [18], [19]. The other forms are reneging, the reluctance to
remain in line after joining and waiting, and jockeying between lines when
each of a number of parallel lines has its own queue [20], [21]. When the
impatience becomes sufficiently strong, the manager of the firm concerned
has to take some measures to diminish the congestion to levels that customers
can tolerate.
In most queueing situations, customers seem to get discouraged from

receiving service when the server is absent and tend to leave the system
without receiving service. This phenomenon is very precisely observed when
the server is on vacation. This results in a potential loss of customers and
customer goodwill for a service provider. For a comprehensive overview of
the subject, authors may refer to [22]–[29]. Most of the literature mentioned
here studies reneging during the vacation state of the server. However, in
many real-life situations, the abandonment may occur even when the system
is in the busy state. For instance, incoming customers can not have any
information about the state of the server, or when they are not satisfied with
the service time (in particular, when they find that the server takes too much
time to serve the customers). This paper contributes in this sense. In fact,
only a few research papers have been done treating this case [9]–[12], [30].
In this paper, we provide the analysis of a multi-server feedback queue

with a variant multiple vacation policy, balking and server’s states-dependent
reneging. When all the customers present in the system have been served, the
servers immediately leave for a vacation. If they return from a vacation to
find an empty queue, they leave for another vacation; otherwise, the servers,
synchronously, return to serve the queue. These latter are permitted to
take a finite number, say 𝐾, of sequential vacations. It is assumed that an
arriving customer who finds the system (all the servers) on vacation period
(respectively, on busy period) activates an impatience timer 𝑇Vac (respectively,
𝑇Busy). If the customer’s service has not been completed before the customer’s
impatience timer expires, the customer abandons the queue. The latter can
be convinced to stay in the system (retained) using certain strategy. In
addition, if the customer is unhappy with the service, he can rejoin the
end of the queue for another one with some probability. That’s what we
call a feedback customer. To the best of the researchers’ knowledge, the



A.A. Bouchentouf et al., Mathematical analysis of a Markovian multi-… 23

model under consideration has so far not treated in the literature of queues.
Moreover, our model can be considered as a generalized version of existing
queueing model given by Yue et al. [27] and [20] equipped with many features
and associated with many practical situations.

The rest of the paper is arranged as follows. In Section 2, we introduce the
mathematical description of the model and we give a practical application. In
Section 4, we develop the differential equations for the probability generating
functions of the steady-state probabilities. In Section 5, we give the solution
of the differential equations. In Section 6, we give the probabilities when the
servers are in different states. Some essential system performance measures
of this model are obtained in Section 7. Finally, we conclude the paper in
Section 8.

2. The mathematical description of the model

We consider a multi-server feedback queueing system with 𝐾-variant
vacation, balking and server’s states-dependent reneging. The following
assumptions and notations are taken into account to structure the proposed
queueing system:

1. The suggested queueing system consists of 𝑐 servers. Customers arrive
into the system according to a Poisson process with rate 𝜆 > 0, they
are served according to First-Come-First-Served (FCFS) discipline. The
service times are assumed to be exponentially distributed with rate 𝜇.

2. A multiple synchronous vacation policy is considered; once all the cus-
tomers present in the system are served, the servers, all together, leave
for a vacation. At the end of the vacation period, if the queue is still
empty, they immediately leave for another vacation; otherwise, they re-
turn to serve the queue. The servers are allowed to take all together 𝐾
vacations sequentially. When the 𝐾 consecutive vacations are complete,
the servers switch to a busy period and, depending on the arrival of new
customers, they stay idle or busy. The vacation period is assumed to be
exponentially distributed with rate 𝜙.

3. Whenever a customer arrives at the system and finds the servers on
vacation period (resp. busy period), it activates an impatience timer
𝑇Vac (resp. 𝑇Busy), which is exponentially distributed with parameter 𝜉0
(resp. 𝜉1). If the customer’s service has not been completed before the
customer’s timer expires, this later may leave the system. We suppose
that the customers timers are independent and identically distributed
random variables and independent of the number of waiting customers.

4. It is supposed that a system employs a certain mechanism in order to
keep impatient customers in the system, that is, with some probability
𝛼′, a customer may be retained in the system, and with a complementary
probability 𝛼 it may decide to leave to never return.

5. If, after completion of service, a customer is not happy with the quality
of the service, he can return to the system with some probability 𝛽′ for
another service, or decide to leave the system with probability 𝛽 = 1− 𝛽′.

6. A customer who on arrival finds at least one customer (resp. 𝑐 customers)
in the system, when the servers are on vacation period (resp. busy
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period) either decides to enter the queue with probability 𝜃 or balk with

probability 𝜃 = 1 − 𝜃.
All random variables presented above are mutually independent of each

other.

3. Practical application of the model

The operation mode of a call center with vacation and impatience provides
an initial motivation for our study; a central office is used for receiving or
transmitting a large volume of enquiries. A private branch exchange (PBX) is
a private telephone network used within a company or organizations that offers
various features such as transfer calls, voicemail, call recording, interactive
voice menus (IVR), and call queues. It helps in making an organization’s
communication simpler and more robust.
The incoming calls are routed to an available customer support manager

drawn from the group of agents. Assume that the service facility consists in
a group of 𝑐 channels (servers) available to meet the demands of the requests.
If an arriving call finds some servers free it immediately occupies the channel
and leaves the system after service. However, the behavior of a call may
vary depending on the waiting expectations provided by the call center and
the personal preferences of each specific customer. Therefore, each call may
decide either to balk or to wait for a while.
The servers commute between busy and vacation periods in groups. When

there is no demands to be handled, the latter, all together, go synchronously
on vacation and come back as one station to the busy period, once the idle
period ends. If there are some waiting calls at the end of the vacation period,
they will be immediately served. Alternatively, they quit for another vacation
period.
The calls have no information on the queue length nor the state of the

servers, then, an increase in the mean waiting time of a customer in the
system can anticipate an increase in the average rate of reneging. Thus, to
avoid losing potential customers, the system should employ some strategies
by choosing the system parameter to further encourage customers to stay in
the system. In the case that the service is not successful, the customer can
repeat its request again and again until the service succeeds.

4. Governing equations

At an arbitrary time, the system state is defined by a continuous time
Markov chain {(𝐿(𝑡); 𝐽(𝑡)); 𝑡 ⩾ 0} on the state space Ω = {(𝑛; 𝑗) ∶
𝑛 ⩾ 0; 𝑗 = 0, 𝐾}, where 𝐿(𝑡) is the number of customers in the system and
𝐽(𝑡) is the state of the servers, i.e.,

𝐽(𝑡) =
⎧{
⎨{⎩

𝑗, if the servers are taking the (𝑗 + 1)th vacation at time 𝑡,
𝑗 = 0, 𝐾 − 1,

𝐾, if the servers are idle or busy at time 𝑡.
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Let 𝑃𝑛,𝑗 = lim
𝑡→∞

ℙ(𝐿(𝑡) = 𝑛; 𝐽(𝑡) = 𝑗), 𝑛 ⩾ 0; 𝑗 = 0, 𝐾, denote the steady-

state probabilities of the process {(𝐿(𝑡); 𝐽(𝑡)); 𝑡 ⩾ 0}. The state-transition
diagram is illustrated in Figure 1.

Figure 1. Transition plot

Using Chapman–Kolmogorov equations, we can formulate the balance
equations for the suggested queueing model as:

(𝜆 + 𝜙)𝑃0,0 = 𝛼𝜉0𝑃1,0 + (𝛽𝜇 + 𝛼𝜉1)𝑃1,𝐾, 𝑛 = 0, (1)

(𝜃𝜆 + 𝜙 + 𝛼𝜉0)𝑃1,0 = 𝜆𝑃0,0 + 2𝛼𝜉0𝑃2,0, 𝑛 = 1, (2)

(𝜃𝜆 + 𝜙 + 𝑛𝛼𝜉0)𝑃𝑛,0 = 𝜃𝜆𝑃𝑛−1,0 + (𝑛 + 1)𝛼𝜉0𝑃𝑛+1,0, 𝑛 ⩾ 2, (3)

(𝜆 + 𝜙)𝑃0,𝑗 = 𝛼𝜉0𝑃1,𝑗 + 𝜙𝑃0,𝑗−1, 𝑗 = 1, 𝐾 − 1, 𝑛 = 0, (4)

(𝜃𝜆 + 𝜙 + 𝛼𝜉0)𝑃1,𝑗 = 𝜆𝑃0,𝑗 + 2𝛼𝜉0𝑃2,𝑗, 𝑗 = 1, 𝐾 − 1, 𝑛 = 1, (5)

(𝜃𝜆+𝜙+𝑛𝛼𝜉0)𝑃𝑛,𝑗 = 𝜃𝜆𝑃𝑛−1,𝑗 +(𝑛+1)𝛼𝜉0𝑃𝑛+1,𝑗, 𝑗 = 1, 𝐾 − 1, 𝑛 ⩾ 2, (6)
𝜆𝑃0,𝐾 = 𝜙𝑃0,𝐾−1, 𝑛 = 0, (7)

(𝜆 + 𝛽𝜇 + 𝛼𝜉1)𝑃1,𝐾 = 𝜆𝑃0,𝐾 + 2(𝛽𝜇 + 𝛼𝜉1)𝑃2,𝐾 + 𝜙
𝐾−1
∑
𝑗=0

𝑃1,𝑗, 𝑛 = 1, (8)

(𝜆 + 𝑛(𝛽𝜇 + 𝛼𝜉1))𝑃𝑛,𝐾 =

= 𝜆𝑃𝑛−1,𝐾 + (𝑛 + 1)(𝛽𝜇 + 𝛼𝜉1)𝑃𝑛+1,𝐾 + 𝜙
𝐾−1
∑
𝑗=0

𝑃𝑛,𝑗, 2 ⩽ 𝑛 ⩽ 𝑐 − 1, (9)

(𝜃𝜆 + 𝑐𝛽𝜇 + 𝑛𝛼𝜉1)𝑃𝑛,𝐾 =

= 𝜆𝑃𝑛−1,𝐾 + (𝑐𝛽𝜇 + (𝑛 + 1)𝛼𝜉1)𝑃𝑛+1,𝐾 + 𝜙
𝐾−1
∑
𝑗=0

𝑃𝑛,𝑗, 𝑛 = 𝑐, (10)
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(𝜃𝜆 + 𝑐𝛽𝜇 + 𝑛𝛼𝜉1)𝑃𝑛,𝐾 =

= 𝜃𝜆𝑃𝑛−1,𝐾 + (𝑐𝛽𝜇 + (𝑛 + 1)𝛼𝜉1)𝑃𝑛+1,𝐾 + 𝜙
𝐾−1
∑
𝑗=0

𝑃𝑛,𝑗, 𝑛 > 𝑐. (11)

Consider the probability generating functions (PGFs) as:

𝐺𝑗(𝑧) =
∞

∑
𝑛=0

𝑧𝑛𝑃𝑛,𝑗,

and define

𝐺′
𝑗(𝑧) = 𝑑

𝑑𝑧
𝐺𝑗(𝑧), 𝑗 = 0, 𝐾.

The normalizing condition is defined as

∞
∑
𝑛=0

𝐾
∑
𝑗=0

𝑃𝑛,𝑗 = 1.

Multiplying Equation (3) by 𝑧𝑛, summing all possible values of 𝑛, and
using Equations (1) and (2), we get

𝛼𝜉0(1−𝑧)𝐺′

0(𝑧)−(𝜃𝜆(1−𝑧)+𝜙)𝐺0(𝑧) = −(𝛽𝜇+𝛼𝜉1)𝑃1,𝐾+𝜃𝜆(1−𝑧)𝑃0,0. (12)

In the same manner, from Equations (4)–(6) and (7)–(11) respectively, we
obtain

𝛼𝜉0(1 − 𝑧)𝐺′
𝑗(𝑧) − [𝜃𝜆(1 − 𝑧) + 𝜙]𝐺𝑗(𝑧) =

= 𝜃𝜆(1 − 𝑧)𝑃0,𝑗 − 𝜙𝑃0,𝑗−1, 𝑗 = 1, 𝐾 − 1, (13)

and

𝛼𝜉1𝑧(1 − 𝑧)𝐺′

𝐾(𝑧) − (1 − 𝑧)(𝜃𝜆𝑧 − 𝑐𝛽𝜇)𝐺𝐾(𝑧) =

= 𝑐𝛽𝜇(1 − 𝑧)𝑃0,𝐾 + 𝑧(𝛽𝜇 + 𝛼𝜉1)𝑃1,𝐾 − 𝜙𝑧
𝐾−1
∑
𝑗=0

𝐺𝑗(𝑧)+

+ 𝜙𝑧
𝐾−2
∑
𝑗=0

𝑃0,𝑗 + 𝜆𝜃𝑧(1 − 𝑧)Γ1(𝑧) − 𝛽𝜇(1 − 𝑧)Γ2(𝑧), (14)

where

Γ1(𝑧) =
𝑐−1
∑
𝑛=0

𝑧𝑛𝑃𝑛,𝐾 and Γ2(𝑧) =
𝑐−1
∑
𝑛=1

(𝑛 − 𝑐)𝑧𝑛𝑃𝑛,𝐾.
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5. Solution of the differential equations

For 𝑧 ≠ 1, Equation (12) can be written as follows:

𝐺′
0(𝑧) − [ 𝜃𝜆

𝛼𝜉0
+ 𝜙

𝛼𝜉0(1 − 𝑧)
] 𝐺0(𝑧) = − 𝛽𝜇 + 𝛼𝜉1

𝛼𝜉0(1 − 𝑧)
𝑃1,𝐾 + 𝜃𝜆

𝛼𝜉0
𝑃0,0. (15)

Multiply both sides of Equation (15) by 𝑒− 𝜃𝜆
𝛼𝜉0

𝑧(1 − 𝑧)
𝜙

𝛼𝜉0 , we get

𝑑
𝑑𝑧

(𝑒− 𝜃𝜆
𝛼𝜉0

𝑧(1 − 𝑧)
𝜙

𝛼𝜉0 𝐺0(𝑧)) =

= 𝑒− 𝜃𝜆
𝛼𝜉0

𝑧(1 − 𝑧)
𝜙

𝛼𝜉0 ( 𝜃𝜆
𝛼𝜉0

𝑃0,0 − (𝛽𝜇 + 𝛼𝜉1)
𝛼𝜉0(1 − 𝑧)

𝑃1,𝐾) .

Next, integrating the above equation from 0 to 𝑧, we obtain

𝐺0(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑧(1 − 𝑧)− 𝜙

𝛼𝜉0 ×

× {𝐺0(0) + 𝜃𝜆
𝛼𝜉0

𝑃0,0𝐶1(𝑧) − 𝛽𝜇 + 𝛼𝜉1
𝛼𝜉0

𝑃1,𝐾𝐶2(𝑧)} , (16)

with

𝐶1(𝑧) =
𝑧

∫
0

𝑒− 𝜃𝜆
𝛼𝜉0

𝑠(1 − 𝑠)
𝜙

𝛼𝜉0 𝑑𝑠 and 𝐶2(𝑧) =
𝑧

∫
0

𝑒− 𝜃𝜆
𝛼𝜉0

𝑠(1 − 𝑠)
𝜙

𝛼𝜉0
−1𝑑𝑠.

Since 𝐺0(1) = ∑∞
𝑛=0 𝑃𝑛,0 > 0 and 𝑧 = 1 is the root of denominator of the

right hand side of Equation (16), we have that 𝑧 = 1 must be the root of the
numerator of the right hand side of Equation (16). So, we obtain

𝐺0(0) =
(𝛽𝜇 + 𝛼𝜉1)𝑃1,𝐾

𝛼𝜉0
𝐶2(1) −

𝜃𝜆𝑃0,0

𝛼𝜉0
𝐶1(1), (17)

where

𝐶1(1) =
1

∫
0

𝑒− 𝜃𝜆
𝛼𝜉0

𝑠(1 − 𝑠)
𝜙

𝛼𝜉0 𝑑𝑠 and 𝐶2(1) =
1

∫
0

𝑒− 𝜃𝜆
𝛼𝜉0

𝑠(1 − 𝑠)
𝜙

𝛼𝜉0
−1𝑑𝑠.

Noting 𝐺0(0) = 𝑃0,0. Then, Equation (17) implies

𝑃1,𝐾 = 𝛼𝜉0
(𝛽𝜇 + 𝛼𝜉1)𝐶2(1)

𝐵𝑃0,0 = 𝜛1𝑃0,0, (18)

with

𝐵 = 1 + 𝜆
𝛼𝜉0

𝜃𝐶1(1) and 𝜛1 = 𝛼𝜉0
(𝛽𝜇 + 𝛼𝜉1)𝐶2(1)

𝐵.
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Substituting Equation (18) into Equation (16), we obtain

𝐺0(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑧(1 − 𝑧)− 𝜙

𝛼𝜉0 {1 + 𝜃𝜆
𝛼𝜉0

𝐶1(𝑧) − 𝐵
𝐶2(1)

𝐶2(𝑧)} 𝑃0,0. (19)

Next, Equation (13) can be written as

𝐺′
𝑗(𝑧) − [ 𝜃𝜆

𝛼𝜉0
+ 𝜙

𝛼𝜉0(1 − 𝑧)
] 𝐺𝑗(𝑧) = 𝜃𝜆

𝛼𝜉0
𝑃0,𝑗 − 𝜙

𝛼𝜉0(1 − 𝑧)
𝑃0,𝑗−1. (20)

Similarly, as for Equation (15), we multiply both sides of Equation (20) by

𝑒− 𝜃𝜆
𝛼𝜉0

𝑧(1 − 𝑧)
𝜙

𝛼𝜉0 . Then, we find

𝐺𝑗(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑧(1 − 𝑧)− 𝜙

𝛼𝜉0 ×

× {𝐺𝑗(0) + 𝜆𝜃
𝛼𝜉0

𝐶1(𝑧)𝑃0,𝑗 − 𝜙
𝛼𝜉0

𝐶2(𝑧)𝑃0,𝑗−1} , 𝑗 = 1, 𝐾 − 1. (21)

Since 𝐺𝑗(1) =
∞
∑
𝑛=0

𝑃𝑛,𝑗 > 0 (𝐺𝑗(1) = 𝑃•,𝑗 represents the probability that the

servers are taking the (𝑗 + 1)th vacation) and 𝑧 = 1 is the root of denominator
of the right hand side of Equation (21), we have that 𝑧 = 1 must be the root
of the numerator of the right hand side of Equation (21). So, we obtain

𝐺𝑗(0) = 𝑃0,𝑗 = 𝐴𝑃0,𝑗−1, 𝑗 = 1, 𝐾 − 1, (22)

where 𝐴 = 𝜙𝐶2(1)
𝛼𝜉0𝐵

. Using Equation (22) repeatedly, we get

𝑃0,𝑗 = 𝐴𝑗𝑃0,0, 𝑗 = 1, 𝐾 − 1. (23)

Now, by substituting Equation (23) into Equation (21), we find

𝐺𝑗(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑧(1 − 𝑧)− 𝜙

𝛼𝜉0 𝐴𝑗×

× {1 + 𝜆𝜃
𝛼𝜉0

𝐶1(𝑧) − 𝐵
𝐶2(1)

𝐶2(𝑧)} 𝑃0,0, 𝑗 = 1, 𝐾 − 1. (24)

To find 𝑃0,𝐾; the probability that the servers are idle during the busy

period, we use Equations (7) and (23). Thus

𝑃0,𝐾 = 𝜛0𝑃0,0, (25)

where 𝜛0 = 𝜙
𝜆

𝐴𝐾−1.

Remark 1. It is easy to see that 0 < 𝜙𝐶2(1) < 𝛼𝜉0, and 𝜃𝜆𝐶1(1) > 0.
Thus, 0 < 𝜙𝐶2(1) < 𝛼𝜉0 + 𝜃𝜆𝐶1(1). Consequently, we have 0 < 𝐴 < 1.
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Next, Equation (14) can be written as:

𝐺′
𝐾(𝑧)−( 𝜃𝜆

𝛼𝜉1
− 𝑐𝛽𝜇

𝛼𝜉1𝑧
) 𝐺𝐾(𝑧) = 𝛽𝜇 + 𝛼𝜉1

𝛼𝜉1(1 − 𝑧)
𝑃1,𝐾 + 𝑐𝛽𝜇

𝛼𝜉1𝑧
𝑃0,𝐾 + 𝜆𝜃

𝛼𝜉1
Γ1(𝑧)−

− 𝛽𝜇
𝛼𝜉1𝑧

Γ2(𝑧) + 𝜙
𝛼𝜉1(1 − 𝑧)

(
𝐾−2
∑
𝑗=0

𝑃0,𝑗 −
𝐾−1
∑
𝑗=0

𝐺𝑗(𝑧)) . (26)

In the same way, by multiplying Equation (13) by Υ(𝑧) = 𝑒− 𝜃𝜆
𝛼𝜉1

𝑧𝑧
𝑐𝛽𝜇
𝛼𝜉1 ,

we get

𝑑
𝑑𝑧

(Υ(𝑧)𝐺𝐾(𝑧)) = Υ(𝑧) { 𝛽𝜇 + 𝛼𝜉1
𝛼𝜉1(1 − 𝑧)

𝑃1,𝐾 + 𝑐𝛽𝜇
𝛼𝜉1𝑧

𝑃0,𝐾 + 𝜆𝜃
𝛼𝜉1

Γ1(𝑧) −

− 𝛽𝜇
𝛼𝜉1𝑧

Γ2(𝑧) + 𝜙
𝛼𝜉1(1 − 𝑧)

(
𝐾−2
∑
𝑗=0

𝑃0,𝑗 −
𝐾−1
∑
𝑗=0

𝐺𝑗(𝑧))} . (27)

Then, integrating from 0 to 𝑧 and using Equations (18) and (23)–(25), we
obtain

𝐺𝐾(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉1
𝑧𝑧− 𝑐𝛽𝜇

𝛼𝜉1 {((𝛽𝜇 + 𝛼𝜉1)𝜛1 + 𝜙 (1 − 𝐴𝐾−1

1 − 𝐴
)) 𝐻1(𝑧)+

+ 𝑐𝛽𝜇𝜙
𝜆

𝐴𝐾−1𝐻2(𝑧) − 𝜙 (1 − 𝐴𝐾

1 − 𝐴
) 𝐻3(𝑧) + 1

𝛼𝜉1
×

× ⎛⎜
⎝

𝜆𝜃
𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Γ1(𝑠)𝑑𝑠 − 𝛽𝜇

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠Γ2(𝑠)𝑑𝑠⎞⎟
⎠

⎫}
⎬}⎭

𝑃0,0, (28)

where

𝐻1(𝑧) = 1
𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠(1 − 𝑠)−1𝑑𝑠,

𝐻2(𝑧) = 1
𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠𝑑𝑠,

𝐻3(𝑧) = 1
𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Ψ(𝑠)(1 − 𝑠)−1𝑑𝑠,

Ψ(𝑠) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑠(1 − 𝑠)− 𝜙

𝛼𝜉0 {1 + 𝜆𝜃
𝛼𝜉0

𝐶1(𝑠) − 𝐵
𝐶2(1)

𝐶2(𝑠)} .
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6. Evaluation of probabilities 𝑃•,𝐾, 𝑃•,𝑗 and 𝑃0,0

From Equations (18) and (25), we have 𝑃1,𝐾 = 𝜛1𝑃0,0 and 𝑃0,𝐾 = 𝜛0𝑃0,0.

Making use of Equations (4)–(6), we recursively get

𝐾−1
∑
𝑗=0

𝑃𝑛,𝑗 = 𝛿𝑛𝑃0,0,

where

𝛿𝑛 = 1
𝑛𝛼𝜉0

{[𝜃𝜆 + 𝜙 + (𝑛 − 1)𝛼𝜉0]𝛿𝑛−1 − 𝜃𝜆𝛿𝑛−2} .

Similarly, from Equations (8), (9), we recursively obtain 𝑃𝑛,𝐾 = 𝜛𝑛𝑃0,0,
where

𝜛𝑛 = 1
𝑛(𝛽𝜇 + 𝛼𝜉1)

{[𝜆 + (𝑛 − 1)(𝛽𝜇 + 𝛼𝜉1)]𝜛𝑛−1 − 𝜆𝜛𝑛−2 − 𝜙𝛿𝑛−1} .

Thus, Equation (28) can be written as

𝐺𝐾(𝑧) =

= 𝑒
𝜃𝜆

𝛼𝜉1
𝑧𝑧− 𝑐𝛽𝜇

𝛼𝜉1 {[ 𝛼𝜉0𝐵
𝐶2(1)

+ 𝜙 (1 − 𝐴𝐾−1

1 − 𝐴
)] 𝐻1(𝑧) + 𝑐𝛽𝜇𝜙

𝜆
𝐴𝐾−1𝐻2(𝑧) −

− 𝜙 (1 − 𝐴𝐾

1 − 𝐴
) 𝐻3(𝑧) + 𝜆𝜃𝐻4(𝑧) − 𝛽𝜇𝐻5(𝑧)} 𝑃0,0, (29)

with

𝐻4(𝑧) = 1
𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Θ1(𝑠)𝑑𝑠, 𝐻5(𝑧) = 1

𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠Θ2(𝑠)𝑑𝑠,

Θ1(𝑧) =
𝑐−1
∑
𝑛=0

𝑧𝑛𝜛𝑛, and Θ2(𝑧) =
𝑐−1
∑
𝑛=1

(𝑛 − 𝑐)𝑧𝑛𝜛𝑛.

Thus, for 𝑧 = 1 (noting that 𝐺𝐾(1) = 𝑃•,𝐾 represents the probability that

the servers are busy or idle), we get

𝐺𝐾(1) = 𝑃•,𝐾 = Φ(1)𝑃0,0, (30)

where

Φ(1) = 𝑒
𝜃𝜆

𝛼𝜉1 {((𝛽𝜇 + 𝛼𝜉1)𝜛1 + 𝜙 (1 − 𝐴𝐾−1

1 − 𝐴
)) 𝐻1(1)+ +

+𝑐𝛽𝜇𝜙
𝜆

𝐴𝐾−1𝐻2(1) − 𝜙 (1 − 𝐴𝐾

1 − 𝐴
) 𝐻3(1) + 𝜆𝜃𝐻4(1) − 𝛽𝜇𝐻5(1)} ,
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with

𝐻1(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠(1 − 𝑠)−1𝑑𝑠,

𝐻2(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠𝑑𝑠,

𝐻3(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Ψ(𝑠)(1 − 𝑠)−1𝑑𝑠,

𝐻4(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Θ1(𝑠)𝑑𝑠,

𝐻5(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠Θ2(𝑠)𝑑𝑠.

Now, from Equations (12) and (13), for 𝑧 = 1, we have

𝑃•,𝑗 = 𝐺𝑗(1) = 𝐴𝑗−1𝑃0,0, 𝑗 = 0, 𝐾 − 1. (31)

By the definition of 𝑃•,𝑗, using the normalizing condition, we get

𝐾
∑
𝑗=0

𝑃•,𝑗 = 1.

Finally, from Equations (30) and (31), we get

𝑃0,0 = ( 1 − 𝐴𝐾

𝐴(1 − 𝐴)
+ Φ(1))

−1

. (32)

7. Performance measures

The prime aim of determining probabilities in previous section is to formu-
late different metrics in order to examine the performance of the concerned
system.

7.1. Mean system sizes

Systematic observations of the system state is very important to enhance
the performance and to improve the decision-making.

Let 𝐿𝑗 be the system size when the servers are in the state 𝑗 (𝑗 = 0, 𝐾).

Thus, 𝔼(𝐿𝑗) is the mean system size when the servers are in the state 𝑗,
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defined by

𝔼(𝐿𝑗) = 𝐺′
𝑗(1) =

∞
∑
𝑛=1

𝑛𝑃𝑛,𝑗, 𝑗 = 0, 𝐾,

that is, for 𝑗 = 0, 𝐾 − 1, 𝔼(𝐿𝑗) represents the mean system size when the

servers are taking the (𝑗 + 1)th vacation, and 𝔼(𝐿𝐾) represents the mean
system size when the servers are busy. We first derive 𝔼(𝐿𝑗) for 𝑗 = 0, 𝐾 − 1.
From Equation (15), using the Hospital rule, we get

𝔼(𝐿0) = 𝐺′

0(1) =

= lim
𝑧→1

−𝜃𝜆𝐺0(𝑧) + [𝜃𝜆(1 − 𝑧) + 𝜙]𝐺′

0(𝑧) − 𝜆𝜃𝑃0,0

−𝛼𝜉0
=

=
𝜃𝜆𝐺0(1) − 𝜙𝐺′

0(1) + 𝜃𝜆𝑃0,0

𝛼𝜉0
.

Thus, we get

𝐺′
0(1) =

𝜃𝜆𝐺0(1) + 𝜆𝜃𝑃0,0

𝛼𝜉0 + 𝜙
. (33)

Similarly, from Equation (13), we find

(𝛼𝜉0 + 𝜙)𝐺′
𝑗(1) = 𝜃𝜆𝐺𝑗(1) + 𝜆𝜃𝑃0,𝑗, 𝑗 = 1, 𝐾 − 1. (34)

Then, from Equations (33) and (34), we have

𝔼(𝐿𝑗) = 𝐺′
𝑗(1) =

𝜆[𝜃𝐺𝑗(1) + 𝜃𝑃0,𝑗]
𝛼𝜉0 + 𝜙

, 𝑗 = 0, 𝐾 − 1. (35)

By substituting Equation (31) and (35), we get

𝔼(𝐿𝑗) = 𝜆
𝛼𝜉0 + 𝜙

[𝜃 + 𝜃𝐴
𝐴

] 𝐴𝑗𝑃0,0, 𝑗 = 0, 𝐾 − 1.

Thus, the mean system size when the servers are on vacation is obtained as

𝔼(𝐿𝑉) =
𝐾−1
∑
𝑗=0

𝔼(𝐿𝑗) = 𝔼(𝐿0) +
𝐾−1
∑
𝑗=1

𝔼(𝐿𝑗) =

= 𝜆(𝜃𝐴−1 + 𝜃)
(𝛼𝜉0 + 𝜙)

𝑃0,0 + 𝜆
(𝛼𝜉0 + 𝜙)

[𝜃 + 𝜃𝐴
𝐴

]
𝐾−1
∑
𝑗=1

𝐴𝑗𝑃0,0 =

= (𝜆(𝜃 + 𝜃𝐴)
𝛼𝜉0 + 𝜙

) {2 − (𝐴 + 𝐴𝐾−1)
𝐴(1 − 𝐴)

} 𝑃0,0.



A.A. Bouchentouf et al., Mathematical analysis of a Markovian multi-… 33

Next, from Equation (26) and by using the Hospital rule, we get

𝔼(𝐿𝐾) = lim
𝑧→1

𝐺′

𝐾(𝑧) =

= 1
𝛼𝜉1

{(𝜃𝜆 − 𝑐𝛽𝜇)Φ(1) + 𝑐𝛽𝜇𝜙
𝜆

𝐴𝐾−1 + 𝜆𝜙(𝜃 + 𝜃𝐴)
𝛼𝜉0 + 𝜙

( 1 − 𝐴𝐾

𝐴(1 − 𝐴)
)} 𝑃0,0+

+ 1
𝛼𝜉1

{𝜃𝜆Θ1(1) − 𝛽𝜇Θ2(1)} 𝑃0,0,

where Θ1(1) =
𝑐−1
∑
𝑛=0

𝜛𝑛 and Θ2(1) =
𝑐−1
∑
𝑛=1

(𝑛 − 𝑐)𝜛𝑛.

7.2. Queueing model indices

The expressions for the mean queue length, the mean number of customers
served and the average rates of impatient customers are established as follows:

— The mean size of the queue is calculated as

𝔼(𝐿𝑞) =
𝐾−1
∑
𝑗=0

∞
∑
𝑛=1

𝑛𝑃𝑛,𝑗 +
∞

∑
𝑛=𝑐

(𝑛 − 𝑐)𝑃𝑛,𝐾 =

= 𝔼(𝐿) − 𝑐 + {𝑐 [ 1 − 𝐴𝐾

𝐴(1 − 𝐴)
+ 𝜙

𝜆
𝐴𝐾−1] − Θ2(1)} 𝑃0,0.

— The mean number of customers served per unit of time is given as

𝐸cs = 𝛽𝜇
𝑐−1
∑
𝑛=1

𝑛𝑃𝑛,𝐾 + 𝑐𝛽𝜇
∞

∑
𝑛=𝑐

𝑃𝑛,𝐾 =

= 𝛽𝜇 {𝑐 + [Θ2(1) − 𝑐 (𝜙
𝜆

𝐴𝐾−1 + 1 − 𝐴𝐾

𝐴(1 − 𝐴)
)] 𝑃0,0} .

— The average rate of balking when the servers are in the state 𝑗 = 0, 𝐾 is
calculated as

𝐵r = 𝜃𝜆 (
𝐾−1
∑
𝑗=0

∞
∑
𝑛=1

𝑃𝑛,𝑗 +
∞

∑
𝑛=𝑐

𝑃𝑛,𝐾) =

= 𝜃𝜆 {1 − [2 − 𝐴 − 𝐴𝐾−1 + (1 − 𝐴)Θ1(1)
(1 − 𝐴)

] 𝑃0,0} .

— The average rate of abandonment of a customer due to reneging is as
follows

𝑅ren =
𝐾−1
∑
𝑗=0

∞
∑
𝑛=1

𝑛𝛼𝜉0𝑃𝑛,𝑗 +
∞

∑
𝑛=1

𝑛𝛼𝜉1𝑃𝑛,𝐾 = 𝛼𝜉0𝔼(𝐿𝑉) + 𝛼𝜉1𝔼(𝐿𝐾).
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8. Conclusion

In this paper, we studied an 𝑀/𝑀/𝑐 feedback queue under synchronous
𝐾-variant vacations, balking, server’s states-dependent reneging and retention
of reneged customers. We developed the Chapman–Kolmogorov equations
for the steady-state probabilities and solved the differential equations by
using the probability generating function method. Based on these results, we
obtained the probability generating function of the number of customers in
the system when the system is on vacation period (resp. on busy period). In
addition, we derived explicit expressions of some useful performance measures
for the system. Furthermore, we presented closed-form expressions of some
important other queueing indices such as the probabilities when the servers
are in different states, the proportion of customers served per unit of time,
and the average rates of balking and reneging.
It would be interesting to investigate a similar model with two-phase services

and multiple vacation policy, server breakdown and repair, and customers’
impatience. Further, one can evaluate the optimality of service and repair
rates to minimize the waiting time of the customers in the system.
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Аннотация. В работе исследуется система массового обслуживания с нетер-
пеливыми заявками, бернуллиевской обратной связью и прогулками приборов.
В момент перед поступлением заявки в систему клиент, анализируя занятость
системы и состояние приборов, принимает решение о принятии заявки или её
уходе из системы. Предполагается, что нетерпение клиента может возникнуть
как в период занятости, так и в период отдыха (прогулки) приборов из-за имев-
шихся ранее случаев длительного ожидания начала обслуживания в системе,
информация о которых предоставляется с помощью определённого механизма.
Обратная связь состоит в том, что часть ранее обслуженных клиентов может
вернуться в систему для повторного обслуживания. Исследуемая система может
применяться для анализа передачи данных в телекоммуникационных системах.
Для стационарного распределения вероятностей записаны и решены с помощью
производящих функций уравнения Колмогорова–Чепмена. Кроме того, полу-
чены аналитические выражения для ряда ключевых характеристик системы,
например таких, как вероятности занятости или прогулки прибора, среднее чис-
ло обслуженных заявок в единицу времени, средние интенсивности отказов от
поступления и отказов от ожидания начала обслуживания.

Ключевые слова: марковская многолинейная система массового обслуживания,
производящая функция, нетерпеливые заявки, прогулка прибора, обратная связь
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Abstract. The paper considers the class of Hamiltonian systems with two degrees of
freedom. Based on the classical normal form, according to the rules of Born–Jordan
and Weyl–MacCoy, its quantum analogs are constructed for which the eigenvalue
problem is solved and approximate formulas for the energy spectrum are found. For
particular values of the parameters of quantum normal forms using these formulas,
numerical calculations of the lower energy levels were performed, and the obtained
results were compared with the known data of other authors. It was found that the
best and good agreement with the known results is obtained using the Weyl–MacCoy
quantization rule. The procedure for normalizing the classical Hamilton function is
an extremely time-consuming task, since it involves hundreds and even thousands of
polynomials for the necessary transformations. Therefore, in the work, normalization
is performed using the REDUCE computer algebra system. It is shown that the use
of the Weyl–MacCoy and Born–Jordan correspondence rules leads to almost the same
values for the energy spectrum, while their proximity increases for large quantities of
quantum numbers, that is, for highly excited states. The canonical transformation is
used in the work, the quantum analog of which allows us to construct eigenfunctions
for the quantum normal form and thus obtain analytical formulas for the energy
spectra of different Hamiltonian systems. So, it is shown that quantization of classical
Hamiltonian systems, including those admitting the classical mode of motion, using
the method of normal forms gives a very accurate prediction of energy levels.

Key words and phrases: Hamilton function, normal form, Weyl–MacCoy rules,
Born–Jordan rule, quantum normal form, computer modeling, energy spectra

Introduction

Representation of the original classical Hamilton function in normal form
as the sum of homogeneous polynomials in canonically conjugate coordinates
and momenta [1] allows us to carry out its quantum-mechanical description.
The main provisions of the new quantum mechanics were discovered by

W. Heisenberg in 1925 [2]. In the same year, the paper was published by
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M. Born and P. Jordan [3], in which the commutation relation for the quantum-
mechanical operators of coordinate ̂𝑞 and momentum ̂𝑝 was obtained for the
first time in the form

̂𝑝 ̂𝑞 − ̂𝑞 ̂𝑝 = ℎ/2𝜋𝑖, (1)

as well as the rule of matching to the classical monom of the form 𝑞𝑚𝑝𝑛,
(𝑚, 𝑛 = 1, 2, 3, …) of its quantum analog, which we present as

BJ{𝑞𝑚𝑝𝑛 = 𝑝𝑛𝑞𝑚} = 1
𝑛 + 1

𝑛
∑
𝑘=0

̂𝑝𝑛−𝑘 ̂𝑞𝑚 ̂𝑝𝑘. (2)

The results obtained by P.A.M. Dirac [4] should be added to this. In this
paper P.A.M. Dirac wrote: “In a recent work [2], Heisenberg put forward
a new theory, which suggests that not the equations of classical mechanics are
erroneous in any way, but that mathematical operations, by which physical
results are derived from these equations, need modification. Thus, all the
information provided by the classical theory can be used in the new theory…
We make the basic assumption that the difference of the Heisenberg products
of two quantum quantities is equal to the Poisson bracket of these quantities
multiplied by 𝑖ℎ/2𝜋”:

{𝑞, 𝑝} → 1
𝑖ℏ

[ ̂𝑞, ̂𝑝] = 1
𝑖ℏ

( ̂𝑞 ̂𝑝 − ̂𝑝 ̂𝑞) = 1, (3)

here {𝑞; 𝑝} is the Poisson bracket, [ ̂𝑞, ̂𝑝] is the commutator for the operators,
̂𝑞, ̂𝑝, ℏ is Planck’s constant.

In 1927, G. Weyl published a paper [5], (see also [6]), in which the author,
on the basis of group-theoretic ideas, proposed the following rule of corre-
spondence between classical quantities and their quantum analogs in integral
form. Let the classical function 𝑓(𝑞, 𝑝) be determined by the following Fourier
integral

𝑓(𝑞, 𝑝) = ∬ exp(𝑖𝜎𝑝 + 𝑖𝜏𝑞)𝜁(𝜎, 𝜏)𝑑𝜎𝑑𝜏,

then the corresponding function 𝐹( ̂𝑞, ̂𝑝) in quantum mechanics is given by

𝐹( ̂𝑞, ̂𝑝) = ∬ exp(𝑖𝜎 ̂𝑝 + 𝑖𝜏 ̂𝑞)𝜁(𝜎, 𝜏)𝑑𝜎𝑑𝜏,

and the operators ̂𝑞, ̂𝑝 satisfy the commutation relation (1). Based on these
assumptions for functions of polynomial form 𝑓(𝑞, 𝑝) = 𝑞𝑚𝑝𝑛, a number of
different relations were obtained [7], one of which can be written as

WMc{𝑞𝑚𝑝𝑛 = 𝑝𝑛 𝑞𝑚} = 1
2𝑛

𝑛
∑
𝑘=0

𝑛!
𝑘!(𝑛 − 𝑘)!

̂𝑝𝑛−𝑘 ̂𝑞𝑚 ̂𝑝𝑘, (4)

which we will call the Weyl–MacCoy quantization rule.



I. N. Belyaeva, The quantization of the classical two-dimensional… 41

In [8], the correspondence rule was obtained in the following form

𝑓(𝑞)𝑝𝑛 → 1
2𝑛

𝑛
∑
𝑘=0

𝑛!
𝑘!(𝑛 − 𝑘)!

̂𝑝𝑘𝑓( ̂𝑞) ̂𝑝𝑛−𝑘,

which is represented by repeating anti-commutators [ ̂𝑎, ̂𝑏]+ = ̂𝑎�̂� + �̂� ̂𝑎 as
follows:

𝑓(𝑞)𝑝𝑛 → [[… [𝑓( ̂𝑞), ̂𝑝]+, ̂𝑝]+, …]+.

In addition to the main works mentioned above, there are publications
in which the problem of the correspondence of classical quantities and their
quantum analogs is discussed from different perspectives (see, for example,
[9]–[14]).

A critical review of various quantization rules for classical Hamilton func-
tions was carried out in [15].

In this paper, for the Hamiltonian, in general, non-integrable system with
two degrees of freedom, we have received the classical normal Birkhoff–
Gustavson form for which the corresponding quantum analogs are obtained by
the Born–Jordan and Weyl–MacCoy quantization rules. For these quantum
analogs, i.e., Schrödinger operators, approximate formulas for energy spectra
are found. According to these formulas, for some specific numerical values of
the parameters, the energy spectra were calculated and compared with the
literature results obtained by direct numerical calculations.

1. A quantum analog of the classical normal form

The paper considers a classical system with two degrees of freedom, whose
Hamilton function is

𝐻 = 1
2

(𝑝2
1 + 𝑝2

2) + 𝑉 (𝑞1, 𝑞2),

𝑉 (𝑞1, 𝑞2) = 1
2

(𝑞2
1 + 𝑞2

2) + 𝑏 (𝑞2
1𝑞2 + 1

3
𝑞3

2) + 𝑐𝑞2
1𝑞2

2 + 𝑑 (𝑞2
1 + 𝑞2

2)2 ,
(5)

where the coordinates 𝑞1, 𝑞2 and momenta 𝑝1, 𝑝2 are canonically conjugate
variables, 𝑏, 𝑐, 𝑑 are dimensionless parameters.

Since system (5) is resonant with a frequency ratio of 1:1, when we bring
it to normal form for the initial Hamilton function, we apply the canonical
transformation with a valence equal to an imaginary unit [16]:

𝑞1 = 1
2𝑖

(−𝑄1 + 𝑄2 + 𝑃1 − 𝑃2), 𝑞2 = 1
2

(𝑄1 + 𝑄2 + 𝑃1 + 𝑃2),

𝑝1 = 1
2

(𝑄1 − 𝑄2 + 𝑃1 − 𝑃2), 𝑝2 = 1
2𝑖

(𝑄1 + 𝑄2 − 𝑃1 − 𝑃2),
(6)

and its inverse transformation is written in the form
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𝑄1 = 1
2

(𝑞2 − 𝑖𝑝2) + 𝑖
2

(𝑞1 − 𝑖𝑝1), 𝑄2 = 1
2

(𝑞2 − 𝑖𝑝2) − 𝑖
2

(𝑞1 − 𝑖𝑝1),

𝑃1 = 1
2

(𝑞2 + 𝑖𝑝2) − 𝑖
2

(𝑞1 + 𝑖𝑝1), 𝑃2 = 1
2

(𝑞2 + 𝑖𝑝2) + 𝑖
2

(𝑞1 + 𝑖𝑝1).
(7)

It directly follows from expressions (7) that the variables 𝑄1, 𝑄2 are complex
conjugate to the variables 𝑃1, 𝑃2 respectively.
Canonical transformations (7) using standard substitution

𝑝𝜈 → ̂𝑝𝜈 = −𝑖 𝜕
𝜕𝑞𝜈

, 𝑞𝜈 → ̂𝑞𝜈 = 𝑞𝜈, 𝜈 = 1, 2

with a known commutation rule (Planck constant ℏ = 1)

[ ̂𝑝𝜈, ̂𝑞𝜈] = 𝑖𝛿𝜇𝜈, 𝜇, 𝜈 = 1, 2 (8)

(𝛿𝜇𝜈 — Kronecker symbol) will be presented by us in the operator form

�̂�1 = ̂𝑎+
2 + 𝑖 ̂𝑎+

1 , �̂�2 = ̂𝑎+
2 − 𝑖 ̂𝑎+

1 , ̂𝑃1 = ̂𝑎2 − 𝑖 ̂𝑎1, ̂𝑃2 = ̂𝑎2 + 𝑖 ̂𝑎1, (9)

where

̂𝑎+
1 = 1

2
( ̂𝑞1 − 𝑖 ̂𝑝1), ̂𝑎+

2 = 1
2

( ̂𝑞2 − 𝑖 ̂𝑝2),

̂𝑎1 = 1
2

( ̂𝑞1 + 𝑖 ̂𝑝1), ̂𝑎2 = 1
2

( ̂𝑞2 + 𝑖 ̂𝑝2),
(10)

where the upper “+” symbol denotes Hermitian conjugation. Taking into
account expressions (8), it is easy to verify that the operators (10) commute
by the rule

[ ̂𝑎𝜇, ̂𝑎+
𝜈 ] = 𝑖

2
𝛿𝜇𝜈,

and the operators (9) obey the rule

[ ̂𝑃𝜇, �̂�+
𝜈 ] = 𝛿𝜇𝜈. (11)

However, the commutation (11) can be directly obtained from the Dirac
quantization condition (3), given that the classical canonical transformation
(6) has a valence equal to an imaginary unit.

From the expressions (9), (10) it follows that the operators ̂𝑃𝜈 and �̂�𝜈,
(𝜈 = 1, 2) are the annihilation and birth operators, respectively.

Using the quantization rules (2) and (4), we obtain two expressions of its

quantum analogs �̂�BJ
6 and �̂�WMc

6 , respectively, and each expression can be
represented as the sum of the diagonal and nondiagonal parts

�̂�BJ
6 = �̂�BJ

diag + �̂�BJ
nondiag.

�̂�WMc
6 = �̂�WMc

diag + �̂�WMc
nondiag.
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Below we present the diagonal parts only:

�̂�BJ
diag = �̂�1

̂𝑃1 + �̂�2
̂𝑃2 + 1 + 𝐾41 [(�̂�1

̂𝑃1 + �̂�2
̂𝑃2 + 1)2 + 5

2
] +

+ 𝐾42 (�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 2�̂�1
̂𝑃1�̂�2

̂𝑃2 + 1
2

) + 𝐾43 [(�̂�1
̂𝑃1 − �̂�2

̂𝑃2)2 + 5
2

] +

+ 𝐾61 [(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 1)3 + 1
4

(�̂�1
̂𝑃1)2 +

+ 1
4

(�̂�2
̂𝑃2)2 + 27

4
(�̂�1

̂𝑃1 + �̂�2
̂𝑃2) + 13

2
] −

− 𝐾64 [(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 1)(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 2�̂�1
̂𝑃1�̂�2

̂𝑃2 + 3)] +

+ 𝐾66 [(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 1) ((�̂�1
̂𝑃1 − �̂�2

̂𝑃2)2 + 1
4

(�̂�1
̂𝑃1 + �̂�2

̂𝑃2)) −

− 1
2

�̂�1
̂𝑃1�̂�2

̂𝑃2] . (12)

�̂�WMc
diag = �̂�1

̂𝑃1 + �̂�2
̂𝑃2 + 1 + 𝐾41 [(�̂�1

̂𝑃1 + �̂�2
̂𝑃2 + 1)2 + 1

2
] +

+ 𝐾42 (�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 2�̂�1
̂𝑃1�̂�2

̂𝑃2 + 1
2

) + 𝐾43 [(�̂�1
̂𝑃1 − �̂�2

̂𝑃2)2 + 1
2

] +

+ 𝐾61 [(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 1)3 + 2(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 1)] −

− 𝐾64 [(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 1)(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 2�̂�1
̂𝑃1�̂�2

̂𝑃2 + 1)] +

+ 𝐾66 [(�̂�1
̂𝑃1 + �̂�2

̂𝑃2 + 1) ((�̂�1
̂𝑃1)2 + (�̂�2

̂𝑃2)2 − 2�̂�1
̂𝑃1�̂�2

̂𝑃2 + 1)] . (13)

We note that the quantum state vectors [2]

|𝑁, 𝐿⟩ = [(𝑁 + 𝐿
2

)! (𝑁 − 𝐿
2

)!]
−1/2

�̂�( 𝑁−𝐿
2 )

2 �̂�( 𝑁+𝐿
2 )

1 |0, 0⟩,

̂𝑃1|0, 0⟩ = ̂𝑃2|0, 0⟩ = 0,
(14)

where 𝑁 is the main quantum number, 𝑁 = 0, 1, 2, 3, …, and 𝐿 is the orbital
quantum number, which for a given value 𝑁 takes the following values:
𝐿 = ±𝑁, ±(𝑁 − 2), ±(𝑁 − 4), …, ±1(0), are eigenvectors for the diagonal
parts of quantum analogs (12) and (13). The presence of nondiagonal terms in
quantum analogs (12) and (13) is due to the fact that in the original classical
Hamiltonian system (5) there is a 1:1 resonance ratio between frequencies.

2. The energy spectra of quantum normal forms

Since vectors (14) represent an orthonormal basis, the energy spectra
of quantum normal forms (12) and (13) are determined by the following
expressions:



44 DCM&ACS. 2022, 30 (1) 39–51

𝐸𝑁𝐿
BJ = ⟨𝑁, 𝐿|�̂�BJ

diag|𝑁, 𝐿⟩ + ∑
𝑁′,𝐿′

⟨𝑁 ′, 𝐿′|�̂�BJ
nondiag|𝑁, 𝐿⟩, (15)

𝐸𝑁𝐿
WMc = ⟨𝑁, 𝐿|�̂�WMc

diag |𝑁, 𝐿⟩ + ∑
𝑁′,𝐿′

⟨𝑁 ′, 𝐿′|�̂�WMc
nondiag|𝑁, 𝐿⟩. (16)

Using the relations

�̂�1
̂𝑃1|𝑁, 𝐿⟩ = (𝑁 + 𝐿

2
) |𝑁, 𝐿⟩, �̂�2

̂𝑃2|𝑁, 𝐿⟩ = (𝑁 − 𝐿
2

) |𝑁, 𝐿⟩,

from expressions (15) and (16) without taking into account the nondiagonal
terms, we obtain the formulas for the energy spectra

𝐸BJ
𝑁𝐿 = 𝑁 + 1 + 1

2
𝐾41(2𝑁2 + 4𝑁 + 7) + 1

2
𝐾42(𝑁2 + 2𝑁 − 𝐿2 + 1)+

1
2

𝐾43(2𝐿2 + 5) + 1
8

𝐾61(8𝑁3 + 25𝑁2 + 78𝑁 + 𝐿2 + 60)−
1
2

𝐾64(𝑁3 + 3𝑁2 + 8𝑁 − 𝑁𝐿2 − 𝐿2 + 3)+

+ 1
8

𝐾66(𝑁2 + 14𝑁 + 8𝑁𝐿2 + 9𝐿2 + 12), (17)

𝐸WMc
𝑁𝐿 = 𝑁 + 1 + 1

2
𝐾41(2𝑁2 + 4𝑁 + 3) + 1

2
𝐾42(𝑁2 + 2𝑁 − 𝐿2 + 1)+

+ 1
2

𝐾43(2𝐿2 + 1) + 𝐾61(𝑁3 + 3𝑁2 + 5𝑁 + 3)−

− 1
2

𝐾64(𝑁3 + 3𝑁2 + 2𝑁 − 𝑁𝐿2 − 𝐿2 + 1)+

+ 𝐾66(𝑁 + 𝑁𝐿2 + 𝐿2 + 1). (18)

As it can be seen, the energy spectrum in both cases of quantization is
degenerate by sign of the orbital quantum moment 𝐿. Besides, taking into
account the contributions of nondiagonal terms can lead to a shift of energy
levels, which differ in the value of the orbital quantum number by four and
six units. Therefore, it is expected that approximate formulas (17), (18) with
satisfactory accuracy describe the energy spectrum of the lowest states in the
vicinity of a stationary point located at the origin.

From the comparison of formulas (17), (18) for energy spectra, a general
conclusion can be drawn that the quantization rules of Born–Jordan and
Weyl–MacCoy predict different values for the ground state energy, which are
determined by the numerical values of the parameters 𝑏, 𝑐 and 𝑑.
More specific conclusions can be obtained by comparing the results of

numerical calculations using formulas (17), (18) with exact energy levels
calculated for any particular values of the parameters of the Hamiltonian,
which will be performed in the next section. In cases where the classical
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system (5) is integrable, approximate formulas (17), (18), expressed directly
through the parameters 𝑏, 𝑐 and 𝑑 have the following form.

1. If there is a relationship 𝑐 = 4𝑑, and the parameter 𝑏 is not equal to or
is equal to zero, then the energy spectra are calculated by the formulas:

𝐸BJ
𝑁𝐿 = 𝑁 + 1 + 𝑑 (9

4
𝑁2 + 9

2
𝑁 − 3

4
𝐿2 + 6) −

− 𝑑2 (85
8

𝑁3 + 1037
32

𝑁2 + 1479
16

𝑁 − 187
32

𝐿2 − 51
8

𝑁𝐿2 + 561
8

) −

− 𝑏2 (5
8

𝑁2 + 5
4

𝑁 − 5
24

𝐿2 + 5
3

) +

+ 𝑑𝑏2 (125
8

𝑁3 + 1525
32

𝑁2 + 2175
16

𝑁 − 275
32

𝐿2 − 75
8

𝑁𝐿2 + 825
8

) −

− 𝑏4 (1175
864

𝑁3 + 14335
3456

𝑁2 + 6815
576

𝑁 − 2585
3456

𝐿2 − 235
288

𝑁𝐿2 + 2585
288

) , (19)

𝐸WMc
𝑁𝐿 = 𝑁 + 1 + 𝑑 (9

4
𝑁2 + 9

2
𝑁 − 3

4
𝐿2 + 3) +

+ 𝑑2 (17
8

𝑁3 + 51
8

𝑁2 + 17
4

𝑁 − 51
8

𝐿2 − 51
8

𝑁𝐿2) −

− 𝑏2 (5
8

𝑁2 + 5
4

𝑁 − 5
24

𝐿2 + 5
6

) −

− 𝑑𝑏2 (25
8

𝑁3 + 75
8

𝑁2 + 25
4

𝑁 − 75
8

𝐿2 − 75
8

𝑁𝐿2) +

+ 𝑏4 (235
864

𝑁3 + 235
288

𝑁2 + 235
432

𝑁 − 235
288

𝐿2 − 235
288

𝑁𝐿2) . (20)

2. If the parameters 𝑏 = 𝑐 = 0, but the parameter 𝑑 > 0, then the formulas
have the form:

𝐸BJ
𝑁𝐿 = 𝑁 + 1 + 𝑑 (3

2
𝑁2 + 3𝑁 − 1

2
𝐿2 + 4) −

− 𝑑2 (17
4

𝑁3 + 13𝑁2 + 75
2

𝑁 − 2𝐿2 − 9
4

𝑁𝐿2 + 57
2

) , (21)

𝐸WMc
𝑁𝐿 = 𝑁 + 1 + 𝑑 (3

2
𝑁2 + 3𝑁 − 1

2
𝐿2 + 2) −

− 𝑑2 (17
4

𝑁3 + 51
4

𝑁2 + 19𝑁 − 9
4

𝐿2 − 9
4

𝑁𝐿2 + 21
2

) . (22)

3. If the parameters 𝑏 = 0, 𝑐 = −2𝑑, 𝑑 ≠ 0, then we obtain the formulas:

𝐸BJ
𝑁𝐿 = 𝑁 + 1 + 𝑑 (9

8
𝑁2 + 9

4
𝑁 − 3

8
𝐿2 + 3) −
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− 𝑑2 (85
32

𝑁3 + 1037
128

𝑁2 + 1479
64

𝑁 − 187
128

𝐿2 − 51
32

𝑁𝐿2 + 561
32

) , (23)

𝐸WMc
𝑁𝐿 = 𝑁 + 1 + 𝑑 (9

8
𝑁2 + 9

4
𝑁 − 3

8
𝐿2 + 3

2
) −

− 𝑑2 (187
32

𝑁3 + 561
32

𝑁2 + 391
16

𝑁 − 153
32

𝐿2 − 153
32

𝑁𝐿2 + 51
4

) . (24)

3. The comparison of energy spectra

Unfortunately, the exact spectrum obtained, for example, by direct numeri-
cal calculations of the Schrödinger equation with its quantum analog of the
original Hamilton function (5), in which a well-known replacement is to be

made 𝑝1 → ̂𝑝1 = −𝑖 𝜕
𝜕𝑞1

, 𝑝2 → ̂𝑝2 = −𝑖 𝜕
𝜕𝑞2

, 𝑞1 → ̂𝑞1 = 𝑞1, 𝑞2 → ̂𝑞2 = 𝑞2 for

arbitrary values of its parameters, is not available in the literature.
Also, direct numerical calculations using modern computer technologies

face the difficulty of solving eigenvalue problems, for example, even with the
help of carefully developed software packages based on the diagonalization
method, which is also the task of integrating the Schrödinger equation for
two or more independent variables.
Below we present the results of numerical calculations of energy spectra for

specific numerical values of the parameters 𝑏, 𝑐, 𝑑 in cases where the classical
system (5) is integrable.
Table 1 shows the values of the lowest energy levels calculated by the

approximate formulas (19) and (20) in the first case of integrability, i.e.,
under the condition 𝑐 = 4𝑑 and 𝑏 = 0.

Table 1

The comparison of energy levels at parameter values 𝑏 = 0, 𝑐 = 0.02, 𝑑 = 0.005, (𝑐 = 4𝑑)

No 𝐸𝑁,𝐿 𝐸BJ
𝑁𝐿 𝐸WMc

𝑁𝐿 𝐸BJ
𝑁𝐿 − 𝐸WMc

𝑁𝐿 𝐸WMc
𝑛+1 − 𝐸WMc

𝑛 𝐸BJ
𝑛+1 −𝐸BJ

𝑛

1. 𝐸0,0 1.028247 1.015000 0.013247 - -

2. 𝐸1,±1 2.055166 2.045000 0.010166 1.030000 1.026919

3. 𝐸2,±2 3.095512 3.089363 0.006149 1.044363 1.039953

4. 𝐸2,0 3.108259 3.106275 0.001984 0.016913 0.013141

5. 𝐸3,±3 4.147469 4.147450 0.000019 1.041175 1.039209

6. 𝐸3,±1 4.172475 4.182550 −0.010075 0.035100 0.025006

7. 𝐸4,±4 5.211578 5.218625 −0.007047 1.036075 1.039103

8. 𝐸4,±2 5.247175 5.273188 −0.026013 0.054563 0.035597

9. 𝐸4,0 5.259041 5.291375 −0.032334 0.018188 0.011866
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From the table 1, it follows that the Weyl–MacCoy quantization rule leads
to a lower energy level for the ground state and a greater decomposition of
the levels with respect to the orbital moment at a given value of the principal
quantum number 𝑁. In the classically integrable case under consideration,
there are no exact (analytical or numerical) values of the energy spectrum
in the current literature. However, the spectrum is known [17] in the second
classical case of integrability, when the parameters of the quantum analog of
the Hamilton function (5) are equal 𝑏 = 0, 𝑐 = 0, 𝑑 ≠ 0.
Besides, the values of the energy spectrum of a one-dimensional anharmonic

oscillator are known and also with great accuracy, in particular, with a fourth
degree in potential energy. Knowing this spectrum, it is possible to construct
an approximate spectrum of a quantum analog of the original Hamilton
function (5), but already a two-dimensional Hamiltonian given the values of
parameters 𝑏 = 0, 𝑐 = −2𝑑, 𝑑 ≠ 0, for which system (5) is integrable in the
classical case.
We will compare below these well-known and very reliable numerical results

for the energy spectra with our results, which are calculated by formulas (23),
(24) according to the Born–Jordan and Weil–McCoy quantization rules.

For parameter values 𝑏 = 0, 𝑐 = 0 and 𝑑 ≠ 0 the Schrödinger equation
corresponding to the classical Hamilton function (5) allows separation of
variables in polar coordinates, and the energy spectrum is characterized by
a radial quantum number 𝑛 and orbital momentum 𝑙. In [17] a method for
numerical solving the radial Schrödinger equation was developed and energy
levels were calculated for the values of quantum numbers equal 𝑛, 𝑙 = 0, 1, 2
for a parameter value 𝑑 = 0.000005. Quantum numbers 𝑛, 𝑙 are connected
with our numbers 𝑁, 𝐿 by the following relations: 𝑁 = 2𝑛 + 𝑙, |𝐿| = 𝑙.
Table 2 shows the energy levels obtained in [17], as well as their values

calculated for the same value of the parameter using formulas (21) and
(22) based on quantization of the classical normal form, according to the
Born–Jordan and Weil–McCoy rules, respectively.
Table 2 shows that a very good approximation to the exact spectrum is

given by the application of the Weyl–MacCoy quantization rule. In particular,
the ground state energy obtained using the Weyl–MacCoy quantization rule

differs from the result of [17] by 0.5 ⋅ 10−7%, and when quantized by the
Born–Jordan rule, by 0.001%. At the same time, for energy of level 14, these
errors are equal, respectively, 0.4 ⋅ 10−8% and 0.0001%, i.e., the prediction
according to the Born–Jordan rule improves.

In the third case (𝑏 = 0, 𝑐 = −2𝑑, 𝑑 ≠ 0) of integrability of the classical
system (5), with its quantum-mechanical description, it is necessary to solve
the following two-dimensional Schrödinger equation

(�̂�1 + �̂�2)Ψ = 2𝐸Ψ, �̂�𝑖 = − 𝑑2

𝑑𝑞2
𝑖

+ 𝑞2
𝑖 + 2𝑑𝑞4

𝑖 , 𝑖 = 1, 2, (25)

where the variables are separated. Therefore, its solving is reduced to solving
two identical one-dimensional equations for the anharmonic oscillator, and the
energy spectrum is found in the form of the following sum 2𝐸 = 2𝐸1 + 2𝐸2.
The quantum numbers of an isotropic two-dimensional oscillator (𝑁, 𝐿) are

connected with the quantum numbers (𝑛1, 𝑛2) of one-dimensional oscillators
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by the following relations: 𝑁 = 𝑛1 + 𝑛2 and 𝐿 = 𝑛1 − 𝑛2. We note that the
ordering of the values of the energy spectrum levels by the value of quantum
numbers (𝑁, 𝐿) as compared to another numbering of states has the advantage
that the values of the energy spectrum levels, numbered by quantum numbers
(𝑁, 𝐿), grow with an increase of the main quantum number.

Table 2

The comparison of energy levels 𝐸BJ
𝑁𝐿 and 𝐸WMc

𝑁𝐿 with their values from [17]

for 𝑑 = 0.000005

No. 2𝐸𝑁,𝐿 𝐸BJ
𝑁𝐿 𝐸WMc

𝑁𝐿 Results [17]

1. 2𝐸0,0 2.0000399985 2.0000199995 2.0000199995

2. 2𝐸1,±1 4.0000799961 4.0000599979 4.0000599981

3. 2𝐸2,±2 6.0001399918 6.0001199946 6.0001199949

4. 2𝐸2,0 6.0001599905 6.0001399933 6.0001399936

5. 2𝐸3,±3 8.0002199853 8.0001999892 8.0001999892

6. 2𝐸3,±1 8.0002599818 8.0002399856 8.0002399859

7. 2𝐸4,±4 10.000319975 10.000299981 10.000299981

8. 2𝐸4,±2 10.000379969 10.000359974 10.000359975

9. 2𝐸4,0 10.000399967 10.000379971 10.000379972

10. 2𝐸5,±5 12.000439962 12.000419969 12.000419969

11. 2𝐸5,±3 12.000519952 12.000499958 12.000499958

12. 2𝐸5,±1 12.000559947 12.000539953 12.000539953

13. 2𝐸6,±6 14.000579946 14.000559953 14.000559953

14. 2𝐸6,±4 14.000679930 14.000659937 14.000659937

15. 2𝐸6,±2 14.000739921 14.000719928 14.000719929

16. 2𝐸6,0 14.000759918 14.000739925 14.000739925

Conclusions

In this paper for a classical system with two degrees of freedom with the
Hamilton function (5), a classical normal form is obtained in the Birkhoff-
Gustavson approach, for which its quantum analogs are constructed according
to the Born–Jordan and Weyl–MacCoy heuristic quantization rules. For these
quantum analogs, which are nothing but approximate differential expressions
for the exact Schrödinger operator, the eigenvalue problem is solved and the
formulas of energy spectra are found.
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Using these formulas, in two special cases with specific numerical values
of the parameters, the lower energy levels were calculated and the results
obtained were compared with the data available in the works published by
other authors. It was found that the best and good agreement with the known
results of calculating the energy spectrum is obtained using the Weyl–MacCoy
quantization rule in comparison with the Born–Jordan rule.
Both the Weyl–MacCoy and Born–Jordan quantization rules are derived

from the fundamental, but different postulates of classical and quantum me-
chanics. For the system under consideration, particular numerical results for
the energy spectrum reveal the advantage of the Weyl–MacCoy quantization
rule, however, it is probably premature to extend this conclusion to other
systems.

References

[1] N. N. Chekanova, I. K. Kirichenko, V. E. Bogachev, and N. A. Chekanov,
“The classical and quantum approach in the study of a nonlinear Hamil-
tonian system,” Bulletin of the Tambov State University. Series “Natural
and Technical Sciences”, vol. 20, no. 1, pp. 120–137, 2015.

[2] W. Heisenberg, “Über quanten theoretisсhe Umdeutung kinematisсher
und mechanischer Beziehungen,” Zeitschrift für Physik, vol. 33, pp. 879–
893, 1925. DOI: 10.1007/BF01328377.

[3] M. Born and P. Jordan, “Zur quanten mechanik,” Zeitschrift für Physik,
vol. 34, pp. 858–888, 1925. DOI: 10.1007/BF01328531.

[4] P. Digas, “Fundamental Equations of Quantum Mechanics,” Proc. Roy
Soc. (Lnd.)., pp. 642–653, 1925. DOI: 10.3367/UFNr.0122.197708e.
0611.

[5] H. Weyl, “Quanten Mechanik und Gruppen Theorie,” Zeitschrift für
Physik, vol. 46, pp. 1–46, 1927. DOI: 10.1063/1.1664478.

[6] G. Weil, The theory of groups and quantum mechanics. Martino Fine
Books, 2014.

[7] N. H. McCoy, “On the function in quantum mechanics which corresponds
to a given function in classical mechanics,” Proceedings of the National
Academy of Sciences (PNAS), vol. 18, pp. 674–676, 1932. DOI: 10.1073/
pnas.18.11.674.

[8] S. R. De Groot and L. G. Suttorp, Foundations of Electrodynamics.
Amsterdam: North-Holland publishing company, 1972. DOI: 10.12691/
amp-2-3-6.

[9] A. N. Argyers, “The Bohr-Sommerfeld quantization rule and the
Weyl correspondence,” Physics, vol. 2, p. 131, 1965. DOI: 10.1103/
PhysicsPhysiqueFizika.2.131.

[10] L. Castellani, “Quantization rules and Dirac’s correspondence,” Il Nuovo
Cimento A, vol. 48, pp. 359–368, 1978. DOI: 10.1007/BF02781602.



50 DCM&ACS. 2022, 30 (1) 39–51

[11] P. Crehan, “The parametrisation of quantization rules equivalent to
operator orderings and the effect of different rules on the physical
spectrum,” Journal of Physics A: Mathematical and General, vol. 22,
no. 7, pp. 811–822, 1989. DOI: 10.1088/0305-4470/22/7/013.

[12] P. Crehan, “The proper quantum analogue of the Birkhoff–Gustavson
method of normal forms,” Journal of Physics A: Mathematical and
General, vol. 23, no. 24, pp. 5815–5828, 1990. DOI: 10.1088/0305-
4470/23/24/022.

[13] W. A. Fedak and J. J. Prentis, “The 1925 Born and Jordan paper “On
quantum mechanics”,” American Journal of Physics, vol. 77, pp. 128–
139, 2009. DOI: 10.1119/1.3009634.

[14] M. A. Gosson, “Born–Jordan quantization and the uncertainty principle,”
Journal of Physics A: Mathematical and Theoretical, vol. 46, pp. 445–
462, 2013. DOI: 10.1088/1751-8113/46/44/445301.

[15] M. Razavy, Heisenberg’s quantum mechanics. Singapore: World Scientific
Publishing Co. Pte. Ltd., 2011. DOI: 10.1080/00107514.2011.603435.

[16] N. A. Chekanov, “Quantization of the normal form of Birkhoff–
Gustavson [Kvantovaniye normal’noy formy Birkgofa–Gustavsona],”
Nuclear Physics, vol. 50, no. 8, pp. 344–346, 1989, in Russian.

[17] H. Taseli, “On the Exact Solution of the Schroedinger Equation with
a Quartic Anharmonicity,” International Journal of Quantum Chemistry,
vol. 57, no. 1, pp. 63–71, 1996. DOI: 10.1002/(SICI)1097-461X(1996)
57:1<63::AID-QUA7>3.0.CO;2-X.

For citation:

I. N. Belyaeva, The quantization of the classical two-dimensional Hamilton-
ian systems, Discrete and Continuous Models and Applied Computational
Science 30 (1) (2022) 39–51. DOI: 10.22363/2658-4670-2022-30-1-39-51.

Information about the authors:

Belyaeva, Irina N. — Candidate of Physical and Math-
ematical Sciences, Associate Professor of Belgorod State
National Research University (e-mail: ibelyaeva@bsu.edu.ru,
ORCID: https://orcid.org/0000-0002-1368)



I. N. Belyaeva, The quantization of the classical two-dimensional… 51

УДК 519.711.3

DOI: 10.22363/2658-4670-2022-30-1-39-51

Квантование классических двумерных гамильтоновых
систем

И. Н. Беляева

Белгородский государственный исследовательский университет
ул. Победы, д. 85, Белгород, 308015, Россия

Аннотация. В статье рассматривается класс гамильтоновых систем с двумя
степенями свободы. На основе классической нормальной формы, согласно пра-

вилам Борна–Йордана и Вейля–Маккоя, построены её квантовые аналоги, для
которых решена задача на собственные значения и найдены приближённые
формулы для энергетического спектра. Для конкретных значений параметров
квантовых нормальных форм с использованием этих формул были проведены
численные расчёты нижних энергетических уровней, полученные результаты
были сопоставлены с известными данными других авторов. Обнаружено, что
наилучшее согласие с известными результатами достигается с использованием
правила квантования Вейля–Маккоя. Процедура нормализации классической
функции Гамильтона является крайне трудоёмкой задачей, так как вовлекает
сотни и даже тысячи многочленов для необходимых преобразований. Поэто-
му в работе нормализация выполняется с помощью системы компьютерной
алгебры REDUCE. Показано, что использование правил соответствия Борна–

Йордана и Вейля–Маккоя приводит практически к одним и тем же значениям
для энергетического спектра, при этом их близость увеличивается для больших
величин квантовых чисел, то есть для высоковозбуждённых состояний. В ра-
боте использовано каноническое преобразование, квантовый аналог которого
позволяет построить собственные функции для квантовой нормальной формы
и получить таким образом аналитические формулы для энергетических спектров
разных гамильтоновых систем. Итак, показано, что квантование классических
гамильтоновых систем, в том числе допускающих классический режим движе-
ния, с применением метода нормальных форм даёт очень точное предсказание
уровней энергии.

Ключевые слова: функция Гамильтона, нормальная форма, правило Вейля–

Маккоя, правило Борна–Йордана, квантовая нормальная форма, компьютерное
моделирование, энергетические спектры
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Abstract. The classical problem of the interaction of charged particles is considered
in the framework of the concept of short-range interaction. Difficulties in the
mathematical description of short-range interaction are discussed, for which it is
necessary to combine two models, a nonlinear dynamic system describing the motion
of particles in a field, and a boundary value problem for a hyperbolic equation or
Maxwell’s equations describing the field. Attention is paid to the averaging procedure,
that is, the transition from the positions of particles and their velocities to the charge
and current densities. The problem is shown to contain several parameters; when
they tend to zero in a strictly defined order, the model turns into the classical
many-body problem. According to the Galerkin method, the problem is reduced to
a dynamic system in which the equations describing the dynamics of particles, are
added to the equations describing the oscillations of a field in a box. This problem is
a simplification, different from that leading to classical mechanics. It is proposed to
be considered as the simplest mathematical model describing the many-body problem
with short-range interaction. This model consists of the equations of motion for
particles, supplemented with equations that describe the natural oscillations of the
field in the box. The results of the first computer experiments with this short-range
interaction model are presented. It is shown that this model is rich in conservation
laws.

Key words and phrases: many-body problem, Galerkin method, short-range
interaction

1. Interaction

Studying the motion of a beam of charged particles in an external elec-
tromagnetic field with the interaction of particles taken into account is one
of the most important and popular problems in plasma electronics. In the
framework of the generally accepted approach to its study [1, § 2.3], the time
interval is divided into discrete steps of length Δ𝑡. At each step, based on the
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current positions of the charges and their velocities that define the currents,
the induced field is calculated as a solution of Maxwell’s equations. Then this
‘induced’ field is added to the external field and the new positions and veloci-
ties of the particles are calculated, which they acquire in this field under the
action of the Lorentz force.
The described scheme allows for many variations [1]–[3]. However, these

details do not at all remove the division into processes: for one time step,
first, the charges and their velocities generate a field, and then the field acts
on the bodies through the Lorentz force.
It is quite obvious that what has been said gives a description of a numer-

ical method for studying a certain mathematical model of the many-body
problem with short-range interaction. The latter is explicitly taken into ac-
count in the model: at each step, the field is calculated and the interaction
between particles is carried out through this field, which is described using
the Maxwell’s equations, that is, hyperbolic equations that describe the prop-
agation of signals with the speed of light 𝑐. However, the model itself remains
undescribed; moreover, the issue of the convergence of the described numerical
method, i.e., the study of the limit at Δ𝑡 → 0, is usually avoided.
From a mathematical point of view, it is necessary to combine two models

into one system: a nonlinear dynamic system that describes the motion of
charges based on the Lorentz law, and a linear system of Maxwell’s equations
that describes the dynamics of the electromagnetic field. Separately, these
models are well studied. Dynamical systems with analytic right-hand sides
are solved in analytic functions, and the convergence of the finite-difference
method is proved in the 𝐶 norm [4]. Maxwell’s equations, as well as linear
partial differential equations in general, are naturally solved in Sobolev spaces,
and an approximate solution is also sought in one or another integral norm, for
example, in 𝐿2 over the space [5]. However, when combining these models, we
must consider dynamical systems, the right-hand sides of which are elements
of Sobolev spaces, and Maxwell’s equations, in which currents and charges
are combinations of 𝛿-functions. We do not have a theorem on the existence
of a solution for such problems.
A detailed description of the model, separated from the numerical method

of its study, is very useful, firstly, in order to be able to assess the quality of the
study in terms of closeness to the exact solution, and not in terms of closeness
to the expectations of the experimenters. Secondly, good mathematical models
always have a large number of symmetries, which correspond to conservation
laws. Checking their performance provides another important criterion for
assessing the quality of the numerical method. Finally, it cannot be ruled
out that less obvious, but more effective numerical methods for studying this
model can be found.
Thus, for example, by means of computer experiments it was found that

the Boris difference scheme for solving the equations of motion corresponds
to the expectations of experimenters more than others [1]. To explain this
effect, Hong Qin et al. [6] showed that this scheme is the phase volume
when integrating the equations of motion of one particle in an external
electromagnetic field. The question of whether the Boris scheme inherits the
properties of the original system in the many-many problem, which, we note,
is not Hamiltonian, was not raised.
In this paper, we consider the simplest formulation of the many-body

problem with short-range interaction described by the wave equation. To add
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boundary conditions to the wave equation, we consider the problem in a finite
domain. The question of setting the radiation conditions in such a problem
does not seem trivial to us, although to simplify the problem it is usually
assumed that the field in the far zone should be equal to zero.

2. Short-range interaction mathematical model

Let there be 𝑁 identical bodies of mass 𝑚, under the assumption of
short-range interaction between them, they produce a field with potential 𝑢
and move in it in accordance with the second Newton’s law. The simplest
formulation can be written as follows: the dynamics of particles is described
by the set of equations

𝑚 ̈⃗𝑟𝑛 = −∇𝑢∣
⃗𝑟= ⃗𝑟𝑛

, 𝑛 = 1, 2, … , 𝑁, (1)

and the field dynamics is described by a wave equation

1
𝑐2

𝜕2𝑢
𝜕𝑡2 = Δ𝑢 + 𝜌, (2)

where 𝜌 is the density of mass distribution:

𝜌 = 𝛾
𝑁

∑
𝑛=1

𝛿𝑠( ⃗𝑟 − ⃗𝑟𝑛). (3)

Here it is reasonable to consider 𝛿 as a smoothed prototype of Dirac delta
function that tends to the delta function in the limit 𝑠 → 0.
By virtue of the Poisson formula [7] and regardless of the boundary condi-

tions imposed on the field, this problem becomes classical if we first proceed
to the limit 𝑐 → ∞, and then to the limit 𝑠 → 0.

Theorem 1. Let there be a family of solutions to the system (1)–(2), param-
eterized by two parameters 𝑐 ⩾ 0 and 𝑠 > 0, and let it satisfy the condition

𝑢, 𝑢𝑡 ∈ 𝐿2(ℝ3)

at 𝑡 = 0. If we first proceed to the limit 𝑐 → ∞, and then to the limit 𝑠 → 0,
then this solution becomes the solution of the classical many-body problem.

Proof. According to the Poisson formula

𝑢( ⃗𝑟, 𝑡) = 1
4𝜋

∭
| ⃗𝑟|<𝑐𝑡

𝜌( ⃗𝑟′, 𝑡 − | ⃗𝑟 − ⃗𝑟′|/𝑐)
| ⃗𝑟 − ⃗𝑟′|

𝑑𝑣′+

+ 1
4𝜋𝑐

𝜕
𝜕𝑡

∬
| ⃗𝑟|=𝑐𝑡

𝑢( ⃗𝑟′, 0)
| ⃗𝑟 − ⃗𝑟′|

𝑑𝑠′ + 1
4𝜋𝑐

∬
| ⃗𝑟|=𝑐𝑡

𝑢𝑡( ⃗𝑟′, 0)
| ⃗𝑟 − ⃗𝑟′|

𝑑𝑠′. (4)
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Under the assumptions made about the initial conditions, the last two
terms tend to zero as 𝑐 → ∞ and we get

𝑢( ⃗𝑟, 𝑡) = 1
4𝜋

∭
ℝ3

𝜌( ⃗𝑟′, 𝑡)
| ⃗𝑟 − ⃗𝑟′|

𝑑𝑣′.

Substituting Eq. (3) here yields an expression that, at 𝑠 → 0, becomes

𝑢 = 𝛾
𝑁

∑
𝑛=1

1
| ⃗𝑟 − ⃗𝑟𝑛|

.

However, we cannot substitute it directly into (1) because this would lead
to dividing by zero. However, for 𝑠 ≠ 0, the expression for 𝑢 is a sum of terms
of the form 𝜙𝑠( ⃗𝑟 − ⃗𝑟𝑛), having an extreme at ⃗𝑟 = ⃗𝑟𝑛. So

∇𝜙𝑠( ⃗𝑟 − ⃗𝑟𝑛)| ⃗𝑟= ⃗𝑟𝑛
= 0

and there is no division by zero:

∇𝑢∣
⃗𝑟= ⃗𝑟𝑚

= 𝛾 ∑
𝑛≠𝑚

∇𝜙𝑠( ⃗𝑟𝑚 − ⃗𝑟𝑛).

Now, proceeding to the limit, we get in the right-hand side of equation (1)
exactly an expression that should be in the many-body problem

𝑚 ̈⃗𝑟𝑛 = −𝛾∇ ⃗𝑟𝑛
∑
𝑚≠𝑛

1
| ⃗𝑟𝑛 − ⃗𝑟𝑚|

.

The proved theorem allows us to hope that for large 𝑐 the solutions of
the system under consideration resemble the classical many-body problem.
However, it is important to emphasize that the order of proceeding to the
limit is important.
We are interested in constructing a model of many-body motion, in which

short-range interaction is explicitly taken into account, rather than in the
classical limit itself. For our purpose, it is necessary to supplement the
differential equations with initial and boundary conditions.
Let the bodies occupy fixed positions up to 𝑡 < 0, then for 𝑡 < 0 we know

𝑢 as a solution to the Poisson equation

Δ𝑢 = −𝜌.

At the moment 𝑡 = 0 the bodies are given initial velocities. Adding the
initial condition 𝑢𝑡 = 0 to the wave equation, we get the classical initial value
problem for finding the potential 𝑢, if we assume that the density 𝜌 is known.
Let us turn to the boundary conditions. We assume that the bodies do

not radiate waves that are noticeable in the far zone. To treat this problem
numerically, we place the systems in a Dirichlet box 𝐺 and set the conditions

𝑢∣
𝜕𝐺

= 0 on its boundary. This box will replace the boundary conditions at

infinity.
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The complete problem is formulated as follows. Given initial positions

⃗𝑟(0)
𝑛 and initial velocities ⃗𝑣(0)

𝑛 of the bodies, the solution is calculated to the
boundary value problem

⎧{
⎨{⎩

Δ𝑢0 = −𝛾
𝑁
∑
𝑛=1

𝛿𝑠( ⃗𝑟 − ⃗𝑟(0)
𝑛 ),

𝑢∣
𝜕𝐺

= 0.
(5)

It is required to find the functions ⃗𝑟𝑛(𝑡) and 𝑢(𝑥, 𝑦, 𝑧, 𝑡) satisfying the initial
and boundary value problem:

⎧
{
⎨
{
⎩

𝑚 ̈⃗𝑟𝑛 = −∇𝑢∣
⃗𝑟= ⃗𝑟𝑛

, 𝑛 = 1, 2, … , 𝑁,

1
𝑐2

𝜕2𝑢
𝜕𝑡2 = Δ𝑢 + 𝛾

𝑁
∑
𝑛=1

𝛿𝑠( ⃗𝑟 − ⃗𝑟𝑛),
(6)

with the initial conditions

⃗𝑟𝑛 = ⃗𝑟(0)
𝑛 , ̇⃗𝑟𝑛 = ⃗𝑣(0)

𝑛 , 𝑢 = 𝑢0, 𝑢𝑡 = 0 (𝑡 = 0)

and the boundary conditions 𝑢∣
𝜕𝐺

= 0.
We believe that this problem has a unique solution for small 𝑡. However,

the proof of this assertion requires a more careful description of the class
of functions in which the solution is sought. We confine ourselves to a few
computer experiments with this model.

3. Galerkin method

A natural method for solving the oscillation equation in a finite domain is
the Galerkin method [8]–[10]. Let 𝜙𝑛 be the normalized eigenfunctions of the

Laplace operator in 𝐺, and let 𝛼2
𝑛 be the corresponding eigenvalues. We seek

the solution of the wave equation in the form

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =
∞

∑
𝑗=1

𝑢𝑗(𝑡)𝜙𝑗(𝑥, 𝑦, 𝑧), (7)

where 𝑢𝑗 are coefficients yet unknown. Then

1
𝑐2

𝑑2𝑢𝑗

𝑑𝑡2 + 𝛼2
𝑗 𝑢𝑗 = 𝛾

𝑁
∑
𝑛=1

∭
𝐺

𝛿𝑠( ⃗𝑟 − ⃗𝑟𝑛(𝑡))𝜙𝑗𝑑𝑥𝑑𝑦𝑑𝑧, 𝑗 = 1, 2, …

and

𝑚𝑑2 ⃗𝑟𝑛
𝑑𝑡2 = −

∞
∑
𝑗=1

𝑢𝑗(𝑡)∇𝜙𝑗∣ ⃗𝑟= ⃗𝑟𝑛
, 𝑛 = 1, 2, … , 𝑁.

If we truncate the sum over 𝑗 to any finite number of terms 𝐽, then the
system has a unique solution, taking into account the initial conditions.
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In the limit 𝑠 → 0 we get

1
𝑐2

𝑑2𝑢𝑗

𝑑𝑡2 + 𝛼2
𝑗 𝑢𝑗 = 𝛾

𝑁
∑
𝑛=1

𝜙𝑗∣ ⃗𝑟= ⃗𝑟𝑛
, 𝑗 = 1, 2, … , 𝐽 (8)

and

𝑚𝑑2 ⃗𝑟𝑛
𝑑𝑡2 = −

𝐽
∑
𝑗=1

𝑢𝑗(𝑡)∇𝜙𝑗∣ ⃗𝑟= ⃗𝑟𝑛
, 𝑛 = 1, 2, … , 𝑁. (9)

The initial conditions for ⃗𝑟𝑛 are given and for 𝑢𝑗 they are found from

equation (5) using the explicit formulae

𝛼2
𝑗 𝑢𝑗(0) = 𝛾

𝑁
∑
𝑛=1

∭
𝐺

𝛿𝑠( ⃗𝑟 − ⃗𝑟𝑛)𝜙𝑗𝑑𝑥𝑑𝑦𝑑𝑧

or

𝑢𝑗(0) = 𝛾
𝛼2

𝑗

𝑁
∑
𝑛=1

𝜙𝑗∣ ⃗𝑟= ⃗𝑟𝑛
(10)

and
�̇�𝑗(0) = 0. (11)

By virtue of the Weyl lemma [11], [12], the eigenfunctions of the Laplace
operator are twice continuously differentiable in the domain considered. There-
fore, the system of ordinary differential equations (8), (9) falls under the
conditions of the classical Cauchy theorem. This means that the initial value
problem for equations (8), (9) with initial conditions (10), (11) has a unique
solution, at least in the vicinity of the initial data. Moreover, standard numer-
ical methods can be applied to this problem, for example, the Runge-Kutta
method [4].
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Figure 1. The first body trajectory at 𝑐 = 1 and 𝑐 = 10

Example 1. For example, let us take the box in the form of a cube [0, 𝐿]3.
Then the eigenfunctions are expressed as

sin
𝜋𝑚𝑥

𝐿
sin

𝜋𝑛𝑦
𝐿

sin
𝜋𝑘𝑧
𝐿

, 𝑛, 𝑚, 𝑘 ∈ ℕ,
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with the corresponding eigenvalues

𝛼2
𝑚𝑛𝑘 = 𝜋2

𝐿2 (𝑚2 + 𝑛2 + 𝑘2).

Taking the first 𝐽 functions from this set, the initial positions and velocities
of the bodies, we uniquely determine the initial problem (8)–(11), which we
will solve by the classical Runge-Kutta method of the 4th order.
Let us take, for example, 𝑐 = 1, 𝑚 = 1, 𝛾 = 1, 𝐿 = 10 and consider the

problem of two bodies. We place the first body at the point (6, 5, 5) and the
second one at the point (4, 5, 5). Let the first body be at rest, and the second
one have an initial velocity ⃗𝑣2 = (0, 1, 0) In the classical case, this leads to
the rotation of bodies along ellipses around their center of gravity (5, 5, 5),
and the motion occurs in the 𝑥𝑦 plane. Our computer experiment shows that
in the case of short-range interaction, the motion also turns out to be planar,
but instead of ellipses, more complex non-closed curves are obtained. If we
set the velocity in the direction of the 𝑂𝑧 axis, the motion still remains flat,
only the plane itself changes. Therefore, our system is rich in integrals of
motion.

4. Conclusion

The initial value problem (8)–(11) can and should be considered as a mathe-
matical model describing the many-body problem with short-range interaction.
Equation (9) has a very simple physical meaning of a mechanical equation of
motion (the second Newton law), and equation (8) describes the natural oscil-
lations of the field in the resonator 𝐺. The transformation of the box 𝐺 into
a resonator seems quite natural in the framework of the theory of short-range
interaction.
A few computer experiments that we have managed to perform demonstrate

that this system is rich in conservation laws. However, it is not yet clear to
us how to study them analytically. We hope that further experiments with
this new problem will clarify the issue.
With respect to the system (1), (2), this problem is a simplification, however,

a simplification different from that leading to classical mechanics. By virtue
of theorem 1, we will pass to classical mechanics if we first proceed to the
limit 𝑐 → ∞ (long-range interaction), and then to the limit 𝑠 → 0 (narrowing
the charge density to 𝛿-functions). When deriving the system (8)–(11), we
restrict the number of oscillations in the box to a finite number of modes
(Galerkin method) and immediately proceed to the limit 𝑠 → 0. In this case,
the limit 𝑐 → ∞ makes the singularity problem perturbed, and, from the
point of view of the Tikhonov and Vasilieva theory [13], [14], slow variables
correspond to the bodies, and fast variables correspond to the field.
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О задаче многих тел с близкодействием

М. М. Гамбарян1, М. Д. Малых1, 2

1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2Лаборатория информационных технологий им. М.Г. Мещерякова
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Аннотация. В статье рассматривается классическая задача о взаимодействии
заряженных частиц в рамках представления о близкодействии. Обсуждаются
трудности математического описания близкодействия, для чего необходимо объ-
единение двух моделей — нелинейной динамической системы, описывающей
движение частиц в поле, и краевой задачи для гиперболического уравнения
или уравнений Максвелла, описывающих поле. Уделено внимание процедуре
осреднения, то есть перехода от положений частиц и их скоростей к плотно-
стям заряда и тока. Показано, что задача содержит несколько параметров, при
стремлении которых к нулю в строго определённом порядке рассматриваемая
модель переходит в классическую задачу многих тел. По методу Галёркина эта
задача сведена к динамической системе, в которой к уравнениям, описывающим
динамику частиц, добавляются уравнения, описывающие колебания поля в ящи-
ке. Эта задача представляет собой упрощение, отличное от того, которое ведёт
к классической механике. Её предлагается рассматривать как простейшую мате-
матическую модель, описывающую задачу многих тел с близкодействием. Эта
модель состоит из уравнений движения частиц, к которым добавлены уравнения,
описывающие собственные колебания поля в ящике. Представлены результаты
первых компьютерных экспериментов с этой моделью близкодействия. Показано,
что модель богата законами сохранения.

Ключевые слова: задача многих тел, метод Галёркина, близкодействие
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Abstract. The paper discusses the formulation and analysis of methods for solving
the one-dimensional Poisson equation based on finite-difference approximations — an
important and very useful tool for the numerical study of differential equations. In
fact, this is a classical approximation method based on the expansion of the solution
in a Taylor series, based on which the recent progress of theoretical and practical
studies allowed increasing the accuracy, stability, and convergence of methods for
solving differential equations. Some of the features of this analysis include interesting
extensions to classical numerical analysis of initial and boundary value problems. In
the first part, a numerical method for solving the one-dimensional Poisson equation
is presented, which reduces to solving a system of linear algebraic equations (SLAE)
with a banded symmetric positive definite matrix. The well-known tridiagonal matrix
algorithm, also known as the Thomas algorithm, is used to solve the SLAEs. The
second part presents a solution method based on an analytical representation of the
exact inverse matrix of a discretized version of the Poisson equation. Expressions
for inverse matrices essentially depend on the types of boundary conditions in the
original setting. Variants of inverse matrices for the Poisson equation with different
boundary conditions at the ends of the interval under study are presented — the
Dirichlet conditions at both ends of the interval, the Dirichlet conditions at one of
the ends and Neumann conditions at the other. In all three cases, the coefficients of
the inverse matrices are easily found and the algorithm for solving the problem is
practically reduced to multiplying the matrix by the vector of the right-hand side.

Key words and phrases: 1D Poisson equation, finite difference method, tridiagonal
matrix inversion, Thomas algorithm, Gaussian elimination

1. Introduction

Applied mathematical models are mainly based on the use of partial
differential equations [1]. The solution must satisfy a given equation of
mathematical physics and some additional relations, which are, first, boundary
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and initial conditions. The most important for applications [2] are second-
order equations — elliptic, parabolic, and hyperbolic. Currently for equations
of mathematical physics, methods of numerical solution and the appropriate
software [3], [4], as well as computer algebra systems (CASs) such as Sage,
Mathematica, Maxima and Maple are actively developed to implement these
methods. Many features of stationary problems of mathematical physics
described by elliptic equations of the second order can be illustrated by
considering the simplest boundary value problems for an ordinary differential
equation of the second order. Perhaps the simplest second-order elliptic
equation is the Poisson equation.
Let us consider some methods for the numerical solution of this equation

and compare the investigated methods.

The Poisson equation [1] is a special case of the heat conduction equation
describing the dependence of the temperature of a medium on spatial co-
ordinates and time, and the heat capacity and thermal conductivity of the
medium (in the general case, inhomogeneous) are considered to be given.
We will consider the problem of finding the steady-state distribution of den-
sity or temperature (e.g., when the distribution of sources does not depend
on time). In this case, terms with time derivatives are eliminated from the
non-stationary equation and a stationary heat equation is obtained, which
belongs to the class of elliptic equations. A two-point boundary value prob-
lem is the problem of finding a solution to an ordinary differential equation
or second-order systems in the interval 𝑎 ⩽ 𝑥 ⩽ 𝑏. Additional conditions are
imposed on the solution at any two points of the interval, e.g., 𝑎 and 𝑏 — the
‘boundaries’ of the segment (hence the name of the problem).

Consider a second-order differential equation

− 𝑑
𝑑𝑥

(𝑘 (𝑥) 𝑑𝑢
𝑑𝑥

) + 𝑝 (𝑥) 𝑢 (𝑥) = 𝑓 (𝑥) , 𝑎 ⩽ 𝑥 ⩽ 𝑏. (1)

It is called the one-dimensional stationary heat conduction equation and
arises in the mathematical modeling of many important processes. For
example, this equation describes the steady-state temperature distribution
𝑢 (𝑥) in a heat-conducting rod of length 𝑙 = 𝑏 − 𝑎. In this case, 𝑘 (𝑥) is the
thermal conductivity coefficient; 𝑤 (𝑥) = −𝑘 (𝑥) 𝑑𝑢

𝑑𝑥
is the heat flux density,

𝑝 (𝑥) is the heat transfer coefficient (𝑝𝑢 is the heat sink power proportional
to the temperature 𝑢); 𝑓 (𝑥) is the density of heat sources (at 𝑓 ⩽ 0 it is the
density of heat sinks).

The boundary value problem is much harder to solve than the Cauchy
problem, and various approaches are used for this purpose. The most common
are various sampling methods that allow replacing the original problem with
a certain discrete analog. The resulting discrete boundary value problem is
a system of equations (possibly nonlinear) with a finite number of unknowns
and can be numerically solved using special direct or iterative methods. One
of the simplest discretization algorithms often used in applied scientific and
technical calculations is the method of finite differences [5].

The most commonly used method for solving difference equations arising in
the approximation of boundary value problems for equations of mathematical
physics is the sweep method [6], [7], or the Thomas method [8].
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Below we will show how the difference method is applied to solve the
boundary value problem (1), restricting ourselves, for simplicity, to an equation
with a constant coefficient 𝑘 (𝑥) ≡ 1. In this case, the boundary value problem
with Dirichlet boundary conditions takes the form

𝑢″ (𝑥) − 𝑝 (𝑥) 𝑢 (𝑥) = 𝑓 (𝑥) , 𝑎 < 𝑥 < 𝑏, (2)

𝑢 (𝑎) = 𝛼, 𝑢 (𝑏) = 𝛽. (3)

Introduce on [𝑎, 𝑏] a grid 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < … < 𝑥𝑛 = 𝑏, which for
simplicity is assumed uniform. Let us approximately express the second
derivative of the solution in terms of the values of the future solution at
the grid nodes 𝑢𝑛 = 𝑢 (𝑥𝑛). We use the simplest symmetric difference
approximation

𝑢″ (𝑥𝑛) ≈ 1
ℎ2 (𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1) , ℎ = 𝑥𝑛+1 − 𝑥𝑛 = const. (4)

Using such an approximation at each internal grid node 𝑥𝑛, 1 ⩽ 𝑛 ⩽
𝑁 − 1 and substituting it into the differential equation (2), we transform the
differential equation (1) into a system of finite-difference equations, i.e., into
a system of approximate linear algebraic equations, the solution of which will
be an approximate solution 𝑦𝑛 ≈ 𝑢 (𝑥𝑛). Finite-difference equations cannot
be written at the boundary nodes 𝑛 = 0, 𝑛 = 𝑁, otherwise the indices of the
nodes will go beyond the permissible limits [5]. Denoting 𝑝𝑛 = 𝑝 (𝑥𝑛) and
𝑓𝑛 = 𝑓 (𝑥𝑛), we get a system of (𝑁 − 1) linear equations with respect to the
approximate values of the solution at grid nodes

𝑦𝑛−1 − (2 + ℎ2𝑝𝑛) 𝑦𝑛 + 𝑦𝑛+1 = ℎ2𝑓𝑛, 1 ⩽ 𝑛 ⩽ 𝑁 − 1. (5)

The number of unknowns 𝑦𝑛, 0 ⩽ 𝑛 ⩽ 𝑁 equals (𝑁 + 1), i.e., it is greater
than the number of equations (5). The lacking two equations are to be
obtained from the boundary conditions (3)

𝑦0 = 𝛼, 𝑦𝑁 = 𝛽. (6)

Solving the algebraic system (5), (6) we get an approximate solution of the
boundary value problem (2), (3).
Further analysis of the described algorithm of solving the boundary value

problem is to answer three important questions.

— What are the conditions for the existence of a solution to the system of
algebraic equations?

— Does the solution of the system of algebraic equations tend to the exact
solution of the boundary value problem upon reducing the grid step?

— Is it possible to develop an algorithm (procedure) for finding the solution
with given accuracy by reducing the grid step?

It is known [5, P. 66], that for a rather wide class of the boundary value
problem coefficients it is possible to prove the existence of a finite-difference
solution and its convergence to the exact solution. The following theorem
takes place.



S. Ndayisenga et al., Finite-difference methods for solving 1D Poisson… 65

Theorem 1. Let 𝑝 (𝑥), 𝑓 (𝑥) are twice continuously differentiable on [𝑎, 𝑏],
𝑝 (𝑥) ⩾ 𝑚, where the constant 𝑚 ⩾ 0. Also let the step ℎ be small enough, so
that ℎ ⩽ 2. Then the finite-difference solution exists, its difference from the

exact solution by the norm 𝑐 being of the order of 𝑂 (ℎ2) .

Remark 1. The matrix of the system (5), (6) is tridiagonal. It is not
difficult to solve the system by the Gaussian method for a strip matrix or
by sweep method. These are direct methods. They allow finding a solution,
executing about nine arithmetic operations for each node. By virtue of the
conditions of the theorem, the solution of the system of equations by the
sweep method exists, is unique and found without accumulating round-off
errors.

Remark 2. The conditions of the theorem are sufficient, but not necessary.
Even if the conditions are not met, in most cases the finite-difference solution
exists and converges to the exact one. Under additional assumptions, it is
possible to construct an asymptotically accurate estimate of the error. Then
it is possible to apply the grid refinement and Richardson’s method to find the
posterior estimate of the error and calculations with control of the accuracy.

2. Finite-difference scheme

The problem in matrix form can be represented as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 + 𝑝1 1 0 ⋯ 0
1 −2 + 𝑝2 1 ⋯ 0
0 1 −2 + 𝑝3 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ 0
0 0 0 ⋱ 1
0 0 0 1 −2 + 𝑝𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
𝑢3
𝑢4
⋮
⋮

𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ2𝑓1 − 𝑢𝑎
ℎ2𝑓2
ℎ2𝑓3
ℎ2𝑓4

⋮
⋮

ℎ2𝑓𝑁 − 𝑢𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (7)

When applying the sweep method to systems of the form (7), during
a forward sweep, both the coefficients of the matrix and the elements of the
vector on the right-hand side are recalculated. The matrix is thus reduced
to two-diagonal form. During the backward sweep, the components of the
solution are calculated at the second stage. Tridiagonal matrices, which are
inverted using the simple sweep method, often arise when solving differential
equations of two independent variables by the finite-difference method, e.g.,
when solving a linear one-dimensional heat equation.
For such systems, the solution can be obtained in operations instead of

required by the Gaussian elimination method. The first sweep of the method
calculates the sweep coefficients, based on which the inverse substitution yields
the solution. Examples of such matrices usually arise from discretization of
the one-dimensional Poisson equation and interpolation by the natural cubic
spline.
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For the simplest one-dimensional Poisson equation in the case when
𝑝 (𝑥) ≡ 0, the authors of Refs. [9], [10] proposed a solution based on the
analytical (exact) representation of the inverse matrix coefficients.

3. The exact formulation of the inverse
of the tridiagonal matrix for solving the 1D Poisson

equation with the finite difference method

Consider a method for solving the one-dimensional Poisson equation using
the finite difference method based on exact formulas for the inverse of the
Laplacian tridiagonal matrix. In the method proposed in Ref. [11], formulas
for the coefficients of the inverse matrix are directly derived. Thus, the
procedure of solving the one-dimensional Poisson equation becomes very
accurate and very fast. This method is a very important tool for solving many
physical and technical problems, where the Poisson equation often appears
when describing (modeling) various physical phenomena.

3.1. The finite difference method for solving the Poisson equation
with Dirichlet–Dirichlet boundary conditions

Consider a function 𝑢 (𝑥), that satisfies the Poisson equation 𝑢″ (𝑥) = 𝑓 (𝑥)
on the interval ]𝑎, 𝑏[, where 𝑓 (𝑥) is a given function. We require that the
function 𝑢 (𝑥) satisfy the Dirichlet–Dirichlet boundary conditions: 𝑢 (𝑎) = 𝛼,
𝑢 (𝑏) = 𝛽. On the considered interval [𝑎, 𝑏] we specify a one-dimensional
grid 𝑥𝑖 = 𝑎 + 𝑖 ⋅ Δ𝑥, 𝑖 = 0, … , 𝑁 + 1, where the uniform step of the grid is

calculated as Δ𝑥 = 𝑏 − 𝑎
𝑁 + 1

= ℎ. We denote by 𝑢𝑖 = 𝑢 (𝑥𝑖) and 𝑓𝑖 = 𝑓 (𝑥𝑖),
𝑖 = 0, … , 𝑁 + 1 the values of the approximate solution and the function in
the right-hand side.
Replacing the second derivative by symmetric difference expressions, we

obtain the following system for internal nodes:

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1 = ℎ2𝑓𝑖, 𝑖 = 1, … , 𝑁. (8)

In matrix form, the system of linear algebraic equations (8), taking into
account the boundary conditions, can be written in the form 𝐴𝑢 = 𝐹, where
𝐹 = (ℎ2𝑓1 − 𝑢𝑎, ℎ2𝑓2, … , ℎ2𝑓𝑁−1, ℎ2𝑓𝑁 − 𝑢𝑏)𝑇 , or

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 0 0 ⋯ ⋯ 0
1 −2 1 0 0 ⋯ ⋯ 0
0 1 −2 1 0 ⋯ ⋯ 0
0 0 1 −2 1 ⋱ ⋯ 0
0 0 0 1 −2 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 0 ⋱ ⋱ ⋱ 1
0 0 0 0 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
⋮

𝑢𝑁−1
𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ2𝑓1 − 𝑢𝑎
ℎ2𝑓2
ℎ2𝑓3
ℎ2𝑓4
ℎ2𝑓5

⋮
ℎ2𝑓𝑁−1

ℎ2𝑓𝑁 − 𝑢𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (9)
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Thus, the solution of the one-dimensional Poisson equation is reduced to
the inversion of the tridiagonal symmetric negative definite matrix

𝐴 = (𝑎𝑖𝑗) , 𝑖, 𝑗 = 1, … , 𝑁.

The inverse matrix which we denote by

𝐵 = (𝑏𝑖𝑗) , 𝑖, 𝑗 = 1, … , 𝑁,

is also symmetric.
The elements of matrix 𝐴 may be briefly written as

𝑎𝑖𝑗 =
⎧{
⎨{⎩

− 2, 𝑖 = 𝑗,
1, |𝑖 − 𝑗| = 1,
0, |𝑖 − 𝑗| > 1,

𝑖 = 1, … , 𝑁 (10)

and the elements of matrix 𝐵 are related by the following formulas:

⎧{
⎨{⎩

− 2𝑏𝑖1 + 𝑏𝑖2 = 𝛿1
𝑖 ,

𝑏𝑖𝑗−1 − 2𝑏𝑖𝑗 + 𝑏𝑖𝑗+1 = 𝛿𝑗
𝑖 ,

𝑏𝑖𝑁−1 − 2𝑏𝑖𝑁 = 𝛿𝑁
𝑖 ,

1 < 𝑖, 𝑗 < 𝑁, (11)

where 𝛿𝑗
𝑖 is the Kronecker symbol.

3.2. Calculating the inverse matrix

Relations (11) allow deriving the following interesting dependencies

𝑏𝑖𝑗+1 = 𝑏𝑖𝑗 + 𝑏𝑖1, 𝑏𝑖𝑗 = 𝑗𝑏𝑖1 + (𝑗 − 1) . (12)

From relations (12) it follows that the elements of inverse matrix 𝐵 are un-
ambiguously determined by the value of the element 𝑏11. This coefficient can
be determined based on the behavior of matrix 𝐵 at different dimensionali-
ties 𝑁:

𝑏11 = −𝑁/ (𝑁 + 1) . (13)

From relations (12) and (13), it is easy to express the elements of the first
row and the first column of the inverse matrix

{
𝑏1𝑗 = − (𝑁 − (𝑗 − 1)) / (𝑁 + 1) ,
𝑏𝑖1 = − (𝑁 − (𝑖 − 1)) / (𝑁 + 1) .

(14)

These relations allow completing the accurate and full determination of the

coefficients of the inverse matrix 𝐵 = (𝑏𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑁:

𝑏𝑖𝑗 = {
− 𝑗 (𝑁 − (𝑖 − 1)) / (𝑁 + 1) , 𝑖 ⩾ 𝑗,
− 𝑖 (𝑁 − (𝑗 − 1)) / (𝑁 + 1) , 𝑖 < 𝑗; (15)
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𝐵 = − 1
(𝑁 + 1)

×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑁 𝑁 − 1 ⋯ 𝑁 − (𝑗 − 1) ⋯ 2 1
𝑁 − 1 2 (𝑁 − 1) ⋯ 2 [𝑁 − (𝑗 − 1)] ⋯ 4 2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
𝑁 − (𝑖 − 1) 2 [𝑁 − (𝑖 − 1)] ⋯ 𝑖 [𝑁 − (𝑗 − 1)] ⋯ 2𝑖 𝑖

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
2 4 ⋯ 2𝑗 ⋯ 2 (𝑁 − 1) 𝑁 − 1
1 2 ⋯ 𝑗 ⋯ 𝑁 − 1 𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

With the inverse matrix elements known, it is easy to get the solution of
the one-dimensional Poisson equation by mere multiplication of the matrix
by the right-hand side vector 𝑢 = 𝐵𝐹.

3.3. Classification of media

Taking into account the specific form of the inverse matrix and its persym-
metry makes it easy to express the solution 𝑢𝑁 at the point 𝑥𝑛

𝑢𝑁 = − (𝑁 + 1)−1
𝑁

∑
𝑖=1

𝑖 ⋅ 𝐹𝑖. (16)

The direct search for the solution 𝑢𝑁−1 at the point 𝑥𝑁−1 leads to the
expression

𝑢𝑁−1 = − (𝑁 + 1)−1 [[
𝑁−1
∑
𝑖=1

2𝑖 ⋅ 𝐹𝑖] + (𝑁 − 1) 𝐹𝑁] . (17)

In a similar way, it is possible to derive the expressions for calculating the
rest components of the solution in the form

𝑢𝑁−𝑘 = − (𝑁 + 1)−1 ×

× [(𝑘 + 1) [
𝑁−𝑘
∑
𝑖=1

𝑖𝐹𝑖] + (𝑁 − 𝑘) [
𝑁

∑
𝑖=𝑁−𝑘+1

(𝑁 − (𝑖 − 1)) 𝐹𝑖]] ,

𝑘 = 0, 1, … , 𝑁 − 1 (18)

or in the form

𝑢𝑘 = − (𝑁 + 1)−1 ×

× [(𝑁 − 𝑘 + 1) [
𝑘

∑
𝑖=1

𝑖𝐹𝑖] + 𝑘 [
𝑁

∑
𝑖=𝑘+1

(𝑁 − (𝑖 − 1)) 𝐹𝑖]] ,

𝑘 = 1, … , 𝑁. (19)
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From the computational point of view, it is preferable to use Eqs. (15),
when programming the procedure of calculating the solution.
Let us consider the numerical solution of the problem of finding a scalar

potential given on the interval [−1, 1] and satisfying the Poisson equation

ΔΦ (𝑥) = 𝜕2Φ (𝑥)
𝜕𝑥2 = 𝑓 (𝑥) = −co𝑠2 (𝜋 (𝑥 − 0.5)) and the Dirichlet–Dirichlet

boundary conditions: Φ (−1) = −0.2, Φ (1) = 0.1.
The exact solution is expressed by the formula

Φexact = −𝑥2

4
+ [cos (𝜋 (𝑥 − 0.5))

2𝜋
]

2

+ 𝑥
4

− 0.1 (𝑥 + 1) + 0.3. (20)

The software implementation of the algorithm consists of several lines,
namely, filling the vector on the right-hand side of Eq. (9) and multiplying
the inverse matrix 𝐵 by this vector using Eqs. (14).
Figure 1 illustrates the results of the numerical experiment.

(a) Exact solution (b) Calculation error

Figure 1. The maximal error at points 𝑥 = ±0.5 is 0.36 at 𝑁 = 30 and decreases to 0.036
at 𝑁 = 300

4. Solving the 1D Poisson equation with
the Neumann–Dirichlet and Dirichlet–Neumann

boundary conditions

The problem is to determine the scalar potential 𝑢 (𝑥) satisfying the one-
dimensional Poisson equation Δ𝑢 (𝑥) = 𝑓 (𝑥) on the interval ]𝑎, 𝑏[, where
𝑓 (𝑥) is a given function. It is necessary to find the solution satisfying the
Neumann–Dirichlet boundary conditions 𝑢′ (𝑎) = 𝑢′

𝑎 and 𝑢 (𝑏) = 𝑢𝑏. Let us
consider a special uniform grid for the finite difference method with the step

Δ𝑥 = 𝑏 − 𝑎
𝑁

= ℎ, consisting of 𝑁 +1 points. The coordinates of the grid nodes
(𝑥𝑖) are determined by the expression 𝑥𝑖 = 𝑎 + (𝑖 − 1) ⋅ ℎ, 𝑖 = 0, 1, … 𝑁 + 1.
We denote by 𝑢𝑖 the approximate values of the desired solution at point
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𝑥𝑖 ∶ 𝑢𝑖 = 𝑢 (𝑥𝑖), and by 𝑓𝑖 the value of the given function in the right-
hand side at the same point. In addition, let us denote by 𝑢′

𝑖 = 𝑢′ (𝑥𝑖) and
𝑢″

𝑖 = 𝑢″ (𝑥𝑖) the values of the first and second derivatives of the sought
solution at the grid node at the same point. Replacing the derivatives with
symmetric finite-difference expressions [12], we arrive at the approximation
formulas of the second order of accuracy for the first derivatives

𝑢′
𝑖 =

𝑢𝑖+1 − 𝑢𝑖−1
2ℎ

+ 𝑂 (ℎ2) , 𝑖 = 1, 2, 3, … , 𝑁 (21)

and for the second derivatives

𝑢″
𝑖 =

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1
ℎ2 + 𝑂 (ℎ2) , 𝑖 = 1, 2, … , 𝑁. (22)

The system of linear equations for the internal nodes of the interval looks as

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1 = ℎ2𝑓𝑖, 𝑖 = 1, … , 𝑁. (23)

4.1. The Neumann–Dirichlet boundary conditions

Let us derive equations complementing the system with the boundary
conditions at the left and right ends of the interval taken into account.
Assuming the use of Eqs. (21) and (23) possible and combining them at 𝑖 = 0,
we eliminate 𝑢−1 from the system of equations.

−𝑢1 + 𝑢2 = ℎ2 𝑓𝑖
2

+ ℎ𝑢′
𝑎, 𝑖 = 1, … , 𝑁. (24)

Thus, introducing into consideration an additional virtual point 𝑥0 = 𝑎 − ℎ
allows using the central differences with the order of approximation 𝑂 (ℎ2)
for the sought solution even at the boundary point of the interval.
We introduce the vector 𝐹 with the components expressed as

𝐹1 = ℎ2 𝑓𝑖
2

+ ℎ𝑢′
𝑎, 𝐹𝑁 = ℎ2𝑓𝑁 − 𝑢𝑏, 𝐹𝑖 = ℎ2𝑓𝑖, 𝑖 = 2, 3, … , 𝑁 − 1. (25)

As a result, the system of equations that determines the solution components
reduces to the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 0 0 ⋯ ⋯ 0
1 −2 1 0 0 ⋯ ⋯ 0
0 1 −2 1 0 ⋯ ⋯ 0
0 0 1 −2 1 ⋱ ⋯ 0
0 0 0 1 −2 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 0 ⋱ ⋱ ⋱ 1
0 0 0 0 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
⋮

𝑢𝑁−1
𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ2

2 𝑓1 + ℎ𝑢′
𝑎

ℎ2𝑓2
ℎ2𝑓3
ℎ2𝑓4
ℎ2𝑓5

⋮
ℎ2𝑓𝑁−1

ℎ2𝑓𝑁 − 𝑢𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (26)
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where the matrix 𝐴 = {𝑎𝑖𝑗}, 𝑖, 𝑗 = 1, … , 𝑁 of system (8) is symmetric tridiag-

onal negative definite and possesses the property of diagonal transformation.
The presence of diagonal dominance in the coefficient matrix guarantees the
stability of the sweep method; however, in this case, there is a way to calculate
the elements of the inverse matrix.

4.2. Calculation of the inverse matrix elements

Let us write down the properties of the inverse matrix 𝐵 = {𝑏𝑖𝑗},
𝑖, 𝑗 = 1, … , 𝑁, 𝐵 = 𝐴−1, following directly from its definition. It must
be symmetrical and its elements must satisfy the following relations:

⎧{{
⎨{{
⎩

− 𝑏1𝑗 + 𝑏2𝑗 = 𝛿1
𝑗 , 1 < 𝑗 < 𝑁,

𝑏𝑖1 − 2𝑏𝑖2 + 𝑏𝑖3 = 𝛿2
𝑖 , 1 < 𝑖 < 𝑁,

𝑏𝑖−1𝑗 − 2𝑏𝑖𝑗 + 𝑏𝑖+1𝑗 = 𝛿𝑗
𝑖 , 1 < 𝑖, 𝑗 < 𝑁,

𝑏𝑖𝑁−1 − 2𝑏𝑖𝑁 = 𝛿𝑁
𝑖 , 1 < 𝑖 < 𝑁,

(27)

where 𝛿𝑗
𝑖 is the Kronecker symbol.

The elements of the inverse matrix also satisfy the relations

𝑏𝑖𝑗 = {
𝑏11 + (𝑗 − 1) , 𝑖 ⩽ 𝑗,
𝑏11 + (𝑖 − 1) , 𝑖 > 𝑗. (28)

The analysis of behavior of the system determinant allows deriving the
expressions

det (𝐵) = (−1)𝑁 ,

𝑏11 = 𝑁 ⋅ (−1)𝑁−1

(−1)𝑁 = −𝑁, and 𝑏𝑁𝑁 = (−1)𝑁−1

(−1)𝑁 = −1 = 𝑏1𝑁.
(29)

Using Eqs. (27)–(29), we can exactly determine the elements of the inverse
matrix, which is related to the search for the approximate solution in the
case of the Neumann–Dirichlet boundary conditions. Thus, the elements of
matrix 𝐵 are determined by the expressions

𝑏𝑖𝑗 = {
− [𝑁 − (𝑗 − 1)] , 𝑖 ⩽ 𝑗,
− [𝑁 − (𝑖 − 1)] , 𝑖 > 𝑗. (30)

The elements of the inverse matrix can be alternatively expressed as

𝑏𝑖𝑗 = − [𝑁 − [max (𝑖, 𝑗) − 1]] = − [𝑁 − [(𝑖 + 𝑗) + |𝑖 − 𝑗|
2

− 1]] . (31)

The expressions (30) and (31) are equivalent. However, for software imple-
mentation, the first one is preferable.
As a result of the transformations carried out, explicit expressions for the

elements of the inverse matrix are obtained, and the solution of the Poisson
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problem with Neumann–Dirichlet boundary conditions can be obtained using
a simple multiplication of the inverse matrix by the vector of the right-hand
side: 𝑈 = 𝐵𝐹, where

𝐵 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑁 𝑁 − 1 𝑁 − 2 ⋯ ⋯ 2 1
𝑁 − 1 𝑁 − 1 𝑁 − 2 ⋯ ⋯ 2 1
𝑁 − 2 𝑁 − 2 𝑁 − 2 ⋯ ⋯ 2 1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
2 2 2 ⋯ ⋯ 2 1
1 1 1 ⋯ ⋯ 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Each solution component can be expressed directly using the formula

𝑢𝑘 = − [(𝑁 − 𝑘 + 1) [
𝑘

∑
𝑖=1

𝐹𝑖] + [
𝑁

∑
𝑖=𝑘+1

(𝑁 − (𝑖 − 1)) ⋅ 𝐹𝑖]] ,

𝑘 = 1, 2, … , 𝑁. (32)

Formula (32) gives a simple analytical expression for the solution of the
Poisson equation with Neumann–Dirichlet boundary conditions. It is very
easy to program it either directly or based on Eq. (30). One double loop will
be enough to compute the entire solution.

4.3. Example

Consider a numerical solution of the problem of finding a scalar potential
defined on the interval [−𝑎, 𝑏] and satisfying the Poisson equation

ΔΦ (𝑥) = 𝜕2Φ (𝑥)
𝜕𝑥2 = 𝑓 (𝑥) = 𝑉0 cos (𝑘𝑥 + 𝜑0) ,

where 𝑎, 𝑏, 𝑉0, 𝑘 and 𝜑0 are given constants, and the Neumann–Dirichlet

boundary conditions
𝑑Φ
𝑑𝑥

(𝑎) = Φ′
𝑎 and Φ (𝑏) = Φ𝑏.

The known exact solution is expressed as

Φexact (𝑥) = [Φ′
𝑎 − 𝑉0

𝑘
sin (𝑘𝑎 + 𝜑0)] (𝑥 − 𝑏) −

− 𝑉0
𝑘2 [cos (𝑘𝑥 + 𝜑0) − cos (𝑘𝑏 + 𝜑0)] + Φ𝑏. (33)

Let us consider the finite-difference solution at 𝑎 = −𝜋
2
, 𝑏 = 𝜋

4
, 𝑉0 = 1,

𝑘 = 𝜋
2
and 𝜑0 = 𝜋

4
.
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We define the computational grid with the following parameters:

𝑁 = 100, Δ𝑥 = ℎ = 𝑏 − 𝑎
𝑁

, 𝑥𝑖 = (𝑖 − 1) Δ𝑥, Φ𝑖 = Φ (𝑥𝑖)

and 𝑓𝑖 = 𝑓 (𝑥𝑖) = cos (𝑘𝑥𝑖 + 𝜑0). The solution is assumed to satisfy the
Neumann–Dirichlet conditions specified as: Φ′

𝑎 = 1/4 and Φ𝑏 = −1/2.
We calculate the solution of the Poisson problem multiplying the inverse

matrix with the elements determined by expressions (30) by the right-hand
side vector, corrected using Eqs. (26).

The software implementation of the algorithm consists of a few lines: filling
the right-hand side vector (26) and multiplying the inverse matrix 𝐵 by this
vector using Eqs. (30).

Figure 2 illustrates the results of the numerical experiment.

(a) Exact solution (b) Calculation error

Figure 2. The maximal error at 𝑥 = −1.571 is 1.55𝐸 − 04 for 𝑁 = 100 and decreases to

1.55𝐸 − 06 for 𝑁 = 1000

5. Dirichlet–Neumann boundary conditions

5.1. Discretization and matrix equation

By analogy with the case of the Neumann–Dirichlet boundary conditions, we
consider the symmetric case with the Dirichlet–Neumann boundary conditions.
Let us first define a suitable sampling grid on the interval [𝑎, 𝑏]. Grid points
{𝑥𝑖, 𝑖 = 0, 1, … , 𝑁 + 1} are specified as 𝑥𝑖 = 𝑎+𝑖ℎ. The boundary conditions
𝑢𝑎 and 𝑢′

𝑏, complementing the Poisson equation redefine the system of finite-
difference equations (23). The solution value 𝑢𝑁+1 at the ‘virtual’ point 𝑥𝑁+1
is expressed using the boundary condition for the derivative, approximating
the latter by symmetric central differences. As the last equation of the system,
we get

𝑢𝑁−1 − 𝑢𝑁 = ℎ2 𝑓𝑁
2

− ℎ𝑢′
𝑏. (34)
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The transformed right-hand side vector 𝐹 is presented as

𝐹𝑁 = ℎ2 𝑓𝑁
2

− ℎ𝑢′
𝑏, 𝐹1 = ℎ2𝑓1 − 𝑢𝑎, 𝐹𝑖 = ℎ2𝑓𝑖, 𝑖 = 2, … , 𝑁 − 1. (35)

Like in the previous case of Neumann–Dirichlet boundary conditions, the
resulting matrix of the equation

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 0 0 ⋯ ⋯ 0
1 −2 1 0 0 ⋯ ⋯ 0
0 1 −2 1 0 ⋯ ⋯ 0
0 0 1 −2 1 ⋱ ⋯ 0
0 0 0 1 −2 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 0 ⋱ ⋱ ⋱ 1
0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
⋮

𝑢𝑁−1
𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ2𝑓1 − 𝑢𝑎
ℎ2𝑓2
ℎ2𝑓3
ℎ2𝑓4
ℎ2𝑓5

⋮
ℎ2𝑓𝑁−1

ℎ2 𝑓𝑁
2 − ℎ𝑢′

𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(36)

is symmetric three-diagonal negative definite, with the dominant main diago-
nal.

With respect to the antidiagonal, this matrix is symmetric to the matrix
used in the solution of the Poisson problem with the Neumann–Dirichlet
boundary conditions. The system is definite and has a unique solution for
any right-hand side.

Using the antidiagonal symmetry with respect to the Neumann–Dirichlet
problem, we construct the inverse matrix for the Dirichlet–Neumann case:

𝐵 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 ⋯ 1 1
1 2 2 2 ⋯ 2 2
1 2 ⋱ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯
1 2 ⋯ ⋯ 𝑁 − 2 𝑁 − 2 𝑁 − 2
1 2 ⋯ ⋯ 𝑁 − 2 𝑁 − 1 𝑁 − 1
1 2 ⋯ ⋯ 𝑁 − 2 𝑁 − 1 𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Therefore, the exact solution of the system of equations (36) can be written
very simply (in a single line)

𝑢𝑘 = − [[
𝑘

∑
𝑖=1

𝑖 ⋅ 𝐹𝑖] + 𝑘 ⋅ [
𝑁

∑
𝑖=𝑘+1

𝐹𝑖]] , 𝑘 = 1, 2, … , 𝑁. (37)

The software implementation of the method reduces to simple multiplication
of the inverse matrix by the right-hand side vector.

Figure 3 illustrates the results of the numerical experiment.
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(a) Exact solution (b) Calculation error

Figure 3. The maximal error in this case at point 𝑥 = 0.785 is 1.69𝐸 − 04 for 𝑁 = 100
and reduces to 1.69𝐸 − 6 for 𝑁 = 1000

5.2. Example

An example of the previous section is considered, which differs only in
that the boundary conditions set earlier at the left end of the interval are
transferred to the right and vice versa. The software implementation of the
algorithm consists of several lines: filling in the vector of the right-hand
side (34) and multiplying the inverse matrix 𝐵 by this vector using Eq. (37).

6. Conclusion

The paper gives examples of practical problems, in the simulation of which
it is necessary to solve second-order elliptic equations with different boundary
conditions. The case of the one-dimensional Poisson equation and its finite-
difference solution are described in detail. Estimates of the complexity of
the sweep algorithm in the case of a uniform grid are given. An approach
to solving the one-dimensional Poisson equation using explicitly calculated
coefficients of inverse matrices for various types of boundary conditions is
also described. The Dirichlet and Neumann boundary conditions in various
combinations are considered.
A comparative analysis of the computational complexity of methods for

solving the one-dimensional Poisson equation, based on the use of the sweep
method and methods using an explicit representation of inverse matrices is
presented.
Direct calculation shows that to implement calculations by right-sweep

formulas, approximately 8𝑁 arithmetic operations are required, whereas in the
Gauss method for fully filled matrices this number is approximately (2/3) 𝑁3.
It is also important that the tridiagonal structure of the matrix of the system
makes it possible to use for its storage only an array of real variables of
dimension 3𝑁 − 2.
The assertion of the author of Ref. [4] that the method he proposed using

the explicit form of inverse matrices allows solving the Poisson equations with
different boundary conditions faster and more accurately is, to put it mildly,
incorrect. Provided that the stability conditions of the sweep method are met,
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the speed of solving the problem by the sweep (Thomas) method is an order
of magnitude higher due to a much smaller number of required operations.
However, unlike the sweep method [13], the practical implementation of

the proposed method does not imply the allocation of additional arrays for
software implementation, since the elements of the inverse matrix have a very
simple form and their calculation within the loop determining the components
of the solution is not difficult.
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Конечно-разностные методы решения 1D задачи
Пуассона

С. Ндайисенга1, Л. А. Севастьянов1, 2, К. П. Ловецкий1

1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2Лаборатория теоретической физики им. Н.Н. Боголюбова
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Аннотация. В статье обсуждается постановка и анализ методов решения одно-
мерного уравнения Пуассона на основе конечно-разностных аппроксимаций —
важного и очень полезного инструмента численного исследования дифференци-
альных уравнений. По сути, это классический метод аппроксимации, основанный
на разложении решения в ряд Тейлора. Развитие теоретических и практиче-
ских результатов на базе этого метода в последние годы позволили повысить
точность, стабильность и сходимость методов решения дифференциальных урав-
нений. Некоторые особенности этого анализа включают интересные расширения
классического численного анализа начальных и граничных задач. В первой
части излагается численный метод решения одномерного уравнения Пуассона,
сводящийся к решению системы линейных алгебраических уравнений (СЛАУ)
с ленточной симметричной положительно определённой матрицей. В качестве
метода решения СЛАУ используется широко известный метод прогонки (метод
Томаса). Во второй части представлен метод решения, основанный на аналити-
ческом представлении точной обратной матрицы дискретизированного варианта
уравнения Пуассона. Выражения для обратных матриц существенно зависят от
типов граничных условий в исходной постановке. Представлены варианты об-
ратных матриц для уравнения Пуассона с различными граничными условиями
на концах исследуемого интервала — условиями Дирихле на обоих концах ин-
тервала, условиями Дирихле на одном из концов и Неймана на другом. Во всех
трёх случаях коэффициенты обратных матриц легко вычисляются (выписыва-
ются) и алгоритм решения задачи практически сводится к умножению матрицы
на вектор правой части.

Ключевые слова: 1D уравнение Пуассона, метод конечных разностей, об-
ращение трехдиагональной матрицы, алгоритм Томаса, исключение Гаусса
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Abstract. The paper proposes a trading strategy for investing in the cryptocurrency
market that uses instant market entries based on additional sources of information in
the form of a developed dataset. The task of predicting the moment of entering the
market is formulated as the task of classifying the trend in the value of cryptocurren-
cies. To solve it, ensemble models and deep neural networks were used in the present
paper, which made it possible to obtain a forecast with high accuracy. Computer
analysis of various investment strategies has shown a significant advantage of the
proposed investment model over traditional machine learning methods.

Key words and phrases: bitcoin, trading strategy, ensemble models, deep learning

1. Introduction

The development of the financial market for cryptocurrencies in 2021 has
become one of the key trends in global capital. The COVID-19 pandemic,
which began in 2020, only accelerated this process, as it caused a drop
in traditional markets, forcing investors to look for alternative tools and
products [1]. For many, the financial market for cryptocurrencies has become
such a solution. This paper studies the investor’s trading strategies in the
cryptocurrency market and analyzes their effectiveness in comparison with
the classical financial asset market. Their feature is the high volatility of the
cryptocurrency market, so it would be natural to apply portfolio formation
strategies to change the asset trend. Under these conditions, investors usually
use strategies that allow them to open a position at the initial stage of a trend
formation. Thus, the main goal of the work is to develop a computer system
for detecting the moment of entering the cryptocurrency market and testing
its effectiveness using the example of bitcoin.
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2. Methods for modeling and forecasting the value
of cryptocurrencies

Methods for modeling and forecasting prices for financial assets can be
divided into methods of technical and fundamental analysis, which determine
the characteristics and form the value of an asset and features of its behavior.
The first approach is based on the laws of probability theory and mathematical
statistics, which allow solving various problems with different qualitative
characteristics using universal methods [2]. As a rule, the first approach
assumes a fundamental theory that is well formalized, understandable and
logical. However, its working conditions are ’ideal’ and its application in
practice does not always make it possible to make a reliable prediction.
The second approach aims to test complex mathematical methods and tools
to solve the first one. At the same time, methods of regression, variance,
and correlation analyzes are widely used. They allow understanding the
interdependencies between the asset in question and other factors. However,
these methods poorly predict asset dynamics.
Since the value of an asset is measured over time, it can be analyzed using

econometric time series methods. However, this requires the condition of
stationarity and linearity, which are not present in the real asset market.
To solve this problem, the change or profitability of the asset is considered
rather than its value. The use of various econometric models in trading
strategies is justified in the short term, but in the long term, this approach
is extremely risky due to high volatility [3], [4]. Recently, machine learning
methods have become widely used for trading in financial markets due to their
ability to build effective dynamic forecasting models. They solve a wide range
of problems: regression, classification, clustering. Moreover, these methods
show themselves best in solving such problems.
We will use the following investor strategy to generate revenue in the

cryptocurrency market:

𝑦𝑡 =

⎧{{
⎨{{⎩

0, 𝐶𝑆𝑀𝐴𝑤(𝑡) ⩽ 𝐵𝐵down
𝑤 (𝑡) – downward,

1, 𝐵𝐵down
𝑤 (𝑡) < 𝐶𝑆𝑀𝐴𝑤(𝑡) < 𝐵𝐵up

𝑤 (𝑡) – flat,
2, 𝐶𝑆𝑀𝐴𝑤(𝑡) ⩾ 𝐵𝐵up

𝑤 (𝑡) – upward,

(1)

where 𝑦𝑡 is the trend label, CSMA is the centered moving average, 𝐵𝐵𝑤 is
the Bollinger band with the superscript for upper and lower one. The use of
CSMA is due to the fact that the characteristics to be used have significant
predictive power. In this paper, the dominant cryptocurrency bitcoin was
chosen, for which there is also a large amount of information. It is possible to
single out the data sources from where the information will be taken [3]:

— market;
— fundamental;
— alternative.

For more accurate forecasts, it was decided to create a complex dataset that
consists of all the types of data sources listed above. In the market data, the
prices and trading volumes of Bitcoin itself, VIX and gold were selected. VIX
is an index of fear, which is calculated based on supply and demand for option
contracts, which reflects expectations for such a popular index as the S&P
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500 [3]. If the indicator exceeds the 40-point mark, then it is considered that
panic begins in the classic markets. It is at times like these that investors try
to find alternative investments, which include Bitcoin. Gold is also considered
to be an asset that people begin to actively invest in during the crisis. The
data was obtained through the yahoo finance API. The information field also
greatly influenced the value of bitcoin and cryptocurrencies [2]. The names in
the table correspond to the queries. Fundamental factors directly represent
the value of an asset. The information was taken from the blockchain.info
website using the API. Market indicators that were obtained using the TA-
Lib library helped to assess the ’pulse’ of the market and understand which
trading patterns are applied at the current time. The data were scaled and
then their daily increments were calculated, taking into account their balance
by class. A general description of the data can be seen in the table 1.

3. Selection of optimal model parameters
and forecasting

After solving the problem of creating a dataset, it is necessary to choose
a computer model that will allow us to build an optimal forecast for the value
of bitcoin. Machine learning provides a large number of classification models.
For example, the following ensemble models are especially popular [5]:

— Random forest;
— Ada boost;
— Light GBM;
— XG Boost.

In addition, to classify the trend at the time of entering the market,
a recurrent neural network with a long short-term memory (LSTM) cell was
used [6]. The described dataset is preliminarily divided into a training set
and a test set. Their distribution can be seen in the figure 1.

Figure 1. Distribution of the training and test sample over trend labels
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Table 1

Description of the dataset and the factors it contains

Market — btc_vol – bitcoin open

— Open – Bitcoin opening price

— Vix – VIX index opening

— Gold – gold opening price

— Gold_vol – gold trading volumes

Alternative — Bitcoin – Google popularity index for the query

’bitcoin’

— bitcoin wallet – Google popularity index for the

query ’bitcoin wallet’

— buy bitcoin – Google popularity index for the query

’buy bitcoin’

— sell bitcoin – Google popularity index for the query

’sell bitcoin’

— Blockchain – Google popularity index for the query

’bitcoin wallet’

Fundamental — tr_per_block – transactions in the block

— tr_cost – transaction cost

— Miners_rev – miners’ revenue

— N_unique addresses – number of unique addresses

— NVT is a metric calculated by dividing the network

value by the total volume of transactions in USD in

24 hours.

— NVTS – the same as NVT, the difference in the

denominator of which is the moving average over the

last 90 days

Market (indica-

tors)

— Willr_sig – Williams indicator signal

Market — Willr_sig – Stoch_sig – Stochastic indicator signal

— Mfi_sig – cash flow indicator signal

— Rsi_sig – relative strength indicator signal

After training the models using the training set, predictions were made
with the test set. We chose the accuracy indicator as the quality metric of
the estimates obtained. As seen from the table 2, the gradient boosting of the
Light GBM library turned out to be the best model [5]. The most important
features were technical indicators and market data: 6 indicators out of 8
main ones. Fundamentals of NVT and NVTS also contributed. In terms of
importance, these two indicators are equated to P/E for the stock market [7].
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To further model the behavior of an investor using the strategy described
above, we have chosen the Light GBM model.

Table 2

The accuracy of the forecast for the test sample

Model Accuracy, %

Random forest 68

Ada boost 69

Light GBM 70.4

XG Boost 70.28

LSTM 68

Figure 2. Distribution of data set factors according to the strength of their impact

on the forecast

Further, to test the selected Light GBM algorithm and select the optimal
values of its parameters, backtesting was performed, i.e., a financial analysis
procedure that allows you to tune the model to the current data stream. In
the classic version, this is performed on ready-made data, however, existing
solutions impose restrictions on the implementation of the project, therefore,
a backtest was developed, which made it possible to simulate the dynamics
of a portfolio that is built according to the strategy principle. The proposed
backtesting algorithm takes into account the cost at which the asset, account,
commission, credit when opening a short position and the flag of the possibility
of opening a short position will be bought or sold. The following variables
are specified in the backtest:

— Investment amount equal to $ 10,000;
— Credit 0.1%;
— Commission 0.09%;
— The purchase price is the closing price.
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Actions of buying or selling are presented in the table 3.

Table 3

Actions of the portfolio management strategy

Signal 𝑡𝑠𝑖𝑔 𝑡𝑠𝑖𝑔 − 1 Action

Flat (lateral 0 0 keep short

movement)

Flat 1 1 we keep funds

in foreign currency

Flat 2 2 hold a long position

Upward 2 1 open a long position

Downward 0 1 open a short position

Flat 1 2 close a long position

Downward 0 2 close long, open short

Flat 1 0 close a short position

Upward 2 0 close short, open long

The dynamics of the value of the bitcoin portfolio is shown in the figure 3.
The portfolio worked in unstable conditions throughout 1.11.2019–01.01.2021.
It can also be noted that a portfolio with short positions wins and loses
equally well to a less aggressive portfolio. However, when the price goes out
of the sideways, the model starts to be profitable. Forecasts and quotation of
the cost of bitcoin for the period 11.2019–01.2020 are shown in the Figure 4.

Figure 3. Dynamics of the portfolio value with and without short positions
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Figure 4. Bitcoin Quote and Forecast Labels

The table 4 shows the results of evaluating the profitability of built portfolios
with and without short positions, as well as the S&P 500 index. As seen from
the table, an investor using the proposed strategy would have been able to
earn 80% of the profit, whereas if he invested in the S&P 500 for the tested
period, he would have earned only 24%.

Table 4

Model backtesting results

Portfolio model Profitability

short portfolio 81.43 %

no short portfolio 82.23 %

S&P 500 index 24.28 %

4. Discussion of results and conclusions

This paper proposes an original trading strategy for investing in cryptocur-
rencies using the example of bitcoin. Its main properties and advantages
are the ability to classify the current state of the trend and form a possible
opening or closing a position for an asset or their portfolio. For the com-
puter implementation of the proposed strategy, a machine learning model was
developed based on the Light GBM model. To test the effectiveness of the
formulated characteristics of the model, a synthetic dataset was developed
based on the most important features extracted from market factors. Model
testing and comparative analysis of the results obtained with other models
showed a high degree of stability and accuracy of the proposed strategy. The
proposed approach is universal and, therefore, it can be applied in various
financial markets with high volatility.
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О методах построения торговых стратегий
на криптовалютных рынках

Е. Ю. Щетинин
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Аннотация. В работе предлагается торговая стратегия инвестирования в рынок
криптовалют, использующая мгновенные входы на рынок на основе дополни-
тельных источников информации в виде разработанного набора данных. Задача
прогнозирования момента входа на рынок формулируется как задача классифи-
кации тренда стоимости криптовалют. Для её решения в статье использовались
ансамблевые модели и глубокие нейронные сети, что позволило получить прогноз
с высокой точностью. Компьютерный анализ различных инвестиционных страте-
гий показал значительное преимущество предложенной модели инвестирования
перед традиционными методами машинного обучения.

Ключевые слова: биткойн, торговая стратегия, ансамблевые модели, глубокое
обучение




