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Performance analysis of queueing system model under
priority scheduling algorithms within 5G networks slicing
framework

Kpangny Yves Berenger Adou,
Ekaterina V. Markova, Elena A. Zhbankova
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Abstract. A new era is opening for the world of information and communication
technologies with the 5G networks’ release. Indeed 5G networks appear in modern
wireless systems as solutions to “traditional” networks’ inflexibility and lack of radio
resources problems. Using these networks the operators can expand their services’
range at will and, therefore, manage daily operations by monitoring ‘key performance
indicators’ (KPIs) — helping meet the quality of service (QoS) requirements much
easily. To meet the QoS requirements 5G networks can be implemented alongside
priority scheduling algorithms. This paper considers the operation of a wireless
network slicing model under two scheduling algorithms. A comparative analysis of
main performance measures is provided.

Key words and phrases: 5G networks, slicing, QoS, KPIs, priority scheduling,
retrial queueing, iteration method

1. Introduction

The advent of new generation 5G networks with their flagship slicing
technology have highly influenced the telecommunications sector in the best
way. Network operators have now the latitude to manage their assets and
therefore, are able to propose new types of services to customers [1]-[3].
Businesses and enterprises can now access network connectivity that fits their
specific needs [4]-[6]. 3GPP defines slicing as a technology that offers on
shared infrastructures the advantageous option to build fully dedicated logical
networks, known as ‘network slices’, with very diverse quality of service (QoS)
capabilities and requirements [7], [8]. Normally, meeting QoS requirements
and extending capabilities are difficult tasks for network operators who can
be helped by monitoring the ‘key performance indicators’ (KPIs) [9]-[12].
Essentially, monitoring the KPIs can allow network operators to significantly
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reduce service interruptions or even prevent them in the best cases [13], [14].
Since the first release of slicing technology few years ago, the vast majority
of researchers, scientists and organizations in the telecommunications industry
is focused on developing methods and techniques to flexibly and efficiently
share available radio resources within its framework [15]-[19]. In modern
wireless networks, one of the possible solutions to meet the QoS requirements
is the implementation of priority scheduling algorithms [20]-[23]. Models
implementing such algorithms within slicing framework could be described
using the mathematical apparatus of retrial queueing theory [24]-[26],
where retrial queues, also known as ‘orbits’, can be used to address service’s
interruptions problem.

In this paper we consider one of the possible models for implementing
slicing with priority scheduling algorithms. More precisely, we provide
a comparative analysis of model’s performance measures under preemptive
and non-preemptive scheduling algorithms. For that we use the mathe-
matical apparatus of queueing theory and describe the model as a retrial
queueing system coupled with a buffer [27]—-[29].

The paper is organized as follows. Section 2 provides the system’s general
description and proposes a mathematical model for its construction. Sec-
tion 3 suggests formulas to compute the stationary probability distributions
under preemptive and non-preemptive scheduling algorithms respectively.
Section 4 proposes formulas to calculate the main performance measures un-
der each priority scheduling algorithm. Section 5 provides a numerical
example of system’s model operation. Section 6 concludes the paper.

2. Mathematical model

Let us consider a single server retrial queueing system [25| coupled with
a buffer. We assume two types of requests arrival in system according to
Poisson process with rates A\; and A, respectively. The average service times
are exponentially distributed with means p; and .

Let us assume that first type requests have access to server and buffer,
while second type requests — to server and orbit. Let us consider two types
of priority scheduling algorithms — preemptive and non-preemptive
scheduling [20], [21], [29], [30].

The radio admission control (RAC) mechanism for first type requests is
organized differently depending on the priority scheduling algorithm.

Preemptive scheduling. The RAC mechanism for first type requests is
organized in such a way that:

1) when server is “vacant” or “occupied” by one second type request, the
first type request immediately obtains service, i.e. the second type
request occupying server at such moments automatically joins the
orbit;

2) otherwise, the first type request awaits server’s non-utilization in
buffer with first-come, first-served (FCFS) service discipline [24]—[26].

Non-preemptive scheduling. The RAC mechanism for first type requests
is organized in such a way that:

1) when server is “vacant”, the request immediately obtains service;
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2) otherwise, the request awaits server’s non-utilization in buffer with
FCFS service discipline.

Whether preemptive or non-preemptive scheduling algorithm, awaiting
in buffer first type requests are always given priority when it comes to service
once server is ‘“vacant”.

The RAC mechanism for second type requests is organized in such a way
that:

1) when server is “vacant”, the request immediately obtains service;
2) otherwise, the request either leaves the system with probability = or joins
the orbit with probability 1 — .

A second type request that joined the orbit becomes a “retrial” second type
request. A retrial second type request, as the name stipulates, retries to
obtain service after some amount of time. The number of retrials is unlimited
and time interval between two consecutive ones is exponentially distributed
with rate o~!. Note that, as the “primary” second type request, the retrial
second type request either leaves the system with probability 7w or returns
to the orbit with probability 1 — 7 after an unsuccessful attempt to occupy
server.

The scheme model of considered single server retrial queueing system
coupled with a buffer is given in figure 1.

>\13 241
BUFFER
)‘27 M2
________ % SERVER
”,"’ g, /J“Q
LOSS (7) "~ 1_1.._ ORBIT

Figure 1. Scheme model of considered single server retrial queueing system coupled
with an unlimited buffer

We describe system behavior using a three-dimensional vector n := (i, j, k)
over “infinite” state spaces X and Y under preemptive and non-preemptive
scheduling algorithms respectively:

X={neN*:(i=0Ake{0,2})Vk=1}, (1a)
Y={neN3:(i=0Nk=0)VEke{l,2}}, (1b)

where N3 represents the state space of all three-dimensional vectors with
natural elements; ¢ — the current number of first type requests in buffer; j —
the current number of second type requests in orbit; and £ — the current
state of server (i.e., value “0” means server is “vacant”; value “1” — server is
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“occupied” by one first type request; and value “2” — server is “occupied” by
one second type request).
The corresponding state transition diagrams are shown in figures 2, 3. The
transition diagrams from random state are clarified in figures 4, 5.
f M1 \

_)\1_) _)\1_) _/\1_) _)\1_)

1T 2 )
A Ao(1—m) Ao(1—m) Ao(1—m) Ao(1—m)
3om 3om 3171' J
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)\2(177T) )\2(1—7{')

I

Figure 2. State transition diagram of considered single server retrial queueing system
coupled with a buffer under preemptive scheduling algorithm
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Figure 3. State transition diagram of considered single server retrial queueing system
coupled with a buffer under non-preemptive scheduling algorithm
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Figure 4. Transition diagram from random state for considered single server retrial queueing
system coupled with a buffer under preemptive scheduling algorithm
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Figure 5. Transition diagram from random state for considered single server retrial queueing
system coupled with a buffer under non-preemptive scheduling algorithm
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According to investigated priority scheduling algorithms and considering
the transition diagrams from random state (i.e., figures 4, 5) one can obtain
the equilibrium equations systems given below that describe the discussed
Markov processes X (t) and Y (t), where ¢ > 0:

Ay Ao (i € {0}) + Ay (1 — 1) I(k % 0) + L (k % 0) +
+jol(i,k € {0}) + jorI(k+#0)|P(n)=XI(i=0,k=1)P(n—e3)+
+MI(i>0k=1)Pn—e;)+X\I(i=0,k=2)P(n—2e;)+
+ X0 (1—m)I(j>0,k+0)Pn—ey)+puI(i,ke{0}) P(n+ey)+
+ I (k=1)P(n+ey) + pyl(i,k € {0}) P(n+ 2e5)+
+(j+1)ol(i=0,k=2)P(n+e,—2e;)+ (j+ 1)orl(k+# 0) P(n+ e,)+
+MI(i=0,7>0,k=1)P(n—ey,+e;3), (2a)

Ay Ao (i, € {0}) + Ay (1 — 1) I(k % 0) + L (k % 0) +
+ joI(i,k € {0}) +jorI(k+#0)]Qmn)=X\I(i=0,k=1)Q(n—e3)+
FAT(>0,k=1)Qm—e) + AT (i =0,k =2) Q(n — 2e5)+
F (=) 1G>0,k £ 0)Q(n — ey) + iy T(i,k € {0}) Q(n + e5)+
+ I (k€ {1,2}) Qn+ey) + o (i, k € {0}) Q(n + 2e5)+
+(+1)ol(i=0,k=2)Q(n+e;, —2e3)+ (j+ Vorl(k#0)Q(n+e,)+
+ul(i=0k=1)Q(n+e; +e3), (2b)

where P(n), ., and Q(n),cy are the stationary probability distributions
under preemptive and non-preemptive scheduling algorithms respectively;
€sc(1,2,3 — the s-th row of identity matrix of size 3 x 3; and I(-) — the
function indicator equaling value “1” when condition is met, and value “0”
otherwise.

3. Stationary probability distribution

Due to the “infinite” sizes of buffer and orbit, the stationary probability dis-
tributions P = (P(n)) _,. and Q = (Q(n))ney should be computed through

generating function-based approaches [25], [27], [29]. However, one can
compute them using iteration methods [31], [32] by simply adding limita-
tions to the storage sizes, setting these to random maximum values. Thus, we

set buffer’s maximum size to zmax and orbit’s to j,,... Therefore, we obtain

the “finite” state spaces X and ¥ under preemptive and non-preemptive
scheduling algorithms respectively:

I:{nex:i\ de j jmax}7 y:{ney:i\ de .7 jmax}'

The process describing considered system is not a reversible Markov pro-
cess whether under preemptive or non-preemptive scheduling algorithm.
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Therefore, one can compute either stationary probability distribution P or Q
using iteration method on respective equilibrium’s equations system, i.e.

P-Apza) = Opwa Q Bgixg) = Opxg)

where A and B are the infinitesimal generators of Markov process under
preemptive and non-preemptive scheduling algorithms respectively.

The elements A, ; of the infinitesimal generator A are computed using (3a).
Equation (3b) calculates the elements B, ; of the infinitesimal generator B.

(A, if n=n+e,, s.t. i, ke {0},

n=n+e;, st. i <i L ANk=1,
or n=n-+e,—e;, s.t. 1 =0AJ < J ANK=2,
=n+ 2e,, s.t. i,k € {0},
), if n=n+e,, s.t. j<jn..Ake{l,2},
=n—ey s.t.i=0Nk=1, (3a)
=n—e}, s.t.i>0Nk=1,
n=n-—2e;, st.i=0ANk=2,
n=n-+2e; —e,y, s.t. 7>0Ai, ke {0},
jom, if n=n—ey, st.7>0Ak € {1,2},
L0, otherwise,

or

Il
A
=
—
—
iy

with n € X, and Apn=— > Aua
neX{n}

(A, if n=n+eg, s.t.i,ke {0},

or n=n-+eq, s.t. i <iy, Ake{l2}
n=n+2e,, s.t. i,k € {0},

Ay (1—m), if n=n+ey, s.t. j<ju Nk € {12},
n=n-—e;s st.i=0Nk=1,

=n—e;, st.i>0Nk=1, (3b)
n=n-—2e;, st.i=0ANk=2,

or n=n—e; —e3, s.t.i>0Nk=2,

jo, if n=n+2e; —e,, s.t. j >0A, ke {0},
jom, if n=n—e,, st.j>0Ak€{1,2},

L0, otherwise,

with n € ¥, and Byn=— > Bua
ﬁeg{n}
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4. Performance measures

After computing the stationary probability distributions P and Q one
can calculate system’s performance measures under preemptive and non-
preemptive scheduling algorithms respectively. Let us consider following
main performance measures:

1. The mean number of first type requests in buffer
neff nég
2. The mean number of second type requests in orbit
nef nEg
3. The server’s vacancy probability
> Pm), > Qm), (6)
ne,’f:k:O neg:kzo
4. The server’s occupancy probability by one first type request
> P, Y Q), (7)
neX k=1 ned:k=1
5. The server’s occupancy probability by one second type request
Y Pm. Y Q). (8)
neX k=2 neg:k=2

Since limitations were applied to storage sizes, i.e. buffer and orbit, one
may find it necessary to also compute following performance measures:

1. The buffer’s saturation probability
>, P, Y. Qm), (9)
ney:i:imax neg:i:imax
2. The orbit’s saturation probability

Sorm. > Q. (10)

nex:j:jmax ney:j:jmax

5. Numerical example

Let us illustrate the behavior of performance measures, computed in pre-
vious section 4, depending on various system’s parameters. To implement
iteration method one must set the error tolerance ¢ and, for ergonomic
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features, limit the number of iterations MaxIters. Since second type re-
quests are apparently more affected by implemented priority scheduling
algorithms, one may build the example around performance measures “di-
rectly” related to them:

— the mean number of second type requests in orbit, i.e. equations (5);

— the server’s vacancy probability, i.e. equations (6);

— the server’s occupancy probability by one second type request, i.e. equa-
tions (8);

— the orbit’s saturation probability, i.e. equations (10).

Summaries of the numerical examples results are provided in tables 1 to 4.

Table 1
Mean number of second type requests in orbit depending on triplet (j, .., A1, Ag) with
e = 10, p1 = g =2, 1= 0.001, 0 = 1, e = 10712 and MaxIters = 1000

’ - H - Hl Preemptive scheduling H‘ Non-preemptive scheduling
Jimax Al Az 1 2 3 1 2 3
1 2.5438 3.3625 3.8375 2.4659 | 3.4162 3.9503
5 2 3.9805 | 4.1998 | 4.3897 4.0846 | 4.3046 4.4961
3 4.5566 | 4.6908 | 4.7835 4.6314 | 4.7437 4.8230
1 4.9052 7.2944 | 8.3800 4.7192 7.3611 8.5276
10 2 8.5649 8.9173 | 9.2121 8.7040 | 9.0528 9.3429
3 9.4234 | 9.5984 | 9.7193 9.5149 | 9.6616 9.7651
1 6.9305 | 11.4591 | 13.1148 6.6439 | 11.5360 | 13.2783
15 2 13.3191 | 13.7555 | 14.1114 13.4738 | 13.9025 | 14.2497
3 14.3427 | 14.5381 | 14.6738 14.4387 | 14.6034 | 14.7205

Table 1 shows that when the arrival rate A; of first type requests or A,
of second type requests increases, the mean number of second type requests
in orbit also increases. That performance measure is greater under non-
preemptive scheduling algorithm. This may be explained by the fact that,
we have more second type requests in system, and consequently, the orbit
tends to saturation. This situation is also illustrated by table 2 showing the
increase of orbit’s saturation probability under the same circumstances.

Table 3 shows that when the arrival rate \; of first type requests or A,
of second type requests increases, the server’s vacancy probability decreases.
As one can see from that table, and according to table 1, that performance
measure is less under non-preemptive scheduling algorithm. This may be
explained by the fact that the more requests we have in system, the less server
will be “vacant”.

Table 4 shows that when fixing arrival rate A\; of first type requests to
value “1” and increasing arrival rate A\, of second type requests, the server’s
occupancy probability increases.
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Table 2
Saturation probability of orbit depending on triplet (j,,.c, A1s Ag) With ¢, = 10,

1 = po =2, m=0.001, 0 =1, = 10712 and MaxIters = 1000

’ - H - Hl Preemptive scheduling H‘ Non-preemptive scheduling

Finax A Az 1 2 3 1 2 3
1 0.2229 | 0.3647 | 0.4686 ||| 0.2256 | 0.3990 0.5262
5 2 0.5322 | 0.6105 | 0.6796 ||| 0.5862 | 0.6654 0.7372
3 0.7602 | 0.8236 | 0.8687 ||| 0.8015 | 0.8537 0.8919
1 0.1197 | 0.2889 | 0.4174 ||| 0.1223 | 0.3216 0.4750
10 2 0.4801 | 0.5653 | 0.6425 ||| 0.5346 | 0.6210 0.7007
3 0.7247 | 0.7913 | 0.8401 ||| 0.7664 | 0.8215 0.8633
1 0.0690 | 0.2473 | 0.3889 ||| 0.0702 | 0.2766 0.4436
15 2 0.4490 | 0.5363 | 0.6171 ||| 0.5007 | 0.5893 0.6729
3 0.6978 | 0.7649 | 0.8154 ||| 0.7375 | 0.7936 0.8374

Table 3
Vacancy probability of server depending on triplet (J,..; A1, Ag) with ¢, = 10,

= pto =2, m=0.001,0 =1, =102 and MaxIters = 1000

’ - H - Hl Preemptive scheduling H‘ Non-preemptive scheduling
Az

1 2 3 1 2 3

1 0.1394 | 0.0803 | 0.0556 0.1242 | 0.0630 0.0395
5 2 0.0465 | 0.0361 | 0.0285 0.0310 | 0.0223 0.0162
3 0.0198 | 0.0137 | 0.0098 0.0107 | 0.0071 0.0048

1 0.0923 | 0.0351 | 0.0220 0.0847 | 0.0269 0.0148
10 2 0.0183 | 0.0143 | 0.0118 0.0114 | 0.0083 0.0063
3 0.0082 | 0.0058 | 0.0043 0.0042 | 0.0028 0.0020
1 0.0735 | 0.0197 | 0.0128 0.0685 | 0.0146 0.0084
15 2 0.0106 | 0.0086 | 0.0073 0.0064 | 0.0048 0.0039
3 0.0051 | 0.0037 | 0.0027 0.0026 | 0.0018 0.0013

But, when fixing A, to values “2” or “3” that probability decreases. That
performance measure is less under non-preemptive scheduling algorithm.
This may be explained by the fact that the more first type requests we have
in system, the less server will be occupied by one second type request, since
RAC mechanism suggests that priority is always given to first type requests
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once server is “vacant”. Furthermore, when fixing A\, and increasing A; the
server’s occupancy probability decreases generally except under preemptive
scheduling algorithm for one case, where orbit’s maximum size j,,.. equals
value “5” and A\, equals value “1”. In that case, that probability increases to
a maximum value and then decreases.

Table 4
Occupancy probability of server by one second type request depending on triplet
(Fumaxs A1s Ag) with 4, =10, g = py =2, 7 = 0.001, 0 = 1, e = 10712
and MaxIters = 1000

Jl]laX A 1

max

Preemptive scheduling Hl Non-preemptive scheduling

1 2 3 1 2 3

1 0.3779 | 0.4655 | 0.5232 0.3760 | 0.4372 0.4608
5 2 0.3973 | 0.3372 | 0.3070 0.3461 | 0.2836 0.2446
3 0.2056 | 0.1463 | 0.1112 0.1639 | 0.1155 0.0857

1 0.4163 | 0.4992 | 0.5457 0.4156 | 0.4734 0.4854

10 2 0.4157 | 0.3503 | 0.3156 0.3657 | 0.2977 0.2546
3 0.2113 | 0.1498 | 0.1132 0.1706 | 0.1199 0.0887

0.4312 | 0.5087 | 0.5487 0.4317 | 0.4856 0.4919

15 2 0.4178 | 0.3509 | 0.3150 0.3707 | 0.3012 0.2571
3 0.2107 | 0.1491 | 0.1124 0.1723 | 0.1211 0.0895

6. Conclusion

One considered a possible model for implementing slicing technology
with priority scheduling algorithms. A comparative analysis of computed
main performance measures — mean number of first type requests in buffer,
mean number of second type requests in orbit, server’s vacancy probability,
server’s occupancy probability by one first type request, server’s occupancy
probability by one second type request, buffer’s saturation probability and
orbit’s saturation probability — was provided. That analysis showed that
system load is higher under non-preemptive scheduling algorithm with
very low probability of leaving system after an unsuccessful attempt to occupy
server.
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Aunoraunus. Ilepexon K 6ecpOBOIHBIM CETAM ISITOrO HOKoJieHust 5G 03HaMEHO-
BaJI HOBBIH 3Tall pa3BUTUs NMH(MOPMAITMOHHBIX ¥ KOMMYHUKAIIMOHHBIX TEXHOJIOTHUIA.
CeTu 1IATOTO TIOKOJIEHUS JIOJIYKHBI PEIIUTh TaKUe MPOOJIeMbl, KAK HETMOKOCTh «Tpa-
JUIHOHHBIX» CeTell W HeXBATKa YaCTOTHBIX PaIMOPECypPCOB IJIsi KAa4eCTBEHHOI'O
npegocraBjaeHus ycuayr. IIpesrosaraercs, 4To, UCIOJIB3Ysd 3TU CETU, MOOUJIbHBIE
OIIepaTOPhl CMOTYT 3HAYUTEIHLHO PACIITUPHUTD CHEKTD YCIYT U 00eCHednTh Tpedbyemoe
KavecTBO WX mpejocrasienus. s ynoBieTrBopenns TpebOBaHUIT K KAIECTBY 00CITy-
xuBanus (anea. Quality of Service — QoS) omeparopam HEOOXOAMMO BBITIOTHEHUE
«KJTIIOUEBbIX Tokazareseit addekrusroctny (anes. Key Performance Indicators —
KPI), onucannbix B cranmaprax csasu. s 91oii e MOryT ObITh UCIIOJIb30BAHBI
AJITOPUTMBI TIPUOPUTETHOTO OOJIYKUBaHUS. B cTaThe paccMOTpeHa MOJEb Hecipo-
BomHOI cetn H5G, TOMIEPKUBAOIIAs TEXHOJOTUIO HAPE3KHM CETU M PeasIn3yrolias
yIpaBJjIeHrE JOCTYIIOM K CETEBBIM PAJIMOPECYPCaM IIPH ITOMOIIU BBEJECHUS [IPUOPUTE-
TOB. M3yuena pabora MO/Ie/In B paMKax JIByX ajropuTMoB. [IpoBesiéH cpaBHUTEIbHBII
aHAJIM3 OCHOBHBIX ITOKa3aTeselr 3PeKTUBHOCTH MOIEIN.

Karouessie cioBa: cetu 5G, napeska cetu NS, QoS, KPI, npuopurernoe ynpassie-
uue jocrynom, CMO ¢ TOBTOPHBIME 3asiBKAMU, HTEPAITMOHHBIN METOT,
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Abstract. In this paper, we analyze a multi-server queue with customers’ impatience
and Bernoulli feedback under a variant of multiple vacations. On arrival, a customer
decides whether to join or balk the system, based on the observation of the system size
as well as the status of the servers. It is supposed that customer impatience can arise
both during busy and vacation period because of the long wait already experienced
in the system. The latter can be retained via certain mechanism used by the system.
The feedback occurs as returning a part of serviced customers to get a new service.
The queue under consideration can be used to model the processes of information
transmission in telecommunication networks. We develop the Chapman—Kolmogorov
equations for the steady-state probabilities and solve the differential equations by
using the probability generating function method. In addition, we obtain explicit
expressions of some important system characteristics. Different queueing indices are
derived such as the probabilities when the servers are in different states, the mean
number of customers served per unit of time, and the average rates of balking and
reneging.

Key words and phrases: Markovian multi-server queue, probability generating
function, impatient phenomena, server vacations, Bernoulli feedback

1. Introduction

Queueing models with server vacation have been efficiently studied by many
researchers in the last decades and successfully applied in various practical
problems such as telecommunication system design and control, manufacturing
industries, and other related systems. There are two basic vacation queueing
models namely, multiple vacation, and single vacation. In multiple vacation
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queueing models, the server continues to take successive vacations until it
finds at least one customer waiting in a queue at a vacation completion
epoch [1], [2]. Nevertheless, in single vacation queueing models, the server
precisely takes one vacation between two consecutive busy periods. These
two types of vacation models were first introduced by Levy and Yechiali [3].
Eminent literature on the subject is found in [4]-[8] and others.

Over the past few years, queueing models with Bernoulli feedback have
increasingly attracted the attention of many researchers [9]-[14]. Taking
into account the feedback effect makes it possible to bring the considered
models closer to a real situation, where the claims once serviced may require
repeat service for different reasons. For example, in communication networks
erroneously transmitted, a data is retransmitted.

In recent years, a growing body of literature has emerged on the analysis of
queueing systems with impatient customers [15]. This is due to their potential
applications in many related areas, see for instance [16], [17]. Balking is one
form of impatience, which is the reluctance of a customer to join a queue
upon arrival [18], [19]. The other forms are reneging, the reluctance to
remain in line after joining and waiting, and jockeying between lines when
each of a number of parallel lines has its own queue [20], [21]. When the
impatience becomes sufficiently strong, the manager of the firm concerned
has to take some measures to diminish the congestion to levels that customers
can tolerate.

In most queueing situations, customers seem to get discouraged from
receiving service when the server is absent and tend to leave the system
without receiving service. This phenomenon is very precisely observed when
the server is on vacation. This results in a potential loss of customers and
customer goodwill for a service provider. For a comprehensive overview of
the subject, authors may refer to [22]-[29]. Most of the literature mentioned
here studies reneging during the vacation state of the server. However, in
many real-life situations, the abandonment may occur even when the system
is in the busy state. For instance, incoming customers can not have any
information about the state of the server, or when they are not satisfied with
the service time (in particular, when they find that the server takes too much
time to serve the customers). This paper contributes in this sense. In fact,
only a few research papers have been done treating this case [9]-[12], [30].

In this paper, we provide the analysis of a multi-server feedback queue
with a variant multiple vacation policy, balking and server’s states-dependent
reneging. When all the customers present in the system have been served, the
servers immediately leave for a vacation. If they return from a vacation to
find an empty queue, they leave for another vacation; otherwise, the servers,
synchronously, return to serve the queue. These latter are permitted to
take a finite number, say K, of sequential vacations. It is assumed that an
arriving customer who finds the system (all the servers) on vacation period
(respectively, on busy period) activates an impatience timer 7y, (respectively,
Thysy)- If the customer’s service has not been completed before the customer’s

impatience timer expires, the customer abandons the queue. The latter can
be convinced to stay in the system (retained) using certain strategy. In
addition, if the customer is unhappy with the service, he can rejoin the
end of the queue for another one with some probability. That’s what we
call a feedback customer. To the best of the researchers’ knowledge, the
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model under consideration has so far not treated in the literature of queues.
Moreover, our model can be considered as a generalized version of existing
queueing model given by Yue et al. [27] and [20] equipped with many features
and associated with many practical situations.

The rest of the paper is arranged as follows. In Section 2, we introduce the
mathematical description of the model and we give a practical application. In
Section 4, we develop the differential equations for the probability generating
functions of the steady-state probabilities. In Section 5, we give the solution
of the differential equations. In Section 6, we give the probabilities when the
servers are in different states. Some essential system performance measures
of this model are obtained in Section 7. Finally, we conclude the paper in
Section 8.

2. The mathematical description of the model

We consider a multi-server feedback queueing system with K-variant
vacation, balking and server’s states-dependent reneging. The following
assumptions and notations are taken into account to structure the proposed
queueing system:

1. The suggested queueing system consists of ¢ servers. Customers arrive
into the system according to a Poisson process with rate A > 0, they
are served according to First-Come-First-Served (FCFS) discipline. The
service times are assumed to be exponentially distributed with rate u.

2. A multiple synchronous vacation policy is considered; once all the cus-
tomers present in the system are served, the servers, all together, leave
for a vacation. At the end of the vacation period, if the queue is still
empty, they immediately leave for another vacation; otherwise, they re-
turn to serve the queue. The servers are allowed to take all together K
vacations sequentially. When the K consecutive vacations are complete,
the servers switch to a busy period and, depending on the arrival of new
customers, they stay idle or busy. The vacation period is assumed to be
exponentially distributed with rate ¢.

3. Whenever a customer arrives at the system and finds the servers on
vacation period (resp. busy period), it activates an impatience timer
Ty (resp. T, ), which is exponentially distributed with parameter &,

(resp. &). If the customer’s service has not been completed before the
customer’s timer expires, this later may leave the system. We suppose
that the customers timers are independent and identically distributed
random variables and independent of the number of waiting customers.

4. Tt is supposed that a system employs a certain mechanism in order to
keep impatient customers in the system, that is, with some probability
o', a customer may be retained in the system, and with a complementary
probability « it may decide to leave to never return.

5. If, after completion of service, a customer is not happy with the quality
of the service, he can return to the system with some probability 5 for
another service, or decide to leave the system with probability 8 =1—3’.

6. A customer who on arrival finds at least one customer (resp. ¢ customers)
in the system, when the servers are on vacation period (resp. busy
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period) either decides to enter the queue with probability 0 or balk with
probability 6 =1 — 6.

All random variables presented above are mutually independent of each
other.

3. Practical application of the model

The operation mode of a call center with vacation and impatience provides
an initial motivation for our study; a central office is used for receiving or
transmitting a large volume of enquiries. A private branch exchange (PBX) is
a private telephone network used within a company or organizations that offers
various features such as transfer calls, voicemail, call recording, interactive
voice menus (IVR), and call queues. It helps in making an organization’s
communication simpler and more robust.

The incoming calls are routed to an available customer support manager
drawn from the group of agents. Assume that the service facility consists in
a group of ¢ channels (servers) available to meet the demands of the requests.
If an arriving call finds some servers free it immediately occupies the channel
and leaves the system after service. However, the behavior of a call may
vary depending on the waiting expectations provided by the call center and
the personal preferences of each specific customer. Therefore, each call may
decide either to balk or to wait for a while.

The servers commute between busy and vacation periods in groups. When
there is no demands to be handled, the latter, all together, go synchronously
on vacation and come back as one station to the busy period, once the idle
period ends. If there are some waiting calls at the end of the vacation period,
they will be immediately served. Alternatively, they quit for another vacation
period.

The calls have no information on the queue length nor the state of the
servers, then, an increase in the mean waiting time of a customer in the
system can anticipate an increase in the average rate of reneging. Thus, to
avoid losing potential customers, the system should employ some strategies
by choosing the system parameter to further encourage customers to stay in
the system. In the case that the service is not successful, the customer can
repeat its request again and again until the service succeeds.

4. Governing equations

At an arbitrary time, the system state is defined by a continuous time
Markov chain {(L(t); J(t)); t > 0} on the state space Q@ = {(n;j)
n > 0; j=0,K}, where L(t) is the number of customers in the system and
J(t) is the state of the servers, i.e.,

th vacation at time ¢,

j,  if the servers are taking the (j+ 1)
J(t) = J=0,K—1,

K, if the servers are idle or busy at time t.
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Let P, ; = tlim P(L(t) =mn; J(t) =j),n >0; j=0, K, denote the steady-
) —00

state probabilities of the process {(L(t); J(t)); t > 0}. The state-transition
diagram is illustrated in Figure 1.

B+ {n+1)ag,

Figure 1. Transition plot

Using Chapman-Kolmogorov equations, we can formulate the balance
equations for the suggested queueing model as:

A+ @) Py =0aéyPo+ (Bu+a&)P g, n=0, (1)
(OA+ 9+ ay) P o= APy o+ 208y, n=1, (2)
(OA+ ¢ +naky)P, o =0AP, 1o+ (n+1)ay P, 19, 122, (3)
A+ Q)P ; = aoPy j+ 0Py 4, J= LLK—1, n=0, (4)
(OX+ ¢ +aky)P, ;= APy j+2a60P, 5, j=1,K—1, n=1, (5)
(OA+¢+nagy)P, ; =0AP, | j+(n+1)a&yP, 1 ;, j=1,K—1,n>2, (6)
)‘PO,K = d’Po,K—la n =0, (7)

K1
A+ B+ a&y) Py g = APy ic + 2(Bp + a&y) Py g + 'Zo Py n=1, (8

=

(A +n(Bu+ &) P, k=
K—1

:)\Pn—l,K+(”"‘1)(BH+04§1)Pn+1,K+¢ZPn,ja 2<n<c—1, (9)
=0

1=

(OA + cBp +nag, )P, r =
K1

= AP, g+ (cBu+ (n+1)a&)P,yy x+6 > P, n=c, (10)
J=0
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(O + cBp+na&y) P, =
K-1
=0AP, 1 g+ (cBu+ (n+1)a&)Ppiq g+ ¢ Z P, n>c (11)
7=0

Consider the probability generating functions (PGFs) as:

G]<Z) = ZOZnPnJ,
and define p
Gjz) = +G,(2), j=UK

The normalizing condition is defined as

oo K
>y p,=1

n=0 j=0

Multiplying Equation (3) by z", summing all possible values of n, and
using Equations (1) and (2), we get

aéo(l_z)GE)(Z)_(HA(1_2>+¢>G0(Z) = —(5M+04§1)P1,K+§)\(1_Z)Po,o~ (12)

In the same manner, from Equations (4)—(6) and (7)—(11) respectively, we
obtain

a6y (1— 2)G(2) — [OA(1 — 2) + 6]G,(2) =

J

and

a1 2(1 = 2)G(2) = (1= 2)(0Az — cBp)Gc(2) =

K—1
= cPu(l — 2)Fy i + 2(Bp + a&y ) Py i — ¢z Z G;(2)+
K—2 B o
+ ¢z Z Py j+A0z(1 = 2)I'(2) — Bu(l — 2)T5(2), (14)
=0
where ot oy
I(z)= Z 2"P, g and Ty(z) = ) (n—c)2"P, k.

n=0

i
L



A. A. Bouchentouf et al., Mathematical analysis of a Markovian multi- ... 27

5. Solution of the differential equations

For z # 1, Equation (12) can be written as follows:

) ¢

Bu+a, P, 2
ag " (1l —2)

0450(1_> K1 ady

Gy(z) — [ 1 Gy(z) = —PFyo.  (15)

_ox b
Multiply both sides of Equation (15) by e ~o (1 —2)=%, we get

d

P (e %o “(1 —z)‘%OGO(z)) =

I ey ) ~ (Bptagy)
=e 1= o <a§OP0,0 afo(l_Z)Pl’K).

Next, integrating the above equation from 0 to z, we obtain

[ B+ af
6o+ 2 RG-SR ey} 0
aSo agy
with
; 7@8 _P ; _ 9)\
Cy(2) :/e @60 (1 —s)*¢ods and Cy(2) :/e (1—s)a50 Yds.
0 0
Since Gy(1) = ZZOZO P, o> 0and z =1 is the root of denominator of the

right hand side of Equation (16), we have that z = 1 must be the root of the
numerator of the right hand side of Equation (16). So, we obtain

(Bu+ &) Py OAPy
G,(0) = — (1) — ~C4(1), 17
o(0) e - e ) (1)
where
1 1
% __1

/ *(1—s) “EOds and Cy(1 / *(1—s)°€ ds.
0 0

Noting G(0) = Fy o. Then, Equation (17) implies

_ ado _
P Gt ag om0 oo T oo )
with \ ¢
_ ANy _ aSo
Bt agy #i1) and (Bu + a&y)Cy(1) b
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Substituting Equation (18) into Equation (16), we obtain

Goo) =717 14 2010 - GO e (19)

Next, Equation (13) can be written as

) & D) b
ag - ady(l—z agy 0 ay(l —2)

ag
Similarly, as for Equation (15), we multiply both sides of Equation (20) by

_ox e
e “%”(1—z)2%. Then, we find

G)(z) — { )] G,(z) = Py, 1. (20)

o, _ o
G;(2) = e°®0"(1 —z) =€ x

0
X {Gj(O) + —C1(2) Py ; — aiéo

, = —1. (21
g, 02(2)P0,31}, j=1K—-1 (21)

Since G;(1) = z—:o P, ;> 0(G;(1) = P, ; represents the probability that the

servers are taking the (4 1)™ vacation) and z = 1 is the root of denominator
of the right hand side of Equation (21), we have that z = 1 must be the root
of the numerator of the right hand side of Equation (21). So, we obtain

Cy(1
¢ 2<B> Using Equation (22) repeatedly, we get
aSo

where A =

Now, by substituting Equation (23) into Equation (21), we find

G,(2) = emto*(1 — z) 5% A x
Y B -
x 1+ 20,(z)— ——C z}P L j=T,K 1. (24
{1+ 200.6) - G0 Rogr (21)

To find F, ; the probability that the servers are idle during the busy
period, we use Equations (7) and (23). Thus

PO,K = wopo,()a (25)
where w, = %AK_l.

Remark 1. It is easy to see that 0 < ¢Cy(1) < af,, and OAC; (1) > 0.
Thus, 0 < pCy(1) < a§y + OAC,(1). Consequently, we have 0 < A < 1.
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Next, Equation (14) can be written as:

/ OX  cBp _ Bptagy B A0 B
Gr(z)— (a_fl - @> Gg(z) = —afl(l — Z)Pl’K—i— ngPO7K+a€11“1(Z)
b S =
_@F 22 )+oz§1 1—2) (;POJ - G;(z) | . (26)

In the same way, by multiplying Equation (13) by Y(z) = e o&i " zaer,
we get

T (@G = T6) { S S P ot DR p 4 2200 -
_ Pty —2 KZQP .—Kzlc;@) (27)
aflz ? a£1<1_2) =0 07 =0 !

Then, integrating from 0 to z and using Equations (18) and (23)—(25), we
obtain

ox cBu 1 — AK-
Gy(z) = evei”z aa {((5# +ay)wy + ¢ (ﬁ)) H,y(2)+
cBud g 1— A% L
+ PO ) - 6 (T ) Holo) +
_ cBpr  OX eBr 10X
x | \O gaéie &y 8F1<5>ds — ﬂ'u, saé1 e &y 8P2<S)d8> } PO,O’ (28)
[/ /

¥4

1 cBu _ 60X ¢
H(z) = I/safle aéy (1—s)"tds,
1
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6. Evaluation of probabilities P, j, P, ; and F,

From Equations (18) and (25), we have P x = @, Py o and By x = @y F ¢-
Making use of Equations (4)—(6), we recursively get

K-1
E : Pn,j = 5nPO,07
7=0

where

671 = no 50 {[9)‘ + ¢ + (n o 1)0650] n—1 9)‘571—2} :

Similarly, from Equations (8), (9), we recursively obtain P, ; = @, F o,
where

1
Wy, = m {[)‘ + (TL - 1)(5” + agl)]wnfl - /\wn72 - gb(gnfl} :

Thus, Equation (28) can be written as

Gk(z) =
X , _cBu B 1 — AK-L
= exé17y ag1 {|ig§(()1> +¢ (ﬁ)} H1< ) CﬁN¢AK 1H ( )
1— AKX =
—¢(1_ﬁ1)Hga+Awa@wwMHa@}%p,@m
with
() = o [stieroysas, o) = o [+ oy sas
0
c—1 c—1
©,(2) =) 2"w,, and O4(z) = » (n—c)z"w,.
n=0 n=1

Thus, for z =1 (noting that G'x (1) = P, ; represents the probability that
the servers are busy or idle), we get

Gie1) = Puc = (1) By, (30)
where
o _ AK-1
o) = e { (Gt agmy 4o (ST ) ) w4
c — AK _
AR (1) - 0 (L) Hy0) + ML) — Gty (1)
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with

1
1 chu O
H,(1) = E/saﬁle *€1°0,(s)ds,
1
0

1

3

Now, from Equations (12) and (13), for z = 1, we have

cBp -1 — O

so61 e 2e170,(s)ds.

Hg(1)

—

0

P.’]:Gj(l) :AJ*1P070, JZO,K_l.

By the definition of P,

37

K
Y P=1
j=0

Finally, from Equations (30) and (31), we get

—1

7. Performance measures

using the normalizing condition, we get

(31)

The prime aim of determining probabilities in previous section is to formu-
late different metrics in order to examine the performance of the concerned

System.

7.1. Mean system sizes

Systematic observations of the system state is very important to enhance

the performance and to improve the decision-making.

Let L, be the system size when the servers are in the state j (j = 0, K).
Thus, E(L;) is the mean system size when the servers are in the state j,
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defined by
E(L, ZnP j=0,K,

that is, for j = 0, K —1, E(L;) represents the mean system size when the
servers are taking the (j + 1)th vacation, and E(Ly) represents the mean
system size when the servers are busy. We first derive [E(Lj) for j =0, K —1.

From Equation (15), using the Hospital rule, we get

/7

[E(Lo) = Go(l) =
—OAGY(2) + [OA(1 — 2) + )Gy (2) — NOP,

= l,l_l;l} _aéo : =
_OAG,(1) — ¢Gy(1) + OAP,
ag .
Thus, we get B
HAG + AP,
0450 + ¢
Similarly, from Equation (13), we find
(aéy + ¢)G5(1) = OAG,(1) + A0P, ;, j=1,K—1. (34)
Then, from Equations (33) and (34), we have
AOG (1) + 0P, . .
E(L;) = Gj(1) = 6¢;(1) 0’3], j=0,K—1. (35)

aly+ ¢

By substituting Equation (31) and (35), we get

E(L;) =

A [9+@A
7 a§0+¢

A :|AJPO,07 jZO,K_]..

Thus, the mean system size when the servers are on vacation is obtained as
K-1 K-1
=Y E(L;) =E(Ly)+ Y EL
5=0 j=1

_AOAT! 4 6) A 0+ 0A
T w61 0T g 1) [ A }ZAP“_

([ ANO+04) ) [2—(A+ AFT
‘<aso+¢){ T Y
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Next, from Equation (26) and by using the Hospital rule, we get

E(Ly) = lim G (2) =

1 ¢ ey Ap(O+04) ([ 1—AK
- o cpa) 4 emdar AT (L2
1 -
+ ol {6X0,(1) — BuO, (1)} Fy.0;
where ©,(1) = cil w,, and ©,(1) = Cil(n —c)w,,.
n=0 n=1

7.2. Queueing model indices

The expressions for the mean queue length, the mean number of customers
served and the average rates of impatient customers are established as follows:

— The mean size of the queue is calculated as

o0 o0
E nP E n—c)P
n=1 n=c

= E(L)—c+ {c [% + ?AK—l] - @2(1)} Pyo.

— The mean number of customers served per unit of time is given as
c—1 o)

Ecs = BMZnPn,K + C/BMZP
n=1 n=c

= Bu {c + [@2(1) —c (%AIH + ,41(1_—:4;)” PO,O} .

— The average rate of balking when the servers are in the state j = 0, K is
calculated as

=

¥
o

J

7J=0 n=1 n=c
- 2—A— AKX+ (1-4)0,(1)
=60A<1— P, .
e e T )
— The average rate of abandonment of a customer due to reneging is as
follows
K—1

Rren = Z n@fo + Z no‘ﬁl n,K — aEO (LV> + O‘él[E(LK>

7 n=1

Il
o
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8. Conclusion

In this paper, we studied an M /M /c feedback queue under synchronous
K-variant vacations, balking, server’s states-dependent reneging and retention
of reneged customers. We developed the Chapman—Kolmogorov equations
for the steady-state probabilities and solved the differential equations by
using the probability generating function method. Based on these results, we
obtained the probability generating function of the number of customers in
the system when the system is on vacation period (resp. on busy period). In
addition, we derived explicit expressions of some useful performance measures
for the system. Furthermore, we presented closed-form expressions of some
important other queueing indices such as the probabilities when the servers
are in different states, the proportion of customers served per unit of time,
and the average rates of balking and reneging.

It would be interesting to investigate a similar model with two-phase services
and multiple vacation policy, server breakdown and repair, and customers’
impatience. Further, one can evaluate the optimality of service and repair
rates to minimize the waiting time of the customers in the system.
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MaremaTnvecKuili aHAJIN3 MapPKOBCKON MHOTOJIMHEMHOMN
CUCTEMBbI MacCOBOT0 OOCJIy>KMBaHUsI C OOpaTHOU CBA3BIO,
NPOryJIKaMu NpuOOPOB U HETEPIEJNBbIMU 3asiBKAMU

Amuna Amxxenuka Bymentyd!, Jlarudpa Memxaxpu?,
Moxamens Byanem®, Amur Kymap?

U Vnusepcumem Jorcunnanu Jlabeca 6 Cudu-Beawv-Abbec, 22000, Anscup
2 Vnusepcumem Tnemcan, 13000, Arsicup
3 Ynusepcumem Bedocatin, 06000, Arsicup
4 Viusepcumem Yandueap, Mozanu (Ilendsicab), 140418, Undus

Awunoranusa. B pabore uccienyercs cucTeMa MacCOBOTO OOCIY?KUBAHUS C HETEP-
[IeJTUBBIMU 3agBKaMU, OEPHYJIINEBCKON OOPATHON CBA3BIO U MPOTYJIKAMU IPUOOPOB.
B MoMmeHnT mepes mocTynieHuEM 3asiBKM B CUCTEMY KJIMEHT, aHAJIU3UPYs 3aHATOCTh
CHUCTEMBI ¥ COCTOsIHUE TPUOOPOB, IPUHUMAET PEIIeHre O MPUHATUN 3asdBKU WU €€
yxoJZie n3 CuCTeMbI. HpeﬂnonaraeTCE{, Y9TO HETEpIIeHUE K/IIMEHTAa MOXKET BOSHUKHYTH
KaK B [EPUOJI 3aHATOCTH, TAK ¥ B EPUOJL OT/bIXa (IPOryJIKH) TpubOpOB U3-3a UMEB-
IIAXCS PaHee CJIyvaeB JJIMTETBHOTO OXKUIAHWS Havdajia OOC/IyKUBAHUS B CHCTEME,
nadOpPMAaIHs 0 KOTOPBIX MPEIOCTABIISAETCH C IMTOMOIIBIO ONPEAEIEHHOTO MEXaHU3MA.
Ob6paTrHas CBSI3b COCTOUT B TOM, UTO YaCTh PaHee OOCTYKEHHBIX KJTHEHTOB MOYKET
BEPHYTbCS B CHCTEMY JJIsl TIOBTOPHOTO 00cyKuBanus. Vcciieayemas: cucreMa MOXKET
MIPUMEHSATHCS JJIS aHAJIU3A [ePeIadu JAHHBIX B TEJICKOMMYHUKAIIMOHHBIX CUCTEMAX.
it cTanmMoOHAPHOTO PACIPEIe/IeHs BEPOATHOCTEN 3aIlMCAHBI U PEIIEHBI ¢ TIOMOIIHIO
mpou3BoaAmMMX QyHKIUI ypaBHenns Kosmoroposa—denmena. Kpome Toro, mosry-
YeHbl AHAJIUTUYIECKUE BBIPAYKEHUS IS PANA KJIIOUEBBIX XapaKTEPUCTUK CUCTEMBIL,
HaIIPUMED TAKWX, KAK BEPOSATHOCTU 3aHATOCTH WJIA MPOTYIKU IpubOpa, CpeHee umc-
JIO OOCJIY?KEHHBIX 3aBOK B €IMHUILy BPEMEHU, CPEIHUE MHTEHCUBHOCTH OTKA30B OT
ITOCTYTIJIEHUS. ¥ OTKA30B OT OXKWJIAHUsT HAYAJA 0DCIIYKUBAHUS.

KuroueBblie cjioBa: MapKOBCKast MHOTOJIMHEHHAS CHCTEMa MacCOBOTO 00C/TY )KUBAHMUS,
pou3BoaAiasg PyHKIUs, HETEPIIEIUBbIE 3adBKHU, IPOTYJIKa Tpudopa, odpaTHas CBI3b
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Abstract. The paper considers the class of Hamiltonian systems with two degrees of
freedom. Based on the classical normal form, according to the rules of Born—Jordan
and Weyl-MacCoy, its quantum analogs are constructed for which the eigenvalue
problem is solved and approximate formulas for the energy spectrum are found. For
particular values of the parameters of quantum normal forms using these formulas,
numerical calculations of the lower energy levels were performed, and the obtained
results were compared with the known data of other authors. It was found that the
best and good agreement with the known results is obtained using the Weyl-MacCoy
quantization rule. The procedure for normalizing the classical Hamilton function is
an extremely time-consuming task, since it involves hundreds and even thousands of
polynomials for the necessary transformations. Therefore, in the work, normalization
is performed using the REDUCE computer algebra system. It is shown that the use
of the Weyl-MacCoy and Born—Jordan correspondence rules leads to almost the same
values for the energy spectrum, while their proximity increases for large quantities of
quantum numbers, that is, for highly excited states. The canonical transformation is
used in the work, the quantum analog of which allows us to construct eigenfunctions
for the quantum normal form and thus obtain analytical formulas for the energy
spectra of different Hamiltonian systems. So, it is shown that quantization of classical
Hamiltonian systems, including those admitting the classical mode of motion, using
the method of normal forms gives a very accurate prediction of energy levels.

Key words and phrases: Hamilton function, normal form, Weyl-MacCoy rules,
Born—Jordan rule, quantum normal form, computer modeling, energy spectra

Introduction

Representation of the original classical Hamilton function in normal form
as the sum of homogeneous polynomials in canonically conjugate coordinates
and momenta [1] allows us to carry out its quantum-mechanical description.

The main provisions of the new quantum mechanics were discovered by
W. Heisenberg in 1925 [2]. In the same year, the paper was published by
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M. Born and P. Jordan [3], in which the commutation relation for the quantum-
mechanical operators of coordinate ¢ and momentum p was obtained for the
first time in the form

pq — qp = h/2mi, (1)

as well as the rule of matching to the classical monom of the form ¢™p",
(m,n=1,2,3,...) of its quantum analog, which we present as

n

BJ{qmpn:pnqm}_ n k’”m k (2)

The results obtained by P.A.M. Dirac [4] should be added to this. In this
paper P.A.M. Dirac wrote: “In a recent work [2|, Heisenberg put forward
a new theory, which suggests that not the equations of classical mechanics are
erroneous in any way, but that mathematical operations, by which physical
results are derived from these equations, need modification. Thus, all the
information provided by the classical theory can be used in the new theory...
We make the basic assumption that the difference of the Heisenberg products
of two quantum quantities is equal to the Poisson bracket of these quantities
multiplied by ih /27"

1. . 1
E[q,p] = h(
here {q;p} is the Poisson bracket, [, p] is the commutator for the operators,
q,p, h is Planck’s constant.

{¢,p} — ap —pq) =1, (3)

In 1927, G. Weyl published a paper [5], (see also [6]), in which the author,
on the basis of group-theoretic ideas, proposed the following rule of corre-
spondence between classical quantities and their quantum analogs in integral
form. Let the classical function f(q,p) be determined by the following Fourier
integral

fla,p) = // exp(iop +i7q)¢ (0, T)dodrT,
then the corresponding function F'(g,p) in quantum mechanics is given by

F(q,p) = // exp(iop + imq)( (o, T)dodT,

and the operators ¢, p satisfy the commutation relation (1). Based on these
assumptions for functions of polynomial form f(q,p) = ¢"*p", a number of
different relations were obtained [7], one of which can be written as

WMc{g™p" =p" ¢"} = 55 Z o gk, (4)

which we will call the Weyl-MacCoy quantization rule.
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In [8], the correspondence rule was obtained in the following form

n 1 Q 7’1,' ~k ~N~n—k
flq)p —>2—n§mp f(@)p"",

~

which is represented by repeating anti-commutators [a,b], = ab + ba as

follows:
f@p™ = [ [f(@), Pl Plys -]

In addition to the main works mentioned above, there are publications
in which the problem of the correspondence of classical quantities and their
quantum analogs is discussed from different perspectives (see, for example,

[91-[14]).-

A critical review of various quantization rules for classical Hamilton func-
tions was carried out in [15].

In this paper, for the Hamiltonian, in general, non-integrable system with
two degrees of freedom, we have received the classical normal Birkhoff—
Gustavson form for which the corresponding quantum analogs are obtained by
the Born—Jordan and Weyl-MacCoy quantization rules. For these quantum
analogs, i.e., Schrodinger operators, approximate formulas for energy spectra
are found. According to these formulas, for some specific numerical values of
the parameters, the energy spectra were calculated and compared with the
literature results obtained by direct numerical calculations.

1. A quantum analog of the classical normal form

The paper considers a classical system with two degrees of freedom, whose
Hamilton function is

1
H=§@%WQ+V@ﬂ%

1 1 2
Vg @) = 5 (3 +¢3)+0b (Q%QQ + gcé’) +eqigs +d (gt +43),

(5)

where the coordinates ¢;, ¢, and momenta p;, p, are canonically conjugate
variables, b, ¢, d are dimensionless parameters.

Since system (5) is resonant with a frequency ratio of 1:1, when we bring
it to normal form for the initial Hamilton function, we apply the canonical
transformation with a valence equal to an imaginary unit [16]:

1 1
Q1:Z(_Q1+Q2+P1_P2)7 Q2:§(Q1+Q2+P1+P2>7 ()
6
1 1
p1:§(Q1_Q2+P1_P2)7 pQZZ(Q1+Q2_P1_P2)7

and its inverse transformation is written in the form



42 DCM&ACS. 2022, 30 (1) 39-51

1 , i , 1 , v ,

Q= §(Q2_ZP2)+§(91—ZP1)7 @y = 5(@2—2192)—5@1 —ipy), ™
1 , i , 1 , { :

P = 5(@2 +1py) — E(Ch +ipy), P = 5(@12 +ipy) + 5(911 +ip)-

It directly follows from expressions (7) that the variables Q,, @5 are complex
conjugate to the variables P;, P, respectively.
Canonical transformations (7) using standard substitution

. .0 .
py%py:_z ) qV_>ql/:qy7 1/2132
dq,

with a known commutation rule (Planck constant A = 1)
[]A?w un] = iéuw p,v=1,2 (8>
(6

. — Kronecker symbol) will be presented by us in the operator form

A o~ L~ b o~ c~ =~ oA S ~ A S
Q, =ay +ia;, Qy=ay —iay, P, =ay—1ia,, P,=ay+1ia;, (9)

where ) .
&f = 5(@1 —@1)7 &;r = 5(@2 _iﬁz)a
1 (10)
a; = 5(91 +ipy), Gy = 5(@2 +iDsy),

where the upper “+” symbol denotes Hermitian conjugation. Taking into
account expressions (8), it is easy to verify that the operators (10) commute
by the rule

- . 1
4,08 = 5

J

pv?

and the operators (9) obey the rule

By Q5] = 0, (11)

However, the commutation (11) can be directly obtained from the Dirac
quantization condition (3), given that the classical canonical transformation
(6) has a valence equal to an imaginary unit.

From the expressions (9), (10) it follows that the operators P, and Q,),
(v = 1,2) are the annihilation and birth operators, respectively.
Using the quantization rules (2) and (4), we obtain two expressions of its

quantum analogs IA(?J and IAQ;V Me respectively, and each expression can be
represented as the sum of the diagonal and nondiagonal parts

L RB

nondiag*

>BJ _ 7-BJ
K6 _Kdiag

>WMc _ 7-WMc - WNMc
KG - Kdiag + Knondiag‘
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Below we present the diagonal parts only:

2 N S s LA E 5
~ o~ ~ o~ o~ o~ ~ 1 A o 5
+ Ky (lel + Qo P +2Q, P Qy P, + 5) + K3 [(Q1P1 —QuP5)” + 5] +

+ Koy [(@Py + @oPy 17 4+ (@ P2 +
+3@P) + QP+ GuP) + 5| -
— Ky [(Q1p1 +QoPy + 1)(Q) P + Qo Py +2Q, PQy Py + 3)} +
+ K [(Q1]51 + QP + 1) ((@1]51 — QP + i(@lpl + Q2ﬁ2)> -

~ ~ ~

~ SRR (12)

WM _ G P4 O, F TR 1
K(ml\g/IC:Q1P1+Q2P2+1+K41 |:<Q1P1+Q2P2+1)2+§:|+

+ Ky (©1]31 +Qy Py +2Q,P,Q, P, + %) + Ky3 [(Q1p1 —QoP)% + %] +
+ Koy [(@1]51 + Qo Py + 12 +2(Q, P + Q, P, + 1)] -
— Ky [(Q1p1 + Qo Py +1)(Q Py + Qu Py +2Q, PLQ, P, + 1)} +
+ Ko [(Q1P1 +QoPy +1) ((@1}31)2 +(QoPy)? — 20, PQ, P, + 1)] - (13)
We note that the quantum state vectors [2]

NA4+L\, (N—L\] Y% \nry ~ner
N = (S (F)] e o),

P,|0,0) = P,|0,0) = 0,

(14)

where N is the main quantum number, N =0, 1,2, 3, ..., and L is the orbital
quantum number, which for a given value N takes the following values:
L=+N, £(N —2), £(N —4), ..., £1(0), are eigenvectors for the diagonal
parts of quantum analogs (12) and (13). The presence of nondiagonal terms in
quantum analogs (12) and (13) is due to the fact that in the original classical
Hamiltonian system (5) there is a 1:1 resonance ratio between frequencies.

2. The energy spectra of quantum normal forms

Since vectors (14) represent an orthonormal basis, the energy spectra
of quantum normal forms (12) and (13) are determined by the following
expressions:
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EYF = (N,LIKS) IN, L)+ > (N, L'|KB] [N, L), (15)
N’,L’
BN = (N,LIKYM|N, L) + Y (N, L'|K¥M¢ [N, L), (16)
N’ L’/
Using the relations
N+L N-—L

QPIN.L) = (Z57 ) VL), QPIN.L) = (S5 ) IN. L),

from expressions (15) and (16) without taking into account the nondiagonal
terms, we obtain the formulas for the energy spectra

1 1
BNy, =N+ 1+ 5Ky (N> +4N +7) + S Kp(N? + 2N = L2 + 1)+

1 1
5 K3 (217 +5) + S Ky (8N? + 25N2 4+ T8N + L2 + 60)—

1
5K64(N3 +3N? +8N — NL? — L% +3)+

1
+ gK66(N2 + 14N + 8NL? + 9L* + 12), (17)

1 1
1%%%:N+1+§KM@N?+MV+$+§Kumﬂ+2N—L2+D+

1
+5K@@L”+U+JQAN3+3N2+MV+$—

1
— 5K64(N3 +3N? +2N — NL? — L + 1)+

+ Kg(N + NL?* + L?+1). (18)

As it can be seen, the energy spectrum in both cases of quantization is
degenerate by sign of the orbital quantum moment L. Besides, taking into
account the contributions of nondiagonal terms can lead to a shift of energy
levels, which differ in the value of the orbital quantum number by four and
six units. Therefore, it is expected that approximate formulas (17), (18) with
satisfactory accuracy describe the energy spectrum of the lowest states in the
vicinity of a stationary point located at the origin.

From the comparison of formulas (17), (18) for energy spectra, a general
conclusion can be drawn that the quantization rules of Born—Jordan and
Weyl-MacCoy predict different values for the ground state energy, which are
determined by the numerical values of the parameters b, ¢ and d.

More specific conclusions can be obtained by comparing the results of
numerical calculations using formulas (17), (18) with exact energy levels
calculated for any particular values of the parameters of the Hamiltonian,
which will be performed in the next section. In cases where the classical
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system (5) is integrable, approximate formulas (17), (18), expressed directly
through the parameters b, ¢ and d have the following form.

1. If there is a relationship ¢ = 4d, and the parameter b is not equal to or
is equal to zero, then the energy spectra are calculated by the formulas:

9 9 3
B =N+ 1+d ({4 N =312 46) -

27 4
— d? <8§5N3 + %NQ + %N - %LQ — %NLQ + %) -
— b2 (2N2+2N—25—4L2+§> +
+ db? (%N?’ + %NQ + %N — %LQ — %NL2 + %) —

, 9 9 3
EYVVgIC:N+1+d<ZN2+—N——L2+3)+

2 4
+ d? (gN?’ + %NQ + %N — 5—81L2 — %NP) —
— b2 (2N2+2N—25—4L2+2) —
— db? (%Ng + %NQ + 24—5N — %5L2 — %Nﬁ) +
+ b4 (:%ZN?’ + %NQ + ig;N - 322[% — ZngH) . (20)

2. If the parameters b = ¢ = 0, but the parameter d > 0, then the formulas
have the form:

1
E]%‘L:N+1+d<;N2+3N—§L2+4>—

17 75 9 27

, 3 1
EWO:N+1+d<§N2+3N—§L2+2>—

17 51 9 9 21
—d? <ZN3 + N2+ 19N — S L — - NL? + 7) . (22)

3. If the parameters b = 0, ¢ = —2d, d # 0, then we obtain the formulas:

9 9 3
E%]L=N+1+d<§N2+ZN—§L2+3>—
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85 1037 1479 187 51 561
—d? (N34 N2 N - 2 SN2 —> 2
d (32 BSTT 64 128 iVt ay) 23

| 9 , 9. 3, 3
EWC:N+1+d(§N2+—N——L2+—>—

4 8 2
187 061 391 153 153 o1
—d? (—N3 ——N?+ " N-—--——L[?-"—""NIL? —) . (24
32 * 32 * 16 32 32 * 4 (24)

3. The comparison of energy spectra

Unfortunately, the exact spectrum obtained, for example, by direct numeri-
cal calculations of the Schrodinger equation with its quantum analog of the
original Hamilton function (5), in which a well-known replacement is to be

made p; — D, = —ia—ql, Py — Dy = —ia—q2, ¢ — ¢ = q1, Go — Qo = qy for

arbitrary values of its parameters, is not available in the literature.

Also, direct numerical calculations using modern computer technologies
face the difficulty of solving eigenvalue problems, for example, even with the
help of carefully developed software packages based on the diagonalization
method, which is also the task of integrating the Schrédinger equation for
two or more independent variables.

Below we present the results of numerical calculations of energy spectra for
specific numerical values of the parameters b, ¢, d in cases where the classical
system (5) is integrable.

Table 1 shows the values of the lowest energy levels calculated by the
approximate formulas (19) and (20) in the first case of integrability, i.e.,
under the condition ¢ = 4d and b = 0.

Table 1
The comparison of energy levels at parameter values b = 0, ¢ = 0.02, d = 0.005, (¢ = 4d)

No| By, | EY, | ENMe | BY, - pwye [ 0N g [ gB g
1. | By | 1.028247 | 1.015000 | 0.013247 - -

2. | By 41 2.055166 | 2.045000 | 0.010166 1.030000 1.026919

3. E27i2 3.095512 | 3.089363 | 0.006149 1.044363 1.039953

4. E270 3.108259 | 3.106275 | 0.001984 0.016913 0.013141

5. E37i3 4.147469 | 4.147450 | 0.000019 1.041175 1.039209

6. E37i1 4.172475 | 4.182550 | —0.010075 0.035100 0.025006

7. | By g4 5211578 | 5.218625 | —0.007047 1.036075 1.039103

8. E47i2 5.247175 | 5.273188 | —0.026013 0.054563 0.035597

9. | E4o | 5.259041 | 5.291375 | —0.032334 0.018188 0.011866
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From the table 1, it follows that the Weyl-MacCoy quantization rule leads
to a lower energy level for the ground state and a greater decomposition of
the levels with respect to the orbital moment at a given value of the principal
quantum number N. In the classically integrable case under consideration,
there are no exact (analytical or numerical) values of the energy spectrum
in the current literature. However, the spectrum is known [17] in the second
classical case of integrability, when the parameters of the quantum analog of
the Hamilton function (5) are equal b =0, ¢ =0, d # 0.

Besides, the values of the energy spectrum of a one-dimensional anharmonic
oscillator are known and also with great accuracy, in particular, with a fourth
degree in potential energy. Knowing this spectrum, it is possible to construct
an approximate spectrum of a quantum analog of the original Hamilton
function (5), but already a two-dimensional Hamiltonian given the values of
parameters b = 0, ¢ = —2d, d # 0, for which system (5) is integrable in the
classical case.

We will compare below these well-known and very reliable numerical results
for the energy spectra with our results, which are calculated by formulas (23),
(24) according to the Born-Jordan and Weil-McCoy quantization rules.

For parameter values b = 0, ¢ = 0 and d # 0 the Schrodinger equation
corresponding to the classical Hamilton function (5) allows separation of
variables in polar coordinates, and the energy spectrum is characterized by
a radial quantum number n and orbital momentum /. In [17] a method for
numerical solving the radial Schrédinger equation was developed and energy
levels were calculated for the values of quantum numbers equal n,l = 0,1, 2
for a parameter value d = 0.000005. Quantum numbers n, [ are connected
with our numbers N, L by the following relations: N = 2n 41, |L| = .

Table 2 shows the energy levels obtained in [17], as well as their values
calculated for the same value of the parameter using formulas (21) and
(22) based on quantization of the classical normal form, according to the
Born—Jordan and Weil-McCoy rules, respectively.

Table 2 shows that a very good approximation to the exact spectrum is
given by the application of the Weyl-MacCoy quantization rule. In particular,
the ground state energy obtained using the Weyl-MacCoy quantization rule
differs from the result of [17] by 0.5 -1077%, and when quantized by the
Born—Jordan rule, by 0.001%. At the same time, for energy of level 14, these
errors are equal, respectively, 0.4 - 1078% and 0.0001%, i.e., the prediction
according to the Born—-Jordan rule improves.

In the third case (b =0, ¢ = —2d, d # 0) of integrability of the classical
system (5), with its quantum-mechanical description, it is necessary to solve
the following two-dimensional Schrédinger equation

2

(H, + H))¥ =2E¥, H, = i +¢? +2dgt, i=1,2, (25)
K3

where the variables are separated. Therefore, its solving is reduced to solving

two identical one-dimensional equations for the anharmonic oscillator, and the

energy spectrum is found in the form of the following sum 2F = 2FE, + 2F,.

The quantum numbers of an isotropic two-dimensional oscillator (N, L) are

connected with the quantum numbers (n1,n2) of one-dimensional oscillators
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by the following relations: N =nl + n2 and L = nl —n2. We note that the
ordering of the values of the energy spectrum levels by the value of quantum
numbers (N, L) as compared to another numbering of states has the advantage
that the values of the energy spectrum levels, numbered by quantum numbers
(N, L), grow with an increase of the main quantum number.

Table 2
The comparison of energy levels E]]?’\;]L and E%I\LIL with their values from [17]
for d = 0.000005

No. | 2Ey E¥ EXyMe Results [17]
1. | 2E,, | 2.0000399985 | 2.0000199995 | 2.0000199995
2. | 2E; 4, | 4.0000799961 | 4.0000599979 | 4.0000599981
3. | 2E, ., | 6.0001399918 | 6.0001199946 | 6.0001199949
4. | 2B, |6.0001599905 | 6.0001399933 | 6.0001399936
5. | 2F5 5 | 8.0002199853 | 8.0001999892 | 8.0001999892
6. | 2F;,,; | 8.0002599818 | 8.0002399856 | 8.0002399859
7. | 2B, ,, | 10.000319975 | 10.000299981 | 10.000299981
8. | 2E, ., | 10.000379969 | 10.000359974 | 10.000359975
9. | 2E,, |10.000399967 | 10.000379971 | 10.000379972
10. | 2E5 5 | 12.000439962 | 12.000419969 | 12.000419969
11. | 2E; 3 | 12.000519952 | 12.000499958 | 12.000499958
12. | 2E5 ;| 12.000559947 | 12.000539953 | 12.000539953
13. | 2E5 g | 14.000579946 | 14.000559953 | 14.000559953
14. | 2B 4 | 14.000679930 | 14.000659937 | 14.000659937
15. | 2Eg ., | 14.000739921 | 14.000719928 | 14.000719929
16. | 2B, | 14.000759918 | 14.000739925 | 14.000739925

Conclusions

In this paper for a classical system with two degrees of freedom with the
Hamilton function (5), a classical normal form is obtained in the Birkhoff-
Gustavson approach, for which its quantum analogs are constructed according
to the Born—Jordan and Weyl-MacCoy heuristic quantization rules. For these
quantum analogs, which are nothing but approximate differential expressions
for the exact Schrédinger operator, the eigenvalue problem is solved and the
formulas of energy spectra are found.
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Using these formulas, in two special cases with specific numerical values
of the parameters, the lower energy levels were calculated and the results
obtained were compared with the data available in the works published by
other authors. It was found that the best and good agreement with the known
results of calculating the energy spectrum is obtained using the Weyl-MacCoy
quantization rule in comparison with the Born—Jordan rule.

Both the Weyl-MacCoy and Born-Jordan quantization rules are derived
from the fundamental, but different postulates of classical and quantum me-
chanics. For the system under consideration, particular numerical results for
the energy spectrum reveal the advantage of the Weyl-MacCoy quantization
rule, however, it is probably premature to extend this conclusion to other
systems.
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KBaHTOBaHNEe KJIaCCUYECKUX ABYMEPHBIX I'aMMJIbTOHOBDBIX
CucCTremM

. H. Beaaesa

Benzopodcxuti 2ocydapecmeernnviti uccaedosamenvekutl yHusEpcumem
ya. Ilobedw, d. 85, Beazopod, 308015, Poccus

Amnnoranusi. B cratbe paccMarpuBaercs KJIacC raMUJILTOHOBBIX CUCTEM C JBYMS
crernensMu cBoOObI. Ha ocHOBe Kjtaccraeckoit HOPpMAaJIbHOM (DOPMBI, COTJIACHO TIPa-
sutam Bopra-opaama n Beitst- MakKos, HOCTPOEHBI €6 KBAHTOBBIE AHAJOTH, IS
KOTODPBIX DeIleHa 3aja4da Ha COOCTBEHHbIE 3HAYEHUS U HAN/IeHbI TPUOJIMKEHHDBIE
dOPMYJIBI JIJIS SHEPIreTUIECKOTO crieKTpa. JIjisd KOHKPETHBIX 3HAYEHUN TTapaAMEeTPOB
KBaAHTOBBIX HOPMAJBHBIX (DOPM C UCIIOJIH30BAHUEM ITUX (POPMYJI OBLIN MTPOBEICHDI
9HUCJIEHHBIE PACIETHI HIKHUX YHEPreTUIECKUX YPOBHEN, MOy I€HHBIE PE3YIbTAThI
OBLIIN COIIOCTABJIEHBI C U3BECTHBIMU JAHHBIMU JIPYTUX aBTOPOB. OOHADYIKEHO, ITO
HAWJIyYIllee COIVIACHE C M3BECTHBIMU PE3YJILTATAMU JIOCTUTAETCs C UCIOJIb30BAHUEM
npaBmia kBanTopanus Beiig—Maxkkosi. [Iporenypa HopMan3amm KaacCUIeCKOi
dbyukiun amunbrona siBisieTcs: KpafiHe TPyI0EMKO 3aja4eil, TaK KaK BOBJIEKAET
COTHU U JAXK€ TBICSYM MHOT'OYJIEHOB Jijisi HEOOXOJIMMBIX IpeobpazoBanuii. [Tosro-
My B paboTe HOPMAaJIM3AIUs BBITIOJHAETCHA C TOMOIIBIO CUCTEMbI KOMITBIOTEPHOI
asrebper REDUCE. Ilokazano, 9To MCIIOb30BaHUE IIPABUJI COOTBeTCTBUS BopHa—
Nopaama u Beitns—MakKosi IPUBOAUT MPAKTHYECKH K OJHAM M TEM K€ 3HAUCHUSIM
JIJIS SHEPTEeTUIECKOTO CIIEKTPA, IIPU 9TOM UX OJIM30CTH YBEJIMIUBACTCS JIJI OOJIBIITAX
BEJIMYMH KBAHTOBBIX YHCEJ, TO €CTb JIJI BHICOKOBO3OYKIEHHBIX cocTosiHMi. B pa-
60Te UCIIOIb30BAHO KAHOHUYECKOe TpeoOpa30BaHue, KBAHTOBBIN aHAJIOr KOTOPOTO
[TO3BOJISIET TIOCTPOUTH COOCTBEHHBIE (DYHKITUU JIjIs KBAHTOBOM HOPMAJIBLHON (DOPMBI
¥ TTOJIyIUTh TAKUM 00Pa30M aHAJTUTAIECKUE (POPMYJIBI JIJI IHEPrETUIECKUX CIEKTPOB
pPa3HBIX FAMWJIHBTOHOBBIX cucTeM. VTak, moka3aHo, 9T0 KBAHTOBAHUE KJIACCUIECKUX
FaMUJIBTOHOBBIX CUCTEM, B TOM YHUCJIE JIOMYCKAIONUX KJIACCUICCKUN PEXKUM JIBUKE-
HUS, C IPUMEHEHUEM METOJIa HOPMAJILHBIX (POPM JTAET OU€Hb TOYHOE IMPEICKAZAHNE
YPOBHEH HEPIuu.

KuroueBbie caoBa: dyukima [amuibrona, HopMasbHas Gpopma, IpaBuao Beiiisa—
Makxkos, mpasusio Bopra—lopnana, kBanToBass HOpMaabHasd (HopMa, KOMIBIOTEPHOE
MOJIEJTMPOBAHKE, SHEPTETUIECKHE CIIEKTPHI



Discrete € Continuous Models
e & Applied Computational Science 2022, 30 (1) 52-61
il )

®F 1SSN 2658-7149 (online), 2658-4670 (print) B¥tP://journals.rudn.ru/miph

Research article
UDC 517.938:531.32
PACS 07.05.Tp, 02.60.Pn, 02.70.Bf
DOI: 10.22363/2658-4670-2022-30-1-52-61

On the many-body problem with short-range interaction
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Abstract. The classical problem of the interaction of charged particles is considered
in the framework of the concept of short-range interaction. Difficulties in the
mathematical description of short-range interaction are discussed, for which it is
necessary to combine two models, a nonlinear dynamic system describing the motion
of particles in a field, and a boundary value problem for a hyperbolic equation or
Maxwell’s equations describing the field. Attention is paid to the averaging procedure,
that is, the transition from the positions of particles and their velocities to the charge
and current densities. The problem is shown to contain several parameters; when
they tend to zero in a strictly defined order, the model turns into the classical
many-body problem. According to the Galerkin method, the problem is reduced to
a dynamic system in which the equations describing the dynamics of particles, are
added to the equations describing the oscillations of a field in a box. This problem is
a simplification, different from that leading to classical mechanics. It is proposed to
be considered as the simplest mathematical model describing the many-body problem
with short-range interaction. This model consists of the equations of motion for
particles, supplemented with equations that describe the natural oscillations of the
field in the box. The results of the first computer experiments with this short-range
interaction model are presented. It is shown that this model is rich in conservation
laws.

Key words and phrases: many-body problem, Galerkin method, short-range
interaction

1. Interaction

Studying the motion of a beam of charged particles in an external elec-
tromagnetic field with the interaction of particles taken into account is one
of the most important and popular problems in plasma electronics. In the
framework of the generally accepted approach to its study [1, § 2.3], the time
interval is divided into discrete steps of length At. At each step, based on the
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current positions of the charges and their velocities that define the currents,
the induced field is calculated as a solution of Maxwell’s equations. Then this
‘induced’ field is added to the external field and the new positions and veloci-
ties of the particles are calculated, which they acquire in this field under the
action of the Lorentz force.

The described scheme allows for many variations [1]-[3]. However, these
details do not at all remove the division into processes: for one time step,
first, the charges and their velocities generate a field, and then the field acts
on the bodies through the Lorentz force.

It is quite obvious that what has been said gives a description of a numer-
ical method for studying a certain mathematical model of the many-body
problem with short-range interaction. The latter is explicitly taken into ac-
count in the model: at each step, the field is calculated and the interaction
between particles is carried out through this field, which is described using
the Maxwell’s equations, that is, hyperbolic equations that describe the prop-
agation of signals with the speed of light ¢. However, the model itself remains
undescribed; moreover, the issue of the convergence of the described numerical
method, i.e., the study of the limit at At — 0, is usually avoided.

From a mathematical point of view, it is necessary to combine two models
into one system: a nonlinear dynamic system that describes the motion of
charges based on the Lorentz law, and a linear system of Maxwell’s equations
that describes the dynamics of the electromagnetic field. Separately, these
models are well studied. Dynamical systems with analytic right-hand sides
are solved in analytic functions, and the convergence of the finite-difference
method is proved in the C norm [4]. Maxwell’s equations, as well as linear
partial differential equations in general, are naturally solved in Sobolev spaces,
and an approximate solution is also sought in one or another integral norm, for
example, in L? over the space [5]. However, when combining these models, we
must consider dynamical systems, the right-hand sides of which are elements
of Sobolev spaces, and Maxwell’s equations, in which currents and charges
are combinations of d-functions. We do not have a theorem on the existence
of a solution for such problems.

A detailed description of the model, separated from the numerical method
of its study, is very useful, firstly, in order to be able to assess the quality of the
study in terms of closeness to the exact solution, and not in terms of closeness
to the expectations of the experimenters. Secondly, good mathematical models
always have a large number of symmetries, which correspond to conservation
laws. Checking their performance provides another important criterion for
assessing the quality of the numerical method. Finally, it cannot be ruled
out that less obvious, but more effective numerical methods for studying this
model can be found.

Thus, for example, by means of computer experiments it was found that
the Boris difference scheme for solving the equations of motion corresponds
to the expectations of experimenters more than others [1|. To explain this
effect, Hong Qin et al. [6] showed that this scheme is the phase volume
when integrating the equations of motion of one particle in an external
electromagnetic field. The question of whether the Boris scheme inherits the
properties of the original system in the many-many problem, which, we note,
is not Hamiltonian, was not raised.

In this paper, we consider the simplest formulation of the many-body
problem with short-range interaction described by the wave equation. To add
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boundary conditions to the wave equation, we consider the problem in a finite
domain. The question of setting the radiation conditions in such a problem
does not seem trivial to us, although to simplify the problem it is usually
assumed that the field in the far zone should be equal to zero.

2. Short-range interaction mathematical model

Let there be N identical bodies of mass m, under the assumption of
short-range interaction between them, they produce a field with potential u
and move in it in accordance with the second Newton’s law. The simplest
formulation can be written as follows: the dynamics of particles is described
by the set of equations

mr, = n=1,2,..,N, (1)

and the field dynamics is described by a wave equation

1 9%u
2 Ot

where p is the density of mass distribution:

= Au+p, (2)

p= 725 F—7,) (3)

Here it is reasonable to consider § as a smoothed prototype of Dirac delta
function that tends to the delta function in the limit s — 0.

By virtue of the Poisson formula [7] and regardless of the boundary condi-
tions imposed on the field, this problem becomes classical if we first proceed
to the limit ¢ — oo, and then to the limit s — 0.

Theorem 1. Let there be a family of solutions to the system (1)—(2), param-
eterized by two parameters ¢ > 0 and s > 0, and let it satisfy the condition

u,u; € L2(R3)

at t = 0. If we first proceed to the limit ¢ — 0o, and then to the limit s — 0,
then this solution becomes the solution of the classical many-body problem.

Proof. According to the Poisson formula

RN T T Vo
T 4r |7 — 7|
|7|<ct
47Tcat // |7‘—r 47rc // |r—r - (4

|P|=ct |P|=ct
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Under the assumptions made about the initial conditions, the last two
terms tend to zero as ¢ — oo and we get

. 1 p(1,t)
)= — dv'.
ur 47r///|r«—r«f| ’
R3

Substituting Eq. (3) here yields an expression that, at s — 0, becomes

However, we cannot substitute it directly into (1) because this would lead
to dividing by zero. However, for s # 0, the expression for u is a sum of terms
of the form ¢ (¥ —7,), having an extreme at 7 =7,,. So

V¢S(F - Fn)';:;n =0
and there is no division by zero:

=i =7 Z vqbs(?m - 7_r:n)

n#m

Vu

Now, proceeding to the limit, we get in the right-hand side of equation (1)
exactly an expression that should be in the many-body problem

Tl
me#n ' N m

The proved theorem allows us to hope that for large ¢ the solutions of
the system under consideration resemble the classical many-body problem.
However, it is important to emphasize that the order of proceeding to the
limit is important.

We are interested in constructing a model of many-body motion, in which
short-range interaction is explicitly taken into account, rather than in the
classical limit itself. For our purpose, it is necessary to supplement the
differential equations with initial and boundary conditions.

Let the bodies occupy fixed positions up to ¢ < 0, then for ¢t < 0 we know
u as a solution to the Poisson equation

Au = —p.

At the moment ¢ = 0 the bodies are given initial velocities. Adding the
initial condition u, = 0 to the wave equation, we get the classical initial value
problem for finding the potential u, if we assume that the density p is known.

Let us turn to the boundary conditions. We assume that the bodies do
not radiate waves that are noticeable in the far zone. To treat this problem
numerically, we place the systems in a Dirichlet box G and set the conditions

u‘aG = 0 on its boundary. This box will replace the boundary conditions at
infinity.
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The complete problem is formulated as follows. Given initial positions

7“510) and initial velocities v%) of the bodies, the solution is calculated to the

boundary value problem

N 0
Au’O =7 Z 5s<7_;_7_;§1))7
5

u| =0.
lel

It is required to find the functions 7, (t) and u(x, y, 2, t) satisfying the initial
and boundary value problem:

mr, =

1 0%u N (6)
CEW_AU Z T'—T

with the initial conditions

T o=Ty , ?:vn, u=1uy, u, =0 (t=0)

and the boundary conditions u‘ =0.

We believe that this problem has a unique solution for small . However,
the proof of this assertion requires a more careful description of the class
of functions in which the solution is sought. We confine ourselves to a few
computer experiments with this model.

3. Galerkin method

A natural method for solving the oscillation equation in a finite domain is
the Galerkin method [8]-[10]. Let ¢,, be the normalized eigenfunctions of the

Laplace operator in G, and let a2 be the corresponding eigenvalues. We seek
the solution of the wave equation in the form

u(z,y, z,t) = Zu a:y, z), (7)

where u; are coefficients yet unknown. Then

1 d*u;

poRETS ~|—a u; —72///58(F—?n(t))¢jdxdydz, ji=1,2,..

and

dt2 = Zu V¢| n=12,..,N.

If we truncate the sum over j to any finite number of terms J, then the
system has a unique solution, taking into account the initial conditions.
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In the limit s — 0 we get

1 d*u; ,
2 dt2 +a“ —VZchﬁ, i=12....J (8)
and
dQF J
m dtzn :_Z )V, L < n=12,...,N. (9)
=1

The initial conditions for 7, are given and for u; they are found from
equation (5) using the explicit formulae

a?u // 9 ( )¢ drdydz

or N
)=5> e, (10)
J n=1 "
and
aj(()) =0. (11)

By virtue of the Weyl lemma [11], [12], the eigenfunctions of the Laplace
operator are twice continuously differentiable in the domain considered. There-
fore, the system of ordinary differential equations (8), (9) falls under the
conditions of the classical Cauchy theorem. This means that the initial value
problem for equations (8), (9) with initial conditions (10), (11) has a unique
solution, at least in the vicinity of the initial data. Moreover, standard numer-
ical methods can be applied to this problem, for example, the Runge-Kutta
method [4].

y y
52 5.2
5.1

54
4.9 4.4

‘ ‘ ‘ _x 4.2 _ ‘ ‘ ‘ _x
45 5 55 6 4 4.5 5 55 6

Figure 1. The first body trajectory at ¢ =1 and ¢ = 10

Example 1. For example, let us take the box in the form of a cube [0, L]3.

Then the eigenfunctions are expressed as

. mmx . Ty . Tkz
sin ——sin Lysm 7 n,m,k € N,
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with the corresponding eigenvalues

2 ™, 2 2
s = ﬁ(m +n® 4+ k°).

Taking the first J functions from this set, the initial positions and velocities
of the bodies, we uniquely determine the initial problem (8)—(11), which we
will solve by the classical Runge-Kutta method of the 4th order.

Let us take, for example, c =1, m =1, vy =1, L = 10 and consider the
problem of two bodies. We place the first body at the point (6,5,5) and the
second one at the point (4,5,5). Let the first body be at rest, and the second
one have an initial velocity ¥, = (0,1,0) In the classical case, this leads to
the rotation of bodies along ellipses around their center of gravity (5,5,5),
and the motion occurs in the xy plane. Our computer experiment shows that
in the case of short-range interaction, the motion also turns out to be planar,
but instead of ellipses, more complex non-closed curves are obtained. If we
set the velocity in the direction of the Oz axis, the motion still remains flat,
only the plane itself changes. Therefore, our system is rich in integrals of
motion.

4. Conclusion

The initial value problem (8)—(11) can and should be considered as a mathe-
matical model describing the many-body problem with short-range interaction.
Equation (9) has a very simple physical meaning of a mechanical equation of
motion (the second Newton law), and equation (8) describes the natural oscil-
lations of the field in the resonator G. The transformation of the box G into
a resonator seems quite natural in the framework of the theory of short-range
interaction.

A few computer experiments that we have managed to perform demonstrate
that this system is rich in conservation laws. However, it is not yet clear to
us how to study them analytically. We hope that further experiments with
this new problem will clarify the issue.

With respect to the system (1), (2), this problem is a simplification, however,
a simplification different from that leading to classical mechanics. By virtue
of theorem 1, we will pass to classical mechanics if we first proceed to the
limit ¢ — oo (long-range interaction), and then to the limit s — 0 (narrowing
the charge density to d-functions). When deriving the system (8)—(11), we
restrict the number of oscillations in the box to a finite number of modes
(Galerkin method) and immediately proceed to the limit s — 0. In this case,
the limit ¢ — oo makes the singularity problem perturbed, and, from the
point of view of the Tikhonov and Vasilieva theory [13], [14], slow variables
correspond to the bodies, and fast variables correspond to the field.
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O 3agavye MHOTUX TeJI C OJIM3KOAeiiCTBUEM

M. M. F'ambapan’, M. 1. Manbix!:?

I Poccutickuti yrusepcumem dpysrc6vs napodos
ya. Muxayzro-Maxaas, 0. 6, Mocksa, 117198, Poccus
2 JlaGopamopus ungopmayuoniox mexnoroeul um. M. . Mewepsakosa
066eduHEHHDIT UHCMUMYM A0EPHIT UCCAeI08aHUT]
ya. HKoauvo-Kropu, 0. 6, Hyona, Mockosckas obaacmo, 141980, Poccus

Awnnoramnus. B cratbe paccMarpuBaercsa KiacCudecKast 331248 O B3aUMOIEHCTBIHI
3apsi>KEHHBIX YaCTUI] B paMKax IpeJcTaBieHus: o oim3koaeiicTeun. O0Cy K Ia10TCst
TPYIHOCTU MATEMATUIECKOTO OMUCAHUS OJIM3KONEHCTBUSA, JJIsi YET0 HEOOXOIUMO 00b-
€IVMHECHUEC JABYX MOZEJIed — HeJUMHEHHOU NUHAMWYECKON CUCTEMBl, OIIUCBIBAIOIIEH
JBUKEHIE JaCTHUIl B II0JIe, 1 KPAaeBON 3aJa49n JjIsd TUIEePOOJINIECKOTrO yPaBHEHUS
nan ypapHeHut MakcBesia, OMUCKHIBAIONINX IT0JI€. YIeJeHO BHUMAHUE IIPOIELype
OCpEeHEHUd, TO €CTh Mepexo/ia OT IOJIOYKEHUN YaCTUI] U UX CKOPOCTEN K IJIOTHO-
cTaM 3apsaia u Toka. [lokazaHo, 94T0 3a/1a49a COJIEPXKUT HECKOJIBKO IMApaMETPOB, IPU
CTPEMJIEHUN KOTOPBIX K HYJIIO B CTPOTO OIIPEJIEJIEHHOM IOPSJIKE pacCMaTpuBaeMast
MOJIEIb MTEPEXOJIUT B KJIACCUIECKYIO 3a7a4dy Muorux Ttej. Ilo meromxy anépkuna srta
3a/1a49a CBeJCHA K TUHAMHUYECKON crucTeMe, B KOTOPOI K ypaBHEHUAM, OIMCHIBAIOIIAM
JUHAMUKY YaCTHII, J00ABIAIOTCA yPABHEHUS, OIUCHIBAIOIINE KOJTEOAHUS TIOJIs B SIIIIH-
Ke. DTa 3a7a4a IpeJcTaBisgeT coboil yIIPOIIeHne, OTJIANIHOE OT TOI0, KOTOPOE BEIET
K KJIACCHYIeCKOU MexaHuke. Fé mperaraerca paccMaTpuBaTh KaK MPOCTEHIIYIO MaTe-
MaTUYIECKYIO MOJIE/Ib, OIUCHIBAIOILYIO 33181y MHOTUX TeJI ¢ OJIM3KOAECTBUEM. DTa
MOJIESIb COCTOUT M3 yPaBHEHUH JBUKEHUsT YACTHUIl, K KOTOPBIM JI00aBJI€HbI YPaBHEHUSI,
OIUCBHIBAIONINE COOCTBEHHBIE KOJIebaHus MoJisd B siuke. [IpeacraBiienbl pe3yibTaThl
MIEPBBIX KOMITBIOTEPHBIX SKCIIEPUMEHTOB € 3TOM MOoAeabio bauskomeiicTeus. [lokazaHo,
9TO MOJEJIb OoraTa 3aKOHAMU COXPaHEHU.

KuaroueBbie ciioBa: 3aja4da MHOTHX TeJi, MeTon [anépkuna, 6/ Iu3K0IeiicTBIE
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Abstract. The paper discusses the formulation and analysis of methods for solving
the one-dimensional Poisson equation based on finite-difference approximations — an
important and very useful tool for the numerical study of differential equations. In
fact, this is a classical approximation method based on the expansion of the solution
in a Taylor series, based on which the recent progress of theoretical and practical
studies allowed increasing the accuracy, stability, and convergence of methods for
solving differential equations. Some of the features of this analysis include interesting
extensions to classical numerical analysis of initial and boundary value problems. In
the first part, a numerical method for solving the one-dimensional Poisson equation
is presented, which reduces to solving a system of linear algebraic equations (SLAE)
with a banded symmetric positive definite matrix. The well-known tridiagonal matrix
algorithm, also known as the Thomas algorithm, is used to solve the SLAEs. The
second part presents a solution method based on an analytical representation of the
exact inverse matrix of a discretized version of the Poisson equation. Expressions
for inverse matrices essentially depend on the types of boundary conditions in the
original setting. Variants of inverse matrices for the Poisson equation with different
boundary conditions at the ends of the interval under study are presented — the
Dirichlet conditions at both ends of the interval, the Dirichlet conditions at one of
the ends and Neumann conditions at the other. In all three cases, the coefficients of
the inverse matrices are easily found and the algorithm for solving the problem is
practically reduced to multiplying the matrix by the vector of the right-hand side.

Key words and phrases: 1D Poisson equation, finite difference method, tridiagonal
matrix inversion, Thomas algorithm, Gaussian elimination

1. Introduction

Applied mathematical models are mainly based on the use of partial
differential equations [1]. The solution must satisfy a given equation of
mathematical physics and some additional relations, which are, first, boundary
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and initial conditions. The most important for applications [2| are second-
order equations — elliptic, parabolic, and hyperbolic. Currently for equations
of mathematical physics, methods of numerical solution and the appropriate
software [3], [4], as well as computer algebra systems (CASs) such as Sage,
Mathematica, Maxima and Maple are actively developed to implement these
methods. Many features of stationary problems of mathematical physics
described by elliptic equations of the second order can be illustrated by
considering the simplest boundary value problems for an ordinary differential
equation of the second order. Perhaps the simplest second-order elliptic
equation is the Poisson equation.

Let us consider some methods for the numerical solution of this equation
and compare the investigated methods.

The Poisson equation [1] is a special case of the heat conduction equation
describing the dependence of the temperature of a medium on spatial co-
ordinates and time, and the heat capacity and thermal conductivity of the
medium (in the general case, inhomogeneous) are considered to be given.
We will consider the problem of finding the steady-state distribution of den-
sity or temperature (e.g., when the distribution of sources does not depend
on time). In this case, terms with time derivatives are eliminated from the
non-stationary equation and a stationary heat equation is obtained, which
belongs to the class of elliptic equations. A two-point boundary value prob-
lem is the problem of finding a solution to an ordinary differential equation
or second-order systems in the interval a < x < b. Additional conditions are
imposed on the solution at any two points of the interval, e.g., a and b — the
‘boundaries’ of the segment (hence the name of the problem).

Consider a second-order differential equation

_%@(@%)w(z)u(m):ﬂx), a<a<b. (1)

It is called the one-dimensional stationary heat conduction equation and
arises in the mathematical modeling of many important processes. For
example, this equation describes the steady-state temperature distribution
u (z) in a heat-conducting rod of length [ = b — a. In this case, k (z) is the

u
thermal conductivity coefficient; w (z) = —k (x) — is the heat flux density,

p (z) is the heat transfer coefficient (pu is the heat sink power proportional
to the temperature u); f(z) is the density of heat sources (at f < 0 it is the
density of heat sinks).

The boundary value problem is much harder to solve than the Cauchy
problem, and various approaches are used for this purpose. The most common
are various sampling methods that allow replacing the original problem with
a certain discrete analog. The resulting discrete boundary value problem is
a system of equations (possibly nonlinear) with a finite number of unknowns
and can be numerically solved using special direct or iterative methods. One
of the simplest discretization algorithms often used in applied scientific and
technical calculations is the method of finite differences [5].

The most commonly used method for solving difference equations arising in
the approximation of boundary value problems for equations of mathematical
physics is the sweep method [6], [7], or the Thomas method |[§].
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Below we will show how the difference method is applied to solve the
boundary value problem (1), restricting ourselves, for simplicity, to an equation
with a constant coefficient k (x) = 1. In this case, the boundary value problem
with Dirichlet boundary conditions takes the form

u’ (x) —p(r)u(r) = f(r), a<wz<bd, (2)
u(a) =a, u(b)=2. (3)

Introduce on [a,b] a grid a = 25 < z; < z, < ... < z,, = b, which for
simplicity is assumed uniform. Let us approximately express the second
derivative of the solution in terms of the values of the future solution at

the grid nodes w,, = wu(z,). We use the simplest symmetric difference
approximation
" 1
u” (x,) ~ 2 (Up_1 —2u, +u,,1), h==x,.,—x, = const. (4)

Using such an approximation at each internal grid node z,, 1 < n <
N — 1 and substituting it into the differential equation (2), we transform the
differential equation (1) into a system of finite-difference equations, i.e., into
a system of approximate linear algebraic equations, the solution of which will
be an approximate solution y,, &~ u (z,,). Finite-difference equations cannot
be written at the boundary nodes n = 0, n = N, otherwise the indices of the
nodes will go beyond the permissible limits [5]. Denoting p,, = p(z,,) and
[, = f(x,), we get a system of (N — 1) linear equations with respect to the
approximate values of the solution at grid nodes

yn71_<2+h2pn>yn+yn+1 :h2f7w 1 <7’L<N—1 (5)

The number of unknowns y,,, 0 < n < N equals (N + 1), i.e., it is greater
than the number of equations (5). The lacking two equations are to be
obtained from the boundary conditions (3)

Yo=a, yy=7> (6)

Solving the algebraic system (5), (6) we get an approximate solution of the
boundary value problem (2), (3).

Further analysis of the described algorithm of solving the boundary value
problem is to answer three important questions.

— What are the conditions for the existence of a solution to the system of
algebraic equations?

— Does the solution of the system of algebraic equations tend to the exact
solution of the boundary value problem upon reducing the grid step?

— Is it possible to develop an algorithm (procedure) for finding the solution
with given accuracy by reducing the grid step?

It is known [5, P. 66|, that for a rather wide class of the boundary value
problem coefficients it is possible to prove the existence of a finite-difference
solution and its convergence to the exact solution. The following theorem
takes place.
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Theorem 1. Let p(z), f(x) are twice continuously differentiable on [a,b),
p (x) = m, where the constant m > 0. Also let the step h be small enough, so
that h < 2. Then the finite-difference solution exists, its difference from the

ezact solution by the norm c being of the order of O (h?).

Remark 1. The matrix of the system (5), (6) is tridiagonal. It is not
difficult to solve the system by the Gaussian method for a strip matrix or
by sweep method. These are direct methods. They allow finding a solution,
executing about nine arithmetic operations for each node. By virtue of the
conditions of the theorem, the solution of the system of equations by the
sweep method exists, is unique and found without accumulating round-off
errors.

Remark 2. The conditions of the theorem are sufficient, but not necessary.
Even if the conditions are not met, in most cases the finite-difference solution
exists and converges to the exact one. Under additional assumptions, it is
possible to construct an asymptotically accurate estimate of the error. Then
it is possible to apply the grid refinement and Richardson’s method to find the
posterior estimate of the error and calculations with control of the accuracy.

2. Finite-difference scheme

The problem in matrix form can be represented as

—2+p 1 0 0 Uy h2f, —u,
1 —2 4 py 1 0 Usy hf,
0 1 —2 + sy 0 Us h? fy
0 0 1 0 u, | =1 R3S, - (7)
: : . . 0 ; :
0 0 0 1 . :
0 0 0 1 —2+pyN Upn h2fn —

When applying the sweep method to systems of the form (7), during
a forward sweep, both the coefficients of the matrix and the elements of the
vector on the right-hand side are recalculated. The matrix is thus reduced
to two-diagonal form. During the backward sweep, the components of the
solution are calculated at the second stage. Tridiagonal matrices, which are
inverted using the simple sweep method, often arise when solving differential
equations of two independent variables by the finite-difference method, e.g.,
when solving a linear one-dimensional heat equation.

For such systems, the solution can be obtained in operations instead of
required by the Gaussian elimination method. The first sweep of the method
calculates the sweep coefficients, based on which the inverse substitution yields
the solution. Examples of such matrices usually arise from discretization of
the one-dimensional Poisson equation and interpolation by the natural cubic
spline.
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For the simplest one-dimensional Poisson equation in the case when
p(z) = 0, the authors of Refs. [9], [10] proposed a solution based on the
analytical (exact) representation of the inverse matrix coefficients.

3. The exact formulation of the inverse
of the tridiagonal matrix for solving the 1D Poisson
equation with the finite difference method

Consider a method for solving the one-dimensional Poisson equation using
the finite difference method based on exact formulas for the inverse of the
Laplacian tridiagonal matrix. In the method proposed in Ref. [11], formulas
for the coefficients of the inverse matrix are directly derived. Thus, the
procedure of solving the one-dimensional Poisson equation becomes very
accurate and very fast. This method is a very important tool for solving many
physical and technical problems, where the Poisson equation often appears
when describing (modeling) various physical phenomena.

3.1. The finite difference method for solving the Poisson equation
with Dirichlet—Dirichlet boundary conditions

Consider a function u (z), that satisfies the Poisson equation u” () = f(x)
on the interval ]a, b[, where f(z) is a given function. We require that the
function u (x) satisfy the Dirichlet-Dirichlet boundary conditions: w (a) = a,
u(b) = B. On the considered interval [a,b] we specify a one-dimensional
gridz;, =a+1-Ax,i=0,..., N + 1, where the uniform step of the grid is

;f_:ll = h. We denote by u; = u(z;) and f; = f(x,),
1 =20,..., N + 1 the values of the approximate solution and the function in
the right-hand side.

Replacing the second derivative by symmetric difference expressions, we
obtain the following system for internal nodes:

calculated as Az =

ui_l_Qui+ui+l :h2f17 Z: 1,...,N. (8)

In matrix form, the system of linear algebraic equations (8), taking into
account the boundary conditions, can be written in the form Au = F', where

F=(hf) —ug, h*fo, .., WP 1, B2 fy — ub)T7 or

-2 1 0 0 O 0 Uy h2f, —u,

1 -2 1 0 0 Uy h?f,

0 1 -2 1 0 0 Us h?f,

o 0 1 -2 1 - 0 | | wa |_ h2f, ()
0 0 0 1 =2 =~ -~ us, h? f-
L0 : 3

0 0 0 0 1 Un_q h?fn_4

00 0 0 0 0 1 —2 Uy h2fy —
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Thus, the solution of the one-dimensional Poisson equation is reduced to
the inversion of the tridiagonal symmetric negative definite matrix

A=(ay), i,j=1,..,N.
The inverse matrix which we denote by
B:<b2]>, i,j:].,...,N7

is also symmetric.
The elements of matrix A may be briefly written as

-2, 1=,
ay=31 li=j=1, i=1,...N (10)
07 |Z - .]| > 17
and the elements of matrix B are related by the following formulas:
— 2b;y +byp =6},
bij 1 —2by + by =6, 1<i, j<N, (11)

biNfl - sz‘N = 5ZN7

where (53 is the Kronecker symbol.

3.2. Calculating the inverse matrix

Relations (11) allow deriving the following interesting dependencies
bijr1 =bij +bi, by =7by+(—1). (12)

From relations (12) it follows that the elements of inverse matrix B are un-
ambiguously determined by the value of the element b,;. This coefficient can
be determined based on the behavior of matrix B at different dimensionali-
ties IV:

by =—N/(N+1). (13)

From relations (12) and (13), it is easy to express the elements of the first
row and the first column of the inverse matrix

{blj:—(N_<j_1>)/(N+1>v

by = — (N — (i~ 1) /(N +1). (14)

These relations allow completing the accurate and full determination of the
coefficients of the inverse matrix B = (bij), ,7=1,...,N:

b _{—j(N—(i—l))/(NJrl), iz 7,

I(N—(-1)/(N+1), i<j; (15)
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B 1
ST
N Nl oo N—(j—1) = 2 1
N—1 2N—1) o 2[N—(j—1)] ~ 4
X| N — ('z'— 1) Z[N—'(i— D] - [N -— (j— 1)] QZ z
S S A B
92 j - N-—1 N

With the inverse matrix elements known, it is easy to get the solution of
the one-dimensional Poisson equation by mere multiplication of the matrix
by the right-hand side vector u = BF.

3.3. Classification of media

Taking into account the specific form of the inverse matrix and its persym-
metry makes it easy to express the solution u, at the point z,,

N
uy=—(N+1)") i-F, (16)

=1

The direct search for the solution uy_; at the point x,_; leads to the
expression

(17)

Uy, =—(N+1)" ”22@ } N —1)Fy

In a similar way, it is possible to derive the expressions for calculating the
rest components of the solution in the form

Uy =—(N+1)7" x
k

X [(kz—i—l) {N iF;

=1

r[ £

N—k+1

or in the form

u, =—(N+1)""x

(N—k+1)
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From the computational point of view, it is preferable to use Egs. (15),
when programming the procedure of calculating the solution.

Let us consider the numerical solution of the problem of finding a scalar
potential given on the interval [—1, 1] and satisfying the Poisson equation

2
d
AD (z) = aa—xgx) = f(x) = —cos? (w (x — 0.5)) and the Dirichlet—Dirichlet

boundary conditions: ¢ (—1) = —0.2, (1) =0.1.
The exact solution is expressed by the formula

)

exact — _Z 27

72 [cos (7r(x—0.5))]2+§_0‘1<x+1) +0.3. (20)

The software implementation of the algorithm consists of several lines,
namely, filling the vector on the right-hand side of Eq. (9) and multiplying

the inverse matrix B by this vector using Eqs. (14).
Figure 1 illustrates the results of the numerical experiment.

4,00E-04

3,00E-04

2,00E-04
0,50 1,00

1,00E-04

0,00E+00
-1,00 -0,50 0,00 0,50 1,00

(a) Exact solution (b) Calculation error

Figure 1. The maximal error at points x = +0.5 is 0.36 at N = 30 and decreases to 0.036
at N =300

4. Solving the 1D Poisson equation with
the Neumann—Dirichlet and Dirichlet—Neumann
boundary conditions

The problem is to determine the scalar potential u (x) satisfying the one-
dimensional Poisson equation Awu (z) = f(z) on the interval ]a,b[, where
f(z) is a given function. It is necessary to find the solution satisfying the
Neumann-Dirichlet boundary conditions v’ (a) = u,, and u (b) = wu,. Let us
consider a special uniform grid for the finite difference method with the step

Ax:b_a

(x;) are determined by the expression z; =a+ (i —1)-h,i=0,1,... N + 1.
We denote by u, the approximate values of the desired solution at point

= h, consisting of N 41 points. The coordinates of the grid nodes
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x; + u; = u(x,;), and by f;, the value of the given function in the right-

hand side at the same point. In addition, let us denote by u; = v’ (x;) and
u; = u” (z;) the values of the first and second derivatives of the sought

solution at the grid node at the same point. Replacing the derivatives with
symmetric finite-difference expressions [12], we arrive at the approximation
formulas of the second order of accuracy for the first derivatives

u;:%—kO(}ﬂ), i=1,2,3,..,N (21)

and for the second derivatives
Uiy — 2U; + Uiy

! = = +0(h?), i=1,2,..,N. (22)

The system of linear equations for the internal nodes of the interval looks as

4.1. The Neumann—Dirichlet boundary conditions

Let us derive equations complementing the system with the boundary
conditions at the left and right ends of the interval taken into account.
Assuming the use of Egs. (21) and (23) possible and combining them at i = 0,
we eliminate u_; from the system of equations.

—Uy + Usg =h2%+hu;, i=1,...,N. (24)
Thus, introducing into consideration an additional virtual point x; =a—h
allows using the central differences with the order of approximation O (h?)

for the sought solution even at the boundary point of the interval.
We introduce the vector F' with the components expressed as

Fl :h2%+hu;, FN:hsz_ub, F’L:h2fl7 /L.:2,3,...7N_1. (25)

As a result, the system of equations that determines the solution components
reduces to the form

-1 1 0 0 0 0 u, Ly Ny T

1 -2 1 0 0 Usy h?f,

0 1 -2 1 0 0 Ug h? fs

0 1 -2 1 - 0 | | w |_ h2f, . (26)
0 0 0 1 =2 ~ =~ Ug h? fs
L 0 : 3

0 0 0 0 1 Un_q R fn_y

0 0 0 0 0 0 1 —2 uy h2fy —
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where the matrix A = {aij}, i,7=1,..., N of system (8) is symmetric tridiag-
onal negative definite and possesses the property of diagonal transformation.
The presence of diagonal dominance in the coefficient matrix guarantees the
stability of the sweep method; however, in this case, there is a way to calculate
the elements of the inverse matrix.

4.2. Calculation of the inverse matrix elements

Let us write down the properties of the inverse matrix B = {bij},

i,j =1,..,N, B = A™!, following directly from its definition. It must
be symmetrical and its elements must satisfy the following relations:

_b1j+b2j:531'7 1<j<N,
bi1_2b12+b13:51:27 1<Z<N,

: . (27)
b’L—lj_Qij—i_b’L-i-lj:é‘z]’ 1<Z,j<N,
biN*l_QbiN:(si{V? 1</L<J\[7

where 65 is the Kronecker symbol.
The elements of the inverse matrix also satisfy the relations
b;y +(J—1), <},
= 11 (J ) '\2 (28)
! by +(i—1), i>j.

The analysis of behavior of the system determinant allows deriving the
expressions

N- (=N
O

(—N ! (29)

b11: :_N, andeN:—:_]_:blN.

Using Eqgs. (27)—(29), we can exactly determine the elements of the inverse
matrix, which is related to the search for the approximate solution in the
case of the Neumann—Dirichlet boundary conditions. Thus, the elements of
matrix B are determined by the expressions

CIN—(G=1)]. i<j
by = { TN UL s (30)
J —[N—=(i—1)], i>j.
The elements of the inverse matrix can be alternatively expressed as
. t+g)+i—7
by = = IV = fmax )~ 1] = = | = [ DI L

The expressions (30) and (31) are equivalent. However, for software imple-
mentation, the first one is preferable.

As a result of the transformations carried out, explicit expressions for the
elements of the inverse matrix are obtained, and the solution of the Poisson
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problem with Neumann-Dirichlet boundary conditions can be obtained using
a simple multiplication of the inverse matrix by the vector of the right-hand
side: U = BF, where

N N-1 N-2 2
N—1 N—1 N-2 2
N—2 N—2 N-=-2 2
B=-— :
9 2 2 .. .09
1 1 1 e 1

FEach solution component can be expressed directly using the formula

N
> (N_<i_1))'Fi:|

i=k+1
k=1,2,..,N. (32)

k

Uy = — [(N—k:+1) {ZF

=1

_|_

b

Formula (32) gives a simple analytical expression for the solution of the
Poisson equation with Neumann-Dirichlet boundary conditions. It is very
easy to program it either directly or based on Eq. (30). One double loop will
be enough to compute the entire solution.

4.3. Example

Consider a numerical solution of the problem of finding a scalar potential
defined on the interval [—a, b] and satisfying the Poisson equation

A@<x):85L:Lé@

where a, b, Vj, k and ¢, are given constants, and the Neumann-Dirichlet

do
boundary conditions T (a) = @) and @ (b) = P,

= f(z) = Vycos (kx + @),

The known exact solution is expressed as

(Dcxact (1}) = (b:z - E sin (k(l + @0) (;1;' - b) _

k
Yo
2 [cos (kx + ¢g) — cos (kb + @g)] + @,. (33)
Let us consider the finite-difference solution at a = —7—2T, b = %, Vo =1,
k== and Yo = z

2 4
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We define the computational grid with the following parameters:

b—a

N )
and f; = f(x;) = cos(kz; + ¢y). The solution is assumed to satisfy the
Neumann—Dirichlet conditions specified as: ®,, = 1/4 and ®, = —1/2.

We calculate the solution of the Poisson problem multiplying the inverse
matrix with the elements determined by expressions (30) by the right-hand
side vector, corrected using Eqgs. (26).

The software implementation of the algorithm consists of a few lines: filling
the right-hand side vector (26) and multiplying the inverse matrix B by this
vector using Egs. (30).

Figure 2 illustrates the results of the numerical experiment.

N =100, Ax=h= r,=(@{—1)Az, &, =(x;)

0 1,6E-04
-1,571 -1,071 -0,571 -0,071 0,429 0,929
-0,5

1,4E-04

1,2E-04

-1 1,0E-04

8,0E-05

6,0E-05
4,0E-05
- 25 2,0E-05
— 0,0E+00 — :
-3 -1,571 -1,071 -0,571 -0,071 0,429 0,929
(a) Exact solution (b) Calculation error

Figure 2. The maximal error at x = —1.571 is 1.55FE — 04 for N = 100 and decreases to
1.55FE — 06 for N = 1000

5. Dirichlet—Neumann boundary conditions
5.1. Discretization and matrix equation

By analogy with the case of the Neumann—Dirichlet boundary conditions, we
consider the symmetric case with the Dirichlet-Neumann boundary conditions.
Let us first define a suitable sampling grid on the interval [a, b]. Grid points
{z;, i=0,1,..., N 4+ 1} are specified as z; = a+ih. The boundary conditions
u, and uy, complementing the Poisson equation redefine the system of finite-
difference equations (23). The solution value u - ; at the ‘virtual’ point
is expressed using the boundary condition for the derivative, approximating
the latter by symmetric central differences. As the last equation of the system,
we get
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The transformed right-hand side vector F'is presented as
Fy = thTN—hug, F, =h*f, —u,, F,=h%f, i=2,..,N—1. (35)

Like in the previous case of Neumann—Dirichlet boundary conditions, the
resulting matrix of the equation

-2 1 0 0 0 0 Uy h2f, —u,
1 -2 1 0 0 0 Uy h2f,
—_— . cee 2
o 0 1 —2 1 - 0 [ | w |_ h?f, (36)
O 0 O 0 .. . . 1 U/N_]_ h’Qfol
0 0 0 0 0 0 1 —1 uy h2 LN — huy,

is symmetric three-diagonal negative definite, with the dominant main diago-
nal.

With respect to the antidiagonal, this matrix is symmetric to the matrix
used in the solution of the Poisson problem with the Neumann—Dirichlet
boundary conditions. The system is definite and has a unique solution for
any right-hand side.

Using the antidiagonal symmetry with respect to the Neumann—Dirichlet
problem, we construct the inverse matrix for the Dirichlet~Neumann case:

1 1 1 1
1 2 2 2 2 2
1 2
B=—|.. .
1 2 - . N—-2 N—-2 N-=-2
N—-—2 N—-—1 N-1
1 2 - .+ N—-2 N-1 N

Therefore, the exact solution of the system of equations (36) can be written
very simply (in a single line)

k N
uk:_Hg;Zp]H; zk:F . k=1,2,...,N. (37)
= 1=k+1

The software implementation of the method reduces to simple multiplication
of the inverse matrix by the right-hand side vector.

Figure 3 illustrates the results of the numerical experiment.



S. Ndayisenga et al., Finite-difference methods for solving 1D Poisson ... 75

0,4
-1,58 -1,08 0,58 %08 0,42 15604

0,6 1,36-04
0.7 1,1E-04

0,8
9,0E-05

0,9
7,0E-05

1
5,0E-05

1,1

e / 3,0E-05
1,06-05

3 - o
-1,4 -1,58 -1,08 0,58 ~LOE-G§08 0,42
(a) Exact solution (b) Calculation error

Figure 3. The maximal error in this case at point x = 0.785 is 1.69FE — 04 for N = 100
and reduces to 1.69F — 6 for N = 1000

5.2. Example

An example of the previous section is considered, which differs only in
that the boundary conditions set earlier at the left end of the interval are
transferred to the right and vice versa. The software implementation of the
algorithm consists of several lines: filling in the vector of the right-hand
side (34) and multiplying the inverse matrix B by this vector using Eq. (37).

6. Conclusion

The paper gives examples of practical problems, in the simulation of which
it is necessary to solve second-order elliptic equations with different boundary
conditions. The case of the one-dimensional Poisson equation and its finite-
difference solution are described in detail. Estimates of the complexity of
the sweep algorithm in the case of a uniform grid are given. An approach
to solving the one-dimensional Poisson equation using explicitly calculated
coefficients of inverse matrices for various types of boundary conditions is
also described. The Dirichlet and Neumann boundary conditions in various
combinations are considered.

A comparative analysis of the computational complexity of methods for
solving the one-dimensional Poisson equation, based on the use of the sweep
method and methods using an explicit representation of inverse matrices is
presented.

Direct calculation shows that to implement calculations by right-sweep
formulas, approximately 8 N arithmetic operations are required, whereas in the
Gauss method for fully filled matrices this number is approximately (2/3) N3.
It is also important that the tridiagonal structure of the matrix of the system
makes it possible to use for its storage only an array of real variables of
dimension 3N — 2.

The assertion of the author of Ref. [4] that the method he proposed using
the explicit form of inverse matrices allows solving the Poisson equations with
different boundary conditions faster and more accurately is, to put it mildly,
incorrect. Provided that the stability conditions of the sweep method are met,



76

DCM&ACS. 2022, 30 (1) 62-78

the speed of solving the problem by the sweep (Thomas) method is an order
of magnitude higher due to a much smaller number of required operations.

However, unlike the sweep method [13], the practical implementation of
the proposed method does not imply the allocation of additional arrays for
software implementation, since the elements of the inverse matrix have a very
simple form and their calculation within the loop determining the components
of the solution is not difficult.
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Koneuyno-pa3noctuble MeToabl permenust 1D 3amaunm
IIyaccona

C. Hpaiiucenra', JI. A. CeBactbanos''?, K. II. JIoBerkmii!

L Poccutickuti yrueepcumem dpyoic6vs napodos
ya. Muxayzro-Maxnaas, 0. 6, Mocxsa, 117198, Poccus
2 JlaGopamopus meopemuveckot dusuku um. H. H. Bozonobosa
065edUHEHHDIT UHCMUMYM, A0EPHIT UCCAEI08aHUT]L
ya. Koavo-Kropu, 0. 6, Hyona, Mockosckasn obracmo, 141980, Poccus

Annoramusa. B crarbe 00CyK1aeTcsd MOCTAHOBKA, ¥ aHAJIN3 METOJIOB PEIIeHUs OJIHO-
MepHOro ypasaenus [lyaccoHa Ha OCHOBE KOHEIHO-PA3HOCTHBIX AIMIPOKCUMAIIAN —
BasKHOT'O ¥ OYEHb II0JIE3HOT'O0 WHCTPYMEHTa YMC/IEHHOIO MCCJIemoBanHus auddepeniim-
aJbHBIX ypaBHenuii. [lo cyTu, 3T0 K1accuyecKuit METO, allIPOKCUMAIIUN, OCHOBAHHBIN
Ha pas3JIoXKeHnu perreHnsa B psan Teitmopa. Pazsurne TeopeTuvdecKnx M MpakTHIe-
CKUX Pe3yJIbTaTOB Ha 6a3e 9TOro MeToJa B ITOC/IETHUE oAbl TO3BOJIUINA TOBBICUTH
TOYHOCTD, CTAOMIBHOCTD U CXOAUMOCTH METOMIOB pelnenns audepeHnralIbHbIX ypaB-
nennii. HekoTopble 0cOOEHHOCTH 3TOr0 aHAIN3a BKIIOYAIOT WHTEPECHBIC PACIIAPEHUS
KJIACCUYIECKOr0 YMCJIEHHOTO aHa/M3a HAYAJbHBIX W IPAHUYHBIX 33/a4. B mepBoit
YaCTU M3JIAraeTCsl YUCJIEHHBIM MEeTOJI PeIeHusi OTHOMepHOro ypaBHenus Ilyaccona,
CBOJISIIIMICS K PEIIEHHUIO CUCTeMbI JTMHEeHHbIX ajrebpandeckux ypasaenuii (CJIAY)
C JIEHTOYHOM CUMMETPHUYHON MOJIO2KUTEILHO ONpeIeIEHHON MaTpulieit. B kadecTse
merona pemennst CJTAY ucnosb3yercss MMPOKO W3BECTHBIH METO| IPOTOHKH (MeTO/
Tomaca). Bo Bropoii wacTu mpeicTaBieH MeTo/] PelleHus, OCHOBAHHBIN HA aHAJNTH-
9eCKOM IPEICTABICHUN TOTHOW OOPATHON MaTPHUIIBI JUCKPETU3NPOBAHHOTO BAPHUAHTA
ypaBuenns Ilyaccona. Beipaxkenns /it 0OpaTHBIX MATPUIL CYIIECTBEHHO 3aBHUCSIT OT
TUIIOB TPAHUYHBIX YCJIOBU B MCXOMHO#N mocTtanoBke. [IpeicraBiienb BapuanTbl 00-
PaTHBIX MATPUIL Ajis ypaBHeHus [lyaccoHa ¢ pa3gudHbIMEU TPAHUIHBIMU YCJIOBUSIMUA
Ha KOHIIAX MCCJIeIyeMOro nHTepBaJja — ycaoBusaMu Jlupuxie Ha 000MX KOHIAX WH-
TepBaJja, ycaosuamu Hupuxiie na ogaoMm u3 kournos u Heiimana wa apyrom. Bo Bcex
TPEX cirydasax KodhPUImeHTsr 06paTHBIX MATPUIL JIETKO BBIUACIAIOTCH (BBIIICHIBA~
IOTCH) " aJITOPUTM peHieHUd 3aJa9U MPAKTUICCKU CBOJIUTCA K YMHO2KEHUIO MaTPUIIbI
Ha BEKTOP IIPABOU HaCTH.

KuaroueBbie ciaoBa: 1D ypasaenne Ilyaccona, mMerol KOHEYHBIX pa3HOCTEM, 00-
pallieHne TPexInaroHaJbHON MaTPHUILI, aJropuTM lomaca, mcKjdeHnue [aycca
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Abstract. The paper proposes a trading strategy for investing in the cryptocurrency
market that uses instant market entries based on additional sources of information in
the form of a developed dataset. The task of predicting the moment of entering the
market is formulated as the task of classifying the trend in the value of cryptocurren-
cies. To solve it, ensemble models and deep neural networks were used in the present
paper, which made it possible to obtain a forecast with high accuracy. Computer
analysis of various investment strategies has shown a significant advantage of the
proposed investment model over traditional machine learning methods.

Key words and phrases: bitcoin, trading strategy, ensemble models, deep learning

1. Introduction

The development of the financial market for cryptocurrencies in 2021 has
become one of the key trends in global capital. The COVID-19 pandemic,
which began in 2020, only accelerated this process, as it caused a drop
in traditional markets, forcing investors to look for alternative tools and
products [1]. For many, the financial market for cryptocurrencies has become
such a solution. This paper studies the investor’s trading strategies in the
cryptocurrency market and analyzes their effectiveness in comparison with
the classical financial asset market. Their feature is the high volatility of the
cryptocurrency market, so it would be natural to apply portfolio formation
strategies to change the asset trend. Under these conditions, investors usually
use strategies that allow them to open a position at the initial stage of a trend
formation. Thus, the main goal of the work is to develop a computer system
for detecting the moment of entering the cryptocurrency market and testing
its effectiveness using the example of bitcoin.

(©) Shchetinin E.Y., 2022
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2. Methods for modeling and forecasting the value
of cryptocurrencies

Methods for modeling and forecasting prices for financial assets can be
divided into methods of technical and fundamental analysis, which determine
the characteristics and form the value of an asset and features of its behavior.
The first approach is based on the laws of probability theory and mathematical
statistics, which allow solving various problems with different qualitative
characteristics using universal methods [2]. As a rule, the first approach
assumes a fundamental theory that is well formalized, understandable and
logical. However, its working conditions are ’ideal’ and its application in
practice does not always make it possible to make a reliable prediction.
The second approach aims to test complex mathematical methods and tools
to solve the first one. At the same time, methods of regression, variance,
and correlation analyzes are widely used. They allow understanding the
interdependencies between the asset in question and other factors. However,
these methods poorly predict asset dynamics.

Since the value of an asset is measured over time, it can be analyzed using
econometric time series methods. However, this requires the condition of
stationarity and linearity, which are not present in the real asset market.
To solve this problem, the change or profitability of the asset is considered
rather than its value. The use of various econometric models in trading
strategies is justified in the short term, but in the long term, this approach
is extremely risky due to high volatility [3], [4]. Recently, machine learning
methods have become widely used for trading in financial markets due to their
ability to build effective dynamic forecasting models. They solve a wide range
of problems: regression, classification, clustering. Moreover, these methods
show themselves best in solving such problems.

We will use the following investor strategy to generate revenue in the
cryptocurrency market:

0, CSMA,(t) < BB (t) — downward,
Y =191, BB () < CSMA,(t) < BB™(t) - flat, (1)
2, CSMA,(t) > BB(t) — upward,

where y, is the trend label, CSMA is the centered moving average, BB, is
the Bollinger band with the superscript for upper and lower one. The use of
CSMA is due to the fact that the characteristics to be used have significant
predictive power. In this paper, the dominant cryptocurrency bitcoin was
chosen, for which there is also a large amount of information. It is possible to
single out the data sources from where the information will be taken [3]:

— market;
— fundamental,;
— alternative.

For more accurate forecasts, it was decided to create a complex dataset that
consists of all the types of data sources listed above. In the market data, the
prices and trading volumes of Bitcoin itself, VIX and gold were selected. VIX
is an index of fear, which is calculated based on supply and demand for option
contracts, which reflects expectations for such a popular index as the S&P
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500 [3]. If the indicator exceeds the 40-point mark, then it is considered that
panic begins in the classic markets. It is at times like these that investors try
to find alternative investments, which include Bitcoin. Gold is also considered
to be an asset that people begin to actively invest in during the crisis. The
data was obtained through the yahoo finance API. The information field also
greatly influenced the value of bitcoin and cryptocurrencies [2]. The names in
the table correspond to the queries. Fundamental factors directly represent
the value of an asset. The information was taken from the blockchain.info
website using the API. Market indicators that were obtained using the TA-
Lib library helped to assess the ’pulse’ of the market and understand which
trading patterns are applied at the current time. The data were scaled and
then their daily increments were calculated, taking into account their balance
by class. A general description of the data can be seen in the table 1.

3. Selection of optimal model parameters
and forecasting

After solving the problem of creating a dataset, it is necessary to choose
a computer model that will allow us to build an optimal forecast for the value
of bitcoin. Machine learning provides a large number of classification models.
For example, the following ensemble models are especially popular [5]:

— Random forest;
— Ada boost;

— Light GBM;
— XG Boost.

In addition, to classify the trend at the time of entering the market,
a recurrent neural network with a long short-term memory (LSTM) cell was
used [6]. The described dataset is preliminarily divided into a training set
and a test set. Their distribution can be seen in the figure 1.

800
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u Training Test

Figure 1. Distribution of the training and test sample over trend labels
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Table 1
Description of the dataset and the factors it contains

Market — btc_vol — bitcoin open

— Open — Bitcoin opening price

— Vix — VIX index opening

— Gold — gold opening price

— Gold_vol — gold trading volumes

Alternative — Bitcoin — Google popularity index for the query
"bitcoin’

— bitcoin wallet — Google popularity index for the
query ’bitcoin wallet’

— buy bitcoin — Google popularity index for the query
"buy bitcoin’

— sell bitcoin — Google popularity index for the query
"sell bitcoin’

— Blockchain — Google popularity index for the query
"bitcoin wallet’

Fundamental — tr_per_block — transactions in the block

— tr__cost — transaction cost

— Miners rev — miners’ revenue

— N _unique addresses — number of unique addresses
— NVT is a metric calculated by dividing the network
value by the total volume of transactions in USD in
24 hours.

— NVTS — the same as NVT, the difference in the
denominator of which is the moving average over the
last 90 days

Market (indica- | — Willr _sig — Williams indicator signal
tors)

Market — Willr_sig — Stoch _sig — Stochastic indicator signal
— Mfi_sig — cash flow indicator signal
— Rsi_sig — relative strength indicator signal

After training the models using the training set, predictions were made
with the test set. We chose the accuracy indicator as the quality metric of
the estimates obtained. As seen from the table 2, the gradient boosting of the
Light GBM library turned out to be the best model [5]. The most important
features were technical indicators and market data: 6 indicators out of 8
main ones. Fundamentals of NVT and NVTS also contributed. In terms of
importance, these two indicators are equated to P/E for the stock market |7].
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To further model the behavior of an investor using the strategy described
above, we have chosen the Light GBM model.

Table 2
The accuracy of the forecast for the test sample

Model Accuracy, %

Random forest 68

Ada boost 69

Light GBM 70.4

XG Boost 70.28

LSTM 68

Light gbm features importance

willr_sig
btc

Feature

bitcoin wallet
buy bitcoin
sell bitcoin
btc_vol
tr_per_block
tr_cost
miners_rev
n_unique_adr
gold
stoch_sig

20 40 60 80 100 120

Value

Figure 2. Distribution of data set factors according to the strength of their impact
on the forecast

Further, to test the selected Light GBM algorithm and select the optimal
values of its parameters, backtesting was performed, i.e., a financial analysis
procedure that allows you to tune the model to the current data stream. In
the classic version, this is performed on ready-made data, however, existing
solutions impose restrictions on the implementation of the project, therefore,
a backtest was developed, which made it possible to simulate the dynamics
of a portfolio that is built according to the strategy principle. The proposed
backtesting algorithm takes into account the cost at which the asset, account,
commission, credit when opening a short position and the flag of the possibility
of opening a short position will be bought or sold. The following variables
are specified in the backtest:

— Investment amount equal to $ 10,000;
— Credit 0.1%;

— Commission 0.09%;

— The purchase price is the closing price.
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Actions of buying or selling are presented in the table 3.

Table 3

Actions of the portfolio management strategy

Signal

t.. |t.. —1| Action

sig | Usig
Flat (lateral | 0 0 keep short
movement )
Flat 1 1 we keep funds

in foreign currency
Flat 2 2 hold a long position
Upward 2 1 open a long position
Downward 0 1 open a short position
Flat 1 2 close a long position
Downward 0 2 close long, open short
Flat 1 0 close a short position
Upward 2 0 close short, open long

The dynamics of the value of the bitcoin portfolio is shown in the figure 3.
The portfolio worked in unstable conditions throughout 1.11.2019-01.01.2021.
It can also be noted that a portfolio with short positions wins and loses
equally well to a less aggressive portfolio. However, when the price goes out
of the sideways, the model starts to be profitable. Forecasts and quotation of
the cost of bitcoin for the period 11.2019-01.2020 are shown in the Figure 4.

18000 —— Portfolio with shorts

16000

14000

12000

10000

8000

portfolio without shorts

2019-11 2020-01

Portfolio

2020-03 2020-05 2020-07 2020-09 2020-11 2021-01

Figure 3. Dynamics of the portfolio value with and without short positions



E.Y. Shchetinin, On methods of building the trading strategies... 85

30000
= hic_close

20000

10000

2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01
2
1
—— trend_pred
2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01

Figure 4. Bitcoin Quote and Forecast Labels

The table 4 shows the results of evaluating the profitability of built portfolios
with and without short positions, as well as the S&P 500 index. As seen from
the table, an investor using the proposed strategy would have been able to
earn 80% of the profit, whereas if he invested in the S&P 500 for the tested
period, he would have earned only 24%.

Table 4
Model backtesting results
Portfolio model Profitability
short portfolio 81.43 %
no short portfolio 82.23 %
S&P 500 index 24.28 %

4. Discussion of results and conclusions

This paper proposes an original trading strategy for investing in cryptocur-
rencies using the example of bitcoin. Its main properties and advantages
are the ability to classify the current state of the trend and form a possible
opening or closing a position for an asset or their portfolio. For the com-
puter implementation of the proposed strategy, a machine learning model was
developed based on the Light GBM model. To test the effectiveness of the
formulated characteristics of the model, a synthetic dataset was developed
based on the most important features extracted from market factors. Model
testing and comparative analysis of the results obtained with other models
showed a high degree of stability and accuracy of the proposed strategy. The
proposed approach is universal and, therefore, it can be applied in various
financial markets with high volatility.
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O MeTOdaX ITOCTpPpOoeHUudA TOPIroBbIX CTpaTeFI/Iﬁ
Ha KPpUIITOBAJIIOTHBIX PBbIHKax

E. FO. Illerunun
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AmnHorarnusi. B pabore npejiaraercsa Toprobasi CrpaTerusi HHBECTHPOBAHUS B PHIHOK
KpUIITOBaJIIOT, I/ICHOJ’H)?)yIOH_La.H MT'HOBEHHBIE€ BXOJIblI Ha PBIHOK Ha OCHOBE JOIIOJIHU-
TeJIbHBIX MCTOYHUKOB MH(MOPMAIMK B BuIe pa3paboTaHHOrO Habopa JaHHBIX. 3ajgada
[TPOrHO3UPOBAHMUSI MOMEHTA BXOJ& Ha PBIHOK (bopMmepyeTCH KaK 3aJ1a9a KJjaaccuu-
KAl TPEHJIa CTOMMOCTH KPUIITOBAJIOT. [lJis €€ pellleHns B CTaTbe MCIOIb30BAIUCH
aHcaMOJIeBble MOJIE/IN U IIyOOKHUe HePOHHBIE CETH, YTO MTO3BOJIUIIO Oy IUTh ITPOrHO3
€ BBICOKOH TOYHOCTHIO. KOMIIBIOTEPHBINM aHAJIN3 PA3IUIHBIX HHBECTUIIMOHHBIX CTpaTe-
Uil TOKa3aJl 3HAYMTEIbHOE IPEUMYIIECTBO IPEIJIOXKEHHONR MOIEIM NHBECTUPOBAHUS
nepena TpaluliMOHHBIMUA MeTOJaMUu MAaIlInHHOI'O O6y‘{eHI/IH.
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