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In this work, a numerical study of the solutions of the parabolic and hyperbolic
equations of heat conduction with the same physical parameters is carried out and
a comparative analysis of the results obtained is carried out. The mathematical
formulation of the problem is discussed. The action of the laser is taken into account
through the source function, which was chosen as a double femtosecond laser pulse.
In the hyperbolic equation, in contrast to the parabolic one, there is an additional
parameter that characterizes the relaxation time of the heat flux. In addition, the
source of the hyperbolic equation contains an additional term — the derivative of
the power density of the source of the parabolic equation. This means that the
temperature of the sample is influenced not only by the power density of the source,
but also by the rate of its change. The profiles of the sample temperature at different
times and its dynamics at different target depths are shown. The calculations were
carried out for different time delays between pulses and for different relaxation
parameters.

Key words and phrases: parabolic and hyperbolic heat equations, femtosecond
laser pulse, numerical simulation

1. Introduction

The study of the interaction of femtosecond laser pulses with matter is
important in connection with many fundamental problems (physics of non-
equilibrium processes, generation of shock waves, laser acceleration of ions,
modification of the properties of the irradiated material, etc.) [1]–[3].

Currently, there is a growing need for the creation and improvement of
physical models capable of describing various processes in matter. Moreover,
computer modeling now occupies one of the main places in the study of such
problems. There are two approaches to the study and creation of physical
models — atomistic and continuous.

Atomistic approaches (molecular dynamics method) allow natural consider-
ation of the atomic structure of the crystal lattice, the effect of impurities,
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the presence of dislocations, the kinetics of phase transitions, etc. The contin-
ual approach (solving the equations of continuum mechanics) includes the
parabolic and hyperbolic heat equation, the two-temperature model of heat
conduction, the two-temperature hydrodynamic model, etc. [2].

The molecular dynamics (MD) method [4] can be used to describe the
dynamics of fast processes that arise in a substance under the action of a laser
pulse. MD is quite effective for microscopic analysis of the mechanisms of
melting and evaporation [5], [6]. The appearance and propagation of pressure
waves generated by laser radiation [7], [8], as well as the dynamics of laser
ablation [9], are well modeled using the MD.

Each approach has its own problems. When studying transport processes
within the framework of a parabolic equation, a problem that arises is the
infinitely high speed of thermal perturbation propagation (a consequence of the
Fourier law). Generalizing the Fourier law, taking into account the relaxation
time of the heat flux, we obtain the hyperbolic equation of heat conduction.
The relaxation time is a characteristic of nonequilibrium of the heat conduction
process. Under exposure to femtosecond pulses, non-equilibrium heating of
the material occurs. Therefore, the study of such processes may turn out to
be more adequate using the hyperbolic heat equation.

In this work, we carried out a numerical study of the physical processes
arising under the action of femtosecond laser pulses within the framework of
the parabolic and hyperbolic equations of heat conduction and carried out
a comparative analysis of the results obtained.

2. Setting of the problem

When simulating thermal processes arising in materials under the action of
femtosecond laser pulses, we use a hyperbolic model of the heat conduction
equation:

𝑐𝜌 (𝜕𝑇
𝜕𝑡

+ 𝜏𝑟
𝜕2𝑇
𝜕𝑡2 ) = 𝜆𝜕2𝑇

𝜕𝑥2 + 𝐴(𝑥, 𝑡) + 𝜏𝑟
𝜕𝐴(𝑥, 𝑡)

𝜕𝑡
. (1)

Here 𝑐, 𝜌, 𝜆 are the specific heat capacity, density, and heat conductivity of
the sample material, respectively. 𝑇 (𝑥, 𝑡) is the sample temperature, 𝐴(𝑥, 𝑡)
is the source function, which determines the heat release power density at
the point with the coordinate 𝑥 at the time moment 𝑡, 𝜏𝑟 is the characteristic
time of energy flux relaxation.

The second term in the left-hand side of equation (1) reflects the fact that
the thermal process is actually hyperbolic rather than parabolic, and this
model of heat conduction is widely used in practice [1], [10]–[12].

The relaxation time 𝜏𝑟 of the heat flux is related to the velocity of heat

propagation by the formula 𝑣 = √𝜆/𝑐𝜌𝜏𝑟. If 𝑣 → ∞ (i.e., 𝜏𝑟 → 0), then

we get an equation of the parabolic type. The term 𝜏𝑟𝜕𝐴/𝜕𝑡 means that
the temperature 𝑇 is affected by not only the power density of its sources,
but also by the rate of its change. For metals [12] 𝜏𝑟 = 10−11 𝑠; for steel
𝑣 = 1800 𝑚/𝑠, for aluminum 𝑣 = 2830 𝑚/𝑠, for amorphous bodies like glass

and polymers the relaxation time attains 10−7 − 10−5 𝑠; in this case 𝑣 can
exceed the velocity of sound propagation 𝑣𝑠 in these media.
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In general, the heat capacity, thermal conductivity, and material density
depend on temperature. In this work, the temperature dependence of the
parameters of the sample material is disregarded.

Equation (1) is solved with the following initial and boundary conditions:

𝑇 (𝑥, 0) = 𝑇0, 𝑇 (𝑥max, 𝑡) = 𝑇0,
𝜕𝑇 (𝑥, 𝑡)

𝜕𝑡
∣
𝑡=0

= 0, 𝜕𝑇 (𝑥, 𝑡)
𝜕𝑥

∣
𝑥=0

= 0. (2)

The source function is chosen in the factorized form

𝐴(𝑥, 𝑡) = 𝐼0[1 − 𝑅(𝑇𝑠)]𝑓1(𝑥)𝑓2(𝑡), 𝑇𝑠 = 𝑇 (0, 𝑡).

Here 𝑓1(𝑥), 𝑓2(𝑡) are the spatial and temporal shape of the source, respec-
tively, 𝐼0 is the source intensity, 𝑅(𝑇𝑠) is the coefficient of reflection of the
laser pulse from the material surface.

In the present work, 𝑓1(𝑥) и 𝑓2(𝑡) are chosen the same as in Ref. [13]:

𝑓1(𝑥) =
exp(−𝑥/𝐿𝑝)

𝐿𝑝
,

𝑓2(𝑡) = 1√
2𝜋

(exp [−(𝑡 − 𝑡0)2

2𝜎2
𝑡

] + exp [−(𝑡 − 𝑡0 − 𝜏𝑑)2

2𝜎2
𝑡

]) .

Here 𝐿𝑝 is the depth of penetration of laser radiation into the substance,

𝑡0 is the time moment when the first pulse of the source takes the maximum
value, 𝜏𝐷 is the time shift of the second pulse of the source with respect to
the first pulse. The radiation dose is

Φ = 𝐼0

∞

∫
0

𝑓2(𝑡)𝑑𝑡 = 2𝐼0𝜎𝑡.

When numerically solving equation (1) with initial and boundary condi-
tions (2), it is convenient to replace the dimensional variables and quantities
with their dimensionless counterparts. This is carried out as follows:

̄𝑇 = 𝑇
𝑇0

; ̄𝑥 = 𝑥
Δ𝑥

; ̄𝑡 = 𝑡
Δ𝑡

; ̄𝜎𝑡 = 𝜎𝑡
Δ𝑡

; ̄𝑡0 = 𝑡0
Δ𝑡

; 𝑘0 = 𝜆Δ𝑡
𝑐𝜌Δ𝑥2 ;

̄𝜏𝑟 = 𝜏𝑟
Δ𝑡

; ̄𝐴( ̄𝑥, ̄𝑡) = 𝐴(𝑥, 𝑡)Δ𝑡
𝑐𝜌𝑇0

,

𝜕 ̄𝑇
𝜕 ̄𝑡

+ ̄𝜏𝑟
𝜕2 ̄𝑇
𝜕 ̄𝑡2 = 𝑘0

𝜕2 ̄𝑇
𝜕 ̄𝑥2 + ̄𝐴( ̄𝑥, ̄𝑡) + ̄𝜏𝑟

𝜕 ̄𝐴( ̄𝑥, ̄𝑡)
𝜕 ̄𝑡

, (3)

̄𝑇 ( ̄𝑥, 0) = 1; 𝜕 ̄𝑇 ( ̄𝑥, 0)
𝜕 ̄𝑡

= 0; 𝜕 ̄𝑇 (0, ̄𝑡)
𝜕 ̄𝑥

= 0; ̄𝑇 ( ̄𝑥max, ̄𝑡) = 1. (4)
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The dimensionless source function and the normalization conditions in this
case take the form

̄𝐴( ̄𝑥, ̄𝑡) = 𝐴0
̄𝑓1( ̄𝑥) ̄𝑓2( ̄𝑡),

𝐴0 = 𝐼0[1 − 𝑅( ̄𝑇𝑠)]Δ𝑡
𝐿𝑝𝑐𝜌𝑇0

; ̄𝑓1( ̄𝑥) = exp(−𝛼 ̄𝑥), 𝛼 = Δ𝑥/𝐿𝑝,

̄𝑓2( ̄𝑡) = 1√
2𝜋

(exp [−( ̄𝑡 − ̄𝑡0)2

2 ̄𝜎𝑡
2 ] + exp [−( ̄𝑡 − ̄𝑡0 − ̄𝜏𝑑)2

2 ̄𝜎𝑡
2 ]) , Φ = 2𝐼0Δ𝑡𝜎̄𝑡.

3. Discussion of numerical results

Numerical experiments were carried out for aluminum irradiated by the
double-pulse laser with the following parameters:

𝜆 = 236 𝑊
𝐾𝑚

, 𝜌 = 2700 𝑘𝑔
𝑚3 , 𝑐 = 920 𝐽

𝑘𝑔𝐾
,

𝑥max = 3 ⋅ 10−7 𝑚, 𝑇0 = 300 𝐾, 𝑅(𝑇𝑠) = 0,

Φ = 4 ⋅ 105 𝐽
𝑚2 , 𝜎𝑡 = 5 ⋅ 10−14 𝑠, 𝑡0 = 3 ⋅ 10−13 𝑠,

Δ𝑥 = 3 ⋅ 10−8 𝑚, Δ𝑡 = 10−12 𝑠.

The total dose Φ = 4 ⋅ 105 𝐽/𝑚2 for the specified source corresponds to the

intensity 𝐼0 ≃ 1.5957 ⋅ 1017 𝑊/𝑚2. Dimensionless constants 𝑘0, 𝐴0, 𝛼, ̄𝑡0, 𝜎̄𝑡
take the following values:

𝑘0 ≃ 0.10556; 𝐴0 ≃ 8404.34137; 𝛼 = 1; ̄𝑡0 = 0.3; 𝜎̄𝑡 = 0.05.

Below

𝑓(𝑡) = 𝑓2(𝑡) + 𝜏𝑟
𝜕𝑓2(𝑡)

𝜕𝑡
describes the time dependence of the source. For 𝜏𝑟 = 0, we get the source
for a parabolic equation.

Equation (3) with the initial and boundary conditions (4) was solved using
a finite-difference three-layer explicit scheme.

Figures 1 and 3 show the time dependence of the source function, tempera-
ture profiles at different times and the dynamics of the sample temperature
at different depths. The times 𝑡𝑖, 𝑖 = 1, 2, … , 10 are selected in such a way
that the first five of them correspond to the action times of the source first
pulse, and the rest correspond to the action times of the second pulse. The
calculations were carried out until the moment the source was turned off at
different times of the delay between the pulses 𝜏𝑑.

Figures 2 and 4 show the temperature profiles at long times, when the
sources are turned off, i.e., 𝑓(𝑡) = 0.
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Figure 1. Time dependence of function 𝑓(𝑡) = 𝑓2(𝑡) + 𝜏𝑟𝜕𝑓2(𝑡)/𝜕𝑡, temperature profiles at

different time moments 𝑇 (𝑥, 𝑡𝑗), 𝑗 = 1, 2, … , 10, 𝑡1 = 0.25 ps, 𝑡2 = 0.3 ps,

𝑡3 = 0.35 ps,𝑡4 = 0.45 ps, 𝑡5 = 0.55 ps, 𝑡6 = 0.65 ps, 𝑡7 = 0.7 ps, 𝑡8 = 0.75 ps,

𝑡9 = 0.85 ps, 𝑡10 = 1 ps, and dynamics of sample temperature at different depths

(𝑇 (𝑥𝑖, 𝑡), 𝑖 = 1, 2, 3, 𝑥1 = 0 nm, 𝑥2 = 3 nm, 𝑥3 = 6 nm), obtained in the framework of

the hyperbolic heat conduction equation for different values of the parameter 𝜏𝑟
(𝜏𝑟 = 0 ps, 0.1 ps, 10 ps) и 𝜏𝑑 = 0.4 ps
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Figure 2. Temperature profiles at different time moments 𝑇 (𝑥, 𝑡𝑗), 𝑗 = 1, 2, … , 5, 𝑡𝑗 = 𝑗 ps

and the sample temperature dynamics at different depths (𝑇 (𝑥𝑖, 𝑡), 𝑖 = 1, 2, 3, 𝑥1 = 0 nm,
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𝑡9 = 0.95 ps, 𝑡10 = 1.05 ps, and the dynamics of sample temperature at different depths

(𝑇 (𝑥𝑖, 𝑡), 𝑖 = 1, 2, 3, 𝑥1 = 0 nm, 𝑥2 = 3 nm, 𝑥3 = 6 nm), obtained in the frameworks of

hyperbolic heat conduction equation at different values of parameter 𝜏𝑟
(𝜏𝑟 = 0 ps, 0.1 ps, 10 ps) and 𝜏𝑑 = 0.6 ps
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4. Conclusion

In contrast to the parabolic equation, the hyperbolic one includes an addi-
tional parameter that characterizes the heat flux relaxation time. A derivative
of the power density of the source of the parabolic equation is additionally
present in the source of the hyperbolic equation. This fact means that the
sample temperature is affected not only by the source power density, but also
by the rate of its variation. Due to this dependence, at some time moments
the source takes negative values depending on the relaxation time parameter.
Nevertheless, the temperature at the sample surface given by the solution
of the hyperbolic equation is higher than that given by the solution of the
parabolic equation.
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Численное моделирование тепловых процессов,
возникающих в материалах при воздействии

фемтосекундных лазерных импульсов

И. В. Амирханов, Н. Р. Саркер, И. Сархадов

Лаборатория информационных технологий
Объединенный институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

В работе проведено численное исследование решений параболического и ги-
перболического уравнений теплопроводности при одинаковых физических
параметрах, а также сравнительный анализ полученных результатов. Обсуждена
математическая постановка задачи. Действие лазера учтено через функцию ис-
точника, которую выбрали в виде двойного фемтосекундного лазерного импульса.
В гиперболическом уравнении, в отличие от параболического, присутствует до-
полнительный параметр, который характеризует время релаксации потока тепла.
Кроме этого, в источнике гиперболического уравнения присутствует дополнитель-
ное слагаемое — производная от плотности мощности источника параболического
уравнения. Это означает, что на температуру образца оказывает влияние не
только плотность мощности источника, но и скорости его изменения. Приведе-
ны профили температуры образца в разные моменты времени и её динамика
на разных глубинах мишени. Расчёты проводились при различных временах
задержки между импульсами и при различных параметрах релаксации.

Ключевые слова: параболическое и гиперболическое уравнения теплопро-
водности, фемтосекундный лазерный импульс, численное моделирование
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A waveguide with a constant, simply connected section 𝑆 is considered under the
condition that the substance filling the waveguide is characterized by permittivity
and permeability that vary smoothly over the section 𝑆, but are constant along
the waveguide axis. Ideal conductivity conditions are assumed on the walls of the
waveguide. On the basis of the previously found representation of the electromagnetic
field in such a waveguide using 4 scalar functions, namely, two electric and two
magnetic potentials, Maxwell’s equations are rewritten with respect to the potentials
and longitudinal components of the field. It appears possible to exclude potentials
from this system and arrive at a pair of integro-differential equations for longitudinal
components alone that split into two uncoupled wave equations in the optically
homogeneous case. In an optically inhomogeneous case, this approach reduces the
problem of finding the normal modes of a waveguide to studying the spectrum of
a quadratic self-adjoint operator pencil.

Key words and phrases: waveguide, normal modes, hybridization of normal modes,
eigenvalue problem, quadratic operator pencils

1. Introduction

Consider a waveguide representing a cylinder of constant cross-section 𝑆
filled with an optically inhomogeneous substance, which we will characterize
with a permittivity and a permeability. Hereinafter, we will make use of
a Cartesian coordinate system, the 𝑂𝑧-axis of which coincides with the
waveguide axis. We will assume that the permittivity and permeability do not
depend on 𝑧, but are piecewise smooth functions of 𝑥, 𝑦. The normal modes
of a waveguide are non-trivial solutions of Maxwell’s equations of the form

⃗𝐸(𝑥, 𝑦)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡, 𝐻⃗(𝑥, 𝑦)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡, (1)

satisfying the conditions of ideal conductivity of the waveguide walls. Here
the positive parameter 𝜔 is the circular frequency of the wave, 𝑘 = 𝜔/𝑐 is the
wave number, and the complex parameter 𝛽 is the phase constant.

© Malykh M. D., 2021

This work is licensed under a Creative Commons Attribution 4.0 International License
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M.D.Malykh, Normal modes of a waveguide as eigenvectors of a self- … 15

Substitution of the expression (1) into Maxwell’s equations yields 8 equa-
tions for 6 unknowns 𝐸𝑥, … , 𝐻𝑧, containing two parameters, 𝑘 and 𝛽. It is
usually assumed that the wavenumber of the considered waves is given, and
then we get an eigenvalue problem with respect to the spectral parameter 𝛽.
This problem was successfully solved in the case of constant 𝜖 and 𝜇, thanks
to the introduction of two scalar potentials, the electric and magnetic Borgnis
functions 𝑢 and 𝑣 [1], [2]. In the attempt to study a general case undertaken
in the beginning of 2000s [3]–[5], it was not possible to introduce potentials
and the problem was investigated with respect to three randomly chosen field
components. With this approach, the normal waves of the waveguide turned
out to be eigenfunctions of some non-self-adjoint quadratic operator pencil
acting in a space specially selected by the functional.

Not all properties of a hollow waveguide can be extended to the case
of a waveguide filled with an optically inhomogeneous substance. We can
confidently reject the hypothesis of the field decomposition into TE- and
TM-waves, since the existence of hybrid modes has been proved analytically
in half-filled waveguides [6, § 3.5]. With less confidence, one can reject the
hypothesis that the propagation constants of normal modes cannot have both
real and imaginary parts. In a series of numerical experiments [7]–[9], it
was shown that the propagation constants of the normal modes of an axially
symmetric waveguide with a dielectric core can leave the real and imaginary
axes of the 𝛽 complex plane. However, to calculate these eigenvalues, we
used the truncation method and standard solvers to find the eigenvalues of
non-self-adjoint matrices. Our experiments in FreeFem++ [10] showed that
solvers of this kind can introduce a complex addition to the spectrum of
a self-adjoint problem.

We have recently succeeded in extending the theory of Borgnis functions
to the case of a waveguide filled with optically inhomogeneous matter [11],
[12]. In this case, we have increased the number of potentials to four. Mode
hybridization makes one think that the system of equations for the potentials
does not split in the general case, but we cannot exclude the fact that this
system is written in a self-adjoint form. In this paper, we intend to present
such a self-adjoint formulation of the problem of finding the normal modes of
a waveguide.

2. Representation of the electromagnetic field using
electric and magnetic potentials

Let for simplicity the waveguide cross section 𝑆 be a planar simply connected
domain with smooth boundary 𝜕𝑆, and let the permittivity 𝜖 and permeability
𝜇 be smooth functions of 𝑥, 𝑦. Denote as 𝑍, 𝑇 the segments of finite of infinite

length on the axes 𝑧 and 𝑡, respectively and assume 𝜕𝑠 = 𝜕
𝜕𝑠 in all cases except

𝜕𝑡 = 1
𝑐

𝜕
𝜕𝑡 . The unit external normal vector to the curve 𝜕𝑆 will be denoted as

𝑛⃗ = (𝑛𝑥, 𝑛𝑦, 0)𝑇, and the tangent vector in the 𝑥𝑦-plane as ⃗𝜏 = (−𝑛𝑦, 𝑛𝑥, 0)𝑇.

Also for brevity let us assume that

⃗𝐴⟂ = (𝐴𝑥, 𝐴𝑦, 0)𝑇 and ∇ = (𝜕𝑥, 𝜕𝑦, 0)𝑇, ∇′ = (−𝜕𝑦, 𝜕𝑥, 0)𝑇
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and

Δ𝑞𝑢 = div(𝑞∇𝑢) = 𝜕
𝜕𝑥

𝑞𝜕𝑢
𝜕𝑥

+ 𝜕
𝜕𝑦

𝑞𝜕𝑢
𝜕𝑦

.

As in the theory of Borgnis functions, the scalar function 𝑢 turning into
zero at the boundary will be referred to as electric potential and the scalar
function satisfying the Newmann condition 𝜕𝑛𝑣 = 0 at the boundary — as
magnetic potential 𝜕𝑆 × 𝑍 × 𝑇. Hereinafter electric and magnetic potentials
are denoted by 𝑢 and 𝑣, respectively, with different indices.

The main result about the four potentials established by us earlier [12]
is that the electromagnetic field allows a representation in terms of four
potentials, namely, two electric potentials 𝑢𝑒, 𝑢ℎ and two magnetic ones
𝑣𝑒, 𝑣ℎ:

⃗𝐸⟂ = ∇𝜕𝑧𝑢𝑒 + 1
𝜖
∇′𝜕𝑡𝑣𝑒, 𝐻⃗⟂ = ∇𝜕𝑧𝑣ℎ − 1

𝜇
∇′𝜕𝑡𝑢ℎ. (2)

Therefore, below we seek the solution of Maxwell’s equations in a waveguide
in the form (2) without any loss of generality.

3. Maxwell’s equations in terms of potentials

Substituting expression (2) into Maxwell’s equations, we get 8 rather
than 6 independent equations. Four of these equations allow expressing the
potentials in terms of the longitudinal field components 𝐸𝑧 и 𝐻𝑧. The relation
is determined by classical boundary-value problems. The electric potentials
can be found as solutions of Dirichlet problems

⎧{
⎨{⎩

Δ𝜖𝑢𝑒 + 𝜖𝐸𝑧 = 0 in 𝑆 × 𝑍 × 𝑇 ,
𝑢𝑒 = 0 on 𝜕𝑆 × 𝑍 × 𝑇

(3)

and
⎧{
⎨{⎩

Δ 1
𝜇

𝑢ℎ + 𝜖𝐸𝑧 = 0 in 𝑆 × 𝑍 × 𝑇 ,

𝑢ℎ = 0 on 𝜕𝑆 × 𝑍 × 𝑇 .
(4)

The magnetic potentials can be found as solutions of Newmann problems

⎧{
⎨{⎩

Δ1
𝜖
𝑣𝑒 + 𝜇𝐻𝑧 = 0 in 𝑆 × 𝑍 × 𝑇 ,

𝜕𝑛𝑣𝑒 = 0 on 𝜕𝑆 × 𝑍 × 𝑇
(5)

and
⎧{
⎨{⎩

Δ𝜇𝑣ℎ + 𝜇𝐻𝑧 = 0 in 𝑆 × 𝑍 × 𝑇 ,

𝜕𝑛𝑣ℎ = 0 on 𝜕𝑆 × 𝑍 × 𝑇 .
(6)
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In this case from Maxwell’s equations it follows that

𝜕𝑡 ∬
𝑆

𝜇𝐻𝑧𝑑𝑥𝑑𝑦 = 𝜕𝑧 ∬
𝑆

𝜇𝐻𝑧𝑑𝑥𝑑𝑦 = 0. (7)

In problems of monochromatic wave propagation 𝜕𝑡 is equivalent to multi-
plication by the number 𝑖𝜔, therefore from (7) the solvability of the above
problems with the Neumann conditions follows.

The rest two equations can be written in the form

⎧{{
⎨{{⎩

Δ𝜖 (𝜕2
𝑧 𝑢𝑒 − 𝜕2

𝑡 𝑢ℎ − 𝐸𝑧) = 𝜕𝑧𝜕𝑡
𝜕(𝑣ℎ, 𝜖𝜇)
𝜕(𝑥, 𝑦)

,

Δ𝜇 (𝜕2
𝑧 𝑣ℎ − 𝜕2

𝑡 𝑣𝑒 − 𝐻𝑧) = −𝜕𝑧𝜕𝑡
𝜕(𝑢𝑒, 𝜖𝜇)
𝜕(𝑥, 𝑦)

.
(8)

Substituting here the expressions for the potentials in terms of the field
longitudinal components 𝐸𝑧 and 𝐻𝑧, which are obtained by solving the
problems (3)–(6), we rewrite this system in the form

(
̂𝐴𝑒 0

0 𝐵̂ℎ
) 𝜕2

𝑧 ⃗𝐹 − (
̂𝐴ℎ 0

0 𝐵̂𝑒
) 𝜕2

𝑡 ⃗𝐹 − (𝜖 0
0 𝜇

) ⃗𝐹 = ( 0 ̂𝐶
̂𝐶∗ 0

) 𝜕𝑧𝜕𝑡 ⃗𝐹 , (9)

where as an unknown we consider ⃗𝐹 = (𝐸𝑧, 𝐻𝑧)𝑇, composed of the field

longitudinal components. Here ̂𝐴𝑒, … , 𝐵̂ℎ are symmetric positively defined

integral operators acting in 𝐿2(𝑆), and ̂𝐶 is a non-symmetric integral operator.
This operator makes impossible the separation of the problem into two
independent problems, due to which the hybridization of modes occurs. We
will call it a hybridization operator.

4. Normal modes of a waveguide

Normal mode (1) corresponds to a solution of the system (9) in the form

𝐸𝑧 = 𝐸𝑧(𝑥, 𝑡)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡, 𝐻𝑧 = 𝐻𝑧(𝑥, 𝑡)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡.

Taking the dependence on 𝑧, 𝑡 into account, we can formulate the problem
of finding the normal modes of the waveguide as an eigenvalue problem

𝛽2 (
̂𝐴𝑒 0

0 𝐵̂ℎ
) ⃗𝐹 − (

̂𝐴ℎ 0
0 𝐵̂𝑒

) ⃗𝐹 + 1
𝑘2 (𝜖 0

0 𝜇
) ⃗𝐹 = 𝛽 ( 0 ̂𝐶

̂𝐶∗ 0
) ⃗𝐹 (10)

with respect to the spectral parameter 𝛽.
Thus the problem of finding normal modes reduces to the analysis of the

spectrum of the polynomial operator pencil

̂𝐴2𝛽2 + ̂𝐴1𝛽 + ̂𝐴0, (11)
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where the coefficients ̂𝐴0,
̂𝐴1,

̂𝐴2 are self-adjoint operators with respect to

a scalar product in 𝐿2(𝑆) × 𝐿2(𝑆); the senior coefficient ̂𝐴2 is a positively

defined and completely continuous operator; the operator ̂𝐴1 is completely

continuous and the operator ̂𝐴0 is bounded and reversible. The pencils of
such form arouse in the linear theory of small damped oscillations and were
studied by M.G. Krein and G. K. Langer [13, §12].

5. Conclusion

By introducing four potentials, we were able to reduce the problem of wave
propagation in a waveguide filled with an inhomogeneous substance to a linear
second-order partial differential equation (9), the coefficients of which are
self-adjoint operators. In this case, the problem of finding normal waves is
reduced to studying the spectrum of the quadratic operator pencil (11). Thus,
the formulation of the eigenvalue problem retains the symmetry characteristic
of scalar eigenvalue problems.

This means, first of all, that with discretization by the truncation method,
we obtain a problem for the eigenvalues   of a quadratic self-adjoint matrix
pencil. By means of the known procedure [13, §12] it can be reduced to

the generalized eigenvalue problem ̂𝐴𝑢 = 𝛽𝐵̂𝑢, where ̂𝐴, 𝐵̂ are self-adjoint
matrices. This opens up possibilities for using specialized eigenvalue solvers.

The proposed formulation is also convenient for theoretical research, since
the physical meaning of its terms is clear. In particular, the linear element of
the pencil describes the hybridization of modes in a waveguide filled with an
optically inhomogeneous medium. A natural next step will be to study the
perturbation of a hollow waveguide by a weakly inhomogeneous substance.
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Нормальные моды волновода как собственные
векторы самосопряжённого операторного пучка
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В статье рассматривается волновод постоянного односвязного сечения 𝑆 при
условии, что заполняющее волновод вещество характеризуется диэлектрической
и магнитной проницаемостями, меняющимися плавно на сечении 𝑆, но посто-
янными вдоль оси волновода. На стенках волновода взяты условия идеальной
проводимости. На основе найденного ранее представления электромагнитно-
го поля в таком волноводе при помощи четырёх скалярных функций — двух
электрических и двух магнитных потенциалов — уравнения Максвелла записа-
ны относительно потенциалов и продольных компонент поля. Из этой системы
удаётся исключить потенциалы и записать пару интегро-дифференциальных
уравнений относительно одних продольных компонент, расщепляющихся на два
несвязанных волновых уравнения в оптически однородном случае. В оптически
неоднородном случае этот подход позволяет свести задачу об отыскании нормаль-
ных мод волновода к исследованию спектра квадратичного самосопряжённого
операторного пучка.

Ключевые слова: волновод, нормальные моды, гибридизация нормальных мод,
задача на собственные значения, квадратичные пучки
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Time Series Forecasting has always been a very important area of research in many
domains because many different types of data are stored as time series. Given the
growing availability of data and computing power in the recent years, Deep Learning
has become a fundamental part of the new generation of Time Series Forecasting
models, obtaining excellent results.

As different time series problems are studied in many different fields, a large
number of new architectures have been developed in recent years. This has also been
simplified by the growing availability of open source frameworks, which make the
development of new custom network components easier and faster.

In this paper three different Deep Learning Architecture for Time Series Forecasting
are presented: Recurrent Neural Networks (RNNs), that are the most classical and
used architecture for Time Series Forecasting problems; Long Short-Term Memory
(LSTM), that are an evolution of RNNs developed in order to overcome the vanishing
gradient problem; Gated Recurrent Unit (GRU), that are another evolution of RNNs,
similar to LSTM.

The article is devoted to modeling and forecasting the cost of international air
transportation in a pandemic using deep learning methods. The author builds time
series models of the American Airlines (AAL) stock prices for a selected period using
LSTM, GRU, RNN recurrent neural networks models and compare the accuracy
forecast results.

Key words and phrases: neural networks, financial forecasting, deep learning,
international air travel

1. Introduction

In 2020, there was a significant drop in quotations of American Airlines
(AAL) associated with the COVID-19 pandemic and a record-breaking de-
crease in the number of air travel in the world. The generally accepted
econometric methods of modeling and forecasting financial time series in
these conditions turned out to be ineffective for making even short-term fore-
casts [1], [2]. In the present paper, methods for modeling and forecasting
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international air traffic in the 2019–2020 pandemic are explored using recur-
rent neural networks with different architectures. As an object of research,
the day quotes of the American company AAL, traded on the NASDAQ ex-
change, were selected; data from September 27, 2005 to September 30, 2020
from the information portal Yahoo Finance [3] were taken. The shares of this
US company were selected due to its leading positions in the international air
transportation market, high values of the trading turnover on the NASDAQ
exchange, which in turn provides liquidity and shows investor interest in this
exchange commodity [4]. Using the example of the value of AAL shares, we
will try to build a reliable forecast using deep learning methods, in particular,
recurrent neural networks [5]–[7].

2. Pre-processing of input data

As input data for the neural network model, we will take a sequence
consisting of the following values:

— Opent-1 — opening price for the previous period;
— Lowt-1 — the minimum price for the previous trading day;
— Hightt-1 — the maximum price for the previous trading day;
— Volumet-1 — the amount of shares sold and bought for the previous

trading day;
— Closet-1 — closing price for the previous trading day.

Based on the input data, neural networks will generate an output value
that can be interpreted as the predicted value of the closing quotation today.
For the correct operation of neural networks, it is necessary to normalize the
data within the limits of [0 ∶ 1], as well as create training and test samples in
the ratio 80:20 from the initial data having the dimension 3636. Thus, 2909
observations for the training sample and 727 observations for the test sample
were obtained. The table 1 shows a fragment of the input data.

It is necessary to remove the Date and Adj Close columns from the received
data. The table 2 presents descriptive statistics of input data. It is seen that
the average closing price is $27.13 and the standard deviation is $16.74.

To study the statistical properties of the data further, let us build scatter
diagrams of the profitability of the opening price and the closing price, as well
as the profitability of the closing price shifted by one lag, and the closing price
today. To calculate the profitability, we will use the following formula [8]–
[10]:

𝑅 = 𝑦𝑡
𝑦𝑡−1

− 1, (1)

where 𝑅 is the profitability; 𝑦𝑡–1 is the previous observation value; 𝑦𝑡 are the
values for the current time period.

The scatter diagram of the profitability of the opening and closing prices is
shown in the figure 1.

The figure 1 shows that there is no correlation between the variables under
consideration. Next, we will construct a histogram of the distribution of the
profitability of closing prices (figure 2). Obviously, most of the observations
are in the range from −0.1 to 0.1. This means that in most observations, the
price changed from −10% to 10% in one period.
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Table 1

A fragment of the input data

Obser-

vation

num-

ber

Date Open, $ High, $ Low, $ Close, $ Adj

Close1, $

Volume, $

0 27.09.2005 21.05 21.4 19.1 19.3 18.19 961200

1 28.09.2005 19.3 20.53 19.2 20.5 19.33 5747900

2 29.09.2005 20.4 20.58 20.1 20.21 19.05 1078200

3 30.09.2005 20.26 21.05 20.18 21.01 19.81 3123300

4 3.10.2005 20.9 21.75 20.9 21.5 20.27 1057900

... ... ... ... ... ... ... ...

3634 6.03.2020 15.02 17.12 14.8 15.97 15.97 54505000

3635 9.03.2020 14.87 15.79 14.46 14.75 14.75 42558000

3636 10.03.2020 15.82 17.67 14.61 17 17 56858200

Table 2

Descriptive statistics of input data

Indicators Open High Low Close Volume

Total number of obser-

vations

3637 3637 3637 3637 3.637e+03

Mean value, $ 27.15 27.64 26.64 27.13 7.603118e+06

Standard deviation, $ 16.74 16.95 16.53 16.74 6.070650e+06

Minimal value, $ 1.81 2.03 1.45 1.76 1.385e+05

25% percentile, $ 9.57 9.81 9.32 9.58 4.1782e+06

50% percentile, $ 29.9 30.48 29.28 29.89 6.5025e+06

75% percentile, $ 41.74 42.24 41.02 41.68 9.5455e+06

Maximum value, $ 62.7 63.27 62 62.95 1.377672e+08

To test the hypothesis about whether the distribution of the closing price
profitability is a special case of the normal distribution, we use the Shapiro–
Wilk and Jarque–Bera tests. The Jarque–Bera test rejected the null hypothesis
at a significance level of 𝑎 = 0.05. The results of the Shapiro–Wilk test and
the Jarque–Bera test coincided. This means that the profitability of closing
prices has a distribution that is different from the normal one.
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Figure 1. Scatter diagram of opening and closing prices

Figure 2. Distribution of closing price profitability

To check the stationarity of the profitability series, we will use the Dickey–
Fuller test, which is one of the unit root tests. A time series has a unit root if
its first differences form a stationary series, i.e. a series whose properties do
not change over time. This condition is written as 𝑦𝑡 ∼ 𝐼(1) if the series of
the first differences Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 is a stationary series Δ𝑦 ∼ 𝐼(0) [11]. If
the time series has a unit root, then it is not a stationary time series, but an
integrated first-order time series [12]–[14]. As one would expect, the observed
time series has no unit roots and, therefore, is stationary. For the convenience
of using the input data, we will normalize them. The results are presented in
the table 3.
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Table 3

Normalized raw data

Number of

observation

Open High Low Close Volume

0 0.31598 0.316297 0.291495 0.286648 0.005978

1 0.287239 0.30209 0.293146 0.306259 0.040757

2 0.305305 0.302907 0.30801 0.30152 0.006828

3 0.303005 0.310581 0.309331 0.314594 0.021687

4 0.313516 0.322012 0.321222 0.322602 0.00668

... ... ... ... ... ...

3634 0.216949 0.246408 0.220479 0.232227 0.395023

3635 0.214485 0.22469 0.214864 0.21229 0.308217

3636 0.230087 0.255389 0.217341 0.24906 0.412121

Next, we turn to the description of the main models of recurrent neural
networks and their application in the analysis of financial time series.

3. Basic models of deep neural networks for simulation
of financial time series

3.1. Basic recurrent neural network

The architecture of the proposed basic recurrent neural net (RNN) is as
follows. A matrix with a dimension of 1 by 5 is fed to the input of the neural
network, then the values are transferred to a recurrent layer with 25 neurons,
after which the operation is repeated and the values are again fed to the
recurrent layer with 25 neurons. At the penultimate step, the values are
transferred to an aggregating layer with a dimension of 5 neurons, the result
is displayed as a predicted value. Hidden layers have a hyperbolic tangent as
an activation function. This activation function is nonlinear, which allows
layers to be linked, i.e. combines them, because the combination of non-linear
functions is also a non-linear function. Another advantage of the hyperbolic
tangent function is that it is a smooth function, and this function is not
binary and takes values in the range (–1, 1), which eliminates overloading
from large values. The hyperbolic tangent is very similar to the sigmoid with
the difference that it has a larger gradient than the sigmoid. On the aggregate
layer, a linear function is used as the activation function. The proposed neural
network model, all procedures for its training and testing were implemented
in the Keras library of the Python programming language [15].
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The mean squared error (MSE) will be used as the loss function, and the
optimization is performed using the Adam algorithm. The epoch parameter
of the fit function reflects how many times the sample is passed through
the neural network, in this case epoch = 150. The batch_size parameter is
responsible for the size of the so-called batch. In cases where the training
sample is too large, there is a need to divide it into parts. These parts are
called batches. Thus, the training set with 2109 observations is divided into
210 batches with a size of 10, except for the last one with 9 observations.
Thus, 210 iterations were required to pass one epoch.

Due to the tendency of recurrent neural networks to overfit, it is necessary
to apply various regularization algorithms [10], [16]. As such an algorithm,
the early stop method is used, which tracks the amount of losses. If during
20 epochs the improvement is less than 0.000002, then the training of the
model will be stopped. The graph of the loss function on the training sample
is shown in the figure 3.

Figure 3. Plot of the RNN learning loss function:

1 — train loss; 2 — validation loss

After checking and training the neural network, we will construct a forecast
of closing prices for the test sample. For a better visual appearance, the
predicted values are shifted ten units up. Let us display the forecast of the
last 50 observations of the test sample for a more accurate visual examination
(figure 4). It can be seen from the figure that the neural network predicts
closing prices closely enough.

3.2. Neural network with a gated recurrent unit

A recurrent neural network based on a cell architecture with a gated
recurrent unit (GRU) repeats the structure of the RNN model of a recurrent
network. The input layer takes the values of a matrix with a dimension of 1
by 5. Then, recurrent layers with 25 neurons and a hyperbolic tangent as an
activation function are sequentially accepted and processed.
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Figure 4. Forecast of the closing price for the last 50 values of RNN model network:

1 — real values stock price; 2 — forecast price

The aggregating layer has 5 neurons with a linear activation function. After
processing by the last layer, the predicted value is supplied. It should be noted
that the default activation function for layers with the GRU architecture is
the hyperbolic tangent [16], [17]. The loss plot for the GRU recurrent neural
network is shown in the figure 5.

Figure 5. Loss plot for GRU model network:

1 — train loss function; 2 — validation loss function

The early stop regularization terminated the training of the neural network
to prevent overfitting at epoch 72. The plot of predicted closing prices for
all observations of the model of a recurrent neural network with the GRU
architecture is shown in the figure 6. As in the case of the RNN, to facilitate
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visualization the predicted values have been shifted ten units upward. It is
also worth noting that the neural network accurately reproduced the closing
price behavior. For a detailed consideration, we take the last 50 values of the
test sample and display them in the figure 7.

Figure 6. Closing price forecast for the entire GRU test sample:

1 — real values stock price; 2 — forecast stock price

Figure 7. Closing price forecast for the last 50 values of GRU:

1 — real values of stock prices; 2 — forecast stock prices

The mean square forecast error and the R2 index have the following values:
MSE = 0.9953, 𝑅2 = 0.9885.
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3.3. Neuron network with long short-term memory (LSTM)

Just like the previous networks, constructively recurrent neural network
with long short-term memory (LSTM) will repeat the previous values. An
input that accepts a 1-by-5 matrix transmits information to two recurrent
layers with 25 neurons per layer and a hyperbolic tangent as an activation
function. Then an aggregating layer of five neurons with a linear activation
function passes the value to the output layer.

The closing price prediction plot calculated using a recurrent neural network
with the LSTM architecture is shown in the figure 8.

Figure 8. LSTM model network loss plot:

1 — train loss function; 2 — validation loss function

Forecasted values are shifted ten points. Based on the plot, we can conclude
that the neural network under consideration predicts the required values quite
accurately.

The forecast of the closing price for the entire LSTM test sample and for
the last 50 values is shown in figures 9 and 10 respectively. For this recurrent
neural network, MSE = 0.8508, 𝑅2 = 0.99.

Let us display a comparative plot of losses during training of various
constructions and architectures of the considered neural networks (figure 11).
Note that the RNN recurrent neural network demonstrated the highest loss
rates on the training set. Except for separately taken random epochs, its loss
value was greater than that of the rest. LSTM and GRU recurrent neural
networks have close values of losses on the training set. It is worth noting
that the early stopping algorithm worked for all types of recurrent neural
networks. For the RNN model, the algorithm stopped training at 71 epochs,
for GRU — at 72. The least number of epochs – 62 — was required to train
the neural network built using the LSTM architecture.

The table 4 shows the values of the mean square error and the coefficient
𝑅2 for all constructed neural networks.
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Figure 9. Forecast of the closing price for the entire LSTM model network test sample:

1 — Real values stock prices; 2 — forecast stock prices

Figure 10. Forecast of the closing price of the last 50 values of LSTM model network:

1 — Real values stock prices; 2 — forecast stock prices
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Figure 11. Plot of losses for different models of neural networks:

1 — LSTM model loss function; 2 — RNN model loss function; 3 — GRU model loss

function

Table 4

Values of MSE и 𝑅2 for all constructed neural networks

Neural network MSE 𝑅2

RNN 1.2232 0.9858

GRU 0.9953 0.9885

LSTM 0.8508 0.9901

4. Discussion of results of computer experiments

In the process of investigating the impact of the COVID-19 pandemic on
AAL stock quotes, recurrent neural network models were built with various
architectures, such as cells with long short-term memory LSTMs, cells with
gated recurrent unit GRU, and a basic recurrent network. The analysis of the
constructed models was carried out, as well as the comparison of the results
on the training and test data. During the analysis, it was found that the
neural network with long short-term memory cells (LSTM) coped best with
the task of predicting the data under study.

Summing up, we can say that all networks have shown a satisfactory result,
but they predict the price with a certain delay, which may entail unplanned
financial losses. In view of this, it can be concluded that these models are
not suitable for carrying out short-term operations in the financial market,
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are not able to serve as an indicator that helps to improve the efficiency of
a trading strategy and cannot be used for risk management tasks.

5. Conclusion

The purpose of the article was to investigate the quality of various neural
network models that predict the closing price of a stock. In the course of the
study, sufficiently accurate results of modeling and forecasting financial time
series for the intraday closing prices of shares of the American airline ALL
were obtained, which confirmed the effectiveness of using the proposed models
of deep neural networks. However, in the context of the practical application
of the developed models, it is necessary to take into account time delays in
obtaining forecast results, as well as the horizon of financial forecasting.
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Исследование влияния пандемии COVID-19
на международные авиаперевозки

Е. Ю. Щетинин

Финансовый университет при Правительстве Российской Федерации
Ленинградский проспект, д. 49, Москва, 125993, Россия

Прогнозирование временных рядов играет важную роль во многих областях
исследований. Вследствие растущей доступности данных и вычислительных
мощностей в последние годы глубокое обучение стало фундаментальной частью
нового поколения моделей прогнозирования временных рядов, получающих
отличные результаты.

В данной работе представлены три различные архитектуры глубокого обу-
чения для прогнозирования временных рядов: рекуррентные нейронные сети
(RNN), которые являются наиболее известной и используемой архитектурой для
задач прогнозирования временных рядов; долгая краткосрочная память (LSTM),
которая представляет собой обобщённую и развитую РНС, разработанную для
преодоления проблемы исчезающего градиента; закрытый рекуррентный блок
(GRU), который является ещё одной эволюционной моделью РНС.

Статья посвящена моделированию и прогнозированию стоимости международ-
ных авиаперевозок в условиях пандемии с использованием методов глубокого
обучения и моделей рекуррентных сетей. В работе построены модели временных
рядов цен акций American Airlines (AAL) с использованием моделей рекуррент-
ных нейронных сетей LSTM, GRU, RNN и проведён сравнительный анализ
результатов точности прогноза на выбранный период. Его результаты показа-
ли эффективность применения алгоритмов глубокого обучения для оценивания
точности прогнозирования временных рядов.

Ключевые слова: нейронные сети, финансовое прогнозирование, глубокое
обучение, международные авиаперевозки
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Efficient allocation of radio access network (RAN) resources remains an important
challenge with the introduction of 5G networks. RAN virtualization and division
into logical subnetworks – slices – puts this task into a new perspective. In the paper
we present a software tool based on the OMNeT++ platform and developed for
performance analysis of a network slicing policy with SLA-based slice performance
isolation. The tool is designed using the object-oriented approach, which provides
flexibility and extensibility of the simulation model. The paper briefly presents the
slicing policy under study and focuses on the simulator’s architecture and design.
Numerical results are provided for illustration.

Key words and phrases: queuing system, resource allocation, network slicing,
simulation, optimization

1. Introduction

Network slicing is a key next-generation networking technology that allows
multiple virtual subnetworks to be built over a shared physical infrastructure.
The virtual subnetworks are then configured to meet the specific needs of
applications, services, devices, customers, or virtual network operators. This
approach makes it possible to implement in practice flexible configuration
and infrastructure management, which make part of the requirements for
new generation networks [1]. This concept allows the infrastructure provider
to lease network slices to tenants. These relationships are governed by the
Service Level Agreements (SLA). Efficient use of network bandwidth and
adherence to the terms of these agreements provides economic benefits to all
parties. Guaranteeing slice isolation when allocating RAN radio resources
makes the problem of efficient resource allocation even more challenging.
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The emerging fifth generation (5G) telecommunication networks are en-
visioned to offer a large number of end-to-end network services for various
applications. These stem not only from traditional mobile services, but also
from vertical market segments such as automatic driving, unmanned aerial
vehicles, telemedicine, massive Internet of Things (mIoT), etc. To provide
services with so different requirements for the quality of service (QoS), it is
crucial to be able to implement specific virtual subnetworks by using network
slicing, since fourth generation (4G) networks with their one-fits-all paradigm
are no longer fitted for the task [2], [3].

In this paper, we propose a simulation model as a reusable, versatile tool
for evaluating slicing policies for next-generation network resource sharing.
The rest of the article is structured as follows. Section 2 presents the system
model. In Section 3 we briefly present the slicing policy under study, which
was initially proposed by the authors in [4]. Further, it is considered in terms
of queuing theory in Section 4. Section 5 explains the architecture of the
simulator. The experimental results are discussed in Section 6. Finally, in
Section 7, conclusions are drawn and future work is outlined.

2. System model and notation

Following [4], [5], we consider the downlink transmission of a 5G base
station (BS) with a virtualized RAN and network slicing. We assume that
there are 𝑆 instantiated slices at the BS and denote their set by S , |S | = 𝑆.
Let 𝐶𝑠[𝐺𝑏𝑝𝑠] ⩾ 0 denote the capacity of slice 𝑠 ∈ S , so that

∑
𝑠∈S

𝐶𝑠 ⩽ 𝐶, (1)

where 𝐶[𝐺𝑏𝑝𝑠] is the total BS capacity. Let 𝑁𝑠 denote the number of users in

slice 𝑠 ∈ S , and let N = (𝑁𝑠)𝑠∈S . We assume that each slice is intended for
one type of services (e.g., for video streaming, video conferencing, gaming, file
transfer, web browsing), and hence the traffic in each slice is homogeneous
in terms of characteristics and QoS requirements. Let 𝑅𝑠[𝐺𝑏𝑝𝑠] denote the

average user data rate in slice 𝑠, i.e.,

𝑅𝑠 = 𝐶𝑠
𝑁𝑠

, 𝑠 ∈ S . (2)

The column vector of data rates is denoted by R[𝑆×1] = (𝑅𝑠)𝑠∈S .

It is assumed that the infrastructure provider (InP) leases parts of its in-
frastructure in the form of slices to tenants. A Service Level Agreement (SLA)
between the InP and the tenant includes the following slice characteristics:

— a minimum average user data rate 0 < 𝑅min
𝑠 ⩽ 𝑅𝑠,

— a maximum average user data rate 𝑅𝑠 ⩽ 𝑅max
𝑠 ⩽ 𝐶,

— a guaranteed capacity share 𝛾𝑠 or contracted number of users 𝑁 cont
𝑠 .
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We assume that performance isolation of slice 𝑠 is provided as long as

𝑁𝑠 ⩽ 𝑁 cont
𝑠 , or equivalently,

𝑁𝑠𝑅min
𝑠

𝐶
⩽ 𝛾𝑠, 0 ⩽ 𝛾𝑠 ⩽ 1. (3)

By performance isolation we understand that traffic fluctuation in one slice
does not negatively affect performance in other slices.

3. Slicing scheme

The calculation of slice capacities is performed according to the slicing
scheme with SLA-based isolation [4].

Let us partition Ω = ℕ𝑆 as

Ω = Ωmax ∪ Ωopt ∪ Ωcong. (4)

Now, for N ∈ Ωmax def= {N ∈ Ω ∶ NRmax ⩽ 𝐶} we set

𝑅𝑠(N) = 𝑅max
𝑠 , 𝑠 ∈ S ⟹ 𝐶𝑠(N) = 𝑁𝑠𝑅max

𝑠 , 𝑠 ∈ S ,N ∈ Ωmax. (5)

For N ∈ Ωopt def= {N ∈ Ω ∶ NRmin ⩽ 𝐶 < NRmax} we determine the data
rates as the solution to the convex programming problem

maximize 𝑈(R) = ∑
𝑠∈S

𝑊𝑠(𝑁𝑠)𝑁𝑠 ln(𝑅𝑠), (6)

subject to NR = 𝐶, (7)

over R ∈ ℝ𝑆
+ ∶ 𝑅min

𝑠 ⩽ 𝑅𝑠 ⩽ 𝑅max
𝑠 , (8)

where 𝑊𝑠(𝑁𝑠) is given by

𝑊𝑠(𝑁𝑠) = {
1, 𝑁𝑠 ⩽ 𝑁 cont

𝑠

𝑁 cont
𝑠 /𝑁𝑠, 𝑁𝑠 > 𝑁 cont

𝑠
(9)

The objective function (6) is differentiable and strictly concave by assump-
tion and the feasible region (7), (8) is compact and convex, there exists
hence a unique maximum for the data rate vector 𝑅𝑠, which can be found by
Lagrangian methods.

Now consider N ∈ Ωcong def= {N ∈ Ω ∶ NRmin > 𝐶}. Denote 𝑁min
𝑠 (N) def=

min{𝑁𝑠, 𝑁 cont
𝑠 }𝑠∈S . Thus NminRmin is a due capacity. If NminRmin ⩾ 𝐶,

we set

𝐶𝑠(N) = 𝑁min
𝑠 𝑅min

𝑠
NminRmin

𝐶. (10)

If, conversely, NminRmin < 𝐶, then

𝐶𝑠(N) = 𝑁min
𝑠 𝑅min

𝑠 + (𝑁𝑠 − 𝑁min
𝑠 )𝑅min

𝑠
(N−Nmin)Rmin

(𝐶 −NminRmin). (11)
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To solve the problem (6)–(8) numerically, we use the gradient projection
method (Algorithm 1).

Algorithm 1: Numerical solution of (6)–(8) using the Gradient Pro-
jection Method

input :𝐶, 𝑆,N,Rmin,Rmax,N𝑐𝑜𝑛𝑡

output :R
1 initialization

2 W ∶= [𝑊1(𝑁1), ..., 𝑊𝑆(𝑁𝑆)]
3 Xstat ∶= W𝐶(WN)−1

// stationary point

4 if 𝑅min
𝑖 ⩽ 𝑋𝑠𝑡𝑎𝑡

𝑖 ⩽ 𝑅max
𝑖 , 𝑖 = 1, 𝑆 then

5 return Xstat

6 M[1×𝑆] ∶= N

7 P[𝑆×𝑆] ∶= I−N𝑇(NN𝑇)−1
N

8 X0 ∶= Rmin + (𝐶 −NRmin)(N(Rmax −Rmin))−1(Rmax −Rmin)
9 𝜏 ∶= ||X0 −Xstat||; 𝛿 ∶= 1
10 while 𝛿 > 0.0001 do
11 X1 ∶= X0 + 𝜏P div(N𝑇W,X0) // div(A, B) is

element-wise division of vector 𝐴 by 𝐵
12 𝑡bound ∶= 2; 𝑡coord ∶= −1; 𝛿+ = 0
13 for 𝑖 = 1, 𝑆 do
14 if 𝑁𝑖 > 0 then
15 if 𝑋1

𝑖 < 𝑅min
𝑖 then

16 if 𝑡bound > (𝑅min
𝑖 − 𝑋0

𝑖 )(𝑋1
𝑖 − 𝑋0

𝑖 )−1
then

17 𝑡bound ∶= (𝑅min
𝑖 − 𝑋0

𝑖 )(𝑋1
𝑖 − 𝑋0

𝑖 )−1; 𝑡coord ∶= 𝑖

18 if 𝑋1
𝑖 > 𝑅max

𝑖 then

19 if 𝑡bound > (𝑅max
𝑖 − 𝑋0

𝑖 )(𝑋1
𝑖 − 𝑋0

𝑖 )−1
then

20 𝑡bound ∶= (𝑅max
𝑖 − 𝑋0

𝑖 )(𝑋1
𝑖 − 𝑋0

𝑖 )−1; 𝑡coord ∶= 𝑖

21 if 𝑡bound < 2 then
22 X1 ∶= X0 + 𝑡bound(X1 −X0)
23 if Row number of M < 𝑆 − 1 then
24 Add empty row to M
25 𝛿+ ∶= 1
26 Last row of M ∶= I[𝑡coord]
27 if ||MM𝑇|| > 0.0000001 then
28 P ∶= I−M𝑇(MM𝑇)−1M

29 𝛿 ∶= 𝛿+ + ||X0 −X1||;X0 ∶= X1

30 return X0

The gradient projection method is a well-known algorithm for solving op-
timization problems with linear constraints. It is specified by a standard
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iterative procedure [6]: Xk+1 = Xk + 𝜏dk, where Xk is the point at which

the algorithm arrived at the 𝑘-th iteration, 𝜏 — the stepsize, dk — the incre-
ment vector, which is found as the projection of the target function gradient

on the constraints: dk = 𝑃∇𝑈(Xk), where the projection matrix is initially

given by 𝑃 = I−N𝑇(NN𝑇)−1
N.

4. Queuing system model

We use queuing theory to model the system described in the Section 2.
Each slice is modeled as a separate queuing systems (QS). The types of QS
must be selected in such a way as to adequately reflect the nature of the
service provided. Jobs in QSs correspond to user sessions in slices. Since in
the system model the slices are part of a single network of a total capacity 𝐶,
the 𝑆 queuing systems share a total resource (capacity) 𝐶, which is partitioned
so that the resource share available to QS 𝑠 equals 𝐶𝑠.

At the moment, we have implemented a slice of a Best Effort (BE) type
without admission control and with maximum user data rate, which we denote
by 𝐵𝐸max. It is represented by a QS with the EPS (egalitarian processor
sharing) service discipline. The job service rate 𝑅𝑠 of all jobs is equal and
inversely proportional to their number 𝑁𝑠, but cannot exceed 𝑅max

𝑠 . Serving
jobs in such a QS can be interpreted as downloading files.

Network slicing from this perspective corresponds to a repeated redistribu-
tion (re-slicing) of the capacity 𝐶 among otherwise independent QSs. The
considered model is shown in figure 1, where 𝐴𝑠(𝑥) is the distribution law of
the interarrival times, 𝐵𝑠(𝑥) is the distribution law of the job lengths (service
time on one resource unit) for 𝑠 ∈ S .

...
...

...

C1

A1(x), B1(x)

CS

...

C

BE slice #1

BE slice #S

Resource allocation
by event or timer

As(x), Bs(x)

Figure 1. A system with S slices of type 𝐵𝐸max
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It should be noted that in our model admission control and resource
allocation within a slice are individual characteristics for each type of slice.
For the 𝐵𝐸max considered in this work, we assume the same service rate
for all users (jobs) and unlimited admission (any number of jobs in service).
Since this type of slice lacks admission control and queue, it makes sense to

introduce a service level degradation threshold (0 ⩽ 𝑅𝑑
𝑠 ⩽ 𝐶) to assess the

efficiency of the slicing scheme. This parameter sets the threshold for job
service rate in the slice, below which degradation of service occurs, the service
is provided poorly. Slice degradation can occur as a result of user arrival
and/or redistribution of capacity.

For simplicity, in what follows, the terms slice and queuing system will be
used interchangeably.

5. Simulator architecture

5.1. Modules

The discrete event simulator is written on the OMNeT++ platform using
the queuinglib standard library. The implementation of the algorithm for
solving the optimization problem for the slicing scheme required the inclusion
of Boost library for operations with matrices. The construction of a simulation
model in OMNeT++ assumes a modular structure, and also allows the use of
both standard and modified modules (figure 2).

BestEffortSliceBestEffortSlice

SlicerSlicer

-slices: Slice[S]

+reslice()

-sink: Sink

SliceSlice

+n: int // number of requests
+capacity: float
+d: float // degradation threshold
#lambda: float // average time 
between arrival of requests
#mu: float // average service time 
of a request per resource unit

+C: float // total BS capacity
-S: int // number of slices

-reslicingTrigger: int

-gamma: float[S] // guaranted 
capacity share

-b: float[S] // min bitrate
-a: float[S] // max bitrate

-resliceInitial()
+emitUTIL()

-source: Source

-delay: ElasticTrafficDelay

ElasticTrafficDelayElasticTrafficDelay

// our modification to handle 
elastic traffic

DelayDelay

// standard class implementation 
in queuinglib +serviceRate: float
-currentlyStored: int // number of 
requests served

+adjustRate()

-getNewServiceRate()

Figure 2. UML diagram of classes developed for the simulator based on the queuinglib

standard library
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To achieve the required level of abstraction, we have developed two modules:

— is a container consisting of simple modules inside that form a QS. For
different types of slices, the way of servicing jobs (users), and as a con-
sequence, the internal structure is not strictly defined and can vary
greatly. However, all types of slices are inherited from a common an-
cestor, which defines the required external parameters that are used to
receive the initial data of the model (table 1), and the characteristics
that are passed to the slicer as re-slicing parameters, which collected to
vectors: N,Rmin,Rmax.

— is a simple module that handles requests for capacity re-slicing from
slices. The slicer also performs initial re-slicing of the capacity by formula
(12). Slices and slicers communicate via channels — standard OMNeT++
technology.

Let us take a closer look at the table 1. First, the structural characteristics
of the model are determined, such as the number of slices and the type of
each one. Further, the distribution laws for the arrival of requests and their
service time are established, the parameters of the slices are selected, etc.

Table 1

Input data structure

Slicer

Total capacity 𝐶 float > 0

𝑆 int > 0

Re-slicing trigger { All events, Arrivals, Degradation, Timer, Static}

Timer interval 𝑡𝑡𝑖𝑚𝑒𝑟 float > 0

Slice 𝑖, 𝑖 = 1, 𝑆

𝑅min
𝑖 0 ⩽ float ⩽ 𝑅max

𝑖

𝑅max
𝑖 𝑅min

𝑖 ⩽ float ⩽ 𝐶

𝑅𝑑
𝑖 0 ⩽ float ⩽ 𝐶

𝛾𝑖 0 ⩽ float ⩽ 1

Distribution 𝐴𝑖(𝑥) {𝑈(𝑎, 𝑏), 𝐸𝑥𝑝(𝜆), 𝑁(𝑎, 𝜎2), Γ(𝛼, 𝛽),

Distribution 𝐵𝑖(𝑥) 𝑊(𝑘, 𝜆), 𝐵𝑒𝑡𝑎(𝛼, 𝛽), 𝐶𝑎𝑢𝑐ℎ𝑦(𝜃), 𝑃𝑎𝑟𝑒𝑡𝑜(𝛼), ...}

One of the parameters of the initial data is the way of invoking the re-
slicing — this is an event or message that occurs periodically during the
simulation, which is a condition for invoking the capacity re-allocation algo-
rithm. We consider re-slicing triggered by

— events:
– all events, i.e., job arrivals and departures (in our case this corre-

sponds to optimal real-time slicing),
– arrivals only,
– degradation in any slice;
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— timer (every 𝑡𝑡𝑖𝑚𝑒𝑟 s);
— static slicing (no re-slicing, corresponds to complete partitioning), where

the capacity of slice 𝑖 equals

𝐶𝑖 = 𝛾𝑖

∑𝑆
𝑗=1 𝛾𝑗

𝐶, 𝑖 ∈ S . (12)

Consider the implementation of 𝐵𝐸max slice type. Figure 3 shows a dia-
gram of the correspondence of the QS elements with software modules in
a slice, which include the Delay modification — ElasticTrafficDelay, and the
Source and Sink modules from the standard set provided by the OMNeT++
and queuinglib bundle.
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Figure 3. Scheme of logical correspondence of program classes with elements

of the 𝐵𝐸max QS

Consider them:

— Source is a basic generator of requests that correspond to users’ requests
for the provision of a service, according to specified distributions.

— Sink is a module that receives serviced jobs and destroys them. The Sink
collects all the primitive statistics on jobs, such as average, maximum,
minimum time spent in the system, average time in queue, etc.

— ElasticTrafficDelay extension was written for the standard Delay mod-
ule. This modification is intended to simulate the service of “elastic”
traffic, as the name of the module implies. With the help of standard
Delay, you can simulate the service of traffic on discrete devices: after
the arrival, the job is in the system for a certain time, and then goes
to the drain. ElasticTrafficDelay takes into account the presence of all
jobs on the device and equally distributes the available resource between
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them. Therefore, the standard module was extended with mechanisms
for recalculating the service rate (13) and departure time (Algorithm 2):

𝑅𝑖 =
⎧{
⎨{⎩

min( 𝐶𝑖
𝑁𝑖

, 𝑅max
𝑖 ), 𝑁𝑖 > 0,

0, 𝑁𝑖 = 0,
𝑖 ∈ S . (13)

Algorithm 2: Service rate recalculation into 𝐵𝐸max slice 𝑖.
class Job {

float 𝑡arr // is arrival time

float 𝑡dep // is departure time

...

}
input :𝑅𝑖, Job[𝑁𝑖] 𝑗𝑜𝑏𝑠 // set of jobs in slice 𝑖

1 𝑅prev ∶= 𝑅𝑖
2 𝑅𝑖 ∶= getNewServiceRate() // formula (13)

3 foreach job in jobs do
4 Delete 𝑗𝑜𝑏 from event queue
5 // 𝑡cur is model current time

6 𝑡serv ∶= |𝑗𝑜𝑏.𝑡arr − 𝑡cur| // how much is already served

7 𝑡𝑛𝑒𝑤
serv ∶= 𝑡serv

𝑅𝑝𝑟𝑒𝑣
𝑅𝑖

8 𝑗𝑜𝑏.𝑡dep ∶= 𝑡cur + 𝑡new
serv // set to job new service end time

9 Add 𝑗𝑜𝑏 in event queue

5.2. Simulation algorithm

Slices, in their essence, function independently of each other, however, as
mentioned earlier, the simulator is built on a discrete-event basis, so there is
a common queue of events. It contains all the events generated by the model
and is executed in the occurrence.

Depending on their type, slices, can generate many different events, but all
will be characterized by the following:

— arrival of a job in a slice;
— departure of a job from a slice;
— slice degradation;
— arrival of a job in a slice 𝑠 with zero resource 𝐶𝑠, 𝑠 ∈ S .

Only the events of the model cause a change in the state of the system,
which we designated as N. Therefore, re-slicing for all events is reduced
to tracking the events of arrival and departure of jobs. In our system, the
slices themselves notify the slicer of these events (figure 4). After capacity 𝐶
allocation, the slicer notifies the slices that their available resource 𝐶𝑠, 𝑠 ∈ S
has changed. On these notifications, the slices adjust the end time of servicing
their jobs in the event queue (Algorithm 2). If there are no jobs 𝑁𝑠 = 0
in the slice 𝑠, then after re-slicing it can be assigned a zero resource value
𝐶𝑠 = 0, which means that when the first request arrives, it will be necessary
to activate the slice, in other words, call re-slicing again.
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In the case when re-slicing is triggered by timer (figure 5), the slicer sends
messages to itself with the required delay 𝑡timer s. Since there is a chance that
the slice can receive zero resource, it became necessary to enter the activation
of the slice upon the arrival of the request in this case.
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if Ri < Rd

Figure 4. Interaction of slicer and slices when re-slicing triggered by all events (red)

or degradation (blue). Re-slicing is called only by a group of events of the same color

With static slicing, the slices receive resource proportionally, in accordance
with the values of 𝛾 by equation (12).

5.3. Metrics

The built simulator allows you to take indicators in various forms using the
built-in OMNeT++ tools, and more specifically using signals and statistics.
The signal (@signal) transmits information at the right moments in the form
of values  of primitive types: bool, int, float, etc., or more complex data objects
[7]. Statistics (@statistic) is a signal processing mechanism that allows you
to accumulate vectors of original data transmitted by signals and scalars
calculated by these vectors: sum, quantity, average, time average, maximum,
minimum, etc. Preset simulator settings allow you to take such indicators
like:

— average time spent in each module of the constructed QS inside slices
and in the network as a whole;

— average number of jobs in each module of the constructed QS within
slices and in the network as a whole;

— average service rate in slice;
— average number of jobs in slice, etc.
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Figure 5. Interaction of slicer and slices when re-slicing triggered by timer

As part of assessing the effectiveness of slicing, the following additional
indicators were taken:

— Slice degradation probability,

𝑃 deg
𝑠 = 𝑃{𝑅𝑠 < 𝑅𝑑

𝑠 } = lim
𝑇 →∞

1
𝑇

𝐷𝑠(𝑇 )

∑
𝑖=1

(𝑑𝑠,𝑖 − 𝑑𝑠,𝑖−1)ℋ{𝑅𝑠,𝑖 < 𝑅𝑑
𝑠 }, (14)

where 𝑠 ∈ S , 𝑇 is model time, 𝐷𝑠(𝑇 ) — counter of slice 𝑠 degradation

threshold 𝑅𝑑
𝑠 crossing (in any direction), 𝑅𝑠,𝑖 — time of the 𝑖-th rate

change, 𝑑𝑠,𝑖 — time of the 𝑖-th degradation threshold 𝑅𝑑
𝑠 crossing, and

ℋ is Heaviside step function.
— Average slice resource,

𝐶𝑠 = lim
𝑇 →∞

1
𝑇

𝐿𝑠(𝑇 )

∑
𝑖=1

(𝑐𝑠,𝑖 − 𝑐𝑠,𝑖−1)𝐶𝑠,𝑖, 𝑠 ∈ S , (15)

where 𝐿𝑠(𝑇 ) — counter of slice 𝑠 resource changes, 𝑐𝑠,𝑖 — moment 𝑖 of

changing resource 𝐶𝑠.
— Average duration of slice degradation period,

𝑡deg
𝑠 = lim

𝑇 →∞

1
𝐷𝑠(𝑇 ) + 1

𝐷𝑠(𝑇 )

∑
𝑖=1

(𝑑𝑠,𝑖 − 𝑑𝑠,𝑖−1)ℋ{𝑅𝑠,𝑖 < 𝑅𝑑
𝑠 }, 𝑠 ∈ S . (16)
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— Capacity utilization,

UTIL = 1
𝐶

∑
𝑠∈S

lim
𝑇 →∞

1
𝑇

𝑌𝑠(𝑇 )

∑
𝑖=1

(𝑦𝑠,𝑖 − 𝑦𝑠,𝑖−1)𝑁𝑠,𝑖𝑅𝑠,𝑖, 𝑠 ∈ S , (17)

where 𝑌𝑠(𝑇 ) — counter of slice 𝑠 service rate 𝑅𝑠 and number of jobs 𝑁𝑠
changes, 𝑦𝑠,𝑖 — moment 𝑖 of changing 𝑅𝑠 or 𝑁𝑠.

— Re-slicing frequency.
— Average duration of the re-slicing operation.

6. Numerical results

To illustrate the performance of the simulator, we consider five slices with
the parameters given in the table 2.

Table 2

Parameters’ values for the numerical example

Slicer

Total capacity 𝐶 8000

𝑆 5

Timer interval 𝑡𝑡𝑖𝑚𝑒𝑟 100s

Slice 𝑖 1 2 3 4 5

𝑅min
𝑠 = 𝑅𝑑

𝑖 , Mbps 2 5 25 50 30

𝑅max
𝑠 , Mbps 2.2 8 30 75 8000

𝛾𝑖 0.075 0.075 0.35 0.25 0.25

𝐴𝑖(𝑥) exp(𝜆)

Request interarrival time 𝜆−1, s 1.65 7.25 16 19 5

𝐵𝑖(𝑥) exp(𝜃)

Mean file size 𝜃−1, GB 0.3 1.2 2.5 5 1

Scenario is intended to demonstrate a system with an increased workload
in slices 1 and 2. The guarantees are selected in such a way, that slices 3 and
4 are the main donors of capacity.

Figure 6 illustrates how the degradation probability 𝑃 deg
𝑠 varies depending

on the re-slicing triggers for the cases under study. Static re-slicing gives
a high degradation probability in slice 1. For event triggers, we observe low
degradation probability (∼ 1%) for slices 1, 2, 4 and insignificant degradation
probability in 5. When re-slicing is triggered by timer, the slicer reacts to
the state of the system with a long delay, so there is an unacceptably high
probability of degradation in donor slices 3 and 4.
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The capacity utilization metric in figure 7 indicates that re-slicing upon
all events and arrivals provide the highest resource utilization and the lowest
waste of resources. This would be good if it were not for the fact that at
a much lower system utilization, re-slicing upon degradation yields the same
efficiency in terms of degradation probability.

Let us take a look at such an important indicator as the frequency of
re-slicing calls. Figure 8 additionally confirms the efficiency of re-slicing upon
degradation compared to re-slicing upon all events and arrivals, and even by
timer. For all triggers, as expected, slicing takes roughly the same amount of
time, averaging 0.04 ms.
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Figure 6. Slice degradation probability for different re-slicing triggers
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Figure 7. System utilization for different re-slicing triggers
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Figure 8. Re-slicing frequency for different re-slicing triggers

Let us consider the average share of capacity 𝐶𝑠 allocated to each slice
depending on the re-slicing trigger (figure 9). As we see, slices 1 and 2
receive significantly more capacity with frequent re-slicing than indicated in
the SLA — the scheme allows this.
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Figure 9. Average slice capacity share for different re-slicing triggers compared with the

contracted share 𝛾𝑠
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7. Conclusion

A simulation model of network slicing with SLA-based isolation has been
developed. By using the Object-Oriented Programming paradigm [8], as
well as the built-in functionality of OMNeT++ and queuinglib, the following
principles have been achieved:

— Modularity of the system: model elements (slicer, slice, queue, source
of requests, delay, etc.) implemented as objects are logically separated,
and the interaction among them occurs by transmitting global signals or
messages through special channels.

— Polymorphism, inheritance and encapsulation of slices: all types
of slices have a common ancestor which specifies all the mechanisms
necessary for communicating with the slicer, so each descendant class
describing a new slice type can replace their implementation with their
own without breaking the interaction structure. In connection with the
same principle, the QS describing the way of processing users (jobs)
within a slice can take any form and be designed at the discretion of the
developer. Thus, any slice is characterized only by its type and unified
set of parameters.

— Homogeneity of the structure of the input data: an important
characteristic for any simulator is the ease of use, in particular, the
way of specifying the input data. In our implementation, based on the
previous principle, the initial conditions for any slice are set in the same
way using a configuration file.

Compliance with the indicated principles leads to scalability and extensibil-
ity of the simulation model.

Further research objectives:

— taking into account the state of the radio channel;
— adding and analyzing other re-slicing triggers;
— adding other types of slices;
— extensive numerical analysis.
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Имитационное моделирование разделения ресурсов
с изоляцией слайсов на базе SLA

Н. А. Поляков1, Н. В. Яркина1, К. Е. Самуйлов1, 2
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ул. Вавилова, д. 44, кор. 2, Москва, 119333, Россия

В настоящее время, несмотря на ввод в эксплуатацию сетей мобильной связи 5-
го поколения, эффективное разделение ресурсов сети радиодоступа по-прежнему
остаётся актуальной задачей. Свои коррективы в её постановку вносят техноло-
гии виртуализации и нарезки сети (network slicing), позволяющие разделять сеть
доступа на логические подсети. В статье предложен инструмент имитационного
моделирования, разработанный на платформе OMNeT++ для анализа эффек-
тивности схемы разделения ресурсов с изоляцией слайсов на базе соглашений об
уровне обслуживания. Объектно-ориентированный подход к построению симуля-
тора обеспечивает гибкость и расширяемость модели. В статье кратко изложена
исследуемая схема слайсинга, подробно описана архитектура программного сред-
ства и особенности построения имитационой модели, приведены результаты
численного анализа.

Ключевые слова: система массового обслуживания, разделение ресурсов, на-
резка сети, имитационное моделирование, оптимизация
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The offloading of computing tasks to the fog computing system is a promising
approach to reduce the response time of resource-greedy real-time mobile applications.
Besides the decreasing of the response time, the offloading mechanisms may reduce
the energy consumption of mobile devices. In the paper, we focused on the analysis
of the energy consumption of mobile devices that use fog computing infrastructure to
increase the overall system performance and to improve the battery life. We consider
a three-layer computing architecture, which consists of the mobile device itself, a fog
node, and a remote cloud. The tasks are processed locally or offloaded according
to the threshold-based offloading criterion. We have formulated an optimization
problem that minimizes the energy consumption under the constraints on the average
response time and the probability that the response time is lower than a certain
threshold. We also provide the numerical solution to the optimization problem and
discuss the numerical results.

Key words and phrases: queuing system, fog computing, cloud computing, queuing
theory, optimization, Laplace–Stieltjes transform

1. Introduction

In recent years, fog computing has received attention from the scientific
and industrial community. Many papers were related to opportunities and
challenges of fog, focusing primarily on the networking context of the Internet
of Things (IoT) [1]. Another one of the most popular topics and pressing
research issue is the compromise between the energy-efficiency and the response
time in offloading of mobile application tasks to fog computing infrastructure.
The paper [2] presents the results of a study on energy consumption, execution
delay and payment cost of offloading processes in a fog computing network
in terms of queuing theory. Research in [3] focuses on energy-efficient task
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offloading, whose main idea is taking into account both energy consumption
and schedule delay under fog devices. Energy efficient offloading is also a vital
task in the context of the Internet of Things concept [4].

In our previous paper [5], we developed an analytical framework for response
time analysis that takes into account the variation of tasks in terms of
processing volume. Then in the paper [6], we analyze the two-parameter
offloading mechanism that takes into account both the computing complexity
and the data size to be transferred in case of offloading. In [7] we derived the
cumulative distribution function of the response time in terms of Laplace-
Stieltjes Transform. In the current work, we solve the optimization problem
by minimizing energy efficiency, subject to the average time constraint and
taking into account the probability that the time exceeds a given threshold.

2. Mathematical model

We consider a distributed computing system that consist of mobile devices
(MDs), a fog node and a remote cloud. MDs run real-time applications that
require significant amount of computational resources. For each task, a MD
makes a decision, whether it will be offloaded to the fog node or processed
locally. The capacity of the fog node is limited, which means if there are too
many tasks offloaded, then some of the offloaded tasks are redirected to the
remote cloud to prevent the fog node congestion. In terms of queuing theory,
the considered system can be represented as shown in the figure 1.

Figure 1. Mathematical model in terms of queuing network

Assume there are 𝑀 MDs, each of them generating a flow of tasks with
exponentially distributed interarrival times according to Poisson’s law with
intensity 𝜆𝑖, 𝑖 = 1, … , 𝑀. Each task is characterized by the amount of
processing volume required and the data size to be transferred in case of



A.V.Daraseliya, E. S. Sopin, Optimization of mobile device energy … 55

offloading. We assume that the processing volume (measured in millions
of instructions, MI) and the data size (measured in MB) are independent
random variables with CDFs 𝑊𝑖(𝑥) and 𝑆𝑖(𝑥), probability density functions
(PDF) 𝑤𝑖(𝑥) and 𝑠𝑖(𝑥) respectively. MDs process locally served tasks in the
FCFS mode with constant serving rate 𝜇𝑖, 𝑖 = 1, … , 𝑀 (measured in MIPS).

We propose the offloading mechanism that implies offloading tasks that
are “heavy” in terms of processing volume and “light” in terms of data size.
Splitting to “heavy” and “light” tasks are done by the threshold 𝑂𝑤 on the
processing volume and the threshold 𝑂𝑠 on the data size. Hence, the offloading
probability 𝜋𝑖,𝑂 on the 𝑖-th MD is evaluated [6], [7] according to the following

formula

𝜋𝑖,𝑂 =
∞

∫
𝑂𝑤

𝑤𝑖(𝑥) 𝑑𝑥

𝑂𝑠

∫
0

𝑠𝑖(𝑦)𝑑𝑦 = (1 − 𝑊𝑖(𝑂𝑤))𝑆𝑖(𝑂𝑠). (1)

If a task is processed locally, then the response time consists of processing
time on an MD only. If a task is offloaded to the fog node, then the total
response time is the sum of task transmission time to the fog node through
wireless network, the processing time on the fog node and the transmission
time back to the MD. If the fog node is overloaded and an offloaded task
is sent to the remote cloud, then the processing time at the fog is replaced
by the transmission time between the fog node and the remote cloud, the
processing time on the cloud and the transmission time back to the fog node.

We assume that the wireless network provides total bitrate 𝑅, which is used
to transmit the data of tasks one-by-one in FCFS order, so the transmission
time is obtained as the fraction of the data size of a task and total bitrate 𝑅.
On the other side, the transmission time between the fog node and the cloud
is assumed constant.

The fog node provide computational resources by means of virtual machines
(VMs), each of them having the constant serving rate 𝜆𝐹. The total number
of VMs at the fog node is 𝑁. The constant serving rate 𝜇𝐶 of VMs at the
cloud is greater than 𝜇𝐹, and amount of computational resources (VMs) at the
remote cloud is assumed to be large enough, so that it cannot be overloaded.

3. The response time analysis

3.1. CDFs of the response time components

The service process at MD 𝑖 is modeled in terms of a queuing system

𝑀/𝐺/1 with arrival intensity 𝜆𝑖,
𝑀
∑
𝑖=1

𝜆𝑖 = 𝜆. The distribution function of the

processing volume on a MD can be determined by conditional CDF 𝑊𝑀𝐷,𝑖(𝑥)
as follows

𝑊𝑀𝐷,𝑖(𝑥) =

⎧{{
⎨{{⎩

𝑊𝑖(𝑂𝑤) + (𝑊𝑖(𝑥) − 𝑊𝑖(𝑂𝑤))(1 − 𝑆𝑖(𝑂𝑠))
1 − 𝜋𝑖,𝑂

, 𝑥 > 𝑂𝑤,

𝑊𝑖(𝑥)
1 − 𝜋𝑖,𝑂

, 𝑥 ⩽ 𝑂𝑤.
(2)
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Having obtained the distribution function of the processing volume
𝑊𝑀𝐷,𝑖(𝜇𝑖𝑥), we can find the serving time at a MD. By virtue of the fact that

the serving rate on the 𝑖-th MD is constant and being 𝜇𝑖, its CDF is easily
obtained as 𝑇𝑀𝐷,𝑖(𝑥) = 𝑊𝑀𝐷,𝑖(𝜇𝑖𝑥). The average serving time at MD 𝑖 can

be found through integration using the CDF 𝑇𝑀𝐷,𝑖.

If a task is offloaded to the distributed computing infrastructure, it is
first transferred through the wireless network to the fog node. The delays
in wireless networks are obtained analogously, by employing 𝑀/𝐺/1 queue.
The arrival intensity 𝜆𝐹 is the sum of the offloading intensities from all MDs

𝜆𝐹 =
𝑀
∑
𝑖=1

𝜆𝑖𝜋𝑖,𝑂. The CDF 𝑆𝑡𝑟,𝑖(𝑥) of the file size to be transmitted is

𝑆𝑡𝑟,𝑖 (𝑥) =
⎧{
⎨{⎩

1
𝜋𝑖,𝑂(1 − 𝑊𝑖(𝑂𝑤))𝑆𝑖(𝑥)

, 𝑥 ⩽ 𝑂𝑠,

1, 𝑥 > 𝑂𝑠,
(3)

and the service time distribution in the wireless network is 𝑇𝑡𝑟,𝑖(𝑥) =
𝑆𝑡𝑟,𝑖(𝑅𝑥).

At the fog node, there are 𝑁 VMs to serve offloaded tasks, so the service
process may be modeled by 𝑀/𝐺/𝑁/0 queue, where the blocked customers
are redirected to the next layer — remote cloud. The arrival intensity is the
same as for wireless network — 𝜆𝐹. The service time is determined by

𝑊𝐹,𝑖(𝑥) =
⎧{
⎨{⎩

1
𝜋𝑖,𝑂

(𝑊𝑖(𝑥) − 𝑊𝑖(𝑂𝑤))𝑆𝑖(𝑂𝑠), 𝑥 > 𝑂𝑤,

0, 𝑥 ⩽ 𝑂𝑤.
(4)

The service time is simply processing volume divided by the service rate
𝜇𝐹, so the CDF of the service time at the fog node is

𝑇𝐹,𝑖(𝑥) = 𝑊𝐹,𝑖(𝜇𝐹𝑥), (5)

𝑇𝐹(𝑥) =
𝜆𝑖𝜋𝑖,𝑂

𝜆𝐹
𝑇𝐹,𝑖(𝑥). (6)

The probability that a task is redirected to the remote cloud 𝜋𝐹 is obtained
from Erlang formula for 𝑀/𝐺/𝑁/0 queues as

𝜋𝐹 = (𝜆𝐹𝜏𝐹)𝑁

𝑁!
(

𝑁
∑
𝑘=0

(𝜆𝐹𝜏𝐹)𝑘

𝑘!
) , (7)

where 𝜏𝐹 is the average serving time at the fog node, which can be easily
evaluated from the CDF 𝑇 𝐹(𝑥). The service time distribution 𝑇𝐶(𝑥) at the
cloud is

𝑇𝐶,𝑖(𝑥) = 𝑊𝐶,𝑖(𝜇𝐶𝑥). (8)
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3.2. The average response time

The total response time is the conditional sum of processing and transmis-
sion delays. A task from 𝑖-th MD is processed locally with probability 1−𝜋𝑖,𝑂
on the fog node with probability 𝜋𝑖,𝑂(1 − 𝜋𝐹) and on the cloud with proba-

bility 𝜋𝑖,𝑂𝜋𝐹. In [7], we derived the Laplace-Stieltjes Transforms (LST) for

all delay components for the case of Gamma distribution of both processing
volume and data size, and obtain the LST of the total response time.

First, we derived the LST ̃𝑇𝑀𝐷,𝑖(𝑠) of the service time at the MD 𝑖 as

̃𝑇𝑀𝐷,𝑖(𝑠) =
∞

∫
0

𝑒−𝑠𝑥 𝑑(𝑇𝑀𝐷,𝑖(𝑥)) = 1
1 − 𝜋𝑖,𝑂

[ 𝜇2
𝑖

(𝑠𝛿𝑊 + 𝜇𝑖)2 −

− (1 − 𝑒− 𝑂𝑠
𝛿𝑠 (1 + 𝑂𝑠

𝛿𝑠
))𝑒−( 𝑠𝑂𝑤

𝜇𝑖
+ 𝑂𝑤

𝛿𝑤
) 𝜇𝑖𝑂𝑤(𝑠𝛿𝑤 + 𝜇𝑖) + 𝜇2

𝑖 𝛿𝑤
𝛿𝑤(𝑠𝛿𝑤 + 𝜇𝑖)2 ] (9)

with the the LST of 𝜙𝑀𝐷,𝑖 the sojourn time distribution on mobile device 𝑖

𝜔𝑀𝐷,𝑖(𝑠) = 𝑠(1 − 𝜌𝑖)
𝑠 − 𝜆𝑖 + 𝜆𝑖 ̃𝑇𝑀𝐷,𝑖(𝑠)

, (10)

𝜙𝑀𝐷,𝑖(𝑠) = ̃𝑇𝑀𝐷,𝑖(𝑠)𝜔𝑀𝐷,𝑖(𝑠). (11)

Then we obtained the LST ̃𝑇𝐹,𝑖(𝑠) and ̃𝑇𝐶,𝑖(𝑠) of the service time distribu-

tion at the fog node and cloud, respectively. LST ̃𝑇𝐹,𝑖(𝑠) of the service time

distribution at the fog node is derived from CDF

̃𝑇𝐹,𝑖(𝑠) =
∞

∫
0

𝑒−𝑠𝑥 𝑑(𝑇𝐹,𝑖(𝑥)) = 𝑒−( 𝑠𝑂𝑤
𝜇𝐹

) 𝜇𝐹𝑂𝑤(𝑠𝛿𝑤 + 𝜇𝐹) + 𝜇2
𝑖 𝛿𝑤

𝛿𝑤(𝑠𝛿𝑤 + 𝜇𝑖)2 . (12)

LST of the service time distribution in the cloud is obtained by analogy with
̃𝑇𝐹,𝑖(𝑠).
The LST 𝜔𝑡𝑟,𝑖(𝑠) of the waiting time distribution and the LST 𝜙𝑡𝑟,𝑖(𝑠) of

sojourn time in the wireless network are:

𝜔𝑡𝑟,𝑖(𝑠) = 𝑠(1 − 𝜌𝑡𝑟)
𝑠 − 𝜆𝐹 + 𝜆𝐹 ̃𝑇𝑡𝑟,𝑖(𝑠)

, 𝜙𝑡𝑟,𝑖(𝑠) = ̃𝑇𝑡𝑟,𝑖(𝑠)𝜔𝑡𝑟,𝑖(𝑠). (13)

Having obtained the LST of all these delay component distributions, we
made use of the convolution formula and obtain the LST ̃𝜏 (𝑠) of the response
time distribution of a task from MD 𝑖:

̃𝜏𝑖(𝑠) = (1 − 𝜋𝑖,0)𝜙𝑀𝐷,𝑖(𝑠) + 𝜋𝑖,0(1 − 𝜋𝐹) ̃𝑇𝐹,𝑖(𝑠)𝜙2
𝑡𝑟,𝑖(𝑠)+

+ 𝜋𝑖,0𝜋𝐹 ̃𝑇𝐶,𝑖(𝑠)𝜙2
𝑡𝑟,𝑖(𝑠) ̃𝑇 2

𝐹𝐶(𝑠). (14)
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After this we used numerical Reverse LST ̃𝜏 (𝑠) to evaluate the CDF 𝜏(𝑠)
of the response time.

Actually, the average response time can be calculated as

𝜏 =
𝑀

∑
𝑖=0

𝜆𝑖

(
𝑀
∑
𝑗=1

𝜆𝑗)
𝜏𝑖. (15)

The resulting expressions allow to get the probability Π(𝑇 ) that the response
time is lower than a threshold 𝑇

Π(𝑇 ) = 𝜏(𝑇 ). (16)

4. The energy consumption analysis

In this section, we present the formulas for the average power consumption
of MDs obtained at an earlier stage of research [6].

The energy consumption for tasks processed on MD is proportional to the
processing volumes of tasks, therefore the average energy consumption 𝐸𝑝𝑟,𝑖
during locally executing on 𝑖-th MD can be evaluated as follows:

𝐸𝑝𝑟,𝑖 = 𝑃𝑝𝑟,𝑖𝑡𝑀𝐷,𝑖, (17)

where 𝑃𝑝𝑟,𝑖 is the power consumption (W) during the processing of the 𝑖-th
MD, which is considered constant for simplicity of calculations.

The average file size transmitted by 𝑖-th MD, can be calculated through
integration using CDF 𝑆𝑡𝑟,𝑖(𝑥) from the previous section.

The energy consumption during transmitting is also proportional to the
transmission time, so the average energy consumption 𝐸𝑡𝑟,𝑖 of the 𝑖-th VD

during task transmission is

𝐸𝑡𝑟,𝑖 = 𝑃𝑡𝑟,𝑖
𝜃𝑖
𝑅

. (18)

Then the average energy consumption for any 𝑖-th MD is the weighted sum
of processing and transmission energies:

𝐸𝑖 = (1 − 𝜋𝑖,0)𝐸𝑝𝑟,𝑖 + 𝜋𝑖,0𝐸𝑡𝑟,𝑖. (19)

At the end, we can evaluate the average energy consumption for a task
from an arbitrary MD as follows

𝐸 =
𝑀

∑
𝑖=0

𝜆𝑖

(
𝑀
∑
𝑗=1

𝜆𝑗)
𝐸𝑖. (20)
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5. Optimization problem

In order to find the minimum energy consumption 𝐸 under constraints on
the average response time and the probability Π(𝑇 ) that the response time is
lower than a threshold 𝑇, we formulate the optimization problem as follows:

⎧{{{{{
⎨{{{{{
⎩

𝐸 =
𝑀

∑
𝑖=0

𝜆𝑖

(
𝑀
∑
𝑗=1

𝜆𝑗)
𝐸𝑖 → min,

𝜏 =
𝑀

∑
𝑖=0

𝜆𝑖

(
𝑀
∑
𝑗=1

𝜆𝑗)
𝜏𝑖 ⩽ 𝑇 ,

Π(𝑇 ) ⩽ Π∗.

(21)

6. Numerical results

In this section, we presented the numerical results of our study. The main
metric of interest here is the minimum power consumption 𝐸 for a task from
an arbitrary MD under the constraints from the optimization problem.

We consider a system with 𝑀 = 20 homogeneous MDs that run the same
applications, so the distributions of processing volume and data size of tasks
are also the same. The fog nodes can run maximum 𝑁 = 8 VMs. All values
of parameters used in the section are gathered in table 1.

Table 1

Parameter values for the numerical analysis

Parameter Value

𝑀 20

𝑁 8

𝑅 150 Mbps

𝜆𝑖 2 tasks/s

𝜇𝑖 4 MIPS

𝜇𝐹 6 MIPS

𝜇𝐶 10 MIPS

𝛿𝑠 0.25

𝛿𝜔 0.75

𝑡𝐹𝐶 0.5 s

𝑃𝑝𝑟 16 W

𝑃𝑡𝑟 0.2 W
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Figure 2 shows the probability Π(𝑇 ) as a function of processing volume
threshold with the response time threshold 𝑇 = 0.5. The power consumption
graph begins to descend only at values of Π∗ = 0.94 and above. This shows
that only with a very high threshold value of the probability Π(𝑇 ) that the
response time is lower than a threshold 𝑇, there will be a gain in terms of
energy costs.

Figure 2. Dependence of the minimum power consumption 𝐸 → min on the threshold value

Π∗, 𝑇 = 0.5

7. Conclusions

In the paper, we focused on the analysis of the reducing energy consumption
of MD’s that use fog computing infrastructure to increase the performance
and to improve the battery life of mobile devices. We have formulated and
solved the problem of energy consumption optimization using constraints on
the average response time and the probability that the response time is lower
than a certain threshold, on the basis of which we offer some recommendations
for offloading the system.
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Оптимизация энергопотребления мобильных устройств
в системе туманных вычислений
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1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2 Федеральный исследовательский центр «Информатика и управление» РАН
ул. Вавилова, д. 44, кор. 2, Москва, 119333, Россия

Выгрузка задач мобильных вычислений в систему туманных вычислений
представляется многообещающим подходом для снижения времени отклика ре-
сурсоёмких мобильных приложений, функционирующих в режиме реального
времени. Помимо снижения времени отклика, механизмы выгрузки вычислений
помогут также снизить энергопотребление мобильных устройств. В этой статье
мы проводим анализ энергопотребления мобильных устройств, которые использу-
ют инфраструктуру туманных вычислений для повышения производительности
и увеличения времени их автономной работы. Рассматривается трёхуровневая
вычислительная система, состоящая из непосредственно мобильного устройства,
узла системы туманных вычислений и удалённого облака. Задачи мобильных
вычислений могут быть обработаны локально на устройстве или быть выгруже-
ны в соответствии с пороговым критерием выгрузки. Сформулирована и решена
задача оптимизации энергопотребления при наличии ограничений на среднее
время отклика и на вероятность того, что время отклика ниже определённого
порога.

Ключевые слова: система массового обслуживания, туманные вычисле-
ния, облачные вычисления, оптимизация, преобразование Лапласа–Стилтьеса
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On conjugate difference schemes: the midpoint scheme
and the trapezoidal scheme
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The preservation of quadratic integrals on approximate solutions of autonomous
systems of ordinary differential equations ̇𝑥 = 𝑓(𝑥), found by the trapezoidal scheme,
is investigated. For this purpose, a relation has been established between the
trapezoidal scheme and the midpoint scheme, which preserves all quadratic integrals
of motion by virtue of Cooper’s theorem. This relation allows considering the
trapezoidal scheme as dual to the midpoint scheme and to find a dual analogue
for Cooper’s theorem by analogy with the duality principle in projective geometry.
It is proved that on the approximate solution found by the trapezoidal scheme,
not the quadratic integral itself is preserved, but a more complicated expression,
which turns into an integral in the limit as Δ𝑡 → 0. Thus the concept of conjugate
difference schemes is investigated in pure algebraic way. The results are illustrated
by examples of linear and elliptic oscillators. In both cases, expressions preserved by
the trapezoidal scheme are presented explicitly.

Key words and phrases: dynamical systems, quadratic integrals, difference schemes,
conservation laws, midpoint scheme, trapezoidal scheme

1. Introduction

Dynamical systems are the most important mathematical models in me-
chanics and physics. Only a few of these models are integrated in a closed
form [1], therefore, they have to be investigated using numerical methods, of
which the most important is the finite difference method.

Let 𝑥 be a point in an 𝑚-dimensional affine space. Any difference scheme
that approximates differential equation

𝑑𝑥
Δ𝑡

= 𝑓(𝑥) (1)
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describes a transition from the value 𝑥 at some initial moment of time to the
value of ̂𝑥 at the moment of time shifted from the initial value by the quantity
Δ𝑡, called the step. We will consider algebraic schemes, i.e., those in which
the above correspondence is specified using a system of algebraic equations

𝐹(𝑥, ̂𝑥, Δ𝑡) = 0. (2)

If the original equation has an algebraic integral 𝑔(𝑥) = 𝐶, and it follows
from the equations (2) that

𝑔( ̂𝑥) = 𝑔(𝑥),

then this difference scheme is said to preserve this integral.
If we use explicit difference schemes for integrating dynamical systems,

then the values of the integrals of motion will change monotonically step by
step. At the turn of the 1980s and 1990s, the first difference schemes were
constructed that preserve exactly the algebraic integrals of dynamical systems.
For example, the scheme constructed by D. Greenspan preserves all classical
integrals of N-body problems [2]–[5], the symplectic Runge–Kutta schemes,
including the simplest of them, the midpoint scheme

̂𝑥 − 𝑥 = 𝑓 ( ̂𝑥 + 𝑥
2

) Δ𝑡, (3)

preserve linear and quadratic integrals in virtue Cooper’s theorem [6]–[9].
This circuit has a whole bunch of wonderful properties inherited from the
original differential equation [10].

This seems to be a simple consequence of the 𝑡-symmetry of the midpoint
circuit: the equation (3) is invariant under the transformation

Δ𝑡 → −Δ𝑡, ̂𝑥 → 𝑥, 𝑥 → ̂𝑥.

The trapezoidal scheme has the same property

̂𝑥 − 𝑥 = (𝑓( ̂𝑥) + 𝑓(𝑥)) Δ𝑡
2

, (4)

however, in experiments with an elliptic oscillator performed by Yu. A. Blinkov
for PCA’2019 [11], the quadratic integrals oscillated, although they did not
increase monotonically. The absence of monotonicity in the variation of
the values of the integrals of motion on approximate solutions is extremely
important from the physical point of view, since, on average, all fundamental
conservation laws are satisfied on solutions of this type.

The noted behavior of the approximate solutions found by the trapezoidal
scheme can be explained by the fact that it is conjugated to the midpoint
scheme and therefore some more complex expression is retained on it [9,
§VI.8.1-2].

The very concept of conjugate difference schemes [9, def 8.1] is formulated
locally in terms of power series. The implicit function theorem can be applied
to the system of algebraic equations (2) and, under certain conditions, we
can assert that
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̂𝑥 = 𝑥 + 𝑓(𝑥)Δ𝑡 + … = ΦΔ𝑡(𝑥),
where Φ is a series in powers of Δ𝑡, the coefficients of which are rational
functions of 𝑥. Difference schemes

̂𝑥 = ΦΔ𝑡(𝑥) and ̂𝑥 = ΨΔ𝑡(𝑥)

are referred to as mutually conjugate, if there exists a change of coordinates

𝑥 = 𝜒Δ𝑡(𝑦) = 𝑦 + … ,

such that
ΦΔ𝑡 = 𝜒−1

Δ𝑡 ∘ ΨΔ𝑡 ∘ 𝜒Δ𝑡.
It is clear from this definition that the exact preservation of the expression

of one of these schemes entails the preservation of some expression by the
other scheme. Say, if the scheme ΨΔ𝑡 preserves the integral 𝑔(𝑥) exactly, then
the scheme ΦΔ𝑡 preserves the expression

𝑔(𝜒Δ𝑡(𝑥)) = 𝑔(𝑥) + 𝑔1(𝑥)Δ𝑡 + … ,

depending on Δ𝑡 [9, §VI.8.2].
In this article, we will clarify the geometric meaning of the conjugacy of the

two above schemes and write down explicitly the expression that preserves
the trapezoidal scheme.

2. Relationship between trapezoidal and midpoint
schemes

The approximate solution of the system (1), found by the scheme (2) with
constant step Δ𝑡, is a finite or infinite sequence of points

𝑥0, 𝑥1, 𝑥2, … (5)

the first element of which is chosen in an arbitrary way, and all the others
are defined recursively: 𝑥𝑛+1 is the root ̂𝑥 of the equation

𝐹(𝑥𝑛, ̂𝑥, Δ𝑡) = 0,

tending to 𝑥𝑛 at Δ𝑡 → 0.

Theorem 1. Let 𝑥0, 𝑥1, 𝑥2, … be an approximate solutions of equation (1),
calculated using the midpoint scheme (3). Then coordinates 𝑥′

0, 𝑥′
1, 𝑥′

2, … of
middles of links of broken line 𝑥0𝑥1𝑥2 … (figure 1) yield another approximate
solution of the same equation, calculated by the trapezoidal scheme (4).

Proof. The middle of link 𝑥𝑛𝑥𝑛+1 of the solution found by the midpoint
scheme is given by the formula

𝑥′
𝑛 =

𝑥𝑛+1 + 𝑥𝑛
2

.
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Figure 1. The solutions 𝑥0, 𝑥1, 𝑥2, … and 𝑥′
0, 𝑥′

1, 𝑥′
2, … found by the midpoint schemes

and by the trapezoidal scheme

In this case, the ends of the link are unambiguously reconstructed from its
given midpoint:

𝑥𝑛+1 =
𝑥𝑛+1 + 𝑥𝑛

2
+

𝑥𝑛+1 − 𝑥𝑛
2

= 𝑥′
𝑛 + 𝑓(𝑥′

𝑛)Δ𝑡
2

and

𝑥𝑛 =
𝑥𝑛+1 + 𝑥𝑛

2
−

𝑥𝑛+1 − 𝑥𝑛
2

= 𝑥′
𝑛 − 𝑓(𝑥′

𝑛)Δ𝑡
2

.

Since 𝑥𝑛+1 belongs to two links 𝑥𝑛𝑥𝑛+1 and 𝑥𝑛+1𝑥𝑛+2, we have

𝑥𝑛+1 = 𝑥′
𝑛 + 𝑓(𝑥′

𝑛)Δ𝑡
2

= 𝑥′
𝑛+1 − 𝑓(𝑥′

𝑛+1)Δ𝑡
2

from where it immediately follows that

𝑥′
𝑛+1 − 𝑥′

𝑛 = (𝑓(𝑥′
𝑛+1) + 𝑓(𝑥′

𝑛)) Δ𝑡
2

.

Thus, the midpoints can be calculated using the trapezoidal difference
scheme (4). �

By virtue of the theorem 1, the solutions 𝑥0𝑥1𝑥2 … and 𝑥′
0𝑥′

1𝑥′
2 …, found

by the midpoint schemes (3) and by the trapezoidal scheme (4) turn out to be
coupled with each other. By analogy with the duality principle in projective
geometry [12] it is hoped that any statement about the midpoint scheme
should have a ’twin’ in the trapezoidal scheme.

One of the most interesting properties of the midpoint scheme is Cooper’s
theorem [9, th. 2.2], according to which this scheme preserves any quadratic
integral of motion.
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Equality
𝑔(𝑥𝑛) = 𝑔(𝑥𝑛+1)

is easily rewritten by expressing 𝑥𝑛 though 𝑥′
𝑛, and 𝑥𝑛+1 though 𝑥′

𝑛+1:

𝑔 (𝑥′
𝑛 − 𝑓(𝑥′

𝑛)Δ𝑡
2

) = 𝑔 (𝑥′
𝑛+1 − 𝑓(𝑥′

𝑛+1)Δ𝑡
2

) .

Therefore, for dual scheme (4) the conservation law takes the form

𝑔 ( ̂𝑥 − 𝑓( ̂𝑥)Δ𝑡
2

) = 𝑔 (𝑥 − 𝑓(𝑥)Δ𝑡
2

) . (6)

Thus, a quadratic integral is also inherited by the trapezoidal scheme (4),
but the expression for the conserved quantity coincides with 𝑔 only in the
limit Δ𝑡 → 0. This circumstance made complicated finding it.

Definition 1. Let us say that a difference scheme inherits the integral
𝑔(𝑥) = 𝐶 if there exists a rational function 𝐺(𝑥, Δ𝑡) such that

1) from the equations that specify the scheme it follows that

𝐺( ̂𝑥, Δ𝑡) = 𝐺(𝑥, Δ𝑡),

2) in the limit Δ𝑡 → 0 expression 𝐺(𝑥, Δ𝑡) turns into 𝑔(𝑥)
Function 𝐺 itself will be referred to as the difference analog of the integral 𝑔.

Theorem 2 (Cooper’s dual theorem). The trapezoidal scheme inherits
all linear and quadratic integrals of motion, and the difference analogue of the
integral 𝑔 will be

𝑔 (𝑥 − 𝑓(𝑥)Δ𝑡
2

) .

3. Examples

Consider several examples.

3.1. Linear oscillator

In the case of a linear dynamical system, the midpoint scheme and the
trapezoidal scheme are the same, so the midpoint scheme becomes self-
conjugate. This circumstance greatly simplifies the study of the midpoint
scheme for a linear oscillator.

Consider a dynamic system

̇𝑥 = −𝑦, ̇𝑦 = 𝑥 (7)

which has a quadratic integral

𝑥2 + 𝑦2 = 𝐶.
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The midpoint scheme will give points (𝑥0, 𝑦0), (𝑥1, 𝑦1), … lying on the circle

𝑥2 + 𝑦2 = 𝑅2,

the radius of which is determined by the initial point

𝑅 = √𝑥2
0 + 𝑦2

0 .

The midpoints of the links lying on the circle

𝑥2 + 𝑦2 = 𝑟2,

the radius of which can be determined by the first link

𝑟 = √(𝑥1 + 𝑥0
2

)
2

+ (𝑦1 + 𝑦0
2

)
2

= 𝑅

√1 + Δ𝑡2/4
.

Thus, the trajectory on the phase plane turns out to be a broken line, the
vertices of which lie on a circle of radius 𝑅, and the links touch a concentric

circle, the radius of which is √1 + Δ𝑡2/4 times less than 𝑅. In particular,

the trajectory will be closed, and the solution will be periodic if 𝑅 and 𝑟 are
the radii of the circumscribed and inscribed circle in the 𝑁-gon, that is, if

𝑟/𝑅 = cos
𝜋
𝑁

.

This immediately gives the formula for choosing a step

√1 + Δ𝑡2/4 = cos
𝜋
𝑁

.

This formula was previously obtained by us analytically [10].

3.2. Elliptic oscillator

By the definition of Jacobi functions [13],

𝑝 = sn 𝑡, 𝑞 = cn 𝑡, 𝑟 = dn 𝑡

is a particular solution of the autonomous system of differential equations

̇𝑝 = 𝑞𝑟, ̇𝑞 = −𝑝𝑟, ̇𝑟 = −𝑘2𝑝𝑞 (8)

with the initial conditions

𝑝 = 0, 𝑞 = 𝑟 = 1 at 𝑡 = 0.

The midpoint scheme preserves both intergals

𝑝2 + 𝑞2 = const and 𝑘2𝑝2 + 𝑟2 = const (9)
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of this system. Now the trapezoidal scheme

̂𝑝 − 𝑝 = ( ̂𝑞 ̂𝑟 + 𝑞𝑟) Δ𝑡
2

, …

does not coincide with the midpoint scheme and, therefore, its invariants are
more complicated.

Nevertheless, the integral

𝑝2 + 𝑞2 = const

corresponds to the integral

(𝑝 − 𝑞𝑟Δ𝑡
2

)
2

+ (𝑞 + 𝑝𝑟Δ𝑡
2

)
2

= 𝑝2 + 𝑞2 + 𝑞2𝑟2 Δ𝑡2

4
+ 𝑝2𝑟2 Δ𝑡2

4
or

(𝑝2 + 𝑞2) (1 + 𝑟2Δ𝑡2

4
) .

The integral
𝑘2𝑝2 + 𝑟2 = const

correspods to

𝑘2 (𝑝 − 𝑞𝑟Δ𝑡
2

)
2

+ (𝑟 + 𝑘2𝑝𝑞Δ𝑡
2

)
2

= 𝑘2𝑝2 + 𝑟2 + 𝑘2𝑞2𝑟2 Δ𝑡2

4
+ 𝑘4𝑝2𝑞2 Δ𝑡2

4
or

(𝑘2𝑝2 + 𝑟2) (1 + 𝑘2𝑞2 Δ𝑡2

4
) .

Thus, in the space 𝑝𝑞𝑟 the vertices of the trajectory lie on the elliptic curve
(9), and the midpoints of the links of the broken line lie on a more complex
curve

(𝑝2 + 𝑞2) (1 + 𝑟2Δ𝑡2

4
) = 𝐶1, (𝑘2𝑝2 + 𝑟2) (1 + 𝑘2𝑞2 Δ𝑡2

4
) = 𝐶2. (10)

This means that the trapezoidal scheme for an elliptic oscillator inherits both
quadratic integrals, and their difference counterparts are the expressions (10).

If we follow the change in 𝑝2 + 𝑞2 on the approximate solution found by
the trapezoidal scheme, then we will see a deviation from a constant value
equal to

(𝑝2 + 𝑞2)𝑟2Δ𝑡2

4
.

The exact solution is periodic, so in the plots these deviations appear as
periodic fluctuations.
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4. Conclusion

If you do not use specially developed difference schemes, discretization of
continuous models by the method of finite differences introduces completely
new properties into these models: calculations lead to a monotonic change in
quantities, which, from physical considerations, must remain constant. For
example, in computer experiments, dissipation appears even in those cases
when energy was conserved in the original continuous model. In calculations
for sufficiently long time intervals, this dissipation becomes very noticeable,
and the parameters of the dynamical system are significantly distorted.

The number of schemes that preserve algebraic integrals of motion exactly
is small and their drawbacks are well known. Difference schemes, in which
the integrals of motion fluctuate around their initial values, significantly
expand this set. However, the noted property is usually accepted without
explanation and even more rigorous proof. Theorem 2, which is dual to
Cooper’s theorem, allows us to fill in this gap for the trapezoidal scheme (4)
by explicitly specifying expressions that coincide in the limit Δ𝑡 → 0 with
exact integrals and at the same time are preserved on approximate solutions
exactly.

It would be very interesting to generalize this result to other schemes, the
use of which does not lead to a monotonic increment of the integrals of motion.
For such a generalization, in our opinion, it is necessary to investigate in more
detail the question of schemes that are, in a sense, dual to the symplectic
Runge-Kutta schemes.
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О сопряжённых разностных схемах: схема средней
точки и схема трапеций

Юй Ин1, М. Д. Малых2

1 Университет Кайли
Kaiyuan Road 3, Кайли, 556011, Китай

2 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

В статье исследован вопрос о сохранении квадратичных интегралов на при-
ближённых решениях автономных систем обыкновенных дифференциальных
уравнений ̇𝑥 = 𝑓(𝑥), найденных по схеме трапеций. Установлена связь между
схемой трапеции и схемой средней точки, которая сохраняет все квадратичные
интегралы движения в силу теоремы Купера. Эта связь позволяет рассмат-
ривать схему трапеций как двойственную к схеме средней точки и отыскать
двойственный аналог для теоремы Купера. Доказано, что на приближённом ре-
шении, найденном по симметрической схеме, сохраняется не сам квадратичный
интеграл, а более сложное выражение, которое переходит в интеграл в пределе
при Δ𝑡 → 0. Результаты проиллюстрированы примерами — линейным и эллип-
тическим осцилляторами. В обоих случаях в явном виде выписаны выражения,
которые сохраняет схема трапеций.

Ключевые слова: динамические системы, квадратичные интегралы, раз-
ностные схемы, законы сохранения, схема средней точки, схема трапеций



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: current page
     Mask co-ordinates: Horizontal, vertical offset 135.84, 118.97 Width 310.72 Height 53.09 points
     Mask co-ordinates: Horizontal, vertical offset 121.01, 117.41 Width 333.36 Height 56.21 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         Both
         CurrentPage
              

       CurrentAVDoc
          

     135.8405 118.9689 310.7155 53.087 121.0073 117.4075 333.3556 56.2098 
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0
     Quite Imposing Plus 3
     1
      

        
     2
     72
     2
     1
      

   1
  

 HistoryList_V1
 qi2base



