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This article is devoted to some aspects of using the renovation mechanism (different
types of renovation are considered, definitions and brief overview are also given) with
one or several thresholds as the mathematical models of active queue management
mechanisms.

The attention is paid to the queuing systems in which a threshold mechanism
with renovation is implemented. This mechanism allows to adjust the number of
packets in the system by dropping (resetting) them from the queue depending on the
ratio of a certain control parameter with specified thresholds at the moment of the
end of service on the device (server) (in contrast to standard RED-like algorithms,
when a possible drop of a packet occurs at the time of arrivals of next packets in the
system).

The models with one, two and three thresholds with different types of renovation
are under consideration. It is worth noting that the thresholds determine not only
from which place in the buffer the packets are dropped, but also to which the reset
of packets occurs. For some of the models certain analytical and numerical results
are obtained (the references are given), some of them are only under investigation,
so only the mathematical model and current results may be considered.

Some results of comparing classic RED algorithm with renovation mechanism are
presented.

Key words and phrases: random early detection, active queue management, queu-
ing system, general renovation, threshold mechanism, drop function, congestion
control
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1. Introduction

In modern communication networks the problem of congestion avoidance
does not have a satisfying solution [1] and the development of active queue
management (AQM) algorithms appears to be the actual task for researches
and practitioners.
A numerous number of AQM schemes have been proposed [2], some of

them were investigated and standardised by IETF working group on “Active
Queue Management and Packet Scheduling” [3].
For the most AQM algorithms models the performance analysis is performed

by simulation (for example, [2]) and that is why the bridges between the
available use-case results and the available analytic results are very few (see,
for example, [4]–[7]).
In this paper the mathematical models of RED-like ( in contrast to standard

RED algorithm, when a possible reset occurs at the time of the next packet
arrival and the control parameter is an exponentially weighted average queue
length [8]–[10], in our models the decision about a possible packet drop is
made at the momemnts of service completions) algorithms with renovation
and one or several thresholds (which determine not only the place in the
buffer from which the packets are dropped, but also the place to which the
reset of packets occurs).
The structure of the article is following. The section 2 gives the brief

description active queue algorithms, especially of the classic RED algorithm.
The section 3 consists of foyr subsections: in 3.1 the definitions of different
types of renovation are given as well as a brief overview of queueing systems
with renovation; in 3.2 the models with renovation and a single thresholds
are described; the subsectionn 3.3 is devoted to models with renovation and
two thresholds (for one of these models some analitycal results are presented);
the last subsection 3.3 describes renovation models with three thresholds. In
section 4 the comparison of results for RED algorithm and some renovation
models is presented, based on experimental results from [11]–[13]. These
results confirm assumptions that the use of the renovation mechanism in
the single server queues under heavy overload conditions and some other
constraints allows one to achieve at least the same performance level as by
the classical random early detection algorithm. The last section 5 concludes
the paper with the short discussion.

2. Active queue management algorithms. The brief
description of RED algorithm module

According to RFC 7567 [1] active queue management (AQM) is considered
as a best practice of network congestion avoidance (reducing) in Internet
routers. The active queue management is the policy of dropping packets
inside a buffer associated with a network interface controller (NIC) before
that buffer becomes full (or gets close to becoming full) and this policy is
based on some rules (algorithms ) such as:

— Random Early Detection (random early discard or random early drop)
(RED) [8]–[10], [14] — is a queuing discipline for a network scheduler
suited for congestion avoidance by pre-emptively dropping packets before
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the buffer becomes completely full based on predictive models to decide
which packets to drop;

— Explicit Congestion Notification (ECN) [9], [15] and its modifications [16]–
[19] — allows end-to-end notification of network congestion without
dropping packets (opposed to RED);

— controlled delay (CoDel) [20] and its modifications [21], [22] — a schedul-
ing algorithm for the network scheduler, designed to overcome bufferbloat
in networking hardware by setting limits on the delay network packets
experience as they pass through buffers in this equipment;

— BLUE [23] and its modifications [24]–[26] — operates by randomly
dropping or marking packet with explicit congestion notification mark
before the transmit buffer of the network interface controller overflows
and it requires little or no tuning to be performed by the network
administrator;

— CAKE (Common Applications Kept Enhanced)[27], [28] — is a shaping-
capable queue discipline which uses both AQM and FQ, itcombines
COBALT, which is an AQM algorithm combining Codel and BLUE

Early AQM disciplines (notably RED and SRED) require careful tuning of
their parameters in order to provide good performance, but modern AQM
disciplines (Blue, CoDel, CAKE and new modifications of RED— the overview
may be seen in [29], [30]) are self-tuning, so they can be run with their default
parameters.
The classic RED [8] is an active queue management algorithm with two

thresholds (𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥), which monitors the average queue size and
drops packets (or marks packets when it used in conjunction with ECN) based

on statistical probabilities 𝑝(�̂�) [8]:

𝑝(�̂�) =

⎧
{{
⎨
{{
⎩

0, 0 ⩽ �̂� ⩽ 𝑄min,
�̂� − 𝑄min

𝑄max − 𝑄min

𝑝max, 𝑄min < �̂� ⩽ 𝑄max,

1, �̂� > 𝑄max,

where 𝑝max is the maximum of dropped probability (probability of marking),

and �̂� is the queue length control parameter (low-pass filter) calculated by
formula:

�̂�𝑘+1 = (1 − 𝑤𝑞)�̂�𝑘 + 𝑤𝑞�̂�𝑘, 𝑘 = 0, 1, 2, … ,
here 𝑤𝑞 (0 < 𝑤𝑞 < 1) is a weight coefficient of the exponentially weighted
moving-average.

3. Renovation mechanism with thresholds

3.1. The definition of renovation mechanism

The renovation mechanism was introduced in [31]: at the moment of the end
of its service the packet on the server may either just leave the system with
some non-zero probability 𝑝, or may empty the buffer with the renovation
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probability 𝑞 = 1 − 𝑝. In [31] the steady-state probability distributions for
several types of queueing systems were presented.
Later the model of renovation with feedback (or repeated service) was

introduced in 2007 by professor P. P. Bocharov in [32]. The renovation with
feedback means that after emptying the buffer with probability 𝑞 the served
packet starts another round of service. The main characteristics in matrix-
analytical form were obtained. Another system with renovation and feedback
was studied in [33], [34], where the retrial queueing system with renovation
and recurrent input flow was investigated.
The generalisation of renovation mechanism was proposed in 2008 by

professor A. V. Pechinkin [35]: at the moment of the end of service the packet
may drop from the buffer with probability 𝑞(𝑖) exactly 𝑖 (𝑖 ⩾ 1) other packets
and leaves the system or may just just leave the system without any effect on
it with the complementary probability 𝑝 = 1 − ∑𝑟

𝑖=1 𝑞(𝑖).
In [12], [13], [35]–[39] queueing systems with different types of renovation and

service disciplines were presented. It was proved that for 𝐺𝑖/𝑀/𝑛/∞ systems
with general renovation (or just renovation) the steady-state probability
distribution has the geometric form and sojourn time distribution of a served
(lossed) packet has an exponential form.
The study of queueing systems with renovation mechanism and thresholds

was started in [12], [13].

3.2. The mathematical model with renovation and one threshold

The simplest mathematical models of renovation mechanism with thresholds
are the models with one threshold 𝑄1 for queue length.
If the current queue length ̂𝑞 is larger than 𝑄1 ( ̂𝑞 > 𝑄1) then a packet on

the server at the moment of the end of its service may either leave the system
with probability 𝑝 or may drop a packet (packets) from the buffer and leave
(renovation mechanism).
The next types of renovation may be considered:

— the “simple” renovation of the first type — the fixed size group of 𝑘
(𝑘 ⩾ 1) packets will be dropped with fixed probability 𝑞𝑘;

— the “simple” renovation of the second type — the fixed size group of 𝑘
(𝑘 ⩾ 1) packets will be dropped with fixed probability 𝑞𝑘 (but 𝑄1 will
remain anyhow)

— the “complete” (“full”) renovation (or just renovation) — all packets from
the buffer will be dropped with probability 𝑞 = 1 − 𝑝, the system will be
empty;

— the “incomplete” renovation — all packets (that are after the threshold)
willbe dropped with probability 𝑞 = 1 − 𝑝, 𝑄1 packets will remain in the
system;

— the general renovation of the first type — exactly 𝑘 (𝑘 ⩾ 1) packets from
the buffer will be dropped with probability 𝑞(𝑘) if in the buffer there are
more then 𝑘 packets or the system will be empty if in the buffer were
were less (or equal) then 𝑘 packets;

— the general renovation of the second type — exactly 𝑘 (𝑘 ⩾ 1) packets
from the buffer may be dropped with probability 𝑞(𝑘) if there were more
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then 𝑘+𝑄1 packets in the buffer, or 𝑄1 packets will remain in the system
if in the buffer were less (or equal) then 𝑘 + 𝑄1 packets.

For the last two cases of general renovation the following condition on
probabilies 𝑝 and 𝑞(𝑘) (𝑘 ⩾ 1) must be met:

𝑝 +
∞

∑
𝑘=1

𝑞(𝑘) = 1,

𝑝 is the probability, that a served packet will just leave the system without
dropping other packets.

The minus of the first, the third and the fifth drop mechanism is that too
many packets may be dropped, the minus of the second, the fourth and the
sixth drop mechanism is that the buffer may remain overflowed. Models with
two thresholds allow to get rid of these minuses.

3.3. The mathematical model with renovation and two thresholds

In this part of the article we will discuss models of RED-like algorithm based
on queueing systems with renovation and two thresholds.

The thresholds of the first type: the first threshold 𝑄1 determines when
packets start to be dropped, the second threshold 𝑄2(𝑄2 > 𝑄1) sets the
maximum value of drop probability.

The types of renovation policy. At the moment of the end of a packet
service the current queue length ̂𝑞 is compared with thresholds and if ̂𝑞 ⩽ 𝑄1
then no one of the packets from the buffer is dropped.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 (𝑘 ⩾ 1) packets will
be dropped with fixed probability 𝑞𝑘. If ̂𝑞 ⩾ 𝑄2 + 1 then the fixed size
group of 𝑘 packets in the buffer will be dropped with maximal probability
𝑞max(𝑞𝑘 < 𝑞max ⩽ 1.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with probability 𝑞𝑘( ̂𝑞), 0 < 𝑞𝑘( ̂𝑞) < 𝑞max. If ̂𝑞 ⩾ 𝑄2 +1 then the fixed size
group of 𝑘 packets in the buffer will be dropped with maximal probability
𝑞max (this model was considered in [12] for 𝑘 = 1 (the last packet is
dropped) and the steady-state probability distribution of packets in
the system(for imbedded Markov chain) as well as some probabilistic
(the probability that the arriving packet will be dropped or served) and
sojourn time characteristics for served packets were obtained).

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with fixed probability 𝑞𝑘. If ̂𝑞 ⩾ 𝑄2 + 1 then all packets except the first
𝑄1 will be dropped with probability 𝑞.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄1 then the fixed size group of 𝑘 packets will be dropped
with probability 𝑞𝑘( ̂𝑞). If ̂𝑞 ⩾ 𝑄2 + 1 then all packets except the first 𝑄1
will be dropped with probability 𝑞.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the arbitrary size group of 𝑘 packets will be
dropped with given probability 𝑞(𝑘) (0 < 𝑞(𝑘) < 1). If ̂𝑞 ⩾ 𝑄2 + 1 then
all packets except the first 𝑄1 will be dropped with probability 𝑞.



310 DCM&ACS. 2020, 28 (4) 305–318

For all types of renovation policy the following condition on probabilies 𝑞𝑘,
𝑞𝑘( ̂𝑞), 𝑞(𝑘) , 𝑞max, 𝑞 (𝑘 ⩾ 1) must be met:

𝑝𝑘 + 𝑞𝑘 = 1, 𝑝𝑘( ̂𝑞) + 𝑞𝑘( ̂𝑞) = 1, 𝑘 ⩾ 1, 𝑝 +
∞

∑
𝑘=1

𝑞(𝑘) = 1,

where 𝑝𝑘, 𝑝𝑘( ̂𝑞) (𝑘 ⩾ 1) and 𝑝 are the probabilities that the served packet
will leave the system without dropping any other packets from the buffer (if

𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2), and 𝑝(2)
max + 𝑞max = 1, 𝑝(2) + 𝑞 = 1, 𝑝(2)

max and 𝑝(2) are the
probabilities that the served packet will leave the system without dropping
any other packets from the buffer (if ̂𝑞 ⩾ 𝑄2 + 1).
The thresholds of the second type: the first threshold 𝑄1 determines when

packets start to be dropped, the second threshold 𝑄2 determines the place
to which packets will be dropped from the queue (𝑄1 ⩾ 𝑄2). If the current
queue size ̂𝑞 is less than 𝑄1, then a served packet just leave the system. But
if ̂𝑞 ⩾ 𝑄1 + 1 then the following types of renovation (dropping) mechanism
may be applied:

— the fixed size group of 𝑘 (𝑘 ⩾ 1) packets will be dropped with fixed
probability 𝑞𝑘 (anyhow 𝑄2 packets will remain in system);

— with probability 𝑞 only 𝑄2 packets will remain in system, all others
packets will be dropped;

— the arbitrary size group of 𝑘 packets will be dropped with given probability
𝑞(𝑘) (0 < 𝑞(𝑘) < 1) (anyhow 𝑄2 packets will remain in system).

For all types of renovation policy the following condition on probabilies 𝑞𝑘,
𝑞𝑘( ̂𝑞) (𝑘 ⩾ 1) and 𝑞 must be met:

𝑝𝑘 + 𝑞𝑘 = 1, 𝑝 +
∞

∑
𝑘=1

𝑞(𝑘) = 1, 𝑝(2) + 𝑞 = 1,

where 𝑝𝑘 (𝑘 ⩾ 1), 𝑝 and 𝑝(2) are the probabilities that the served packet
will leave the system without dropping any other packets from the buffer (if
𝑄1 + 1 ⩽ ̂𝑞).
The minus of these policies is that the drop probability ceases to depend

on the queue length and it is impossible to set the maximum drop probability.
Models with three thresholds allow to get rid of this minus.

For the third model in [13] the steady-state probability distribution of pack-
ets 𝑝𝑖 (𝑖 ⩾ 0) in the system(for imbedded Markov chain), some probabilities
were obtained and represented by geometric form (when the threshold 𝑄1 is
overcomed):

𝑝𝑖 =
𝑄1

∑
𝑗=𝑖−1

𝑝𝑗(−𝜇)𝑗+1−𝑖𝛼(𝑗+1−𝑖)(𝜇)+

+ 𝑝𝑄1+1𝑔𝑖−𝑄1−2 ⎛⎜
⎝

𝑔 − 𝛼(𝜇) −
∞

∫
0

𝐴(𝑔, 𝑥)𝑒−𝜇𝑥𝑑𝐴(𝑥)⎞⎟
⎠

, 𝑖 = 1, 𝑄1 + 1,
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𝑝𝑖 = 𝑝𝑄1+1𝑔𝑖−(𝑄1+1), 𝑖 > 𝑄1 + 1,
where 𝑔 is the unique solution of the equation 𝑔 = 𝛼 (𝜇(1 − 𝑔𝑄(𝑔))), and
belongs to interval (0; 1), 𝛼(𝑠) is the Laplase–Stieltjes transformation of
interrarrival time distribution function𝐴(𝑥), 𝑄(𝑔) is the probability generating
function for probabilities 𝜋(𝑙, 𝑘) that 𝑙 packets will be served and 𝑘 packets
will be dropped from the buffer,

𝐴(𝑔, 𝑥) =
𝑄1+1−𝑖

∑
𝑙=1

(𝜇𝑥𝑔)𝑙

𝑙!

𝑄1+1−𝑖−𝑙

∑
𝑗=0

𝜋(𝑙, 𝑗)𝑔𝑗.

Also the probability that the arriving packet will be dropped and sojourn
time characteristics for dropped packets were obtained in form of integral
equations.

3.4. The mathematical model with renovation and tree thresholds

In this part of the article models with renovation and three thresholds (𝑄1, 𝑄2
and 𝑄3) will be formulated. The first threshold 𝑄1 determines when packets
start to be dropped, the second threshold 𝑄2(𝑄2 > 𝑄1) sets the maximum
value of drop probability, the third threshold 𝑄3(𝑄3 < 𝑄1) determines the
place to which packets may be dropped from the queue.

The following types of renovation mechanism may be defined. At the
moment of the end of a packet service the current queue length ̂𝑞 is compared
with thresholds and if ̂𝑞 ⩽ 𝑄1 then no one of the packets from the buffer is
dropped.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 (𝑘 ⩾ 1) packets will
be dropped with fixed probability 𝑞𝑘. If ̂𝑞 ⩾ 𝑄2 + 1 then the fixed size
group of 𝑘 packets in the buffer will be dropped with maximal probability
𝑞max(𝑞𝑘 < 𝑞max ⩽ 1, but 𝑄3 packeta anyhow will remain in the system.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with probability 𝑞𝑘( ̂𝑞), 0 < 𝑞𝑘( ̂𝑞) < 𝑞max. If ̂𝑞 ⩾ 𝑄2 +1 then the fixed size
group of 𝑘 packets in the buffer will be dropped with maximal probability
𝑞max, but 𝑄3 packeta anyhow will remain in the system.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with fixed probability 𝑞𝑘. If ̂𝑞 ⩾ 𝑄2 + 1 then all packets except the first
𝑄1 will be dropped with probability 𝑞.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with probability 𝑞𝑘( ̂𝑞). If ̂𝑞 ⩾ 𝑄2 + 1 then all packets except the first 𝑄1
will be dropped with probability 𝑞.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the arbitrary size group of 𝑘 packets will be
dropped with given probability 𝑞(𝑘) (0 < 𝑞(𝑘) < 1). If ̂𝑞 ⩾ 𝑄2 + 1 then
all packets except the first 𝑄1 will be dropped with probability 𝑞.
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For all types of renovation policy the following condition on probabilies 𝑞1,
𝑞𝑘, 𝑞( ̂𝑞), 𝑞𝑘( ̂𝑞), 𝑞(𝑘) , 𝑞max, 𝑞 (𝑘 ⩾ 1) must be met:

𝑝𝑘 + 𝑞𝑘 = 1, 𝑝𝑘( ̂𝑞) + 𝑞𝑘( ̂𝑞) = 1, 𝑘 ⩾ 1, 𝑝 +
∞

∑
𝑘=1

𝑞(𝑘) = 1,

where 𝑝𝑘, 𝑝𝑘( ̂𝑞) (𝑘 ⩾ 1) and 𝑝 are the probabilities that the served packet
will leave the system without dropping any other packets from the buffer (if

𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2), and 𝑝(2)
max + 𝑞max = 1, 𝑝(2) + 𝑞 = 1, 𝑝(2)

max and 𝑝(2) are the
probabilities that the served packet will leave the system without dropping
any other packets from the buffer (if ̂𝑞 ⩾ 𝑄2 + 1).

4. The comparison of some renovation models
with RED algorithm

In this section we will compare values of the probability of packet being

dropped from the system 𝑝loss for RED and TailDrop algorithms [4], [6], [7]
and values of the probability 𝑝loss, obtained by formulas derived for queueing
system with general renovation [11], queueing system with general renovation
and feedback [33], [34] and queueing system with general renovation and two
thresholds [12].

As can be see from the table 1, according to the values of the 𝑝loss, renovation
mechanism can perform as good as RED in the wide range of the offered
load 𝜌.

Table 1

The value of the loss probability for Taildrop, RED, general renovation, general renovation

with feedback, general renovation with two thresholds

Loss probability

Taildrop RED renov. ren-fd. ren-thr.

𝜌 = 0.5
0 0.002 0.002 0.002 0.003

𝜌 = 1
0.051 0.091 0.104 0.11 0.109

𝜌 = 2
0.500 0.500 0.502 0.54 0.524

𝜌 = 3
0.667 0.667 0.667 0.71 0.0.679
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5. Conclusion

The main task of the authors in this work was to formulate different types
of models with various renovation policies and one or more threshold values in
a buffer of a system. These thresholds allows to control the drop probability
of renovation mechanism. Some of the described models have already been
researched or are in the process of research (links to scientific publications
are provided)
The presented numerical experiments show that the results remain qualita-

tively the same for RED-type AQM with other dropping functions. Being
defined by 𝑁 parameters, the renovation mechanism is very flexible and this
constitutes its strength and weakness. By varying the values of the renova-
tion probabilities 𝑞(𝑖), it is possible to carry out conditional optimisation, but
good searching procedures are required here.
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Системы массового обслуживания с различными
видами обновления и порогами как математические
модели алгоритмов активного управления очередями
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Работа посвящена некоторым аспектам использования механизма обновления
(различные варианты обновления рассмотрены, определения и краткий обзор
представлены) с одним или несколькими порогами в качестве математических
моделей механизмов активного управления очередями.
Описаны системы массового обслуживания, в которых реализован механизм

обновления с порогами, позволяющий управлять числом заявок в системе путем
их сброса из накопителя в зависимости от значения некоторого управляюще-
го параметра и пороговых значений. Сброс заявок из накопителя происходит
в момент окончания обслуживания заявки на приборе, что отличает данный
механизм сброса от RED-подобных алгоритмов, для которых сброс возможен
в момент поступления в систему.
Представлены модели с одним, двумя или тремя порогами. В этих моделях

пороговые значения определяют не только место, с которого в накопителе начи-
нается сброс заявок, но и до какой позиции заявки могут быть сброшены. Для
некоторых из описываемых моделей уже получены аналитические и численные
результаты (ссылки на работы представлены), но большая часть моделей нахо-
дится в процессе изучения, поэтому представлены только описания и некоторые
текущие данные.
Приведены некоторые результаты сравнения классического алгоритма RED

с механизмом обновления.

Ключевые слова: система массового обслуживания, активное управление
очередью, обновление, обобщенное обновление, функция сброса, пороговый
механизм, контроль перегрузок сети
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In this investigation, we consider an 𝑀/𝐺/1 queue with general retrial times
allowing balking and server subject to breakdowns and repairs. In addition, the
customer whose service is interrupted can stay at the server waiting for repair or
leave and return while the server is being repaired. The server is not allowed to begin
service on other customers until the current customer has completed service, even
if current customer is temporarily absent. This model has a potential application
in various fields, such as in the cognitive radio network and the manufacturing
systems, etc. The methodology is strongly based on the general theory of stochastic
orders. Particularly, we derive insensitive bounds for the stationary distribution of
the embedded Markov chain of the considered system.

Key words and phrases: Retrial queue, Markov chain, balking, breakdowns and
repairs, stochastic orders, bounds, ageing classes

1. Introduction

The study on queueing models have become an indispensable area due to its
wide applicability in real life situations. Retrial queues occupy an intermediate
situation between an Erlang model with loss and classical model with wait,
which constitute their limiting models in the case of low and high retrial rates.
Retrial queueing systems are characterized by the requirement that customers
finding the service area busy must join the retrial group and retry for service
at random intervals. Queues in which customers are allowed to retry have
been extensively used to model many problems in telephone switching systems,
cognitive radio network, manufacturing systems, telecommunication networks
and computer systems for competing to gain service from a central processor
unit [1]–[3].
Retrial queueing systems with general service times and non-exponential

retrial time distributions have been received little attention because of the
complexity of the known results. Indeed, in most cases, we are faced with
systems of equations whose resolution is complex, or having solutions not
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easily interpretable. For instance, Pollaczek-Khintchine formula requires
a numerical inversion of the Laplace transform to compute the distribution of
the waiting time. In many cases, even the Laplace transform or probability
generating functions are not available in explicit forms. To overcome these
difficulties, approximation methods are often used to obtain quantitative
and/or qualitative estimates for certain performance measures. For all these
reasons, in this study, a particular interest is devoted to the stochastic
comparison method based on the general theory of stochastic orders [4], [5].
The stochastic comparison method is a mathematical tool used to study

the performance of some systems modeled by continuous or discrete time
Markov chains. The general idea of this method is to bound a complex
system with a new system that is simpler to solve providing qualitative
bounds for these performance measures. These methods represent one of the
main research activities in various scientific fields, such as economy, biology,
operation research, reliability theory, decision theory, retrial queues and
queueing networks [4]–[15].

In the present study, stochastic comparison analysis of an 𝑀/𝐺/1 queue
with server subject to breakdowns, general service times and non-exponential
retrial time distributions by considering the both balking and reneging be-
havior of the customer is presented.
The rest of the paper is organized as follows. In the next Section, we

describe the considered queueing system. In Section 3, we introduce an
overview on stochastic orders. In Section 4, we present some lemmas that
will be used in what follows. Section 5 focusses on monotonicity properties
of the transition operator. Insensitive bounds for the stationary number of
customers in the system at a departure epochs are discussed in Section 6.

2. Mathematical model description

Primary customers arrive in a Poisson process with rate 𝜆. If an arriving
primary customer finds the server idle, it begins service immediately and
leaves the system after service completion. If the server is found to be blocked,
the arriving primary customer either enters a retrial queue (according to
a FCFS discipline) with probability 𝑝 or leaves the system with probability
1−𝑝. The service times follow a general distribution 𝐵(𝑥) with corresponding
Laplace-Stieltjes transform 𝐵⋆(𝑠) and the first two moments 𝛽1 and 𝛽2.
The customers in the orbit try to require the service later and the inter

retrial times have a general distribution 𝐴(𝑥) with corresponding Laplace-
Stieltjes transform 𝐴⋆(𝑠). The retrial customer cancels its attempt for service
if a primary customer arrives first and either returns to its position in the
retrial queue with probability 𝑞 or quits the system with probability 1 − 𝑞.
We assume that the server may fail (or break down), but only when

a customer is in service. The time until failure is exponentially distributed
with mean 1/𝜇, but failure of the server can occur only when a customer is
being served. When the server fails, the repair starts immediately and the
customer just under service waits for the server until repair completion in order
to accomplish its remaining service. The repair time is a random variable
with probability distribution function 𝐶(𝑥), Laplace-Stieltjes transform 𝐶⋆(𝑠)
and the first two moments 𝛾1 and 𝛾2.
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Upon failure of the server, the customer in service either remains in the
service position with probability 𝛼 until the server is up or enters a service
retrial orbit with probability 1 − 𝛼 and keeps returning at times exponentially
distributed with mean 1/𝜃, until the server is repaired. If the customer in
service enters the service retrial orbit upon server failure, after repair the
server must wait for the customer to return. We refer to this time as the
reserved time.
The performance characteristics of our queueing system are available in Wu

et al. [16]. Under the stability condition 𝑝𝜆𝛽1(1+𝜇(1−𝛼
𝜃 +𝛾1)) < 1−𝑞+𝑞𝐴⋆(𝜆),

the one-step transition probabilities are given as:

𝑃𝑖𝑗 =

⎧{{
⎨{{⎩

𝑟𝑗, if 𝑖 = 0, 𝑗 ⩾ 0,
(1 − 𝑞 + 𝑞𝐴⋆(𝜆))𝑟0, if 𝑖 > 0, 𝑗 = 𝑖 − 1,
𝑞(1 − 𝐴⋆(𝜆))𝑟𝑗−1 + (1 − 𝑞 + 𝑞𝐴⋆(𝜆))𝑟𝑗−𝑖+1, if 𝑖 > 0, 𝑗 > 𝑖 − 1,
0, otherwise,

(1)

where

𝑟𝑚 =
+∞

∫
0

(𝑝𝜆𝑥)𝑚

𝑚!
exp {−𝑝𝜆𝑥} 𝑑𝐵•(𝑥), 𝑚 = 0, 1, 2, ...

is the distribution of the number of primary customers which arrive during the
generalized service time of the (𝑛 + 1)𝑡ℎ customer. We define the generalised
service time as the length of time from when a customer begins service
until service completion (that includes: some eventual repair times (𝑋𝑖) and
reserved times (𝑌𝑖)) with common distribution

𝐵•(𝑥) =
∞

∑
𝑖=0

𝑖
∑
𝑗=0

𝑥

∫
0

(𝑖
𝑗
) 𝛼𝑗(1 − 𝛼)𝑖−𝑗 (𝜇𝑦)𝑖

𝑖!
𝑒−𝜇𝑦𝐶(2)

𝑖,𝑗 (𝑥 − 𝑦)𝑑𝐵(𝑦).

3. Overview on stochastic orders and ageing notions

Stochastic ordering is useful for studying internal changes of performance
due to parameter variations, to compare distinct systems, to approximate
a system by a simpler one, and to obtain upper and lower bounds for the
main performance measures of systems. For a comprehensive discussion on
these stochastic orders, see [4], [5].
Let 𝑋 and 𝑌 be two random variables non-negative with distribution

functions 𝐹 and 𝐺, respectively.

Laplace order (⩽𝐿): 𝑋 ⩽𝐿 𝑌 ⇔
+∞

∫
0

𝑒−𝑠𝑥𝑑𝐹(𝑥) ⩾
+∞

∫
0

𝑒−𝑠𝑥𝑑𝐺(𝑥), ∀𝑠 ⩾ 0.

Stochastic order (⩽𝑠𝑡): 𝑋 ⩽𝑠𝑡 𝑌 ⇔ 𝐹(𝑥) ⩾ 𝐺(𝑥), ∀𝑥 ∈ ℝ.

Convex order (⩽𝑣): 𝑋 ⩽𝑣 𝑌 ⇔
∞

∫
𝑥

(1 − 𝐹(𝑡))𝑑𝑡 ⩽
∞

∫
𝑥

(1 − 𝐺(𝑡))𝑑𝑡, ∀𝑥 ⩾ 0.
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Proposition 1. Let 𝑋 be a random variable with distribution function 𝐹
and finite mean 𝑚.
(a) 𝐹 is New Better than Used in Expectation (NBUE) iff 𝐹 ⩽𝑣 𝐹 ∗,
(b) 𝐹 is New Worse than Used in Expectation (NWUE) iff 𝐹 ∗ ⩽𝑣 𝐹,
(c) 𝐹 is of class ℒ iff 𝐹 ⩾𝐿 𝐹 ∗, where 𝐹 ∗ is the exponential distribution

function with the same mean as 𝐹.

4. Comparison bounds for the probability 𝑟𝑚

This subsection presents several useful lemmas which will be used later in
establishing the main results. For this, we consider two 𝑀/𝐺/1 queue with
general retrial times allowing balking and server subject to breakdowns and

repairs with parameters 𝜆(𝑖), 𝑞(𝑖), 𝛼(𝑖), 𝜇(𝑖), 𝐶(𝑖), 𝐵(𝑖), for 𝑖 = 1, 2 respectively.

Lemma 1. If 𝜆(1) ⩽ 𝜆(2), 𝑞(1) ⩽ 𝑞(2), 𝛼(1) ⩾ 𝛼(2), 𝜇(1) ⩽ 𝜇(2), 𝐶(1) ⩽𝑠𝑡 𝐶(2),

𝐵(1) ⩽𝑠𝑡 𝐵(2), then {𝑟(1)
𝑚 } ⩽𝑠𝑡 {𝑟(2)

𝑚 }.

Lemma 2. If 𝜆(1) ⩽ 𝜆(2), 𝑞(1) ⩽ 𝑞(2), 𝛼(1) ⩾ 𝛼(2), 𝜇(1) ⩽ 𝜇(2), 𝐶(1) ⩽𝑣 𝐶(2),

𝐵(1) ⩽𝑣 𝐵(2), then {𝑟(1)
𝑚 } ⩽𝑣 {𝑟(2)

𝑚 }.

Proof. To show both lemmas, we have to establish the usual numerical
inequalities

𝑟(1)
𝑚 = ∑

𝑛⩾𝑚
𝑟(1)

𝑛 ⩽ 𝑟(2)
𝑚 (for ⩽𝑠=⩽𝑠𝑡),

𝑟(1)
𝑚 = ∑

𝑛⩾𝑚
𝑟(1)

𝑛 ⩽ 𝑟(2)
𝑚 (for ⩽𝑠=⩽𝑣).

By definition, we have

𝑟(𝑖)
𝑚 = ∑

𝑗⩾𝑚
𝑟(𝑖)

𝑗 =
+∞

∫
0

∑
𝑗⩾𝑚

(𝑝(𝑖)𝜆(𝑖)𝑥)𝑗

𝑗!
𝑒−𝑝(𝑖)𝜆(𝑖)𝑥𝑑𝐵•(𝑖)(𝑥), 𝑖 = 1, 2.

𝑟(𝑖)
𝑚 = ∑

𝑗⩾𝑚
𝑟(𝑖)

𝑗 =
+∞

∫
0

∑
𝑗⩾𝑚

∑
𝑙⩾𝑗

(𝑝(𝑖)𝜆(𝑖)𝑥)𝑙

𝑙!
𝑒−𝑝(𝑖)𝜆(𝑖)𝑥𝑑𝐵•(𝑖)(𝑥), 𝑖 = 1, 2.

The rest of the proof is known in the more general setting of a random
summation. �

5. Monotonicity properties of the transition operator

Let T be the transition operator which associates to every distribution
𝜔 = {𝜔𝑗}𝑗⩾0 a distribution T𝜔 = {𝜈𝑗}𝑗⩾0 such that 𝜈𝑗 = ∑

𝑖⩾0
𝜔𝑖𝑃𝑖𝑗.

Theorem 1. The transition operator T is monotone with respect to the
orders stochastic (⩽𝑠𝑡) and convex (⩽𝑣).
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Proof. It is well known that an operator is monotone with respect to ⩽𝑠𝑡
if and only if 𝑃𝑖𝑗 − 𝑃𝑖−1𝑗 ⩾ 0, and is monotone with respect to ⩽𝑣 if and only

if 𝑃𝑖−1𝑗 + 𝑃𝑖+1𝑗 − 2𝑃𝑖𝑗 ⩾ 0, ∀ 𝑖, 𝑗.

In our case, 𝑃𝑖𝑗 =
∞
∑
𝑙=𝑗

𝑃𝑖𝑙 and 𝑃𝑖𝑗 =
∞
∑
𝑙=𝑗

𝑝𝑖𝑙. �

Now, we consider two 𝑀/𝐺/1 queue with general retrial times allowing
balking and server subject to breakdowns and repairs with parameters 𝜆(𝑖),
𝑞(𝑖), 𝛼(𝑖), 𝜇(𝑖), 𝐶(𝑖), 𝐴(𝑖), 𝐵(𝑖), for 𝑖 = 1, 2 respectively. In the following
theorem, we give comparability conditions of two transition operators T1

and T2.

Theorem 2. If 𝜆(1) ⩽ 𝜆(2), 𝑞(1) ⩽ 𝑞(2), 𝛼(1) ⩾ 𝛼(2), 𝜇(1) ⩽ 𝜇(2), 𝐶(1) ⩽𝑠
𝐶(2), 𝐵(1) ⩽𝑠 𝐵(2) and 𝐴(1) ⩽𝐿 𝐴(2), then T1 ⩽𝑠 T

2, where ⩽𝑠 is one of the

symbols ⩽𝑠𝑡 or ⩽𝑣. I.e. for any distribution 𝜔, we have T1𝜔 ⩽𝑠 T
2𝜔.

Proof. It is well known that to prove T1 ⩽𝑠 T
2, we have to show the

following numerical inequalities for the one-step transition probabilities 𝑃 (1)
𝑖𝑗 ,

𝑃 (2)
𝑖𝑗 (see Stoyan [5]): 𝑃(1)

𝑖𝑗 ⩽ 𝑃(2)
𝑖𝑗 , ∀𝑖, 𝑗, (for ⩽𝑠=⩽𝑠𝑡), and 𝑃

(1)
𝑖𝑗 ⩽ 𝑃

(2)
𝑖𝑗 , ∀𝑖, 𝑗,

(for ⩽𝑠=⩽𝑣).
After algebraic manipulations, we obtain the result searched. �

6. Bounds for the stationary distribution

Now, we add the the corresponding stationary distributions of the number

of customers in the system 𝜋(1)
𝑛 and 𝜋(2)

𝑛 .

Theorem 3. If 𝜆(1) ⩽ 𝜆(2), 𝑞(1) ⩽ 𝑞(2), 𝛼(1) ⩾ 𝛼(2), 𝜇(1) ⩽ 𝜇(2), 𝐶(1) ⩽𝑠
𝐶(2), 𝐵(1) ⩽𝑠 𝐵(2) and 𝐴(1) ⩽𝐿 𝐴(2), then {𝜋(1)

𝑛 } ⩽𝑠 {𝜋(2)
𝑛 }, where ⩽𝑠 is one

of the symbols ⩽𝑠𝑡 or ⩽𝑣.

Proof. Using Theorems 1 and 2 which state that T𝑖 are monotone with
respect to the order ⩽𝑠 and T

1 ⩽𝑠 T
2, we have by induction T1,𝑛𝜔 ⩽𝑠 T

2,𝑛𝜔
for any distribution 𝜔. Taking the limit, we obtain the stated result. �

Theorem 4. We consider an 𝑀/𝐺/1 queue with general retrial times allow-
ing balking and server subject to breakdowns and repairs. If we have, the service
time distribution 𝐵(𝑥) and the repair time distribution 𝐶(𝑥) are NBUE and the
retrial time distribution is of class ℒ, then {𝜋𝑛} ⩽𝑣 {𝜋∗

𝑛}, where {𝜋∗
𝑛} is the

stationary distribution in the Markovian retrial queue with the same parameters.

Proof. Consider an auxiliary Markovian 𝑀/𝑀/1 retrial queue allowing
balking and server subject to breakdowns and repairs, having the same
parameters as the model considered in our study , but with exponentially
distributed retrial time 𝐴∗(𝑥), service time 𝐵∗(𝑥) and repair time 𝐶∗(𝑥). We
have also, if 𝐵(𝑥) and 𝐶(𝑥) are 𝑁𝐵𝑈𝐸 and 𝐴(𝑥) is ℒ, then 𝐵(𝑥) ⩽𝑣 𝐵∗(𝑥),
𝐶(𝑥) ⩽𝑣 𝐶∗(𝑥) and 𝐴(𝑥) ⩽𝐿 𝐴∗(𝑥). Therefore, by using Theorem 3, we
deduce the statement of this theorem. �
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7. Conclusions

In this work, we investigated the monotonicity of the transition operator of
the embedded Markov chain with respect to stochastic and convex orderings.
In addition, we done comparability conditions of the transition operators
of the considered systems, associated with two Markov chains. Further, we
obtained comparability conditions for which the stationary distribution in the
considered model is bounded by the stationary distribution of the Markovian
retrial queue, if the service time and the repair time distributions are NBUE
and the retrial time distribution is of class ℒ.
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Стохастический анализ системы типа
«клиент–сервер» с ненадёжной очередью

с блокировкой и общим временем обновления

Мохамед Буалем

Исследовательское подразделение LaMOS
Факультет технологий, Университет Беджая, Алжир

В статье рассматривается система массового обслуживания типа 𝑀/𝐺/1
с обобщённым временем обновления, допускающая блокировку, выход из строя
и возобновление работы сервера. Кроме того, клиент, обслуживание которого
прервано, может оставаться на сервере в ожидании восстановления его рабо-
ты, а может покинуть систему и вернуться в период восстановления работы
сервера. Серверу не разрешается начинать обслуживание других клиентов до
тех пор, пока текущий клиент не завершит обслуживание, даже если он вре-
менно отсутствует. Эта модель имеет потенциальное применение в различных
областях, таких как сеть когнитивного радио, производственные системы и т.
д. Методология строго базируется на общей теории стохастических порядков.
В частности, получены оценки стационарного распределения вложенной цепи
Маркова рассматриваемой системы.

Ключевые слова: очередь с обновлением, цепь Маркова, блокировка, выход
из строя и восстановление, стохастический порядок, границы, классы старения
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preserving quadratic invariants of dynamical systems
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We implement several explicit Runge–Kutta schemes that preserve quadratic
invariants of autonomous dynamical systems in Sage. In this paper, we want to
present our package ex.sage and the results of our numerical experiments.
In the package, the functions rrk_solve, idt_solve and project_1 are constructed

for the case when only one given quadratic invariant will be exactly preserved.
The function phi_solve_1 allows us to preserve two specified quadratic invariants
simultaneously. To solve the equations with respect to parameters determined
by the conservation law we use the elimination technique based on Gröbner basis
implemented in Sage. An elliptic oscillator is used as a test example of the presented
package. This dynamical system has two quadratic invariants. Numerical results of
the comparing of standard explicit Runge–Kutta method RK(4,4) with rrk_solve are
presented. In addition, for the functions rrk_solve and idt_solve, that preserve only
one given invariant, we investigated the change of the second quadratic invariant
of the elliptic oscillator. In conclusion, the drawbacks of using these schemes are
discussed.

Key words and phrases: Explicit Runge–Kutta method, quadratic invariant, dy-
namical system, Sage

1. Quadratic invariant and conservative RK scheme

One of most widespread mathematical models is an autonomous system of
ordinary differential equations, i.e., the system of the form

⎧{
⎨{⎩

𝑑𝑥
𝑑𝑡

= 𝑓(𝑥), 𝑡 ⩾ 0,

𝑥(0) = 𝑥0,
(1)

where: 𝑡 is an independent variable, commonly interpreted as time; 𝑥 is
a vector (𝑥1, … , 𝑥𝑛); 𝑓 is a vector function (𝑓1, 𝑓2, … , 𝑓𝑛), when in applications
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its element 𝑓𝑖 (𝑖 = 1, 2, … , 𝑛) is often taken as a rational or an algebraic
function of the coordinates 𝑥1, … , 𝑥𝑛 or one can be reduced to this form by
some transformation of variables.

Definition 1 (Goriely [1]). If there exists a function 𝐼 of 𝑥, such that, for
any solution 𝑥(𝑡) of system (1), the condition

∇𝐼(𝑥)𝑓(𝑥) =
𝑛

∑
𝑘=1

𝑑𝑥𝑘
𝑑𝑡

𝜕𝐼
𝜕𝑥𝑘

=
𝑛

∑
𝑘=1

𝑓𝑘(𝑥(𝑡)) 𝜕𝐼
𝜕𝑥𝑘

= 0,

holds, then 𝐼 is called the first integral or invariant of the system (1). If 𝑥(𝑡)
is any exact solution of system (1) then 𝐼(𝑥(𝑡)) is independent of 𝑡. If 𝐼
is a polynomial of degree 2 with respect to 𝑥 then it is called a quadratic
invariant.

Any quadratic invariant after a linear transformation can be rewritten in
the form

𝐼(𝑥(𝑡)) = 𝑥(𝑡)𝑇𝑆𝑥(𝑡) = ⟨𝑆𝑥(𝑡), 𝑥(𝑡)⟩ = const, (2)

where ⟨⋅ , ⋅⟩ denote the Euclidean inner product on ℝ𝑛 and 𝑆 ∈ ℝ𝑛×𝑛 is
a symmetric, constant matrix.
To determine an uniform grid (with a step Δ𝑡) of the time interval [0, 𝑇 ]

we take
𝑡𝑛 = 𝑛Δ𝑡 (𝑛 = 0, … , 𝑁).

We will interpret {𝑥𝑛} as an approximation to the exact solution 𝑥(𝑡) at
time 𝑡0 + 𝑛 Δ𝑡, i.e.

𝑥(𝑡0 + 𝑛Δ𝑡) ≈ 𝑥𝑛.
For the system (1) Runge–Kutta scheme (RK scheme) with 𝑠 stages can

be written as

𝑘𝑖 = 𝑥𝑛 + Δ𝑡
𝑠

∑
𝑗=1

𝑎𝑖𝑗𝑓 (𝑘𝑗) , 𝑖 = 1, 2, … , 𝑠 (3)

and

𝑥𝑛+1 = 𝑥𝑛 + Δ𝑡
𝑠

∑
𝑖=1

𝑏𝑖𝑓 (𝑘𝑖) . (4)

Below the parameters 𝑎𝑖𝑗 and 𝑏𝑖(𝑖 = 1, 2, ..., 𝑠, 𝑗 = 1, 2, ..., 𝑠) will be ar-
ranged in an array

𝑐1 𝑎11 𝑎12 ⋯ 𝑎1𝑠
𝑐2 𝑎21 𝑎22 ⋯ 𝑎2𝑠
⋮ ⋮ ⋮ ⋱ ⋮

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 ⋯ 𝑎𝑠𝑠

𝑏1 𝑏2 ⋯ 𝑏𝑠
where

𝑐𝑖 =
𝑠

∑
𝑗=1

𝑎𝑖𝑗,
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is known as the Butcher table [2], [3] and will be called the coefficients of
the RK scheme. The RK method is explicit if 𝑎𝑖𝑗 = 0 for 𝑖 ≤ 𝑗, otherwise is
implicit.

We want to construct numerical solutions 𝑥0, 𝑥1, … , 𝑥𝑁 such that the
quadratic invariant 𝐼(𝑥) is preserved numerically, i.e.

⟨𝑆𝑥𝑛, 𝑥𝑛⟩ = ⟨𝑆𝑥0, 𝑥0⟩ 𝑖 = 1, … , 𝑁. (5)

In this case the RK method will be called S-conservative RK scheme.
Ref. [4]–[6] indicated that the RK method preserves the quadratic first

integrals of system (1) iff the coefficients of such RK method satisfy

𝑏𝑖𝑎𝑖𝑗 + 𝑏𝑗𝑎𝑗𝑖 − 𝑏𝑖𝑏𝑗 = 0, 𝑖, 𝑗 = 1, … , 𝑠. (6)

Such Runge–Kutta methods are called symplectic.

Obviously, no explicit RK schemes satisfies the symplectic condition [6], [7].
Unfortunately, during using the implicit schemes, we must solve a system of
non-linear algebraic equations at each step. This is very complex problem,
so implicit schemes require more resources than explicit RK schemes [8].
Furthermore numerical solutions of nonlinear system (for ex., by the Newton
method) introduce new errors that sometimes we cannot estimate effectively
[9]. Thus, the integrals could not be preserved exactly. For this reason,
many authors try to construct numerical methods for solving the system of
differential equations (1) with the preservation of algebraic integrals without
the need to solve nonlinear algebraic equations.

To overcome these difficulties Buono and Mastroserio [10] suggested
a method that uses explicit RK schemes for the construction of new finite-
difference schemes which exactly preserve invariants. Below we will call it the
Buono method for shorthand. Of course, these new schemes are not standard
RK schemes, but they are usually called an explicit RK scheme preserving
invariants [8]. These schemes preserve only one specified invariant. We imple-
mented several such schemes in Sage and investigated what happens to other
invariants. Next, we investigated the method from th article [11] by Calvo
et al. which is an extension of the Buono method and can be used as a con-
servation one or more invariants. Below we will call it the Calvo method for
shorthand.

2. Explicit RK scheme of preserving one quadratic
invariant

2.1. The Buono method

To make the explicit RK scheme conservative, we follow to Buono and
Mastroserio [10]. We scale the weights 𝑏𝑖 by a parameter 𝛾𝑛 ∈ ℝ at the step
𝑛, i.e. use

𝑥𝑛+1
𝛾 = 𝑥𝑛 + Δ𝑡

𝑠
∑
𝑖=1

𝛾𝑛𝑏𝑖𝑓(𝑘𝑖) (7)



330 DCM&ACS. 2020, 28 (4) 327–345

instead of 𝑥𝑛+1 obtained by the formula (4) numerical solution after one time
step.
Using the shorthand

Δ𝑛 =
𝑠

∑
𝑖=1

𝑏𝑖𝑓(𝑘𝑖),

the parameter 𝛾𝑛 could be estimated by the conservative condition, i.e.

⟨𝑆𝑥𝑛+1
𝛾 , 𝑥𝑛+1

𝛾 ⟩ − ⟨𝑆𝑥𝑛, 𝑥𝑛⟩ = 𝛾𝑛Δ𝑡(2⟨𝑆𝑥𝑛, Δ𝑛⟩ + 𝛾𝑛Δ𝑡⟨Δ𝑛, Δ𝑛⟩). (8)

Thus, we preserve the invariant ⟨𝑆𝑥, 𝑥⟩, if we take

𝛾𝑛 = − 2⟨𝑆𝑥𝑛, Δ𝑛⟩
Δ𝑡⟨Δ𝑛, Δ𝑛⟩

. (9)

For Runge–Kutta schemes of order 𝑝 this expression is close to 1, i.e

𝛾𝑛 = 1 + 𝒪(Δ𝑡𝑝−1)

as Δ𝑡 → 0, see Buono at al. [10, prop. 4] for 𝑝 = 4 and Zhang at al. [8,
lemma 3.3]. Thus, the new numerical solution 𝑥𝑛+1

𝛾 can be considered as an

approximation either to 𝑥(𝑡𝑛 + Δ𝑡) with the RK weights scaled by 𝛾𝑛, or to
𝑥(𝑡𝑛 + 𝛾𝑛Δ𝑡) with the time Δ𝑡 scaled by 𝛾𝑛. Zhang at al. [8] denote the
method defined by (3) and (7) with the interpretation

𝑥𝑛+1
𝛾 ≈ 𝑥(𝑡𝑛 + 𝛾𝑛Δ𝑡)

as the relaxation Runge–Kutta method (RRK), while the method using

𝑥𝑛+1
𝛾 ≈ 𝑥(𝑡𝑛 + Δ𝑡)

this is called the increment direction technique (IDT). Note that the value of
the scalar parameter 𝛾𝑛 at each step depends on the quadratic invariant that
appears in rrk or idt method.

Theorem 1 (Zhang et al. [8]). Let the original RK scheme be defined by
(3) and (4) has order 𝑝, then the method defined by (3) and (7) has:

— (RRK method) If the solution 𝑥𝑛+1
𝛾 is interpreted as an approximation to

𝑥(𝑡𝑛 + 𝛾𝑛Δ𝑡), the method has order 𝑝.
— (IDT method) If the solution 𝑥𝑛+1

𝛾 is interpreted as an approximation to

𝑥(𝑡𝑛 + Δ𝑡), the method has order 𝑝 − 1.

In our package ex.sage for Sage [12] the function rrk_solve(P1,F,ics)

returns the numeric points (0, 𝑥0), (𝛾0Δ𝑡, 𝑥1), ⋯ with the parameters:

— P1 is a quadratic invariant;
— F is the right sides of system (1)
— ics is the initial condition
— the default Δ𝑡 = 0.1, 𝑇 = 10
— 4-stage explicit RK scheme with the Butcher table
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0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Function idt_solve() returns the numerical points (0, 𝑥0), (Δ𝑡, 𝑥1), ⋯ with
the parameters:

— P1 is a quadratic invariant;
— F is the right sides of the system (1)
— ics is the initial condition
— the default Δ𝑡 = 0.1, 𝑇 = 10
— 4-stage explicit RK scheme with coefficients the same as the previous
table.

Users can redefine these variables in both functions, for ex., by adding
dt=0.01 or new explicit RK method.

2.2. Elliptic function test

To test this routine, we investigate a nonlinear oscillator. By the definition of
Jacobi functions [13], 𝑝 = sn 𝑡, 𝑞 = cn 𝑡, 𝑟 = dn 𝑡 is a particular solution to
a nonlinear autonomous system of differential equations

̇𝑝 = 𝑞𝑟, ̇𝑞 = −𝑝𝑟, ̇𝑟 = −𝑘2𝑝𝑞 (10)

with the initial conditions

𝑝 = 0, 𝑞 = 𝑟 = 1 at 𝑡 = 0.

This autonomous system has two quadratic integrals of motion

𝑝2 + 𝑞2 = 1 and 𝑘2𝑝2 + 𝑟2 = 1 (11)

We can solve the autonomous system (10) by rrk or idt methods that
preserve only the first or second integral. For certainly, we take 𝑘 = 1/2 and
indicated above initial condition.

sage: var('p,q,r')
sage: load('ex.sage')
sage: k=1/2
sage: s=4
sage: F=[r*q,-p*r,-k^2*p*q]
sage: list_of_integral=[p^2+q^2,k^2*p^2+r^2]
sage: ics=[p==0,q==1,r==1]
sage: idt_solve(P1=list_of_integral[0],ics=ics,F=F,dt=0.2,T=1)
sage: rrk_solve(P1=list_of_integral[0],ics=ics,F=F,dt=0.2,T=1)
sage:

B1=rrk_solve(P1=list_of_integral[0],ics=ics,F=F,dt=0.1,T=40)↪

sage:

B2=rrk_solve(P1=list_of_integral[1],ics=ics,F=F,dt=0.1,T=40)↪
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sage: G=line([[t,p] for [t,p,q,r] in

B1],color='red',axes_labels=['t','p'])+point([[t,p] for
[t,p,q,r] in B2],frame=true)

↪

↪

sage: max(abs(k^2*p^2+r^2-1) for [t,p,q,r] in B2 )
sage: max(abs(p^2+q^2-1) for [t,p,q,r] in B2)
sage: max(abs(k^2*p^2+r^2-1) for [t,p,q,r] in B1 )
sage: max(abs(p^2+q^2-1) for [t,p,q,r] in B1)
sage: G1=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in

B1],axes_labels=['$t$','$k^2p^2+r^2-
1$'],tick_formatter=[None,RR(10e-
18).n(digits=1)],frame=true)

↪

↪

↪

sage: G2=line([[t,p^2+q^2-1] for [t,p,q,r] in

B2],axes_labels=['$t$','$p^2+q^2-
1$'],tick_formatter=[None,RR(10e-
18).n(digits=1)],frame=true)

↪

↪

↪

In figure 1 we can see a graph of the solution found by rrk method with
exact conservation of 𝑝2 +𝑞2 = 1. Rrk give a condensation of the greed points
in those arches of the graph where the curvature has a maximum.

0 5 10 15 20 25 30 35 40
t

-1

-0.5

0

0.5

1

p

Figure 1. Graph of 𝑝(𝑡), rrk, 𝑑𝑡 = 0.1

The second integral 𝑘2𝑝2 + 𝑟2 − 1 is not exactly preserved, but its value
fluctuates with a small amplitude of 10−7 (figure 2). We also use rrk with
exact conservation of 𝑘2𝑝2 + 𝑟2 = 1. In this case first integral grows by
leaps bounds and quickly becomes larger than 10−3 (figure 3). Thus, the
preservation of one integral does not preserve others.

Let’s compare the Buono method with the standard rk4 at the same step
size 𝑑𝑡 (which denote Δ𝑡 in the rrk method).
sage: var('p,q,r,t')
sage: QRK=desolve_system_rk4(F,[p,q,r], ics=[0,0,1,1,], ivar=t,

end_points=20)↪
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sage: G3=line([[t,p^2+q^2] for [t,p,q,r] in

B2],color='red')+point([[t,p^2+q^2] for [t,p,q,r] in
QRK],axes_labels=['$t$','$p^2+q^2$'], tick_formatter=[None,
RR(10e-18).n(digits=1)],frame=true)

↪

↪

↪

sage: G4=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in
B1],axes_labels=['$t$','$k^2p^2+r^2-1$'],tick_formatter=[None,

RR(10e-18).n(digits=1)], color='red') +
point([[t,k^2*p^2+r^2-1] for [t,p,q,r] in QRK],frame=true)

↪

↪
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Figure 2. Second invariant for rrk method with exact conservation of first invariant

𝑝2 + 𝑞2 = 1
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Figure 3. First integral for rrk with exact conservation of 𝑘2𝑝2 + 𝑟2 = 1

The rrk method with the exact conservation of the first invariant 𝑝2 +𝑞2 = 1
preserves both integrals better than rk4 (figure 5) but the rrk with the exact

conservation of 𝑘2𝑝2 + 𝑟2 = 1 preserves the first integral worse than rk4
(figure 4).
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Figure 4. First invariant for rrk method with exact conservation of second invariant

𝑘2𝑝2 + 𝑟2 = 1 (red) and for standard rk4
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Figure 5. Second invariant for rrk method with exact conservation of first invariant

𝑝2 + 𝑞2 = 1 (red) and for standard rk4 (blue)

From the numerical experiments, we came to the conclusion that preserving
multiple integrals requires a different approach.
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3. The Calvo method for one invariant

3.1. The Calvo method

Let us take two popular explicit RK methods for examples: the RK4 and
Euler methods. RK4 method has 4 stages and 4th approximation order. We
calculate four axillary quantities at 𝑛th step

𝑘1=𝑥𝑛,

𝑘2=𝑥𝑛 + 1
2𝑓(𝑘1)Δ𝑡,

𝑘3=𝑥𝑛 + 1
2𝑓(𝑘2)Δ𝑡,

𝑘4=𝑥𝑛 + 𝑓(𝑘3)Δ𝑡
and then the quantity

𝜙(𝑥𝑛) = 𝑥𝑛 + Δ𝑡 (1
6

𝑓(𝑘1) + 1
3

𝑓(𝑘2) + 1
3

𝑓(𝑘3) + 1
6

𝑓(𝑘4)) (12)

which is used in standard way as 𝑥𝑛+1. Similarly, by the Euler method, we
calculate in the step 𝑛 one axillary quantity 𝑘1 = 𝑥𝑛 and the quantity

𝜙1(𝑥𝑛) = 𝑥𝑛 + 𝑓(𝑘1)Δ𝑡 (13)

which is used in standard way as 𝑥𝑛+1. We can describe this scheme by
Butcher table with additional row:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0
𝜙 1

6
1
3

1
3

1
6

𝜙1 1 0 0 0

Calvo et al. [11] extend the Buono method by coupling these two schemes:
in the step 𝑛 we take

𝑥𝑛+1
𝜆 = 𝜙(𝑥𝑛) − 𝜆𝑛(𝜙(𝑥𝑛) − 𝜙1(𝑥𝑛)), (14)

where 𝜆𝑛 ∈ ℝ is the scalar parameter that can be determined by the conser-
vation law, i.e.

𝐼(𝑥𝑛+1
𝜆 ) = 𝐼(𝑥𝑛). (15)

Using (12) and (13) we have

𝑥𝑛+1
𝜆 = 𝑥𝑛 + (1

6
− 5

6
𝜆𝑛) 𝑓(𝑘1)Δ𝑡 + (1

3
+ 1

3
𝜆𝑛) 𝑓(𝑘2)Δ𝑡+

+ (1
3

+ 1
3

𝜆𝑛) 𝑓(𝑘3)Δ𝑡 + (1
6

+ 1
6

𝜆𝑛) 𝑓(𝑘4)Δ𝑡. (16)
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Thus, (15) gives an algebraic equation to determinating the parameter 𝜆𝑛
at each step. Calvo et al [11] proved that approximation order of this new
scheme is equal to 3. They investigated more general case when coupling any
two explicit RK scheme.
If 𝐼 is a quadratic invariant then we have a quadratic equation for 𝜆𝑛,

one of the roots of which goes to 0 at Δ𝑡 → 0 and the other goes to ∞. In
numerical experiments we choose the parameter 𝜆𝑛 as real number which is
close to the value 0. In CAS sagemath, we use symbolic calculation to solve
this equation (15) with respect to 𝜆𝑛, and use the function roots to get this
value, since our calculation is performed in the ring ℝ (Real Field with 53 bits
of precision). So, there is a small error, since in ℚ will get the exact value,
but it is very time-consuming.

3.2. Elliptic function test

We implement the described scheme in Sage as the function project_1().

Function project_1() returns the numerical points (0, 𝑥0), (Δ𝑡, 𝑥1), ⋯ with
the parameters:

— list_of_integral is an invariant required to be conserved;
— F is the right sides of the system (1)
— ics is the initial condition
— 𝑑𝑡 is the step size,𝑇 is the end point of time 𝑡.
Let us take the elliptic function for example.

sage: load('ex.sage')
sage: var('p,q,r,k')
sage: k=1/2
sage: list_of_integral=[p^2+q^2,k^2*p^2+r^2]
sage: F=[r*q,-p*r,-k^2*p*q]
sage: ics=[p==0,q==1,r==1]
sage: B1=project_1(list_of_integral[0],F,ics,dt=0.1,T=20)
sage: max([abs(p^2+q^2-1) for [t,p,q,r] in B1])
sage: P=line([[t,p] for [t,p,q,r] in

B1],axes_labels=['$t$','$p$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true, color='red')+point([[t,p] for
[t,p,q,r] in B1])

↪

↪

↪

sage: P1=line([[t,p^2+q^2-1] for [t,p,q,r] in

B1],axes_labels=['$t$','$p^2+q^2-
1$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true,
color='red')

↪

↪

↪

↪

sage: P2=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in

B1],axes_labels=['$t$','$k^2*p^2+r^2-
1$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true)

↪

↪

↪

sage: B2=project_1(list_of_integral[1],F,ics,dt=0.1,T=20)
sage: max([abs(p^2+q^2-1) for [t,p,q,r] in B2])
sage: P0=line([[t,p] for [t,p,q,r] in

B2],axes_labels=['$t$','$p$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true, color='red')+point([[t,p] for
[t,p,q,r] in B2])

↪

↪

↪
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sage: P01=line([[t,p^2+q^2-1] for [t,p,q,r] in

B2],axes_labels=['$t$','$p^2+q^2-
1$'],tick_formatter=[None,RR(10e-
15).n(digits=1)],frame=true)

↪

↪

↪

sage: P02=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in

B2],axes_labels=['$t$','$k^2*p^2+r^2-
1$'],tick_formatter=[None,RR(10e-
16).n(digits=1)],frame=true)

↪

↪

↪

In figure 6 we can see that the solution founded by the Calvo method with
exact conservation of the first invariant 𝑝2 + 𝑞2 = 1 and the second invariant
𝑘2𝑝2 + 𝑟2 = 1 gives a condensation of greed points in those arches of the
graph where the curvature has a maximum.
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Figure 6. Graph of 𝑝(𝑡), for the Calvo method with exact conservation of 𝑝2 + 𝑞2 = 1,
𝑑𝑡 = 0.1(up one) and that of 𝑘2𝑝2 + 𝑟2 = 1 (down one)
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The second integral 𝑘2𝑝2 + 𝑟2 = 1 in not be exactly preserved, but its value
fluctuates with a small amplitude 10−7 (figure 7) by the Calvo method with
exact conservation of the first invariant 𝑝2 + 𝑞2 = 1. The Calvo method with
exact conservation of the second invariant 𝑘2𝑝2 + 𝑟2 = 1 shows that the first
invariant 𝑝2 + 𝑞2 = 1 grows with an error of no more than 10−5 (figure 8).
Thus, preserving one integral does not preserve the other.
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Figure 7. First and second integrals for the Calvo method with exact conservation of

𝑝2 + 𝑞2 = 1
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Figure 8. First and second integrals for the Calvo method with exact conservation of

𝑘2𝑝2 + 𝑟2 = 1

4. Scheme for preserving two invariants

Theoretically, the Calvo method allows to construct schemes that preserve
several invariants. We take two pairs of RK methods defined by the following
two extended Butcher tables:

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0
𝜙 1

6
1
3

1
3

1
6

𝜙1 1 0 0 0

and

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
0 1 0 1 0
𝜙 1

6
1
3

1
3

1
6

𝜙2 0 1 0 0
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The first embedded RK method corresponding to the first table is con-
structed by combining the standard RK4 method, which has order 4, with
the Euler method, which has order 1. The second embedded RK method cor-
responding to second table is constructed by combining the standard RK4
method, which has order 4, with a second order explicit RK scheme.
We are trying to find an explicit RK scheme of the type:

𝑥𝑛+1
𝛼𝛽 = 𝜙(𝑥𝑛) − 𝛼𝑛(𝜙(𝑥𝑛) − 𝜙1(𝑥𝑛)) − 𝛽𝑛(𝜙(𝑥𝑛) − 𝜙2(𝑥𝑛)), (17)

where 𝛼𝑛, 𝛽𝑛 ∈ ℝ are two scalar parameters, which can be determined by
using the conservation laws, i.e.

𝐼𝑖(𝑥𝑛+1
𝛼𝛽 ) = 𝐼𝑖(𝑥𝑛), 𝑖 = 1, 2, (18)

where 𝐼1 and 𝐼2 are two invariants of system (1).

By definition, we have

𝜙(𝑥𝑛) − 𝜙1(𝑥𝑛) = (−5
6

𝑓(𝑘1) + 1
3

𝑓(𝑘2) + 1
3

𝑓(𝑘3) + 1
6

𝑓(𝑘4)) Δ𝑡

and

𝜙(𝑥𝑛) − 𝜙2(𝑥𝑛) = (1
6

𝑘1 − 2
3

𝑘2 + 1
3

𝑘3 + 1
6

𝑘4) Δ𝑡.

Thus, (18) gives us a system of two equations with respect to two unknowns
𝛼𝑛 and 𝛽𝑛. In numerical experiment, we choose the parameters 𝛼𝑛, 𝛽𝑛 as
real numbers close to the value 0.
In this way we have a system of algebraic equations for calculating pa-

rameters and we must solve this system at each step. Thus, we lose the
main advantage of the exact methods. Sage has numerous tools for apply-
ing operations on the field of ideals. In our numerical experiments we use
the elimination technique based on Gröbner basis [14] to solve (18). Namely,
in each step 𝑛, after constructing multivariate polynomial ideal in variables
𝛼𝑛, 𝛽𝑛 generated by (18), we use Sage built-in function elimination_ideal
to obtain an univariate equation in variable 𝛽𝑛. The function roots over ring
ℝ is used to solve this equation. Substituting one of the value of 𝛽𝑛 which
is close to 0 to (18), the value of another parameter 𝛼𝑛 can be obtained by
using the function roots again.

Consider elliptic function test.

We construct the function phi_solve_1() to implement the routine de-
scribed above.

We implement the described scheme in Sage as the function phi_solve_1().

Function phi_solve_1() returns the numerical points (0, 𝑥0), (Δ𝑡, 𝑥1), ⋯ with
the parameters:

— list_of_integral is two invariants that are required to be conserved;
— F is the right sides of the system (1);
— ics is the initial condition;
— 𝑑𝑡 is the step size,𝑇 is the end point of time 𝑡.
Let us take the elliptic function as example.
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sage: var('p,q,r,t')
sage: k=1/2
sage: s=4
sage: F=[r*q,-p*r,-k^2*p*q]
sage: list_of_integral=[p^2+q^2,k^2*p^2+r^2]
sage: ics=[p==0,q==1,r==1]
sage: L=phi_solve_1(list_of_integral=list_of_integral, F=F,

ics=ics, dt=0.1, T=20)↪

sage: max([abs(k^2*p^2+r^2-1) for [t,p,q,r] in L])
sage: G4=line([[t,k^2*p^2+r^2-1] for [t,p,q,r] in

L],axes_labels=['$t$','$k^2*p^2+r^2-
1$'],tick_formatter=[None,RR(10e-
20).n(digits=1)],frame=true)

↪

↪

↪

sage: max([abs(p^2+q^2-1) for [t,p,q,r] in L])
sage: G5=line([[t,p^2+q^2-1] for [t,p,q,r] in

L],axes_labels=['$t$','$p^2+q^2-
1$'],tick_formatter=[None,RR(10e-
20).n(digits=1)],frame=true)

↪

↪

↪

The Calvo method allows to preserve both invariants and thus significantly
surpasses the other methods presented in the previous sections. Figure 9
shows that the error 𝑘2𝑝2 + 𝑟2 − 1 remains constant in size at 10−16, while
figure 10 shows the error 𝑝2 + 𝑞2 − 1 remains constant in size at 10−13. We
can say that these errors are due to the implementation of the calculation in

solving equation (18) over the ring ℝ instead of the algebraic closed field ℚ in
CAS Sage [15]. From this point of view, we can conclude that this method
can be considered as a method that exactly preserves exactly both quadratic
invariants in the elliptic function test.
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Figure 9. The first integral 𝑘2𝑝2 + 𝑟2 − 1 for 𝑇 = 20, 𝑑𝑡 = 0.1
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Figure 10. The second integral 𝑝2 + 𝑞2 − 1 for 𝑇 = 20, 𝑑𝑡 = 0.1

5. Conclusion

We have investigated several implementation of explicit RK schemes that
preserve invariants. To preserve one invariant the Buono and Calvo methods
require solving one algebraic equation with one unknown at each step. In
our example, this equation is quadratic, so we can find its numerical solution
without any difficulties. From the numerical experiments, we concluded that
the exact conservation of one invariant is not an obstacle for changing of
the other invariants. Thus, the conservation of multiple integrals requires
a different approach.
The Calvo method which preserves several invariants has a drawback: it

requires solving a system of algebraic equations with several unknown variables
at each step, i.e. has the same drawback as standard implicit RK methods
have. Fortunately, in our tests the system we obtained is much simpler than
the system described by the midpoint scheme.
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О реализации явных схем Рунге–Кутты
с сохранением квадратичных инвариантов

динамических систем
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Авторами реализовано несколько явных схем Рунге–Кутты, которые сохраня-
ют квадратичные инварианты автономных динамических систем в Sage. В статье
представлен пакет ex.sage и результаты численных экспериментов.
В пакете функции rrk_solve, idt_solve и project_1 построены для случая, когда

только один заданный квадратичный инвариант будет сохранён точно. Функция
phi_solve_1 позволяет сохранить одновременно два указанных квадратичных
инварианта. Для решения уравнений относительно параметров, определяемых
законом сохранения, использована методика исключения на основе базисов Грёб-
нера, реализованная в Sage. В качестве тестового примера представленного
пакета используется эллиптический осциллятор. Эта динамическая система
имеет два квадратичных инварианта. Представлены численные результаты срав-
нения стандартного явного метода Рунге–Кутты RK(4,4) с rrk_solve. Кроме
того, для функций rrk_solve и idt_solve, сохраняющих только один инвари-
ант, исследовано изменение второго квадратичного инварианта эллиптического
осциллятора. В заключение рассматриваются недостатки использования этих
схем.

Ключевые слова: явный метод Рунге–Кутты, квадратичный инвариант, дина-
мическая система, Sage
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The paper investigates the methods of quantitative analysis of hidden statistical
relationships of the financial indicators of companies under conditions of high invest-
ment risk. A new semi-parametric method for estimating tail dependence indicators
using BB1 and BB7 dependence structures is proposed. For a dataset containing
the cost indicators of leading Russian companies, computer experiments were car-
ried out, as a result of which it was shown that the proposed method has a higher
stability and accuracy in comparison with other considered methods. Practical appli-
cation of the proposed risk management method would allow financial companies to
assess investment risks adequately in the face of extreme events.

Key words and phrases: financial indicators, dependency structures of extremal
type, tail ratio, copula

1. Introduction

The global changes currently taking place in the world financial markets
caused by the global pandemic of the coronavirus COVID-19, along with a cata-
strophic decline in oil prices, will obviously entail the need for serious changes
in the business structure of both individual companies and entire industries,
regional economies and countries. In the Russian conditions of high volatility
of financial markets, a successful solution to this problem is impossible without
the application of an analysis of the company’s resistance to the effects of
the external environment, the implementation of constant monitoring of the
behavior of a number of indicators of the enterprise profitability. In particular,
trigger analysis [1] is one of such effective methods of analysis. The use of
trigger analysis to study the sensitivity of a business structure to the impact
of disturbing factors is important, since it allows identifying in advance its
most weakly protected, most risky business lines, the socalled trigger points.
Examples of these are individual lines of business of a company, credit and
debt obligations, etc., precisely those areas of activity that potentially pose
a threat of an emergency in the company. Therefore, in order to weaken
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their influence on the structure as a whole, and on its individual lines, we
proposed instead of the trigger point in its vicinity on the scatter diagram to
form an aggregate set with the statistical properties of the meta-elliptic type
dependence structure [2]. This allows weakening to certain limits the impact of
the statistical dependence of the rest of the business lines on the problematic
one and redistributing the aggregate damage to the rest of the business
structure lines. In addition, the transition from an extreme dependence to
a meta-elliptic one simplifies the calculation of structural risk indicators by
the usual summation of the marginal risks for this structure. Examples of
such an approach to managing extreme risks are debt-restructuring, transfer
of fixed assets to subsidiaries and offshore companies, insurance, hedging
(issuance of credit derivatives), limiting and securitization operations in the
banking sector, etc.
This paper considers effective methods for analyzing the financial perfor-

mance of companies in the face of increased volatility in stock markets
associated with the global COVID-19 pandemic, as well as declining oil
prices. Using the example of analyzing the value of shares of leading Russian
companies, the advantages of their application are shown in comparison with
the classical multivariate analysis using a Gaussian distribution.

2. Methods for the quantitative analysis of structure
indicators of statistical dependences

Let (𝑋, 𝑌 ) be a two-dimensional random variable characterized by a joint
distribution function 𝐹 and partial distribution functions 𝐹1 and 𝐹2, respec-
tively. Then the coefficient of the lower tail dependence and the coefficient of
the upper tail dependence are respectively the limits

𝜆𝐿 = lim
𝑣→0+0

𝑃 (𝑋 ⩽ 𝐹 −1
1 (𝑣)|𝑌 ⩽ 𝐹 −1

2 (𝑣)) , (1)

𝜆𝑈 = lim
𝑣→1−0

𝑃 (𝑋 > 𝐹 −1
1 (𝑣)|𝑌 > 𝐹 −1

2 (𝑣)) . (2)

From equations (1)–(2) it obviously follows that the coefficients 𝜆𝐿 and
𝜆𝑈 can take the values within the limits from 0 to 1. The case 𝜆𝐿 > 0
(𝜆𝑈 > 0) is referred to as the presence of a tail dependence or the appearance
of a contagion [2] between the random variables 𝑋 and 𝑌. The situation
𝜆𝐿 = 1 (𝜆𝑈 = 1) corresponds to full contagion [3].
Using the concepts of copula theory [3], we can write expressions for the

coefficients of the tail dependence in the following form:

𝜆𝐿 = lim
𝑣→0+0

𝐶(𝑣, 𝑣)
𝑣

, (3)

𝜆𝑈 = lim
𝑣→1−0

1 − 2𝑣 + 𝐶(𝑣, 𝑣)
1 − 𝑣

, (4)

where 𝐶 is the copula of the joint distribution of random variables. It follows
from this representation that the tail dependence coefficients are a property
of the dependence structure and do not depend on the partial distributions.
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In the general case of 𝑑-dimensional distribution of random variables

(𝑋(1), ..., 𝑋(𝑑)), to describe the nature of the extreme dependence using

the coefficients of the tail dependence, it is necessary to estimate the
𝑑(𝑑 − 1)

2
pairs of values of the coefficients 𝜆𝑖𝑗, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑑. When using nonparamet-
ric methods, each pair of tail coefficients can be estimated separately, while
when using para-metric and semi-parametric approaches, it is necessary to
take into account the structure of the relationship between all 𝑑 components
of the multivariate distribution.

3. Nonparametric estimation methods

Let Xn,Yn be samples of independent identically distributed random
variables. We define the empirical copula function as

𝐶𝑛(𝑢, 𝑣) = 1
𝑛

𝑛
∑
𝑗=1

1{Rank(𝑋𝑗)⩽𝑛⋅𝑢,Rank(𝑌𝑗)⩽𝑛⋅𝑣}

Introducing the notation 𝑈𝑗 = Rank(𝑋𝑗), 𝑉𝑗 = Rank(𝑌𝑗), by definition of
tail dependence coefficients we get

�̂�𝐿,𝑛(𝑘) = 𝑛
𝑘

⋅ 𝐶𝑛 (𝑘
𝑛

, 𝑘
𝑛

) = 1
𝑘

⋅
𝑛

∑
𝑗=1

1{𝑈𝑗⩽𝑘,𝑉𝑗⩽𝑘}, (5)

�̂�𝐿,𝑛(𝑘) = 𝑛
𝑘

⋅ 𝐶𝑛 ((1 − 𝑘
𝑛

, 1] × (1 − 𝑘
𝑛

, 1]) =

= 1
𝑘

𝑛
∑
𝑗=1

1{𝑈𝑗>𝑛−𝑘,𝑉𝑗>𝑛−𝑘} = 2 − 1
𝑘

𝑛
∑
𝑗=1

1{𝑈𝑗>𝑛−𝑘 or 𝑉𝑗>𝑛−𝑘}, (6)

where 𝐶𝑛 ((𝑎, 𝑏] × (𝑐, 𝑑]) is the empirical probability measure of the copula

function on a rectangle (𝑎, 𝑏] × (𝑐, 𝑑], 𝑘 = 𝑘(𝑛) → ∞, 𝑘
𝑛

→ 0 at 𝑛 → ∞. The
consistency and normality of the estimates were proved in [4]. Logarithmic
parametric estimates for 𝜆𝐿 and 𝜆𝑈 can be obtained using equations (3), (4).
Thus, the expression for the coefficient of the lower tail dependence can be
represented as

𝜆𝐿 = lim
𝑣→0+0

𝐶(𝑣, 𝑣)
𝑣

= 2− lim
𝑣→0+0

−2𝑣 + 𝐶(𝑣, 𝑣)
−𝑣

= 2− lim
𝑣→0+0

ln(1 − 2𝑣 + 𝐶(𝑣, 𝑣))
ln(1 − 𝑣)

.

According to this formula, the value of 𝜆𝐿 can be estimated as

�̂�LOG𝐿,𝑛 (𝑘) = 2−
ln (𝐶𝑛 (( 𝑘

𝑛 , 1] × ( 𝑘
𝑛 , 1]))

ln (1 − 𝑘
𝑛)

= 2−
ln( 1

𝑛

𝑛
∑
𝑗=1

1{𝑈𝑗>𝑘,𝑉𝑗>𝑘})

ln (1 − 𝑘
𝑛)

, (7)
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where index 𝑘 = 𝑘(𝑛) → ∞, 𝑘
𝑛

→ 0 when 𝑛 → ∞. Similarly, for the coefficient
of the upper tail dependence, the representation

𝜆𝑈 = lim
𝑣→1−0

1 − 2𝑣 + 𝐶(𝑣, 𝑣)
1 − 𝑣

= 2 − lim
𝑣→1−0

𝐶(𝑣, 𝑣) − 1
𝑣 − 1

= 2 − lim
𝑣→1−0

ln(𝐶(𝑣, 𝑣))
ln(𝑣)

is valid, as well as the estimate

�̂�LOG𝑈,𝑛 (𝑘) = 2 −
ln(𝐶𝑛 (1 − 𝑘

𝑛
, 1 − 𝑘

𝑛
))

ln(1 − 𝑘
𝑛

)
=

2 −
ln( 1

𝑛
𝑛

∑
𝑗=1

1{𝑈𝑗 ⩽ 𝑛 − 𝑘or𝑉𝑗 ⩽ 𝑛 − 𝑘})

ln(1 − 𝑘
𝑛

)
, (8)

𝑘 = 𝑘(𝑛) → ∞, 𝑘
𝑛

→ 0 at 𝑛 → ∞. Estimates (7), (8) have the property that
they are sharp for all 𝑘 in the limiting cases of statistical independence and
comonotonicity. Indeed,

𝜆LOGindep,𝐿 = 2 − ln(1 − 2𝑣 + Π(𝑣, 𝑣))
ln(1 − 𝑣)

= 2 −
ln(1 − 2𝑣 + 𝑣2)
ln(1 − 𝑣)

= 0,

𝜆LOGcom,𝐿 = 2 − ln(1 − 2𝑣 + 𝑀(𝑣, 𝑣))
ln(1 − 𝑣)

= 2 − ln(1 − 2𝑣 + 𝑣)
ln(1 − 𝑣)

= 1,

𝜆LOGindep,𝑈 = 2 − ln(Π(𝑣, 𝑣))
ln(𝑣)

= 2 −
ln(𝑣2)
ln(𝑣)

= 0,

𝜆LOGcom,𝑈 = 2 − ln(𝑀(𝑣, 𝑣))
ln(𝑣)

= 2 − ln(𝑣)
ln(𝑣)

= 1,

where Π(𝑢, 𝑣) = 𝑢𝑣 is the function of the copula of independent random
variables, 𝑀(𝑢, 𝑣) = min(𝑢, 𝑣) is the copula of comonotonic (completely
dependent) random variables. The consistency and asymptotic normality of
the estimates was proved in [4]. Figure 1 plots the values of the tail ratios
estimates depending on the choice of the threshold 𝑘 for the joint distribution
of fifteen-minute logarithmic increments in the value of Rosneft and Lenta
equities in the period from December 15, 2019 to September 30, 2020. In
the range of stability 30 ⩽ 𝑘 ⩽ 70 of estimates, the value of the tail ratios is
significantly greater than zero, which indicates a strong dependence of the
investigated financial indicators in the area of extreme values.
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Figure 1. Estimation of indicators of the lower (left) and upper (right) tail coefficients of the

joint distribution of the logarithmic increments of the value of Rosneft and Lenta shares

depending on the parameter 𝑘. standard estimate (6), (7), logarithmic

estimate (8), (9)

4. Parametric estimation methods

The parametric approach to estimating the values of tail coefficients is
based on the use of a mathematical model of the initial data structure in
the form of a parametric copula 𝐶𝜃. In this case, estimates of the lower and
upper coefficients of the tail dependence can be found as a function of the

model parameters 𝐶𝜃: �̂� = 𝜆( ̂𝜃). To obtain estimates of the parameters of the
dependence structure function, it is necessary to pass from the set of initial

samples X
(i)
n = (𝑋(𝑖)

1 , ..., 𝑋(𝑖)
𝑛 ), 1 ⩽ 𝑖 ⩽ 𝑑 to samples of uniformly distributed

on [0, 1] random variables U
(i)
n = (𝑈 (𝑖)

1 , ..., 𝑈 (𝑖)
𝑛 ), 1 ⩽ 𝑖 ⩽ 𝑑. It is necessary

to characterize the partial distributions 𝐹𝑖, 1 ⩽ 𝑖 ⩽ 𝑑. If any of the partial
distribution functions is characterized by a set of parameters 𝜗𝑖, 1 ⩽ 𝑖 ⩽ 𝑑,
the approach is referred to as fully parametric. Otherwise, if the partial
distributions are replaced with empirical ones (i.e., the ranging operation is
applied) the approach is referred to as semiparametric.
Parametric estimation can be done in one or two stages. In the first case,

the parameters of the partial distributions 𝜗𝑖, 1 ⩽ 𝑖 ⩽ 𝑑, as well as the
parameters 𝜃 of the dependence structure, are estimated together. Typically,
the maximum likelihood method is used. In the second case, the assessment
takes place in two stages. Due to the very useful property of the copula
function, according to which the copula function does not depend on the
partial distributions, it is possible to separate the operations of estimating
the parameters of the partial distributions 𝜗𝑖, 1 ⩽ 𝑖 ⩽ 𝑑 and the parameters
of the dependency structure 𝜃. At the first stage, the parameters 𝜗𝑖 of the
partial distribution functions 𝐹𝑖 are estimated for 1 ⩽ 𝑖 ⩽ 𝑑. Then, based on
the estimates found, a set of samples is formed

( ̂U
(1)
n , ..., Û(d)

n ) = (𝐹1, ̂𝜗1
(X̂(1)

n ) , ..., 𝐹𝑑, ̂𝜗𝑑
( ̂X

(d)
n )) ,

using which the parameters 𝜃 of the dependency structure are estimated. This
method is also known as the pseudo-maximum likelihood method.
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The semi-parametric approach implies that partial distributions 𝐹𝑖, 1 ⩽ 𝑖 ⩽
𝑑 are replaced by empirical distribution functions. Then, as in the previous
method, the parameters 𝜃 of the dependency structure are estimated using
the maximum likelihood method. As shown in [5], the estimate of the model
parameters obtained in this way, as well as the estimate of the tail coefficients,
is asymptotically stable and normal. Numerical experiments [4] show that
in their properties semi-parametric estimates are almost identical to fully
parametric estimates. It should be noted that the use of parametric models
of partial distributions 𝐹𝑖, 1 ⩽ 𝑖 ⩽ 𝑑 can lead to significant errors at the
stage of estimating the parameters of the structure of dependence, and, as
a consequence, inaccurate and inadequate estimates of the values of the
coefficients 𝜆. The semi-parametric approach is more stable in this sense,
since it does not have the described disadvantage.

It is convenient to use functions from the number of two-parameter
Archimedean copulas [3] as models of the structures of statistical depen-
dence capable of simulating the tail dependence in the two-dimensional case.
Below are the expressions for the copula function and the Archimedean
generator of models BB1 and BB7

𝐶𝐵𝐵1(𝑢, 𝑣) = (1 + ((𝑢−𝜃 − 1)𝛿 + (𝑣−𝜃 − 1)𝛿)
1
𝛿 )

− 1
𝜃

, (9)

𝛿 ⩾ 1, 𝜃 > 0, 𝜙𝐵𝐵1(𝑤) = (𝑤−𝜃 − 1)𝛿;

𝐶𝐵𝐵7(𝑢, 𝑣) =

= 1 − (1 − ((1 − (1 − 𝑢)𝜃)−𝛿 + (1 − (1 − 𝑢)𝜃)−𝛿 − 1)
− 1

𝛿 )
1
𝜃

, (10)

𝛿 > 0, 𝜃 ⩾ 1, 𝜙𝐵𝐵7(𝑤) = (1 − (1 − 𝑤)𝜃)−𝛿.
These models are convenient in that they allow one to obtain explicit

expressions for the tail dependence coefficients. Thus, for model (9)

𝜆𝑈 = 2 − 21
𝛿 , 𝜆𝐿 = 2− 1

𝛿𝜃 , 𝜆𝐿 = 2− 1
𝛿 , 𝜆𝑈 = 2 − 21

𝜃 .

As can be seen from the last formula, the coefficient of the upper tail
dependence 𝜆𝑈 of the model (10) depends only on the model parameter 𝜃
and does not depend on the model parameter 𝛿, whereas the coefficient of
the lower tail dependence 𝜆𝐿 depends only on the parameter 𝛿 and does not
depend on 𝜃. This allows parameterization of the model using the coefficients
𝜆𝐿 and 𝜆𝑈:

𝛿 = − 1
log2 𝜆𝐿

, 𝜃 = 1
log2(2 − 𝜆𝑈)

,

as well as construction of the modified copula models of Clayton, BB7 and
some others [1]. Figure 2 plots the density of the copula BB7 with the
corresponding parameters of the tail relationship between the Rosneft and
AO Lukoil equities.
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Figure 2. Density of copula BB7, parameterized by the coefficients of the tail dependence.

Parameter values: left 𝜆𝐿 = 0.2, 𝜆𝑈 = 0.8, right 𝜆𝐿 = 0.5, 𝜆𝑈 = 0.1

5. Parametric approach for elliptic distributions

The case when the investigated distribution (𝑋(1), ..., 𝑋(𝑑)) is elliptic de-
serves a separate consideration. Since distributions of elliptic type are
symmetric, it is obvious that for ∀𝑖, 𝑗 𝜆𝑖𝑗,𝐿 = 𝜆𝑖𝑗,𝑈 (below the notation

𝜆𝑖𝑗 is used). In [5], it was shown that the coefficient 𝜆𝑖𝑗 of the tail depen-

dence between the components 𝑋(𝑖) and 𝑋(𝑗) depends only on the index 𝑣
of regular variation of the elliptic generator, if it is regularly changing, and
the value of the parameter 𝜌𝑖𝑗. In this case, the tail dependence coefficient is

expressed through these parameters as follows [6]:

𝜆𝑖𝑗 = 2 ⋅ 𝑡𝑣+1 (
√

𝑣 + 1√
1 − 𝜌𝑖𝑗

1 + 𝜌𝑖𝑗
) ,

where 𝑡𝑣+1 is the survival function of the Student’s distribution with 𝑣 + 1
degrees of freedom.

When studying the behavior of the logarithmic increments in the value of
shares of the largest issuers of the Russian stock market, we found that the joint
distribution of these indicators could be described by the multidimensional
Student’s distribution, which is known to belong to the class of elliptic
distributions [7]. We selected shares of companies Rosneft, Lukoil, Lenta,
Mosenergo, Rostelecom; the data were obtained on the website of the Finam
company [8]. The results of estimating the parameters of the joint distribution
are shown in table 1. The values correspond to the period from 12/15/2019 to
09/30/2020 (ARCH (2) time series model). Table 2 shows the tail dependence
matrix calculated from these values, containing pairwise coefficients 𝜆𝑖𝑗.

The values of 𝜆𝑖𝑗 in table 2 are significantly greater than zero, which indi-
cates the presence of an extreme type dependence structure. The investigated
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statistical dependence cannot be correctly described by the multivariate nor-
mal distribution. In practice, this can lead to a significant underestimation of
the risks of extremely high losses when investing in this block of shares.

Table 1

Parameters of joint distribution of logarithmic increments in the value of shares

of Russian companies

Extreme index 𝑣 = 4, 1
Correlation matrix

Lukoil Mosenergo Rostelecom Lenta Rosneft

Lukoil 1 0,59 0,70 0,72 0,70

Mosenergo 0,59 1 0,57 0,54 0,48

Rostelecom 0,70 0,57 1 0,67 0,60

Lenta 0,72 0,54 0,67 1 0,62

Rosneft 0,70 0,48 0,60 0,62 1

Table 2

Tail dependence matrix of the logarithmic increments distribution of the value of shares

of Russian companies

Lukoil Mosenergo Rostelecom Lenta Rosneft

Lukoil 1 0,30 0,39 0,40 0,39

Mosenergo 0,30 1 0,29 0,27 0,24

Rostelecom 0,39 0,29 1 0,36 0,31

Lenta 0,40 0,27 0,36 1 0,32

Rosneft 0,39 0,24 0,31 0,32 1

6. Methods for estimating tail dependence indicators
using the theory of extreme values

Let us consider the case when the considered distribution function of random
variables 𝐹 lies in the attraction domain of the distribution of extreme values
𝐺 [3]: 𝐹 ∈ 𝐷𝐴(𝐺), i.e.,

lim
𝑛→∞

𝑃 (
max1⩽𝑗⩽𝑛 𝑋𝑛 − 𝑏𝑛

𝑎𝑛
⩽ 𝑥,

max1⩽𝑗⩽𝑛 𝑌𝑛 − 𝑑𝑛

𝑐𝑛
⩽ 𝑦) =

= lim
𝑛→∞

𝐹 𝑛(𝑎𝑛𝑥 + 𝑏𝑛, 𝑐𝑛𝑦 + 𝑑𝑛) = 𝐺(𝑥, 𝑦), (11)
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where 𝑎𝑛, 𝑐𝑛 > 0, 𝑏𝑛, 𝑑𝑛 ∈ ℝ. Let us introduce the concept of the limiting in-
dicator of the tail dependence: 𝜆𝐸𝑉

𝑈 = lim𝑣→1−0 𝑃(𝑋 > 𝐺−1
1 (𝑣)|𝑌 > 𝐺−1

2 (𝑣)),
where 𝐺1, 𝐺2 – partial distribution functions of the extreme joint distribution
function 𝐺. Then the following theorem is true:

Theorem 1. For a distribution function lying in the attraction domain of
the distribution function of extreme values 𝐺, the tail dependence index 𝜆𝑈
coincides with the extreme tail dependence index 𝜆𝐸𝑉

𝑈 .

Proof. We use the transformation proposed in [9], passing to the distribu-
tion

𝐹∗(𝑥, 𝑦) = 𝐹 (( 1
1 − 𝐹1

)
−1

(𝑥), ( 1
1 − 𝐹2

)
−1

(𝑦)) ,

that lies in the attraction domain of the distribution

𝐺∗(𝑥, 𝑦) = 𝐺 (( 1
− ln𝐺1

)
−1

(𝑥), ( 1
− ln𝐺2

)
−1

(𝑦)) . (12)

The partial distributions 𝐺∗1,𝐺∗2 have the form of Frechet distribution
functions with the parameter 𝛾 = 1 (standard Frechet distribution):

𝐺∗1 = 𝐺∗2 = Φ1(𝑥)
⎧{
⎨{⎩

𝑒− 1
𝑥 , 𝑥 > 0,

0, 𝑥 ⩽ 0.

Limit relation (??) for functions 𝐹∗ and 𝐺∗ takes the form

lim
𝑛→∞

𝐹 𝑛
∗ (𝑛𝑥, 𝑛𝑦) = 𝐺∗(𝑥, 𝑦),

or, similarly
lim

𝑛→∞
𝑛 (1 − 𝐹∗(𝑛𝑥, 𝑛𝑦)) = − ln𝐺∗(𝑥, 𝑦). (13)

Omitting the intermediate derivations, we obtain from equation (13)

− ln𝐺∗(𝑡, 𝑡) = lim
𝑛→∞

𝑛 (1 − 𝐹 (( 1
1 − 𝐹1

)
−1

(𝑛𝑡), ( 1
1 − 𝐹2

)
−1

(𝑛𝑡))) =

= lim
𝑛→∞

𝑛 ( 1
𝑛𝑡

+ 1
𝑛𝑡

− 𝜆𝑈
1
𝑛𝑡

) = 2 − 𝜆𝑈
𝑡

.

By definition (12), the distribution of extreme values 𝐺∗ is obtained from
the original distribution 𝐺 using a monotonic transformation. This means
that the copula functions of these distributions coincide. Using this fact and
the result obtained above for ln𝐺∗(𝑡, 𝑡), we have:

𝜆𝐸𝑉
𝑈 = lim

𝑣→1−0

1 − 2𝑣 + 𝐶𝐸𝑉(𝑣, 𝑣)
1 − 𝑣

= lim
𝑣→1−0

1 − 2𝑣 + 𝐺∗ (− 1
ln 𝑣

, − 1
ln 𝑣

)

1 − 𝑣
=
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= lim
𝑣→1−0

1 − 2𝑣 + 𝑒ln𝑣(2−𝜆𝑈)

1 − 𝑣
= lim

𝑣→1−0

1 − 2𝑣 + 𝑣2−𝜆𝑈

1 − 𝑣
= 𝜆𝑈.

A similar result is, of course, also valid for the lower tail coefficient and the
limiting distribution of block minima. This property allows, when estimating
the tail coefficient, to go from the entire available sample to its extreme values
(block extrema). At the same time, a distinction is made between semi- and
fully parametric approaches to estimating the parameters of the resulting
distribution. In the case of using a semi-parametric approach, the parameters
of the limiting structure of dependence [3] are estimated from

( ̂𝑈max 𝑖, ̂𝑉max 𝑖) = (Rank (�̂�max 𝑖) ,Rank ( ̂𝑌max 𝑖)) , 1 ⩽ 𝑖 ⩽ ⌊𝑛
𝑘

⌋ ,

where �̂�max 𝑖 =
𝑘
∨

𝑗=1
𝑋(𝑖−1)𝑘+𝑗,

̂𝑌max 𝑖 =
𝑘
∨

𝑗=1
𝑌(𝑖−1)𝑘+𝑗, 1 ⩽ 𝑘 < 𝑛, 1 ⩽ 𝑖 ⩽ ⌊𝑛

𝑘
⌋.

As a model of the structure of the dependence of the limiting distribution of
extrema, we have proposed various functions of copula of the extreme type,
in particular, the Gumbel model (logistic model):

𝐶𝐸𝑉(𝑢, 𝑣) = exp(− ((− ln𝑢)𝑅 + (− ln 𝑣)𝑅)
1
𝑅 ) , 𝑅 ⩾ 1. (14)

The estimate of the coefficient of the upper tail dependence for model (14)

has the form 𝜆𝐸𝑉
𝑈 (𝑘) = 2 − 2

1
𝑅𝑈(𝑘) . The formulas for estimating the coefficient

of the lower tail dependence are completely similar. They were obtained by
passing to the distribution of the maxima of the quantities (−𝑋, −𝑌 ):

�̂�min 𝑖 = max
1⩽𝑗⩽𝑛

(−𝑋(𝑖−1)𝑘+𝑗) , ̂𝑌min 𝑖 = max
1⩽𝑗⩽𝑛

(−𝑌(𝑖−1)𝑘+𝑗) ,

1 ⩽ 𝑘 < 𝑛, 1 ⩽ 𝑖 ⩽ ⌊𝑛
𝑘

⌋ ,

( ̂𝑈min 𝑖, ̂𝑉min 𝑖) = (Rank (�̂�min 𝑖) ,Rank ( ̂𝑦min 𝑖)) , 1 ⩽ 𝑖 ⩽ ⌊𝑛
𝑘

⌋ ,

𝜆𝐿(𝑘) = 2 − 2

1
𝑅𝐿(𝑘) .

An alternative approach to characterizing the distribution function of
extreme values is the peaks over threshold (POT) method. A detailed
description of this approach can be found in [10]. We only note that the idea
of the method is to characterize the limiting distribution of excesses that
have exceeded a given threshold value. In [4], it was proposed to evaluate the
value of the upper tail coefficient by considering the values of the points of
the investigated structure of the dependence (𝑈, 𝑉 ) lying in the region [𝑡, 1]2,
where 𝑡 is the threshold parameter tending to 1:

( ̂U∗
U, V̂∗

U) = {(𝑈𝑗, 𝑉𝑗) ∶ (𝑈𝑗, 𝑉𝑗) ∈ [𝑡, 1] × [𝑡, 1]} , 0 ⩽ 𝑡 < 1.
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To estimate the lower tail coefficient, values from the region [0, 𝑡]2, 𝑡 → 0
should be considered:

(Û∗
L, ̂V∗

L) = {(𝑈𝑗, 𝑉𝑗) ∶ (𝑈𝑗, 𝑉𝑗) ∈ [0, 𝑡] × [0, 𝑡]} , 0 < 𝑡 ⩽ 1.

In [9], a relation was proved that makes it possible to estimate the parameter
𝜆𝐿 in the case when the quantities (𝑋, 𝑌 ) under consideration are related by
the Archimedean structure of the dependence. The authors showed that if
a copula 𝐶 has an Archimedean generator with an index of regular variation
𝛼 > 0, then the lower threshold copula

𝐶𝐿,𝑡(𝑢, 𝑣) = 𝑃 (𝑈 ⩽ 𝑢, 𝑉 ⩽ 𝑣|𝑈 ⩽ 𝑡, 𝑉 ⩽ 𝑡) , (15)

converges in the limit at 𝑡 → 0 to the Clayton copula 𝐶𝛼 with parameter
𝛿 = 𝛼:

lim
𝑡→0

𝐶𝐿,𝑡(𝑢, 𝑣) = 𝐶𝐶𝑙(𝑢, 𝑣), ∀𝑢, 𝑣 ∈ [0, 1],

where 𝐶𝐶𝑙(𝑢, 𝑣) = (𝑢−𝛿 + 𝑣−𝛿 − 1)− 1
𝛿 is an Archimedean copula with genera-

tor 𝜙(𝑤) = 𝑤−𝛿 − 1, 𝛿 > 0. This dependence structure model has a lower tail
dependence with coefficient 𝜆𝐿 = 2− 1

𝛿 .

In the case when the type of the investigated structure of dependence (𝑈, 𝑉 )
is not Archimedean, one should choose another model of the limiting copula
capable of simulating the tail dependence. For example, it is convenient to
use the Gumbel model in the form (14) to model the upper threshold copula

𝐶𝑈,𝑡(𝑢, 𝑣) = 𝑃 (𝑈 > 𝑢, 𝑉 > 𝑣|𝑈 > 𝑡, 𝑉 > 𝑡) , 0 ⩽ 𝑡 < 1, (16)

and the inverse Gumbel copula 𝐶𝐸𝑉(𝑢, 𝑣) = 𝐶𝐸𝑉(1 − 𝑢, 1 − 𝑣) + 𝑢 + 𝑣 − 1 for
modeling the lower threshold copula (15).

The disadvantage of the threshold method is that when the threshold
parameter 𝑡 is close to 0 (when estimating the coefficient of the lower tail
dependence) and 1 (when estimating the coefficient of the upper tail depen-
dence), too few points fall into the region where the threshold is exceeded,
which makes it impossible to estimate tail parameters with sufficient accu-
racy. If the threshold is too low, the extreme copula (14) ceases to be an
adequate model of the truncated structure of the dependence, which leads
to significant systematic errors. The so-called bias-variance problem arises.
To solve it, it was proposed to use a combined threshold approach [3]. The
essence of the method is that the threshold model of the structure of depen-
dence could adequately describe both the behavior of the entire sample and
its points lying in the region of extreme values for different values of the pa-
rameters. Then, even at low values of the threshold 𝑡, one can count on the
stability of the estimates obtained. We propose to use models (9), (10) as
such flexible structures of dependence. These models are very versatile and
make it possible to simulate both the integral structure of dependence and
its behavior in extreme areas.

To test the described models of tail dependence, we used samples Xn,
Yn from a two-dimensional distribution with the structure of a mixed-type
dependence
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𝐶𝑚𝑖𝑥(𝑢, 𝑣) = 1
2

𝐶𝐶𝑙1
(𝑢, 𝑣) + 1

2
𝐶𝐶𝑙2

(𝑢, 𝑣), (17)

where 𝐶𝐶𝑙1
is the Clayton copula with parameter 𝛿1 = 3.11, 𝐶𝐶𝑙2

is the

inverse Clayton copula with the parameter 𝛿2 = 1.36. The coefficients of the
lower and upper tail dependences of copula (17) are, respectively, equal to

𝜆∗
𝐿 = 1

2
𝜆𝐿,1 + 1

2
𝜆𝐿,2 = 1

2
⋅ 2− 1

𝛿1 + 1
2

⋅ 0 = 0.40,

𝜆∗
𝑈 = 1

2
𝜆𝑈,1 + 1

2
𝜆𝑈,2 = 1

2
⋅ 0 + 1

2
⋅ 2− 1

𝛿2 = 0.30.

Figures 3, 4 show the plots of the estimates obtained by the block extremum
method and the threshold method. As can be seen, the combined threshold
method provides greater stability of estimates depending on the parameter 𝑡.

Figure 3. Estimation of indicators of tail distribution coefficients of block minima (left) and

block maxima (right) depending on the parameter 𝑘

Figure 4. Estimation of indicators of the lower (left) and upper (right) tail distribution

coefficients depending on the threshold parameter 𝑡. model BB1, model Gumbel
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7. Conclusion

This paper proposes and investigates methods for analyzing the financial
performance of companies in the context of increased volatility in stock markets
associated with the global COVID-19 pandemic, as well as a decline in oil
prices during the period 12/15/2019 – 09/30/2020. Computer experiments are
carried out to assess the riskiness of investments in leading Russian companies
and to analyze the value of shares of leading Russian companies, and the
advantages of their application are shown in comparison with the classical
multivariate analysis using a Gaussian distribution. Analysis of the properties
of estimates of the tail dependence coefficients showed their high sensitivity
to extreme changes in the value of companies’ shares, which makes it possible
to use them as indicators of the occurrence of extreme events in the stock
markets and to make timely decisions on the management of their investment
projects.
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О методах количественного анализа финансовых
показателей компании в условиях высокой

рискованности инвестиций

Е. Ю. Щетинин

Финансовый университет при Правительстве Российской Федерации
Ленинградский проспект, д. 49, Москва, 125993, Россия

В работе исследованы методы количественного анализа скрытых стати-
стических связей финансовых показателей компаний в условиях высокой
рискованности инвестирования. Предложен новый полупараметрический ме-
тод оценивания показателей хвостовой зависимости с использованием моделей
структур зависимости BB1 и BB7. Для набора данных, содержащих стоимостные
показатели ведущих российских компаний, проведены компьютерные экспери-
менты, в результате которых показано, что предложенный метод обладает более
высокой устойчивостью и точностью по сравнению с другими рассмотренными
методами. Практическое применение представленного метода управления риска-
ми позволило бы финансовым компаниям адекватно оценивать инвестиционные
риски в условиях наступления экстремальных событий.

Ключевые слова: финансовые показатели, глубокие статистические связи,
структуры зависимости, хвостовой коэффициент, копула
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This paper investigates the waveguide propagation of polarized electromagnetic
radiation in a thin-film integral optical waveguide. To describe this propagation, the
adiabatic approximation of solutions of Maxwell’s equations is used. The construction
of a reduced model for adiabatic waveguide modes that retains all the properties
of the corresponding approximate solutions of the Maxwell system of equations
was carried out by the author in a previous publication in DCM & ACS, 2020, No
3. In this work, for a special case when the geometry of the waveguide and the
electromagnetic field are invariant in the transverse direction. In this case, there
are separate nontrivial TE- and TM-polarized solutions of this reduced model. The
paper describes the parametrically dependent on longitudinal coordinates solutions
of problems for eigenvalues and eigenfunctions – adiabatic waveguide TE and TM
polarizations. In this work, we present a statement of the problem of finding solutions
to the model of adiabatic waveguide modes that describe the stationary propagation
of electromagnetic radiation. The paper presents solutions for the single-mode
propagation of TE and TM polarized adiabatic waveguide waves.

Key words and phrases: waveguide propagation of polarized light, integral optical
waveguide, adiabatic approximation, eigenvalues and eigenfunctions, Kantorovich
method, single-mode regime

1. Introduction

In works [1]–[5] a cycle of studies of the propagation of polarized light in
integrated-optical smoothly irregular thin-film waveguides was carried out
within the framework of the model of adiabatic waveguide waves. They
showed the advantages of the model and its advantages over other models in
the description of open dielectric waveguides [6]–[8]. At the same time, until
recently, the question of substantiating this model remained open. In work [9]
the substantiation of the model was carried out, which is a reduction of a more
complex in use general model based on Maxwell’s equations. In the present
work, within the framework of the model of adiabatic waveguide waves, the
problem of stationary propagation of polarized light in a smoothly irregular

© Sevastianov A. L., 2020
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integral-optical waveguide is posed, an auxiliary problem for eigenvalues and
eigenfunctions (adiabatic waveguide modes) is formulated and solved. The
solution of the stationary problem by the generalized Kantorovich method is
proposed, its solution is obtained in the single-mode propagation mode.

2. Basic concepts and notation

Waveguide propagation of monochromatic polarized electromagnetic radi-
ation in integrated optical waveguides is described by Maxwell’s equations.
The electromagnetic field is described using complex amplitudes. The mate-
rial environment is considered, consisting of dielectric subdomains that fill the
entire three-dimensional space. The latter means that the dielectric constants
of the subdomains are different and real, and the magnetic permeability is
everywhere equal to the magnetic permeability of the vacuum. It follows
from the foregoing that in the absence of external currents and charges, the
induced currents and charges are equal to zero.

In the absence of external charges and currents, the scalar Maxwell equa-
tions follow from the vector ones, and the boundary conditions for the normal
components follow from the boundary conditions for the tangential compo-
nents. The constitutive equations of connection in the case under consideration
are assumed to be linear. Thus, the electromagnetic field in a space filled with
dielectrics in the Gaussian system of units is described by the equations [10]:

rotE = −1
𝑐

𝜕B
𝜕𝑡

, rotH = −1
𝑐

𝜕D
𝜕𝑡

, D = 𝜀E, B = 𝜇H, (1)

where E,H are the vectors of electric and magnetic field strength; D is the
electric displacement vector, B is the magnetic flux density vector; 𝑐 is the
velocity of electromagnetic wave propagation in vacuum.

In this case, the boundary conditions

H𝜏|1 = H𝜏|2, E𝜏|1 = E𝜏|2. (2)

and the asymptotic boundary conditions at infinity

‖E‖ −−−−→
|𝑥|→∞

0, ‖H‖ −−−−→
|𝑥|→∞

0, (3)

are assumed to hold for guided modes, which ensures the uniqueness of the
solution to problem (1)–(2).

In equations (1): 𝜀 is the permittivity of the medium; 𝜇 is the permeability
of the medium, E,H are the electric and magnetic field strength vectors. We
denote by 𝑛 = √𝜇𝜀 the refractive index of the medium (here and below — of

a layer of the multilayer dielectric structure under consideration).

All subdomains are infinite and bonded by planes parallel to the 𝑦𝑂𝑧-plane
and surfaces, asymptotically parallel to the 𝑦𝑂𝑧-plane, so that below we have
𝜀 = 𝜀(𝑥), 𝜇 = 1.
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3. Model of adiabatic guided modes

In Ref. [9] the adiabatic approximation of the guided solution of Maxwell’s
equations is found in the form:

{
⃗𝐸(𝑥, 𝑦, 𝑧, 𝑡)

�⃗�(𝑥, 𝑦, 𝑧, 𝑡)
} = {

⃗𝐸0(𝑥; 𝑦, 𝑧)
�⃗�0(𝑥; 𝑦, 𝑧)

} exp {𝑖𝜔𝑡 − 𝑖𝑘0𝜑(𝑦, 𝑧)} , (4)

where

𝜀
𝜕𝐸𝑦

0
𝜕𝑥

= −𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐻𝑦
0 − 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐻𝑧

0 ,

𝜀𝜕𝐸𝑧
0

𝜕𝑥
= 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐻𝑦

0 + 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐻𝑧
0 ,

𝜇
𝜕𝐻𝑦

0
𝜕𝑥

= 𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐸𝑦
0 + 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐸𝑧

0 ,

𝜇𝜕𝐻𝑧
0

𝜕𝑥
= −𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐸𝑦

0 − 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐸𝑧
0 ,

𝐸𝑥
0 = −𝜕𝜑

𝜕𝑦
1
𝜀

𝐻𝑧
0 + 𝜕𝜑

𝜕𝑧
1
𝜀

𝐻𝑦
0 , 𝐻𝑥

0 = 𝜕𝜑
𝜕𝑦

1
𝜇

𝐸𝑧
0 − 𝜕𝜑

𝜕𝑧
1
𝜇

𝐸𝑦
0 .

(5)

After additional differentiations from four first-order ODEs, four second-
order ODEs are obtained, two of which take the form:

𝜕2𝐸𝑦
0

𝜕𝑥2 + 𝑘2
0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
− (𝜕𝜑

𝜕𝑧
)

2
) 𝐸𝑦

0 = 0,

𝜕2𝐻𝑦
0

𝜕𝑥2 + 𝑘2
0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
− (𝜕𝜑

𝜕𝑧
)

2
) 𝐻𝑦

0 = 0.
(6)

in the case when the layers (three or four) of a multilayer waveguide are
homogeneous.

The rest four components are calculated from the system of linear algebraic
equations (SLAE)

𝑖𝑘0𝜀𝐸𝑥
0 + 𝑖𝑘0

𝜕𝜑
𝜕𝑦

𝐻𝑧
0 = 𝑖𝑘0

𝜕𝜑
𝜕𝑧

𝐻𝑦
0 , 𝑖𝑘0𝜀𝐸𝑧

0 − 𝑖𝑘0
𝜕𝜑
𝜕𝑦

𝐻𝑥
0 =

𝜕𝐻𝑦
0

𝜕𝑥
,

𝑖𝑘0
𝜕𝜑
𝜕𝑦

𝐸𝑧
0 − 𝑖𝑘0𝜇𝐻𝑥

0 = 𝑖𝑘0
𝜕𝜑
𝜕𝑧

𝐸𝑦
0 , −𝑖𝑘0𝜇𝐻𝑧

0 − 𝑖𝑘0
𝜕𝜑
𝜕𝑦

𝐸𝑧
0 =

𝜕𝐸𝑦
0

𝜕𝑥
.

(7)
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4. Waveguides regular in y and electromagnetic fields

First, let us consider the case when neither the integrated optical waveguide
geometry, nor the solutions to Maxwell’s equations for the adiabatic guided
mode (AGM) depend on one of the horizontal coordinates, i.e., the case
𝜕/𝜕𝑦 ≡ 0.
For fields harmonic in time in the Cartesian system of coordinates, the

system of Maxwell’s equations has the form:

⎧
{
{
{
⎨
{
{
{
⎩

𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝑘0𝜀𝐸𝑥, 𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= −𝑖𝑘0𝜇𝐻𝑥,

𝜕𝐻𝑥
𝜕𝑧

− 𝜕𝐻𝑧
𝜕𝑥

= 𝑖𝑘0𝜀𝐸𝑦, 𝜕𝐸𝑥
𝜕𝑧

− 𝜕𝐸𝑧
𝜕𝑥

= −𝑖𝑘0𝜇𝐻𝑦,

𝜕𝐻𝑦

𝜕𝑥
− 𝜕𝐻𝑥

𝜕𝑦
= 𝑖𝑘0𝜀𝐸𝑧,

𝜕𝐸𝑦

𝜕𝑥
− 𝜕𝐸𝑥

𝜕𝑦
= −𝑖𝑘0𝜇𝐻𝑧,

(8)

In the case 𝜕/𝜕𝑦 ≡ 0, system (8) takes the form

⎧{{{
⎨{{{
⎩

−
𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝑘0𝜀𝐸𝑥, −

𝜕𝐸𝑦

𝜕𝑧
= −𝑖𝑘0𝜇𝐻𝑥

𝜕𝐸𝑥
𝜕𝑧

− 𝜕𝐸𝑧
𝜕𝑥

= −𝑖𝑘0𝜇𝐻𝑦, 𝜕𝐻𝑥
𝜕𝑧

− 𝜕𝐻𝑧
𝜕𝑥

= 𝑖𝑘0𝜀𝐸𝑦

𝜕𝐻𝑦

𝜕𝑥
= 𝑖𝑘0𝜀𝐸𝑧,

𝜕𝐸𝑦

𝜕𝑥
= −𝑖𝑘0𝜇𝐻𝑧

(9)

A substitution of the first and the third equations (9) into the second ones
leads to the equivalent systems

⎧
{{{
⎨
{{{
⎩

𝜕2𝐸𝑦

𝜕𝑧2 +
𝜕2𝐸𝑦

𝜕𝑥2 + 𝑘2
0𝜀𝜇𝐸𝑦 = 0,

−
𝜕𝐸𝑦

𝜕𝑧
= −𝑖𝑘0𝜇𝐻𝑥,

𝜕𝐸𝑦

𝜕𝑥
= −𝑖𝑘0𝜇𝐻𝑧

(10)

for ТЕ polarization and

⎧
{{{
⎨
{{{
⎩

𝜕2𝐻𝑦

𝜕𝑧2 +
𝜕2𝐻𝑦

𝜕𝑥2 + 𝑘2
0𝜀𝜇𝐻𝑦 = 0,

−
𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝑘0𝜀𝐸𝑥

𝜕𝐻𝑦

𝜕𝑥
= 𝑖𝑘0𝜀𝐸𝑧

(11)

for TM polarization.
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In this case, the system of equations (6), (7) is split into two independent
subsystems:

for ТЕ polarization:

⎧{{{{
⎨{{{{⎩

𝑑2𝐸𝑦
0

𝑑𝑥2 + 𝑘2
0 (𝜀𝜇 − (𝑑𝜑

𝑑𝑧
)

2
) 𝐸𝑦

0 = 0,

𝜇𝐻𝑥
0 = −𝑑𝜑

𝑑𝑧
𝐸𝑦

0 ,

− 𝑖𝑘0𝜇𝐻𝑧
0 =

𝑑𝐸𝑦
0

𝑑𝑥

(12)

and for ТМ polarization:

⎧{{{{
⎨{{{{⎩

𝑑2𝐻𝑦
0

𝑑𝑥2 + 𝑘2
0 (𝜀𝜇 − (𝑑𝜑

𝑑𝑧
)

2
) 𝐻𝑦

0 = 0,

𝑖𝑘0𝜀𝐸𝑧
0 =

𝑑𝐻𝑦
0

𝑑𝑥
,

𝜀𝐸𝑥
0 = 𝑑𝜑

𝑑𝑧
𝐻𝑦

0 .

(13)

For thin film multilayer waveguide consisting of optically homogeneous
layers, the system of equations (12) and (13) should be completed with the
conditions of the electromagnetic field matching at the interfaces between the
media that follow from (2):

�⃗� × ⃗𝐸− + �⃗� × ⃗𝐸+ = 0, (14)

�⃗� × �⃗�− + �⃗� × �⃗�+ = 0 (15)

and the asymptotic conditions that follow from (3):

𝐸0
𝑦 , 𝐸0

𝑧 , 𝐻0
𝑦 , 𝐻0

𝑧 −−−−→
𝑥→±∞

0. (16)

5. Setting of the physical problem

The solution of the first equation of system (10) is found using the gener-
alized Kantorovich method [11], [12], which is analogous to the method of
separation of variables proposed in [13]. We find the solutions to an auxiliary
problem analogous to a problem of finding eigenvalues and eigenfunctions
that depend on a parameter.

Auxiliary eigenvalue problem

For each fixed 𝑧 we consider the problem

( 𝑑2

𝑑𝑥2 + 𝑘2
0𝑛2(𝑥, 𝑧)) 𝐸𝑗

𝑦(𝑥; 𝑧) = 𝑘2
0𝛽2

𝑗 (𝑧)𝐸𝑗
𝑦(𝑥; 𝑧), −∞ < 𝑥 < ∞, (17)
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where 𝛽(𝑧) = 𝑑𝜑
𝑑𝑧

(𝑧), with the boundary (asymptotic) conditions

𝐸𝑗
𝑦(𝑥; 𝑧) −−−−→

𝑥→±∞
0. (18)

Let us normalize the eigenfunctions with a condition

⟨𝐸𝑗
𝑦, 𝐸𝑘

𝑦 ⟩ = ∫
∞

−∞
𝐸𝑗

𝑦(𝑥; 𝑧) ̄𝐸𝑘
𝑦 (𝑥; 𝑧)𝑑𝑥 = 𝛿𝑗𝑘. (19)

It is known that for any fixed 𝑧 ∈ ℝ problem (17)–(19) is a problem of
finding normal guided ТЕ modes of a regular planar reference waveguide [14],
[15]. At any real-valued 𝜀, 𝜇 and any finite thickness of the reference waveguide
it allows a finite number 𝑁TE of forward and 𝑁TE of backward ТЕ modes [16]–
[18].

We restrict ourselves to considering such smoothly irregular waveguides in
which the number of guided modes is constant throughout the change and
the degree of irregularity is so small that the transformation of the energy
of guided modes is limited by the adiabatic approximation. In this case, we
seek a solution to problem in the form of an expansion:

𝐸0
𝑦(𝑥, 𝑧) =

𝑁TE

∑
−𝑁TE

𝐶TE
𝑗 (𝑧)𝐸𝑗

𝑦(𝑥; 𝑧), (20)

satisfying the condition

𝜕𝐸0
𝑦

𝜕𝑧
(𝑥, 𝑧) = −𝑖

𝑁TE

∑
−𝑁TE

𝑘0𝛽TE𝑗 (𝑧)𝐶TE
𝑗 (𝑧)𝐸𝑗

𝑦(𝑥; 𝑧). (21)

Substituting expansion (20),(21) into Eqs. (10) with relations (19) taken
into account, after cumbersome but not complicated transformations, we
arrive at a system of ODEs for the expansion coefficient functions 𝐶TE

𝑗 (𝑧).

6. Solution of a single-mode problem for zero
contribution to the AGM

As an example, let us carry out the above calculations for the particular
case (20), (21), which describes the single-mode propagation of a TE-polarized
AGM, namely:

̃𝐸𝑗
𝑦(𝑥, 𝑧) = 𝐶TE

𝑗 (𝑧)𝐸𝑗
𝑦(𝑥; 𝑧), (22)

satisfying condition

𝜕 ̃𝐸𝑗
𝑦

𝜕𝑧
(𝑥, 𝑧) = −𝑖𝑘0𝛽TE𝑗 (𝑧)𝐶TE

𝑗 (𝑧)𝐸𝑗
𝑦(𝑥; 𝑧). (23)
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We differentiate (23) with respect to 𝑧 and substitute the result into the
first equation of the system (10) taking into account (17) (following [13]). As
a result, we arrive at a system consisting of a single ODE

𝑑𝐶TE
𝑗

𝑑𝑧
(𝑧)𝛽TE𝑗 (𝑧) +

𝑑𝛽TE𝑗

𝑑𝑧
(𝑧)𝐶TE

𝑗 (𝑧) = 0. (24)

We substitute the solution of Eq. (24) into relation (22) and obtain the

ultimate explicit form of the component ̃𝐸𝑗
𝑦 of the electromagnetic field of

the single-mode TE polarized AGM:

̃𝐸𝑗
𝑦(𝑥, 𝑧) =

𝛽TE𝑗 (0)
𝐶TE

𝑗 (0)
𝐸𝑗

𝑦(𝑥; 𝑧)
𝛽TE𝑗 (𝑧)

. (25)

By means of the second equation of the system (10) we obtain

�̃�𝑗
𝑧(𝑥, 𝑧) = − 1

𝑖𝑘0𝜇
𝑑 ̃𝐸𝑗

𝑦

𝑑𝑥
(𝑥, 𝑧) (26)

and using the third equation of the system (10) we obtain

�̃�𝑗
𝑥(𝑥, 𝑧) =

𝛽TE𝑗 (𝑧)
𝜇

̃𝐸𝑗
𝑦(𝑥, 𝑧). (27)

In analogy with the above calculations, we solve the system (11) using the
auxiliary problem

( 𝑑2

𝑑𝑥2 + 𝑘2
0𝑛2(𝑥, 𝑧)) 𝐻𝑗

𝑦(𝑥; 𝑧) = 𝑘2
0𝛽2

𝑗 (𝑧)𝐻𝑗
𝑦(𝑥; 𝑧), −∞ < 𝑥 < ∞, (28)

with boundary (asymptotic) conditions

𝐻𝑗
𝑦(𝑥; 𝑧) −−−−→

𝑥→±∞
0. (29)

The eigenfunctions are normalized by the condition

⟨𝐻𝑗
𝑦, 𝐻𝑘

𝑦 ⟩ = ∫
∞

−∞
𝐻𝑗

𝑦(𝑥; 𝑧)�̄�𝑘
𝑦 (𝑥; 𝑧)𝑑𝑥 = 𝛿𝑗𝑘. (30)

The single-mode solution for the TM-polarized AGM has the form

�̃�𝑗
𝑦(𝑥, 𝑧) =

𝛽TM𝑗 (0)
𝐶TM

𝑗 (0)
𝐻𝑗

𝑦(𝑥; 𝑧)
𝛽TM𝑗 (𝑧)

, (31)

̃𝐸𝑗
𝑧(𝑥, 𝑧) = 1

𝑖𝑘0𝜀
𝑑�̃�𝑗

𝑦

𝑑𝑥
(𝑥, 𝑧) (32)
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̃𝐸𝑗
𝑥(𝑥, 𝑧) = −

𝛽TM𝑗 (𝑧)
𝜀

�̃�𝑗
𝑦(𝑥, 𝑧). (33)

7. Search for adiabatic guided mode phase using
the Cauchy method

In the model of adiabatic guided modes, in addition to the coefficient

functions 𝐶TE
𝑗 (𝑧) and 𝐶TM

𝑗 (𝑧), the explicit dependence on the horizontal
coordinate is present in the exponential factor exp{𝑖𝜔𝑡 − 𝑖𝑘0𝜑(𝑦, 𝑧)} in ex-
pression (4) [9]. The mode evolution in the horizontal direction, besides the
dependences (24) for the coefficient functions in the case 𝜕/𝜕𝑦 ≡ 0, is formed
by the dependence of 𝑑𝜑/𝑑𝑧 on the obtained eigenvalues of problems (17). It
is convenient to formulate the description of phase evolution law 𝜑(𝑧) in terms
of the algebraic model of adiabatic guided modes [9] for thin-film waveguides.
A constructive representation of this dependence for thin-film waveguides
consisting of homogeneous layers is obtained in Refs. [19]–[21]. Namely, the
general solutions in the homogeneous layers have the form

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐸𝑠
𝑦

𝐻𝑠
𝑧

𝐻𝑠
𝑦

𝐸𝑠
𝑧

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

−𝑖𝜇𝑠 exp{𝑘0𝜂𝑗
𝑠(𝑧)𝑥}𝐴1

𝑠
𝜂𝑗

𝑠(𝑧) exp{𝑘0𝜂𝑗
𝑠(𝑧)𝑥}𝐴1

𝑠
𝑖𝜀𝑠 exp{𝑘0𝜂𝑗

𝑠(𝑧)𝑥}𝐴2
𝑠

𝜂𝑗
𝑠(𝑧) exp{𝑘0𝜂𝑗

𝑠(𝑧)𝑥}𝐴2
𝑠

⎞⎟⎟⎟⎟⎟
⎠

, (34)

⎛⎜⎜⎜⎜⎜
⎝

𝐸𝑓
𝑦

𝐻𝑓
𝑧

𝐻𝑓
𝑦

𝐸𝑓
𝑧

⎞⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑖𝜇𝑓 (exp{−𝑘0𝜂𝑗
𝑓(𝑧)𝑥}𝐴3

𝑓 − exp{−𝑘0𝜂𝑗
𝑓(𝑧)𝑥}𝐴1

𝑓)
𝜂𝑗

𝑓(𝑧) (exp{−𝑘0𝜂𝑗
𝑓(𝑧)𝑥}𝐴3

𝑓 + exp{−𝑘0𝜂𝑗
𝑓(𝑧)𝑥}𝐴1

𝑓)
𝑖𝜀𝑓 (exp{−𝑘0𝜂𝑗

𝑓(𝑧)𝑥}𝐴2
𝑓 − exp{−𝑘0𝜂𝑗

𝑓(𝑧)𝑥}𝐴4
𝑓)

𝜂𝑗
𝑓(𝑧) (exp{−𝑘0𝜂𝑗

𝑓(𝑧)𝑥}𝐴4
𝑓 + exp{−𝑘0𝜂𝑗

𝑓(𝑧)𝑥}𝐴2
𝑓)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, (35)

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐸𝑐
𝑦

𝐻𝑐
𝑧

𝐻𝑐
𝑦

𝐸𝑐
𝑧

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

𝑖𝜇𝑐 exp{𝑘0𝜂𝑗
𝑐(𝑧)(−𝑥 + ℎ)}𝐴3

𝑐
𝜂𝑗

𝑐(𝑧) exp{𝑘0𝜂𝑗
𝑐(𝑧)(−𝑥 + ℎ)}𝐴3

𝑐
−𝑖𝜀𝑐 exp{𝑘0𝜂𝑗

𝑐(𝑧)(−𝑥 + ℎ)}𝐴4
𝑐

𝜂𝑗
𝑐(𝑧) exp{𝑘0𝜂𝑗

𝑐(𝑧)(−𝑥 + ℎ)}𝐴4
𝑐

⎞⎟⎟⎟⎟⎟
⎠

, (36)

where 𝜂𝑗
𝛼(𝑧) = √𝛽2

𝑗 (𝑧) − 𝑛2
𝛼, 𝛼 = 𝑠, 𝑓, 𝑐.

The system of boundary Maxwell’s equations (2) with the explicit form
of solutions (34),(36) taken into account leads [22]–[24] to the systems of
homogeneous linear algebraic equations

�̂�TE (𝐴1
𝑠 𝐴1

𝑓 𝐴3
𝑓 𝐴3

𝑓)
𝑇

= (0 0 0 0)𝑇
(37)
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for TE modes, where

�̂�TE=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑖𝜇𝑐 𝑖𝜇𝑓 exp{𝑘0𝜂𝑗
𝑓(𝑧)ℎ} −𝑖𝜇𝑓 exp{−𝑘0𝜂𝑗

𝑓(𝑧)ℎ} 0
0 𝑖𝜇𝑓 −𝑖𝜇𝑓 −𝑖𝜇𝑠

0 −𝜂𝑗
𝑓(𝑧) −𝜂𝑗

𝑓(𝑧) 𝜂𝑗
𝑠(𝑧)

𝜂𝑗
𝑐(𝑧) −𝜂𝑗

𝑓(𝑧) exp{𝑘0𝜂𝑗
𝑓(𝑧)ℎ} −𝜂𝑗

𝑓(𝑧) exp{−𝑘0𝜂𝑗
𝑓(𝑧)ℎ} 0

⎞⎟⎟⎟⎟⎟⎟
⎠
(38)

and

�̂�TM (𝐴2
𝑠 𝐴2

𝑓 𝐴4
𝑓 𝐴4

𝑐)
𝑇

= (0 0 0 0)𝑇
(39)

for TM modes, where

�̂�TM =
⎛⎜⎜⎜⎜⎜⎜
⎝

0 −𝑖𝜀𝑓 𝑖𝜀𝑓 𝑖𝜀𝑠

𝑖𝜀𝑠 −𝑖𝜀𝑓 exp{𝑘0𝜂𝑗
𝑓(𝑧)ℎ} 𝑖𝜀𝑓 exp{−𝑘0𝜂𝑗

𝑓(𝑧)ℎ} 0
𝜂𝑗

𝑐(𝑧) −𝜂𝑗
𝑓(𝑧) exp{𝑘0𝜂𝑗

𝑓(𝑧)ℎ} −𝜂𝑗
𝑓(𝑧) exp{−𝑘0𝜂𝑗

𝑓(𝑧)ℎ} 0
0 −𝜂𝑗

𝑓(𝑧) −𝜂𝑗
𝑓(𝑧) 𝜂𝑗

𝑠(𝑧)

⎞⎟⎟⎟⎟⎟⎟
⎠

.

(40)

The systems of homogeneous linear algebraic equations (37) and (39) have
nontrivial solutions under the conditions

det �̂�TE (𝑑𝜑TE/𝑑𝑧) = 0, (41)

det �̂�TM (𝑑𝜑TM/𝑑𝑧) = 0 (42)

In terms of ordinary differential equations for 𝑑𝜑TE/𝑑𝑧 and 𝑑𝜑TM/𝑑𝑧, equa-
tions (41) and (42) are written in the form

𝐹 (𝑑𝜑
𝑑𝑧

(𝑧); ℎ(𝑧), 𝑑ℎ
𝑑𝑧

(𝑧); 𝜀𝛼, 𝜇𝛼) = 0, (43)

where 𝐹 is a transcendental function of 𝑑𝜑
𝑑𝑧
, including expressions 𝜂𝑗

𝛼(𝑧) =

√𝛽2
𝑗 (𝑧) − 𝑛2

𝛼, 𝛼 = 𝑠, 𝑓, 𝑐 and exp{±𝑘0𝜂𝑗
𝛼(𝑧)ℎ(𝑧)}, 𝛼 = 𝑠, 𝑓, 𝑐 i.e., radicals of

(𝑑𝜑
𝑑𝑧

)
2
and exponential functions of these radicals.

Equations (41) and (42) of the form (43) are solved symbolic-numerically
using the Cauchy method (see [25], [26]).

8. Basic equations of the adiabatic guided mode model

The problem of propagation of polarized electromagnetic radiation in
regular waveguides was successfully solved both in closed [27]–[30] and in
open waveguides [31]. In both cases the base method is the method of
separation of variables, which reduces the initial problem to an auxiliary
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spectral problem with a discrete spectrum in the case of closed waveguides
and a mixed spectrum in the case of open ones.
Problems with dielectric and magnetic filling of waveguides, intricate in the

cross section but regular in the longitudinal direction (along the radiation
propagation axis) were reduced to considerably more complicated spectral
problems, which have been subsequently also solved (see, e.g., [32]–[39]). These
physical models gave rise to new mathematical problems and description of
new electromagnetic phenomena, which are beyond the present discussion.
In contrast to this line of study, the mathematical modeling of waveguides

irregular in the longitudinal direction began to develop from the middle of
the 20th century. Here we should mention the pioneering works [40]–[42] in
the English-language literature. However, the dominant contribution to the
development of mathematically substantiated methods was made by Russian-
language authors. Their works can be conventionally divided into congeneric,
in fact, to the ideology of Kantorovich method [43] generalizing the Fourier
method of separation of variables (e.g., [44]–[54]) and those using the ideology
of asymptotic approach (see, e.g., [55]). It is worth noting that the studies in
the first line have acquired rigorous mathematical completeness in the works
by Sveshnikov and his disciples (see, e.g., [56]–[66]).
The present paper combines the Sveshnikov ideas in both approaches and

bases on technique of exploiting the Kantorovich method, implicitly used by
Fedoryuk.
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Одномодовый режим распространения
адиабатических волноводных мод

плавно-нерегулярных интегрально-оптических
волноводов

А. Л. Севастьянов

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

В работе представлено исследование волноводного распространения
поляризованного электромагнитного излучения в тонкоплёночном интегрально-
оптическом волноводе. Для описания этого распространения используется
адиабатическое приближение решений уравнений Максвелла. Построение ре-
дуцированной модели для адиабатических волноводных мод, сохраняющей все
свойства соответствующих приближённых решений системы уравнений Макс-
велла, было проведено автором в предыдущей публикации в DCM&ACS, 2020,
№ 3. В настоящей работе исследование проведено для частного случая, ко-
гда геометрия волновода и электромагнитное поле инвариантны в поперечном
направлении. В этих условиях существуют раздельные нетривиальные ТЕ-
и ТМ-поляризованные решения указанной редуцированной модели. В работе опи-
сываются параметрически зависящие от продольных координат решения задач
на собственные значения и собственные функции — адиабатические волновод-
ные ТЕ- и ТМ-поляризации. В работе приводится постановка задачи отыскания
решений модели адиабатических волноводных мод, описывающих стационар-
ное распространение электромагнитного излучения. Представлены решения
для одномодового распространения ТЕ- и ТМ-поляризованных адиабатических
волноводных волн.

Ключевые слова: волноводное распространение поляризованного света, ин-
тегральный оптический волновод, адиабатическое приближение, собственные
значения и собственные функции, метод Канторовича, одномодовый режим



378 DCM&ACS. 2020, 28 (4) 378–397

UDC 535:535.3:681.7

DOI: 10.22363/2658-4670-2020-28-4-378-397

Solving the inverse problem for determining the optical
characteristics of materials

Konstantin P. Lovetski1, Andrey A. Zhukov2, Michael V. Paukshto3,

Leonid A. Sevastianov1, Anastasiia A. Tiutiunnik1

1 Peoples’ Friendship University of Russia (RUDN University)
6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation

2 ITL Consulting
16, Olkhovskaya St., bldg. 5, Moscow, 105066, Russian Federation

3 Fibralign Corporation
32930, Alvarado-Niles Rd., Suite 350, Union City, CA 94587, USA

(received: November 10, 2020; accepted: November 12, 2020)

The paper describes a methodology for determining the optical and physical
properties of anisotropic thin film materials. This approach allows in the future
designing multilayer thin-film coatings with specified properties. An inverse problem
of determining the permittivity tensor and the thickness of a thin film deposited
on a glass substrate is formulated. Preliminary information on the belonging of
a thin-film coating to a certain class can significantly reduce the computing time
and increase the accuracy of determining the permittivity tensor over the entire
investigated range of wavelengths and film thickness at the point of reflection and
transmission measurement
Depending on the goals, it is possible to formulate and, therefore, solve various

inverse problems:
– determination of the permittivity tensor and specification of the thickness of

a thick (up to 1 cm) substrate, often isotropic;
– determination of the permittivity tensor of a thin isotropic or anisotropic film

deposited on a substrate with known optical properties.
The complexity of solving each of the problems is very different and each problem

requires its own specific set of measured input data. The ultimate results of solving the
inverse problem are verified by comparing the calculated transmission and reflection
with those measured for arbitrary angles of incidence and reflection.

Key words and phrases: transmittance, reflectance, refractive indices determina-
tion, thin films, multilayers, optical coatings, optical properties

1. Introduction

The efficiency of production of existing devices for solid-state micro- and
nanoelectronics and successful creation of new ones largely depend on the
level of development of the technology for manufacturing layers of various
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materials with a thickness from several nanometers to tens of micrometers [1].
The design and manufacture of multilayer structures with desired properties
from dielectric and/or metal films requires an accurate knowledge of the
optical parameters of each layer [2], [3].

Methods for evaluating the electrophysical parameters of dielectric and
semiconductor thin-film materials [4] based on regularized methods [5] for
solving inverse problems allow accurate determination of the electrophysical
parameters of thin-film semiconductor materials [6]–[8]. It becomes possible
to create multilayer structures with predetermined properties [9].

The advantage of non-contact methods, which include spectrophotometric
and polarimetric methods, is the possibility to carry out measurements without
destroying the material and without changing its properties. When using
these methods, the interaction of electromagnetic waves in the optical range
with the sample material is considered and the intensities of the transmitted
and reflected waves are measured. The obtained intensities can be then used
to calculate both optical and geometric parameters of the samples [10]–[12].

The advantage of spectrophotometric measurements is the possibility to
determine several parameters using one measuring device and one sample
[13]. To determine the thickness, permittivity, and electrical conductivity of
nanometer films in layered structures, one can use the results of measurements
of the reflection and transmission spectra of the optical radiation interacting
with them, provided that the mathematical model of their interaction is
known [14], [15].

Finding the electrophysical parameters of layered structures from the re-
flection and transmission spectra of electromagnetic waves is associated with
the need to solve inverse ill-posed problems of electrodynamics.

The developed program “Multilayer” serves both for modeling the trans-
mission of light through multilayer thin-film layered media [16]–[18] and for
determining the dielectric (permittivity tensor of anisotropic films) and geo-
metric (film thickness) parameters of various thin-film coatings. The program
was created based on many years of experience of collaboration with organi-
zations engaged in the design of thin-film coatings [11] used in the production
of liquid crystal displays.

2. Formulation of extended inverse problem

Methods described in [19] for description of the transmission of an electro-
magnetic wave through an optical system are also used in solving the inverse
problem for determining the optical characteristics of materials. Let us con-
sider formulation of the inverse problem to determine optical parameters of
thin film coating.

Within the framework of the inverse problem, it is required to determine,
using data on the transmission 𝑇𝑚(𝜆𝑖) and reflection 𝑅𝑚(𝜆𝑖) for various
angles of incidence and various polarizations (𝑚 ∈ [1, … , 𝑛], here 𝑛 is the
number of different spectrophotometric measurements for each wavelength
𝜆𝑖, 𝑖 ∈ [1, … , 𝑝] from desired range [𝜆beg, 𝜆end]), the elements of the permittivity
tensor 𝜀(𝜆) of a homogeneous material in a preset wavelength range [𝜆beg, 𝜆end].
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Mathematically, this problem reduces to minimization of the variance
functional with respect to the unknown parameter 𝜀(𝜆𝑖).

𝐹(𝜀(𝜆)) =

=

𝜆end

∫
𝜆𝑗=𝜆beg

(
𝑛

∑
𝑖=1

(𝑇𝑖(𝜆) − 𝑇𝑖(𝜀𝑗(𝜆), 𝜆))2+
𝑛

∑
𝑖=1

(𝑅𝑖(𝜆) − 𝑅𝑖(𝜀𝑗(𝜆), 𝜆))2) 𝑑𝜆. (1)

As was noted above, an additional unknown parameter can be the layer
thickness 𝑑, which has to be especially thoroughly determined for thin films.
In such cases, the target functional is written as 𝐹(𝜀, 𝑑).
An important feature of the problem under consideration is that the optical

parameters have to be found in a continuous wavelength interval [𝜆beg, 𝜆end],
rather than at separate points in this interval. Typically, the interval of
interest covers the visible spectral range from 400 to 800 nm. The search
for parameters defined over a given spectral range implies the requirement
that the spectral dependences of these parameters would be smooth functions,
which influences the structure of solutions.
Solving the task of minimization [20] of the functional (1) frequently involves

procedures requiring considerable computational time. The time consumption
can be significantly reduced by taking into account certain special features of
the system (isotropic vs. anisotropic materials, thick vs. thin layers), that is,
by selecting a proper model of light propagation [21]–[23]. Problems related
to the classification of materials are considered in the next section.
Note. From mathematical standpoint, the inverse problem of restoring

the parameters of a differential operator belongs to the class of so-called
ill-posed problems [5], which implies that small variations in the initial data
may lead to large changes in the coefficients that have to be calculated. Such
behavior of the solution is called unstable. The problem of reconstruction
of the elements of the permittivity tensor 𝜀(𝜆) is the typical example of an
ill-posed problem. The problem of correctness poses additional requirements
both to the accuracy of initial data and to the stability of solution algorithms.
In order to effectively solve an ill-posed problem, it is also highly desirable to
take into account all the information known a priori about the system. Finally,
it should be noted that poor (uncertain) initial data on the transmission
𝑇𝑚(𝜆𝑖) and reflection 𝑅𝑚(𝜆𝑖) of light in the system (for example, in the case
of a significant level of light scattering) may not allow eliminating all the
difficulties related to incorrect formulation of the problem.

3. Classification of media

In the adopted approach to formulation of the inverse problem, the prop-
erties of materials determined by the permittivity tensor are considered as
most important [7], [24], [25]. For the Berreman matrix method [26], special
features of a material (isotropic vs. anisotropic) are not of principal signif-
icance in solving the direct problem. However, the knowledge about such
features may significantly simplify solution of the inverse problem by reduc-
ing the number of unknown parameters and by making possible the use of
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simplified computational schemes [27]. In connection with this, we present
a classification of the materials of interest [25].
The classification is closely related to the relative values and orientations

of the principal axes of the refractive index ellipsoid (figure 1).

Figure 1. A general orientation of a principal axes of the permittivity ellipsoid. 𝜃 nutation
angle, 𝜓 precession angle, 𝜙 spin angle

Classification with respect to the principal values of the permittivity tensor:

— Biaxial anisotropic material. In this case, all three principal axes of the
refractive index ellipsoid are different, for example, 𝜀𝐴 < 𝜀𝐵 < 𝜀𝐶. Such
materials have two optical axes.

— Uniaxial anisotropic material. Two of the three optical axes are equal
to each other, for example, 𝜀𝐴 = 𝜀𝐵 ≠ 𝜀𝐶. Such materials have a single
optical axis coinciding with 𝐶 axis.

— Isotropic material. In this case, all three principal axes of the refractive
index ellipsoid are equal to each other: 𝜀𝐴 = 𝜀𝐵 = 𝜀𝐶.

In uniaxial materials, directions corresponding to equal principal axes of
the refractive index ellipsoid (or equal values of the refractive indices) are
called ordinary (𝜀𝑂 = 𝜀𝐴 = 𝜀𝐵 or 𝑛𝑜), while the remaining direction is
called extraordinary (𝜀𝑒 = 𝜀𝐶 or 𝑛𝑒). It should be recalled that 𝜀𝜎 = 𝑛2

𝜎,
where 𝜀𝜎, 𝑛𝜎 are complex quantities and 𝑛𝜎 is the refractive index. Such
materials are frequently characterized by the value of birefringence (or double
refraction), which is defined as the difference Δ𝑛 = 𝑛𝑒 − 𝑛𝑜.
For 𝑛𝑒 > 𝑛𝑜 we deal with a positive birefringence, while 𝑛𝑒 < 𝑛𝑜 corresponds

to a negative birefringence. Now we will consider the commonly accepted
classification of uniaxial anisotropic materials with respect to the ratio of
𝜀𝑂 and 𝜀𝑒 and the orientation of a special axis. Here, the main parameter
determining the type of a material is the angle of nutation 𝜃.
Classification of uniaxial materials with respect to orientation of the princi-

pal axes of the refractive index ellipsoid:
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— o-Plate:
This case corresponds to the general arrangement of a uniaxial refractive
index ellipsoid with an angle of nutation within 0 < 𝜃 < 𝜋/2, figure 1.
In cases, when the principal axes of the ellipsoid coincide with the
axes of the laboratory frame, the notation 𝜀𝐴, 𝜀𝐵, 𝜀𝐶 will be changed to
𝜀𝑥, 𝜀𝑦, 𝜀𝑧.

— C-Plate:

(a) C-plate positive (b) C-plate negative

Figure 2. [𝜃 = 0; 𝜓 = 0; 𝜓 (the angle of rotation measured from 𝑂𝑋 axis) has arbitrary

value

— A-Plate:

(a) Positive A-plate (b) Positive A-plate

Figure 3. A-plate (positive): 𝜃 = 𝜋/2; 𝜓 = 0; 𝜑 = 0, A-plate (negative):
𝜃 = 𝜋/2; 𝜓 = 𝜋; 𝜑 = 0

The above classification of uniaxial materials, depending on the orientation
of the principal axes of the refractive index ellipsoid of the samples, allows
the calculations to be limited to a small number of options for choosing
calculation schemes, provided that there is a preliminary information about
the belonging of the material under study to one of the classes.
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4. Classification of inverse problems

In solving the inverse problem, the material should be classified primarily
with respect to two factors: anisotropy and thickness. It should be also taken
into account that thin materials (with a thickness of several microns and
below) cannot be considered without a substrate bearing this layer. In such
cases, calculations of the properties of a thin layer will involve the parameters
(refractive index and thickness) of the substrate.
In accordance with a scheme presented in figure 4, the inverse problems

are classified as follows.

Figure 4. Classification of inverse problems

Problems of determination of refractive indices
Calculation of optical parameters for a thick layer – usually substrate (one-

layer model).

— Calculation of the optical parameters (refractive indices) of an isotropic
substrate.

— Calculation of the effective optical parameters of an anisotropic substrate
for a given direction in the plane.

— Calculation of the optical parameters (permittivity tensor) of an
anisotropic substrate.

Calculation of optical parameters for a thin film on thick substrate (two-layer
model).

— Calculation of the optical parameters of a thin isotropic film on isotropic
substrate with known parameters.

— Calculation of the effective optical parameters of thin anisotropic film on
isotropic substrate with known parameters, for a given direction in the
plane.

— Calculation of the optical parameters (permittivity tensor) of a thin
anisotropic film on isotropic substrate with known parameters.

The problem of calculation of the effective refractive index of an anisotropic
material in a given direction on the plane is solved using the same method as
that used for determining the parameters of an isotropic material. However,
calculations of the effective refractive index in a certain direction, while being
of independent interest, may also perform an auxiliary role. On the one
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hand, the effective refractive indices calculated in two mutually perpendicular
directions (par/per) quite well characterize the given material for the normal
incidence of light.
On the other hand, calculation of the principal axes of the refractive

index ellipsoid for an anisotropic material in the case of small Euler angles
(e.g., for a material with well oriented structure, where deviations of the
principal axes from axes of the laboratory coordinate system are small) can
start with calculation of the components lying in the sample plane. These
par/per components can be used in subsequent calculations as very good
initial approximation for the complete calculation of the permittivity tensor.
It should be borne in mind that the inverse problems of various types

require using different sets of initial data, which will be considered below.
Note. In present version of the program, calculations of the parameters of

a thin layer on substrate can be performed only for an isotropic substrate.

5. Classification of solution structures

Various methods of calculation of the propagation of light [22], [28] described
previously (matrix and classical methods) are based on the relations valid
for a given wavelength. In this context, calculation of the spectrum of the
refractive index can be performed either point wise (in a given wavelength
interval) or using a certain preset parametric dependence (figure 5).
Both point wise and parametric methods of calculation have their own

advantages and drawbacks.
Pointwise method
Advantages. Provides effective solution of the inverse problem in the case

of calculations of the optical parameters of a single thick layer. The solution
is sufficiently stable. The level of oscillations in the obtained solution (noise)
corresponds to the noise level in the initial data. Requires relatively small
computational time.
Drawbacks. Gives highly unstable solutions in the case of calculations of the

optical parameters of a thin layer in a two-layer structure (strongly ill-posed
problem). Satisfactory solution can be obtained using various additional
(physically justified) restrictions and regularization parameters.
Parametric structure of solutions
Advantages. Provides smooth solutions consistent with the physical meaning

of the problem. The method is sufficiently universal, especially when the
Kramers-Kronig relations are used [29].
Drawbacks. Computational time increases as compared to that required

for the point wise calculations. Sometimes it is difficult to select a proper
parametric structure of the solution for materials transparent in the entire
range [𝜆beg, 𝜆end].
It should be noted that the requirement of smoothness is especially impor-

tant for the real part of the complex permittivity, that is, for the refractive
index (𝑛). The spectral dependence of the absorption coefficient (𝑘) is usually
smooth even for a pointwise solution.
The main, effective method of solution of the inverse problem consists in

obtaining a parametric solution using the Kramers–Kronig relations [29]. In
this method, an important step is related to simulation of the absorption peaks.
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Figure 5. Inverse problems and alternative solution structures. Red field color indicates

the most widely used structures

The software “Multilayer” allows the absorption peaks to be approximately
described using both Gauss and Lorentz curves. The experience gained in
practical calculations shows that the Gauss approximation has to be preferred.
Questions pertaining to the Kramers–Kronig relations are considered in more
detail in the next Section.

6. Kramers–Kronig relations for permittivity function

Assuming that the permittivity function (𝜀 = 𝜀′ + 𝑖 𝜀′′
) is analytic, we

can write the well-known Kramers-Kronig relations between the real (𝜀′) and

imaginary (𝜀′′
) parts [7]:

𝜀′(𝜔) − 1 = 1
𝜋𝑃

+∞
∫

−∞

𝜀″(𝑥)
𝑥−𝜔 𝑑𝑥,

𝜀″(𝜔) = − 1
𝜋𝑃

+∞
∫

−∞

𝜀′(𝑥)−1
𝑥−𝜔 𝑑𝑥,

(2)
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where 𝜔 is the circular frequency and 𝑃 is a symbol indicating the principal
value of the integral.

For our purposes, the most important relation is (2) which, by virtue of

the odd character of 𝜀′′(𝜔) [7], is equivalent to the following expression:

𝜀′(𝜔) − 1 = 2
𝜋

𝑃
+∞

∫
0

𝑥𝜀″(𝑥)
𝑥2 − 𝜔2 𝑑𝑥. (3)

Experimental measurements can provide sufficiently reliable data on the ab-
sorption coefficient 𝑘(𝜔) (within a certain limited spectral interval [𝜔𝑏𝑒𝑔, 𝜔𝑒𝑛𝑑]),
which is related to the complex permittivity and the refractive index 𝑛(𝜔) by
the following expressions:

𝜀 = (𝑛(𝜔) + 𝑖𝑘(𝜔))2 ≡ 𝑛(𝜔)2 − 𝑘(𝜔)2 + 2𝑖𝑛(𝜔)𝑘(𝜔),

or
𝜀′(𝜔) = 𝑛(𝜔)2 − 𝑘(𝜔)2, 𝜀″(𝜔) = 2𝑛(𝜔)𝑘(𝜔), (4)

where the absorption coefficient 𝑘 is a dimensionless quantity.
Using equations (4) and (3), one can readily obtain an expression relating

the refractive index at a given frequency to the spectrum of the absorption
coefficient:

𝑛(𝜔)2 − 𝑘(𝜔)2 − 1 = 2𝑐
𝜋

𝑃
+∞

∫
0

𝑥𝑛(𝑥)𝑘(𝑥)
𝑥2 − 𝜔2 𝑑𝑥. (5)

Thus, the main problem in determining the spectral dependence of the
refractive index proceeding from the measured absorption spectrum reduces
to solving an integral equation (3) with respect to 𝑛(𝜔). In practice, the
absorption spectrum is measured in a certain limited spectral interval [𝜔1, 𝜔2].
In such cases, equation (5) can be rewritten as

𝑛(𝜔)2 − 𝑘(𝜔)2 − 1 = 2𝑐
𝜋

𝑃

𝜔_𝑒𝑛𝑑

∫
𝜔_𝑏𝑒𝑔

𝑥𝑛(𝑥)𝑘(𝑥)
𝑥2 − 𝜔2 𝑑𝑥 + 𝐶, (6)

where an error arising on the passage to a finite integration interval is repre-
sented by a constant 𝐶, which, generally speaking, also has to be calculated
from experimental data.

Let us consider the results of numerical solution of equation (6) for several
model systems, where the absorption coefficients 𝑘 are defined by a certain
set of Gauss functions (Gaussians).

In figure 6 curves drawn in the same type of lines refer to the absorption
coefficients (thin lines) and the corresponding refractive index profiles (thick
lines) representing solutions of the nonlinear integral equation based on the
Kramers–Kronig relations. An interesting example is offered by the pair
of curves drawn by dashed lines, which just corresponds to the case under
consideration with several absorption bands. The absorption is stronger in



K.P. Lovetski et al., Solving the inverse problem for determining the… 387

the initial part of the spectral interval and then decreases. The restored
refractive index also exhibits several maxima.

Figure 6. Kramers–Kronig relations. Two solutions (𝑛_1, 𝑘_1) and (𝑛_2, 𝑘_2) of integral
equation (6)

The main approach to solution of the problem of determination of the re-
fractive indices and absorption coefficients using the Kramers-Kronig relations
consists in modeling the absorption coefficient by a sum of base functions de-
scribing the absorption bands of a given material. Since the spectral interval
of measurements [𝜆beg, 𝜆end] contains by no means all absorption bands of the
given material, it is necessary to provide for the possibility of extending the

base functions outside this interval to a wider wavelength range [𝜆𝑘
𝑏𝑒𝑔, 𝜆𝑘

𝑒𝑛𝑑],
where 𝜆𝑘

𝑏𝑒𝑔 < 𝜆beg < 𝜆end < 𝜆𝑘
𝑒𝑛𝑑. It is assumed that the main absorption

bands of the materials under consideration fall within the interval [𝜆beg, 𝜆end]
or go slightly outside.
The base functions are usually expressed on the frequency scale and then

converted to the wavelength scale. For simulations using the developed
software, the base functions can be selected in the following forms.

— Gauss functions: 𝐺(𝜔, 𝑥) = 𝐴 ⋅ exp(− (𝜔−𝜔0)2

Δ ) .
— Lorentz functions: 𝐿(𝜔, 𝑥) = 𝐴

1+( 𝜔−𝜔0
Δ )2 .

As was noted above, Gaussians are more convenient in use, but Lorentz func-
tions require a shorter time for calculations within each cycle of the iterative
process. Use of the Lorentz curves is related to the following disadvantage:

— The shapes of the spectral curves of 𝑛 and 𝑘 are less perfect than those
obtained by using Gauss functions.

— A significant error arises at the right-hand end of the spectral interval
in the course of calculation of the degenerate integral for the refractive
index (𝑛). This error can be eliminated by artificially expanding the
integration domain (approximately by 40-50 nm) outside the right-hand
boundary of the given spectral interval.
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7. Calculation of optical parameters for a thick layer.
One-layer model

Let us consider some particular examples of calculations of the optical
parameters of thick films based on the results of solutions of the corresponding
inverse problems.
We’ll take as a sample Quartz glass (KU-7 grade) [30].
The transmission and reflection spectra of a sample were measured on

a spectrophotometer. The transmission intensity was measured at a zero
incidence angle, while the reflection was measured at an angle of 7∘ (measured
from the normal to the sample surface). The refractive index calculated for
the spectral range from 450 to 750 nm is presented in figure 7. The maximum

deviation from the standard is 7.0 × 10−4 at a wavelength of 633 nm (for the
curve calculated using the Kramers-Kronig algorithm).
The pointwise algorithm provides a strongly oscillating solution, which is

related to insufficient accuracy of the spectral measurements (noisy spectrum)
used as the initial data.

Figure 7. Refractive index of quartz: (Thin) pointwise algorithm; (Thick) Kramers-Kronig

algorithm; (Points) standard (tabulated) values

Display glass
The transmission and reflection spectra of a sample were measured on

a spectrophotometer using the same angles of incidence as those in the
preceding example – see figures 8 and 9.
The refractive index calculated for the spectral range from 400 to 800 nm

using the pointwise algorithm and the Kramers-Kronig algorithm (based on
the Gaussian approximation of the absorption band) is presented in figure 10.
The spectrum of the absorption coefficient is presented in figure 11.
The pointwise algorithm provides a strongly oscillating solution, which is

related to insufficient accuracy of the spectral measurements (noisy spectrum)
used as the initial data. It should be also noted that the accuracy of mea-
surements in the beginning and at the end of the spectral interval is reduced
because the employed polarizers operate more reliably in the middle of this
interval than at the ends.
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Figure 8. Measured transmission spectra of the glass sample

Figure 9. Measured reflection spectra of the glass sample

Figure 10. Refractive index of display glass:

(magenta) pointwise algorithm; (blue) Kramers-Kronig algorithm
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Figure 11. Absorption coefficients of display glass:

(magenta) pointwise algorithm; (blue) Kramers-Kronig algorithm

8. Calculation of optical parameters for thick and thin
layers. Two-layers model

Calculations of the refractive indices of thin-film materials is complicated
by the fact that their transmission and absorption characteristics cannot
be measured directly and independently, since such materials are usually
deposited onto substrates (with a thickness on the order of 1 mm) in the
course of fabrication. For this reason, the problem is usually solved in at least
two steps. First, it is necessary to determine the parameters of a substrate.
Then, the calculated values of the refractive indices and absorption coefficients
are used in solving the inverse problem for determining the characteristics of
a thin coating.
Let us consider examples of the calculation of refractive indices and absorp-

tion coefficients for a tested real thin-film material.
In order to simplify and accelerate the computation procedures, the charac-

teristics are first calculated for a slow direction of a sample. This approach
provides sufficiently fast and more accurate evaluation of the film thickness
as compared to the standard mechanical measurements with the help of
profilometer.
Then, the refractive indices and absorption coefficients are calculated in

the perpendicular – fast – direction, with the initial thickness approximation
obtained in the first step. After that we can take those solutions as initial
ones for solving the problem of index estimation in the third direction – along
the vertical axis 𝑂𝑍 in local coordinate system. The results of calculation are
presented on figures 12 for real parts (refraction indices) and 13 for imaginary
parts (absorption coefficients). Figures show the calculated values of principal
axes of the refractive index ellipsoid as functions of the wavelength.
Optimization with respect to all components of the refractive index ellipsoid,

the Euler angles, and the film thickness at each point of measurements gives
the results of fitting for measured transmitted and reflected light depicted in
figures 14–15.
Figures 14 and 15 illustrate the degree of approximation for all eight

measurements used in the solution of the inverse problem. The measured
and calculated intensities of light transmitted via a thin film deposited onto
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a display glass are compared in figure 14. The intensities of light reflected in
various directions for different angles of incidence are presented in figure 15.

Figure 12. Refractive indices along three axes in local coordinate system

Figure 13. Extinction coefficients along three axes in local coordinate system

It should be noted that the results of fitting with respect to transmission
are better than those for reflection, which is related to the fact that the
measurements of reflection are more influenced by the scattering of light. Nev-
ertheless, the positions of extrema in the calculated and measured reflection
spectra exhibit good coincidence.

9. Сonclusion

The paper describes a practically tested methodology for the sequential de-
termination of the optical and physical properties (permittivity and thickness)
of anisotropic thin-film materials. This approach ensures the determination
of the required parameters with high accuracy, which makes it possible in the
future to design multilayer thin-film coatings with specified properties. Such
coatings can have the properties of absolute mirrors or absolutely black bodies
in a given wavelength range, optical filters with desired characteristics, etc.
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Figure 14. Result of fitting procedure. Calculated (dashed) and measured (solid lines)

transmittances for different angles of incident s- and p-polarized light

Figure 15. Result of fitting procedure. Calculated (dashed) and measured (solid lines)

reflectances for different angles of incident s- and p-polarized light

Depending on the types of the investigated coatings, the user is offered sev-
eral options (models) for carrying out (executing) calculations. The simplest
approach is to solve the inverse problem at each wavelength using the trans-
mission and reflection measured at this wavelength only. In this case, the
problem has an (infinite) set of feasible solutions. The choice of the one that
is suitable in terms of physical meaning is very difficult for algorithmisation
and laborious.
The second approach is to use a priori information on the continuity of

the components of the permittivity tensor depending on the wavelength.
From a practical point of view, the most successful variant seems to be the
approximation of the imaginary part of the tensor by a set of Gaussians (the
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parameters of which are to be determined). The real part of the permittivity
tensor is calculated in accordance with the Kramers-Kronig relation.
The complexity of solving each of the problems is very different and each

requires its own specific set of measured input data. Therefore, the solution
to each problem is implemented as a separate option within the software
package, although the solution methodology remains the same.Examples of
determining the permittivity of two different standard samples, namely, the
KU-7 silica glass and the display glass, from the measured transmission and
reflection in the visible range are considered. The obtained values of the
refractive index coincide with the values declared by the manufacturer with
an accuracy of 4 decimal places.
The efficiency of the method and algorithm for the sequential determina-

tion of the permittivity tensor of a thin film deposited on a glass substrate
is demonstrated. First, the permittivity of the isotropic substrate is deter-
mined and its thickness is refined. At the second stage, after the deposition
of a thin anisotropic film on the substrate, the parameters of which must be
determined, a series of measurements of transmission and reflection from the
two-layer surface is carried out at different angles and in mutually perpen-
dicular directions. The ultimate results of solving the inverse problem are
verified by comparing the calculated transmission and reflection with those
measured for arbitrary angles of incidence and reflection.
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В работе изложена методология определения оптических и физических свойств
анизотропных тонкоплёночных материалов. Такой подход позволяет в даль-
нейшем проектировать многослойные тонкоплёночные покрытия с заданными
свойствами. Сформулирована обратная задача определения тензора диэлектри-
ческой проницаемости и толщины тонкой плёнки, нанесённой на стеклянную
подложку, с известными оптическими свойствами и толщиной. Предварительная
информация о принадлежности тонкоплёночного покрытия к определённому
классу позволяет значительно сократить время расчёта и увеличить точность
определения тензора диэлектрической проницаемости на всём исследуемом интер-
вале длин волн и толщины плёнки в точке измерения отражения и пропускания.
В зависимости от поставленных целей возможна постановка и, следовательно,

решение различных обратных задач:
– определение тензора диэлектрической проницаемости и уточнение толщины

толстой (до 1 см) подложки, часто изотропной;
– определение тензора диэлектрической проницаемости тонкой изотропной

или анизотропной плёнки, нанесённой на подложку, с известными оптическими
свойствами.
Сложность решения каждой из задач весьма различна и каждая требует своего

определённого набора измеренных входных данных. Окончательные результаты
решения обратной задачи верифицируются с помощью сравнения вычисленных
коэффициентов пропускания и отражения с измеренными для произвольных
углов падения и отражения.

Ключевые слова: определение коэффициентов пропускания, отражения, по-
казателей преломления, тонкие плёнки, многослойные материалы, оптические
покрытия, оптические свойства
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In this paper, we report a numerical simulation of laser ablation of a material
by ultrashort laser pulses. The thermal mechanism of laser ablation is described in
terms of a one-dimensional nonstationary heat conduction equation in a coordinate
system associated with a moving evaporation front. The laser action is taken into
account through the functions of the source in the thermal conductivity equation
that determine the coordinate and time dependence of the laser source. For a given
dose of irradiation of the sample, the profiles of the sample temperature at different
times, the dynamics of the displacement of the sample boundary due to evaporation,
the velocity of this boundary, and the temperature of the sample at the moving
boundary are obtained. The dependence of the maximum temperature on the sample
surface and the thickness of the ablation layer on the radiation dose of the incident
laser pulse is obtained.
Numerical calculations were performed using the finite difference method. The

obtained results agree with the results of other works obtained by their authors.

Key words and phrases: Numerical simulation, ablation, pulsed lasers, heat con-
duction equation

1. Introduction

In recent years, pulsed laser ablation [1]–[3] (any process of laser-stimulated
removal of matter, including the emission of electrons) of various materials
has attracted more and more interest from the point of view of fundamental
study of processes in matter under extreme conditions of ultrafast energy
supply. This implies constructing a new physical theory describing strongly
nonlinear effects.
For a detailed analysis of the processes in the experiment, it is required

to measure various characteristics of the ablation processes with pico- and
femtosecond time resolution, which in itself is a rather difficult task. Therefore,
the problem of mathematical modeling of physical phenomena in this area
becomes extremely urgent.
To describe the dynamics of fast processes in a substance, the method

of molecular dynamics (MD) can be used [4]. MD is quite effective for
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microscopic analysis of the mechanisms of melting and evaporation under
overheating conditions both in the bulk of the target [5] and for a system with
a free surface [6]. The emergence and propagation of pressure waves generated
by laser radiation [7], [8], as well as the dynamics of laser ablation [9], is well
modeled using MD.
In this paper, we consider continuous methods (various modifications of

the heat equation) for modeling the effect of laser radiation on matter.
The evaporation process is mathematically described within the framework

of the boundary value problem of thermal conductivity for a condensed
medium in a coordinate system associated with a moving solid-vapor interface
or a melt-vapor interface on which evaporation occurs. If we do not take
into account the lateral removal of the laser radiation energy due to thermal
conductivity, which is valid under the strict condition 𝑟0 ≫ √𝑎𝑇𝜏, where 𝜏 is
the duration of the laser beam exposure to the material, 𝑎𝑇 is the thermal
conductivity, 𝑟0 is the radius of the overheating spot, then the problem of the
motion of the evaporation boundary can be considered within the framework
of the one-dimensional model [3]. In Ref. [10], the primary results of numerical
simulation of ablation of materials were published. In this paper, the required
work is presented in a more extended form.

2. Setting of the problem

Numerical modeling of laser ablation of materials was carried out based on
the heat conduction equation written in a moving coordinate system associated
with the evaporation front, with initial and boundary conditions [2]:

𝜌(𝑇 )𝑐(𝑇 ) [𝜕𝑇
𝜕𝑡

− 𝑣(𝑇𝑠)𝜕𝑇
𝜕𝑧

] = 𝜕
𝜕𝑧

(𝜆(𝑇 )𝜕𝑇
𝜕𝑧

) + 𝐴(𝑧, 𝑡), 0 < 𝑧 < 𝑧max, (1)

𝑇 (𝑧, 0) = 𝑇0; 0 ⩽ 𝑧 ⩽ 𝑧max, (2)

𝜆(𝑇 ) 𝜕𝑇 (𝑧, 𝑡)
𝜕𝑧

∣
𝑧=0

= 𝑣(𝑇𝑠)𝐿𝑒𝑣𝜌;

𝑇 (𝑧max, 𝑡) = 𝑇0; ℎ =
𝑡

∫
0

𝑣(𝑡)𝑑𝑡, 𝑇𝑠 = 𝑇 (0, 𝑡),
(3)

where 𝑐(𝑇 ), 𝜆(𝑇 ), 𝜌(𝑇 ) are the specific heat, thermal conductivity and density
of the material at the temperature 𝑇 (𝑧, 𝑡), ℎ(𝑡), respectively is the depth of
the crater on the surface of the sample at time 𝑡, 𝑧𝑚 is the maximum distance,
𝑣(𝑇𝑠) is the velocity of the boundary displacement due to evaporation, 𝐿𝑒𝑣 is
the specific heat of sublimation. The source function 𝐴(𝑧, 𝑡) has the form [2]

𝐴(𝑧, 𝑡) = 𝑓1(𝑧)𝑓2(𝑡),
𝑓1(𝑧) = 𝐴𝑠𝛼𝑒−𝛼𝑧𝑒−𝛼𝑔ℎ, 𝐴𝑠 = 1 − 𝑅(𝑇𝑠), 𝑓2(𝑡) = 𝐼0𝑓(𝑡).

(4)

Here 𝐼0 is the laser intensity, 𝑅(𝑇𝑠) is the reflection coefficient of the laser
from the sample surface, 𝛼, 𝛼𝑔 are the absorption coefficients of the laser
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pulse in the sample material and in the vapor, respectively. The irradiation
dose Φ, the intensity of the source 𝐼0 and the temporal form of the source
𝑓(𝑡) are related by the relation:

Φ = 𝐼0

∞

∫
0

𝑓(𝑡)𝑑𝑡.

Here the source function has a factorized form, as in the work [11], when
the material is affected by a pulsed beam of charged particles rather than by
a laser pulse. In general, the heat capacity, thermal conductivity, and density
of the material depend on temperature. In a particular case, the dependence
of some parameters of the sample material can be neglected. In this work,
the temperature dependence of the density of the sample material and the
laser reflection coefficient is neglected.

3. Discussion of numerical results

In Ref. [2], problem (1)–(4) was solved by the method of moments for
a polyimide material. In our work, this problem was solved using the finite
difference explicit scheme [12]. The temporal shape of the source 𝑓(𝑡), the
temperature dependence of the boundary motion velocity due to evaporation
𝑣𝑠(𝑇 ), the specific heat 𝑐(𝑇 ) and the thermal conductivity 𝜆(𝑇 ) are taken for
the polyimide material similar as in Ref. [2]:

𝑓(𝑡) = 𝑡
𝑡1
exp{− 𝑡

𝑡1
} ; 𝑡1 = 6.13 𝑛𝑠, 𝑐(𝑇 ) = 2550−1590⋅exp{300 − 𝑇

460
} 𝐽

𝑘𝑔𝐾
,

𝜆(𝑇 ) = 0.155⋅( 𝑇
300

)
0.28 𝑊

𝑚𝐾
, 𝑣 = 𝑣0𝑒−𝑇𝑎/𝑇𝑠 , 𝑣0 = 3⋅104𝑚/𝑠; 𝑇𝑎 = 15700 𝐾.

Figure 1 shows plots of these dependencies.
Figure 2 shows the temperature profiles of a polyimide sample at different

times: 𝑡𝑗 = 𝑗 ⋅ 5 𝑛𝑠; 𝑗 = 1.10, the dynamics of the sample boundary motion
due to evaporation, the velocity of this boundary motion, and the sample
temperature at the moving boundary 𝑥 = ℎ(𝑡), when exposed to energy fluence
Φ = 103 𝐽/𝑚2 with parameters 𝐴𝑠 = 0.93, 𝛼 = 4.25 ⋅ 107 m−1 (𝛼𝑔 = 0.45𝛼),
𝐿𝑒𝑣 = 5 ⋅ 105𝐽/𝑘𝑔, 𝜌 = 1420 𝑘𝑔/𝑚3.
Figure 3 shows the dependencies of the maximal temperature at the sample

surface 𝑇𝑚𝑎𝑥(ℎ(𝑡), 𝑡) and the crater depth ℎ(𝑡) on the radiation dose Φ for
four sets of values of parameters 𝐴𝑠 and 𝛼:
1) 𝐴𝑠 = 0.93, 𝛼 = 4.25 ⋅ 107 m−1;

2) 𝐴𝑠 = 0.88, 𝛼 = 3.1 ⋅ 107 m−1;

3) 𝐴𝑠 = 0.89, 𝛼 = 107 m−1;

4) 𝐴𝑠 = 0.9, 𝛼 = 0.32 ⋅ 107 m−1.

The source intensity 𝐼0 in this case varies from 3 ⋅ 106 W/cm
2
to 3 ⋅

107 W/cm
2
. The obtained results agree with those of Ref. [2].
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Figure 1. Source temporal shape 𝑓(𝑡), temperature dependence of specific heat 𝑐(𝑇 ),
thermal conductivity 𝜆(𝑇 ) and boundary motion velocity 𝑣(𝑇 ) due to evaporation

Figure 2. Temperature profiles of polyimide sample at different times:

𝑡𝑗 = 𝑗 ⋅ 5 𝑛𝑠; 𝑗 = 1, 10, dynamics of sample boundary motion due to evaporation, velocity
of this boundary and the sample temperature at the moving boundary 𝑥 = ℎ(𝑡) under

the exposure to energy fluence Φ = 103 𝐽/𝑚2
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Figure 3. Dependencies of the maximal temperature at the sample surface 𝑇𝑚𝑎𝑥(ℎ(𝑡), 𝑡)
and the crater depth ℎ(𝑡) on the irradiation doze Φ for four sets of values for 𝐴𝑠, 𝛼

4. Conclusion

For a given dose of the sample irradiation, the profiles of the sample
temperature at different times, the dynamics of the displacement of the
sample boundary due to evaporation, the velocity of this boundary and the
temperature of the sample at the moving boundary were obtained. The
dependencies of the temperature maximum on the sample surface and the
thickness of the ablation layer on the radiation dose of the incident laser pulse
are determined.
Numerical calculations were performed using the finite difference method.

The obtained results agree with the results of works of other authors. When
using shorter laser pulses in the ablation kinetics, arised features that can no
longer be described within the framework of the conventional thermal model.
In this case, studies are carried out within the framework of other models
(two-temperature model, hydrodynamic model, etc.), which is the subject of
further research.
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Численное моделирование лазерной абляции
материалов

И. В. Амирханов, Н. Р. Саркер, И. Сархадов

Лаборатория информационных технологий
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

В работе проведено численное моделирование лазерной абляции материала под
действием ультракоротких лазерных импульсов. Тепловой механизм лазерной
абляции описывается в рамках одномерного нестационарного уравнения тепло-
проводности в системе координат, связанной с движущимся фронтом испарения.
Действие лазера учитывается через функции источника в уравнении теплопро-
водности, задавая координатную и временную зависимости источника лазера.
Для заданной дозы облучения образца получены профили температуры образца
при разных временах, динамике перемещения границы образца из-за испарения,
скорости перемещения этой границы и температуры образца на движущейся гра-
нице. Получены зависимость максимума температуры на поверхности образца
и толщины слоя абляции от дозы излучения падающего лазерного импульса.
Численные расчеты проведены с применением метода конечных разностей.

Полученные результаты согласуются с результатами работ других исследовате-
лей.

Ключевые слова: численное моделирование, абляция, импульсные лазеры,
уравнение теплопроводности




