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On the rate of convergence for a class of Markovian
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There are many queuing systems that accept single arrivals, accumulate them and
service only as a group. Examples of such systems exist in various areas of human life,
from traffic of transport to processing requests on a computer network. Therefore,
our study is actual. In this paper some class of finite Markovian queueing models with
single arrivals and group services are studied. We considered the forward Kolmogorov
system for corresponding class of Markov chains. The method of obtaining bounds of
convergence on the rate via the notion of the logarithmic norm of a linear operator
function is not applicable here. This approach gives sharp bounds for the situation of
essentially non-negative matrix of the corresponding system, but in our case it does
not hold. Here we use the method of ‘differential inequalities’ to obtaining bounds on
the rate of convergence to the limiting characteristics for the class of finite Markovian
queueing models. We obtain bounds on the rate of convergence and compute the
limiting characteristics for a specific non-stationary model too. Note the results can
be successfully applied for modeling complex biological systems with possible single
births and deaths of a group of particles.

Key words and phrases: queuing system, Markovian queues, forward Kolmogorov
system, rate of convergence, limiting characteristics

1. Introduction

Consider a Markovian queueing model on the finite state space {0,1,..., N}
with single arrivals and group services, see the first motivation in [1] and
more recent studies in [2], [3].

Let X(t) be the corresponding queue-length process for any ¢ > 0. Denote
by p;;(s,t) = P{X(t) =j|X(s) =i}, 3,5 > 0, 0 < s < t the transition
probabilities of X (¢) and by p,(t) = P{X(t) = i} — the probability that the
Markov chain X (#) is in state i at time ¢t. Let p(t) = (py(t), p1(2), ... ENGE
be the vector of state probabilities at the moment t.

© Kryukova A.L., 2020
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The probabilistic dynamics of the process X (t) is described by the forward

Kolmogorov system

dx = A(t)x,

1
= (1)
where A(t) = QT(t) is the transposed intensity matrix. All column sums of
this matrix are zeros for any ¢t > 0, and A(t) is essentially nonnegative (i.e.
all its off-diagonal elements are nonnegative for any ¢ > 0), and all ‘intensity
functions’ a,;(t) are analytical in ¢.

We suppose that a,;(t) = 0 for 7 > j— 1, all rates service do not depend on
the size of a queue, i.e. a,;,(t) = by(t) for k > 1, arrival rates a; ; ,(t) =

A;(t). The process X (t) belongs to class (III), see [3]. The matrix A(t) for
X (t) has the following structure:
ago(t)  by(t)  by(t)  bs(t) by_1(t) bn(t)
A(t) aqa(t) by(t)  by(t) by_2(t) by_1(t)
0 Ag(t) agy(t) by(1) by_s(t) by s(t)
A(t) = 0 0 As(t)  ass(t) by_a(t)  by_3(t) (2)
6 0 0 0 aNf11\.r71<t> b1.<t>
0 0 0 0 An_1(t)  ayn(t)

2. Stationary Markovian queueing model

In this paper we consider a subclass of the class (III) satisfying additional
suppositions b, (t) =0, 1 <i < N —1, by(t) = b(t) and X;(t) = A(t) for any i,

t>0.

The difficulty of studying this model is due to the fact that it is not possible
to apply the most convenient method of the logarithmic norm for it, see [3].
Now we get the following expression for the transposed intensity matrix:

age(t) 0 0 0 b(t)
At) a(t) 0O 0 0
ap=| 0 A eml Y ®)
0 0 0 an_1n-1(t) 0
0 0 0 A(t) ann(t)
We perform the following system transformations. Since p, (t) = 1 —
> p; (t), one can rewrite the system (1) as
i>1
Y Bzttt (4)

%:
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where f(t> = ()‘ (t) >0a 70)Ta Z= (pl (t),p2(t), apN(t))Ta

T N S S S -
A ay 00 - 0 0
0 A oag; 0 - 0 0
B(t) = 0 0 A ay - 0 0 |- (5)
0 0 0 0 * ay,ng O
0 0 0 0 - A any

All bounds on the rate of convergence to the limiting regime for X(¢)
correspond to the same bounds of the solutions of system

dy _

= B, (6)

Denote by T upper triangular matrix

1 11 -1
o1 1 -1
T=10 0 1 (7)
00O 1
Let u(t) = Ty(t), then
du
27 pr
M B (i), ®
where
- 0 0 0 —b
A =) 0 0 —b
_ 0 X =) 0 —b
B*(t) =TBt)T ! = 9
(t) = TB() . (9
0 0 0 - A —(\+Db)

Let us remark that the matrix B*(t) is not essentially non-negative. This
means that the method of the logarithmic norm is inconvenient to apply (it
gives poor results). That’s why we use the method of ‘differential inequalities’,
which was described in [4]-]6].

Let D = diag(d,,d,, ...dy) be a diagonal matrix and d,;, i = 1,..., N be
nonzero numbers. By w(t) denote a product Du(t), then one can rewrite (8)
as following system
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dw
o = BT (Ow(), (10)
where
- 0 0 0 0 b4
d d
AFE oA 000 0 b
cds —p. %
B =ppwpt=| O ra A0 0 b-ay
0 0 0 0 T
0 0 0 0 -« X A—p
N-1

By u(t) denote an arbitrary solution of system (8), then we can consider
an interval (¢,,t,) with fixed signs of the coordinates u,(t) and choose the
elements of the diagonal matrix such that signs of the entries d, are equal
with signs of corresponding coordinates u,(t) of the solution of system (8).

Since any djui(t) > 0 on the corresponding time interval, the sum

N
> dui(t) = |wl|| can be considered as the corresponding norm.
k=1

Denote B*(t) = (b;‘;(t))N . Now, if the function ap(t) is such that

ij=1
N
bii(t) < —ap(t), j=1,..., N, then the following bound holds:
1 D
i=1
N
il 4(E) o
=1 ok
dr dt = Z Z bij (t)wj < —ap(t) [w].
j=1 i=1

We set o = min {a(t)}, where the minimum is taken over all intervals
with different combinations of coordinate signs of the solution. Hence for any
such combination we have the inequality

— [t ot (r)dr
lw(t)] < e % O ws)].
If we compared all the norms, then one can obtain the final bound

ly(®)] < Ce b Dy (0)], (11)

where C'is a corresponding constant.
In our case (in general, all intensities depend on the time )

N-1
d d d

E w;:_)\.< ——2>~w —)\~(1——3>.w _>\.< ——4>~w e
d,) ! dy) 2 dg) °

=1
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d, d d
—(x+p- 14+ 2L 422 4 N-1 .
O T IR

1) Let all uy, ..., uy be positive. Since (1 — dé—ﬂ) must be positive, we have

7

and we have ap = A- (1 —h).

2) Let all uy, ..., u;, be positive, and all u;_{, ..., uy negative. Similarly
|d’L| > ‘di+1|' Suppose dl = hN_k+1, d2 = hN_k+2, ceey dk = hN, dk‘+1 = _h,
dy o = —h?%, ..., dyy := —hN then

N-1
i) () e (3)
w 1_— .w 1_— A. _— .w —_— e —
i=1 ( dl b d3 ’
dy  dy B
oo )
— A (1—h)wy = A (L= h)-wy—A-(1—h) - wy — - —

1

1 1 1
2 k
- <A+b~ (1—h—h — W S s +"'+E>> Wy,
In this case ap = A - (1 — h) too.
3) Let all u, ..., u;, be positive, and all u;,, ..., u, negative and all u,_,
., uy be positive too. As before |d;| > |d;,|. Suppose d; := hV* d, :=
RN=RR2 0 dy = RN dy g = RN dy = RN ST d = R R

dyyq:=h, dg o :=h? .., dy:=—h""5

N—1
d d d
o (2 ) ()
d, d, dy
N . _
(+ ( dy dy dN )) N1
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A (=R wy = A (1—h) - wy— A (1 —h) - wy — e —
1
A (1—h) -y —A- <1 + F) A (1—R) -y sy ——A-(1—h)-w, | —

_)\<1_J’_—_>ws_A(1_h)ws+1_._

1 1
_<)\ +b (1 + hS*k‘Fl Lo hS —h— h2 e hsfk + W 4t E))'wN’

as before ap, = A- (1 —h).
In the general case, we do the same. Then we have C' = h'™" and the
following bound

ly(0)] < 2NRIY - e MR y(0). (12)

In general non-stationary situation

ly(8)] < 2NN - o= AT ) (13)

3. Non-stationary Markovian queueing model

Here we consider a specific queueing model with 1-periodic intensities:
A(t) = 2+ sin(27t) and b(t) = (2 + cos(27t)), then

2 + sin(27t) aqq 0 0 - 0 0
Alt) = 0 2 +sin(27t) agy 0 - 0 0
0 0 0 0o - AN_1N—-1 0

0 0 0 0 - 2+sin(27t) an N

and B*(t) = (b;‘;(t))]_v_ _» Where b (t) = =2 —sin(2mt), if 1 <i < N — 1
1,]=—
b (1) = —4 — sin(2t) — cos(27t), bix(t) = — (2+ cos(2m)) - 5=, if 1 <i <

N —1, b:(*z'q)(t) = (2 + sin(27t)) - %, if 2 < i < N, all other elements are
zZero.
Then we have the following bound on the rate of convergence

ly()] < 2N - RN e P ) (14)
namely
ly(®)] < 2N - hI=N L m (T p BRI ) (15)
hence N n
ly ()] < 2N - AN ety (0)]. (16)

The right-hand side of estimate (16) decreases rather slowly with increasing ¢.
However, this does not mean that the estimate is inaccurate because the real
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rate of convergence is rather slow. For example, let N = 50 and h = % In

Figures 1-3 we can see the state probability of an empty queue p,(t) a

convergence rate function of time t¢.

1.0
R M— — — — — - - WS TUUUN R -~
R — — — - - - - N S S

0,7 {feemeeemmeees .......... .......... ......... .......... ......... .......... ......................................

x(t)

A N N (S (N S (N O (O O
1 N N N N (N N SO N N
4% 'S N N N (N (N (N N (N (N
02

0,1

—XO=0
—X(0) = 50

0 20 40 G0 80 100 120 140 160 180 200

220 240

S

low

Figure 1. Probability of the empty queue p(t) for ¢ € [0, 250] with initial conditions

X(0) =50 (black) and X(0) = 0 (gray)

0,080 |

x(t)

0,025
0,020 E
0,016
a1

0,008

0,000t

—X@=0 | |
— X(0)=50{

30 32 34 36 38 40 42 44 46 48 S50 52 54 56 58 60 62 G4
t

66 68 70

Figure 2. Probability of the empty queue pq(¢) for ¢ € [30, 70] with initial conditions

X (0) =50 (black) and X(0) = 0 (gray)
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0,025 |} 1
| H(D =0
0,024 11 —X(0)=50["

i) N S I S LA
0022 |f
o] O S 1) T S N - —— - Y [
0.019 ................................................ ........... ........... ........... ............ ............ ............
0018 ||
S| ISR SR SO SO b e s A S | —

L2 A S SO S N I I N S N

249 2491 2402 2483 2484 24895 2496 2487 2408 2408 250
t

Figure 3. Probability of the empty queue p,(t) for t € [249, 250] with initial conditions
X(0) =50 (black) and X(0) =0 (gray)

4. Conclusions

Some new class of finite Markovian queueing models with single arrivals
and group services was considered. Bounds on the rate of convergence for
these models and computations of the limiting characteristics for a specific
non-stationary model were obtained.

The obtained results belong to the theory of queueing systems and can
be applied, for example, in medical and biological stochastic systems, which
satisfy the adopted assumptions.

For describing possibility of applications of Markovian queues we can refer
to [7]-[17], which contains a broad overview and a classification of time-
dependent queueing systems.
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O ckopoCTHM CXOAMMOCTHU OJHOTO KJIACCA MapPKOBCKUX
Ierei ¢ rpynmnoBbIM OOCJ/Iy>KMBAaHUEM TPeOOBaHUIA

A. JI. KprokoBa

Bosozodekuti 20cydapemeenmnill yrusepcumenm
ya. Jewuna, 0. 15, Boaozda, 160000, Poccus

Cy1mecTByeT MHOXKECTBO CHCTEM MaCCOBOTO OOCJIYXKUBaHUs, KOTOPbIE TPUHUMA~
0T €JIUHUIHBIE TPEOOBAHNS, HAKATIIMBAIOT UX U OOCIYKUBAIOT TOJBKO KaK TPYTIIY.
IIpumepbr Takux cUCTEM MOXKHO HAWTH B PA3JUIHBIX O00JIACTAX UEJIOBEUECKON KU3HU
— oT TpaduKa TPAHCIOPTHBIX MEPEBO30K JI0 0OPAbOTKU 3alIPOCOB B KOMITBIOTED-
HBIX CeTAX. DTUM OOyCIaBIMBAETCS aKTYaJbHOCTD HAIIETO UCCIeI0Banus. B 3ol
cTaTbe U3ydaeTcs HEKOTOPbIH KJIACC KOHEUHBIX MAPKOBCKUX MOJIEJIell MAacCOBOTO 00-
CJIy’KUBAHUs C OIUHOYHBIM IMPUOBITUEM ¥ I'PYIIOBBIM 0OCTyKuBaHueM. PaccmoTpena
npsiMas cuctema KoJsiMoroposa jisi COOTBETCTBYIOIIEro Kiacca memeit Mapkosa. Me-
TOJI, OTIPEJICIEHUsT TPAHUTL CXOJMMOCTH, OCHOBAHHBIN HA MOHSITUN JIOTAPUMMUAIECKON
HOPMBI, 3/IeCh He MpuMeHuM. Takoi TmOoIX0 Ja6T TOYHBbIE OIEHKH JIJIsi MOJIEJIei, JJist
KOTOPBIX MATPHUIA COOTBETCTBYIOIIEH CUCTEMBI CYIIECTBEHHO HEOTPHUIATEIbHA, HO
B HAIIIEM CJIy4ae 3TO He TaK. 37eCh Mbl UCIOJIb30BaJM HOBBIH MeTo «muddepen-
[IMAJBHBIX HEPABEHCTBY JIJIs MOJIyYeHUe ONMEHKU CKOPOCTU CXOJUMOCTHU JIJIsT 9TOTO
KJlaCcCa KOHEYIHBIX MapPKOBCKHUX Moﬂeﬂeﬁ. KpOMe TOTr'0, MbI ITOJIYI1UJIN OIIEHKN CKOPO-
CTHU CXOIUMOCTH ¥ BBIYUCJIAIN TIPEJIeIbHBIE XAPAKTEPUCTUKY U IS COOTBETCTBYIOIIEH
HECTAIMOHAPHON MOJEJIM. 3aMETUM, UTO PE3YIBTATHI MOTYT OBIThH YCIIENTHO TPUMEHEe-
HBI JIJIT MOJIEJIMPOBAHUS CJIOXKHBIX OMOJIOTMIECKUX CHCTEM, B KOTOPBIX BO3MOXKHBI
POXKIEHNSA HOBBIX OCOOEH TOJBKO IO OJHOW W rUOesIb TPYIIIL.

KoarouyeBble cjioBa: crucreMa MacCOBOIO OOCIIy2KMBaHUs, MAPKOBCKUI IIPOIECC, -
Mag cucreMa KoaMoroposa, CKOPOCTH CXOIMMOCTH, IIpeJeSIbHbIE XapaKTEPUCTUKI
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The aim of this work is to develop a set of programs for calculation the scattering
amplitudes of the elementary particles, as well as automating the calculation of
amplitudes using the appropriate computer algebra systems (Mathematica, Form,
Cadabra). The paper considers the process of pion-pion scattering in the framework
of the effective Nambu—Iona—Lasinio model with two quark flavours. The Package-
X for Mathematica is used to calculate the scattering amplitude (starting with
the calculation of Feynman diagrams and ending with the calculation of Feynman
integrals in the one-loop approximation). The loop integrals are calculated in general
kinematics in Package-X using the Feynman parametrization technique. A simple
check of the program is made: for the case with zero temperature, the scattering
lengths ag = 0.147 and ay; = —0.0475 are calculated and the total cross section is
constructed. The results are compared with other models as well as with experimental
data.

Key words and phrases: Feynman integrals, one-loop approximation, total sross
section, scattering length, a computer algebra, Package-X

1. Introduction

The heavy ion collision experiment is an instrument for the study of the
matter properties under critical conditions. The modern experiment is a multi-
stage process, which includes the event selection, the event reconstruction (the
reconstruction of the primary particles) and the simulation of the collision
process. The simulation is made on the base of the chosen model and the final
result has to reproduce the real data. The fulfil of such analysis or simulation
among other things requires a good understanding and a strict description of
the final state particle interaction.

The information about the particles properties and their interactions can
be extracted from the probabilities of the processes occurring during their

(© Kalinovsky Y.L., Friesen A.V., Rogozhina E.D., Golyatkina L.I., 2020
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collision. The interaction probability is associated with the cross section of
the given reaction and the phase volume, which is uniquely determined by
the laws of conservation of energy-momentum, i.e., by the kinematics of the
reaction. From the theoretical point of view, the cross section is defined by the
scattering amplitude, which is described in the framework of the model under
consideration. The model can include description of the quantum mechanical
properties of the particles, describe the type of the interaction, take into
account the matter properties or the quark structure of the colliding particles,
etc. That is why to obtain the scattering amplitude is not the trivial task
both from theoretical and computing point of view.

This paper is dedicated to the calculation of wr-scattering amplitude. As
the lightest hadron with Goldstone nature, the pion occupies a special position
in hadronic physics. The elastic mm-scattering is a fundamental process for
quantum chromodynamics (QCD) at low energies as it provides an ideal
testing for the mechanism of spontaneous chiral symmetry breaking. During
the heavy ion collision, pions can be quickly created in the early phase, for
example, by the Schwinger mechanism and their number is quasi-conserved
over the time scale of the heavy ion collision until freeze- out. Then, in
the hadron phase, two and more pions are the final state of many hadronic
interactions. Accordingly, mm— scattering attracts considerable interest even
though the cross section is not directly measurable.

In this work the mm-scattering is considered in the frame of two-flavour
Nambu-Jona-Lasinio model (NJL) [1]. The most important advantage of the
NJL model is that it introduces a mechanism of the dynamical breaking of
chiral symmetry (due to the quark-antiquark condensate). The model has
a good tool to introduce finite temperature suggested by Matsubara and
is able to describe the matter properties at finite temperature and density.
Nevertheless, the calculation of the wm-scattering amplitude in NJL model
is difficult due to the appearing of four-point one-loop Feynman integrals,
that make the using of Matsubara mechanism in the general kinematics
complicated. That is why the problem was solved only for limiting cases,
for example, for the case with p; = p, = p3 = p, = p [2]. This limit allows
to estimate the scattering lengths ay, a5, but does not make it possible to
evaluate the cross section, the pion damping width or the lifetime. This work
focuses on the evaluation of the scattering amplitude in general kinematics
but due to the use of the dimensional regularization scheme, without the
finite temperature.

The evaluation of the scattering amplitude can be made in two steps:
writing down the amplitude using the Feynman rules, evaluating traces
and then integrating over the phase space, applying the chosen kinematics.
Many packages allow to evaluate Dirac traces, for example, Form [3| or
Cadabra [4]. Obtained results usually require a lot of additional analytical
work for writing down the amplitude in appropriate form and for numerical
calculation. To evaluate one-loop integrals that appear in higher order
calculations of perturbative quantum field theory, there are exist, for example,
the Mathematica packages FeynCalc [5], FormCalc [6] and the Fortran program
Golem95 [7]. These packages compute the one-loop tensor integrals using
the Passarino—Veltman reduction algorithm [8]. In this work we use the
Package-X for Mathematica, developed by Hiren H. Patel [9]. The Package-X
runs all steps for amplitude evaluation: performing traces over products of
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Dirac matrices, giving the result in the term of Passarino—Veltman functions,
computation of the one-loop integrals. Package-X provides analytic expressions
for UV-divergent, IR-divergent and finite parts either separately or all together.
Output expressions can be readily evaluated numerically and manipulated
symbolically with built-in Mathematica functions.

2. Using the Package-X for the evaluation of m — 7
scattering amplitude

In this work the meson-meson scattering amplitude in the frame of effective
QCD models is considered. The work focuses on the NJL model [1], the
Lagrangian of the model can consist of scalar, pseudo-scalar, vector, and
axial-vector four-quark interactions. The expressions for the total amplitude
T (s,t,u) depend on the number of interactions taken into account. For this
work the Lagrangian with two flavours of quarks and scalar and pseudo-scalar
four-quark interactions is chosen:

Ly, = 4 (1,0 — o) ¢ + G [(G0)* + (@i7579)°] , (1)

where G is the scalar coupling constant, ¢,q are the quark fields, my is
the diagonal matrix of the current quark mass, m, = diag(m{,mY) with

m{ = mY = my, and 7 are the Pauli matrices in space SU(2), 7%(a = 1,2, 3).
In the mean field approximation the constituent mass of the quark is
provided by the gap equation:

m = mg + QiG/(QdTp)LlTr{S(p)}, (2)

where S(p) = (p—m)~! is the quark propagator and trace is taken over Dirac,
flavour and colour indexes.

A meson is considered as a quark-antiquark couple forming a loop, and
in the framework of the RPA approximation it leads to the Bethe—Salpeter
equation:

1 26 Ty (k) oo = O, (3)

with the polarization operator II,,(k?), which defines the meson properties:
2 [ d'p

() =i [ Gy T DS+ M), )

where the vertex factor I';; depends on the sort of meson. I'y; = iy;7* for the
pseudo-scalar meson and I';; = 17% for scalar meson. The meson propagator
is defined as i

i

For simplicity, in this work the parametrization suggested in the work [10]
is used. The set of equations for fixing masses and coupling constants can be
written as:
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M82 = Mgz + 4777/2, ga’qq = gﬂ'qq\/i7 (6)
where Z = 1—6m?/M7 , M, = 1.2 GeV is the mass of a;-meson, M, = 0.14

a
GeV is the pion mass and m is the constituent quark mass. The coupling

constant g, can be obtained from the Goldberger—Treiman relation [11]:

gﬂqqfﬂ =m+ 0(m>7

where f_ = 0.0924 GeV is the pion decay constant.

On the lowest order 1/N,_ there are two types of Feynman diagrams, con-
tributed to the mm-scattering amplitude: four-vertex “box "-diagrams and the
meson-exchange diagrams [2], [12]. The set of “box”-diagram is presented in
the Figure 1. Here p,, p, are the momenta of incoming particles, ps,p, are
the momenta of scattered particles, k is the integration variable.

P1 k+p; P3 1 ktpi P4 1 ktpi P3
k k+pr-p;3 k k+pi-p4 k k+p;-p;3
P2 k-p; P4 P2 k-p; P3 P4 k+py P2
a) b) <)

Figure 1. Feynman diagrams contributing to the mwr-scattering

The amplitudes corresponding to each diagram in Figure 1 can be writ-
ten as:

iT =—gat 25/ d’k Tr{v5(q +m)y5(do +m)y5(d5 +m)v5(dy +m)}
e (2m)? [0:2 —m?][gg? — m?][g5? — m?][q,? — m?] '

(7)

The prefactor —gﬁqq appears as the vertex factor in the diagrams are
L =994 Y5- The notation ¢;, ¢ = 1,...,4 was introduced for the simplicity

and the values of ¢;, corresponding to diagrams in Figure 1 a), b) ¢) accordingly
are listed in Table 1.

Table 1
The g, for the “box-diagrams in Figure 1
T°7 (a) | Ty (b) | TP (o)
a | & k k
Qo | k— Do k —py k+ py
a3 | k+p1—p3 | k+pr—ps | K+p1—p3
44 | k+p k+py k+py

To compute traces of Dirac matrices in denominator of equation 7 the
function Spur is used. The LoopIntegrate function initiates the evaluation
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of integral and carries out its covariant tensor decomposition in term of
Passarino—Veltman functions (PVA, PVB, PVC, PVD). For diagrams in
Figure 1, keeping the notation for s-, t-, u- channels, it should be written:

In[2]:=

sChannel = LooplIntegrate[Spur[y.k + mq, vs5, V.(k - p3) + m4], 5, v.(k + Py - p3) +
my, Vs ’Y'(k + pl) + myq, 75]7 kv {kv m}a {k - Do, m}v {k + (pl - p3)7 m}a {k + P, m}]v
uChannel = Looplntegrate[Spur[y.k + mq, v5, 7.(k - ps) + mq], v5, 7-(k + p; - p4) +
my, Vs ’7'(1{ + pl) + my, ’75]’ k, {k7 m}a {k - P2, m}v {k + Py - Da, m}7 {k + D1, m}],
tChannel = Looplntegrate[Spur[v.k + mq, 75, v.(k + D1 + Py - P3) + Mmq], v5, 7. (k + 1
- p3) + mq, '757 ’Y(k + pl) + my, ’75]7 ka {kv m}7 {k + ler D2 - p37 Hl}, {k + P - p37
m}v {k + pla m}]

The output of the LoopIntegrate function contains a number of dot-
products of the external momenta. It is possible to define on-shell conditions
expressing scalar products in terms of Mandelstam invariants with the func-
tion MandelstamRelations and eliminate one of variables using additional
command Eliminate.

In[1]:=

onShell = MandelstamRelations[py, pa, P3, P4, M, M, M, M — s, t, u, Eliminate — u]
Out[1]:=

{p1%2 = M2 p2? - M?,p3% —» M?,p4®> — M?,pl.p2 — 1(s—2M?),p3.p4 —
1(s—2M?), pl.p3 — 1 (2M? —t),p2.p4 — % (2M? —t),pl.pd —
1(—2M?%+s+1t),p2.p3 = % (—2M?2 + s +t), cPUPBEIRY 0}

After covariant decomposition and on-shell or kinematic conditions are
applied, the result in term of the coefficient functions is obtained. At the final
step LoopRefine is run to reduce the obtained result in terms of analytic
expressions DiscB, ScalarC0, ScalarDO0, that are the in-built Mathematica
functions and are suitable for numerical calculation. Actually, these functions
are an abbreviation for a more complicated expression and the function
DiscExpand displays them in terms of elementary functions.

In[5]:=
sChannellnt = LoopRefine[sChannel /. onShell]
uChannellnt = LoopRefine[tChannel /. onShell[;
tChannellnt = LoopRefine[uChannel /. onShell];
Out[5]:=

1
8+4 ( + Log [2
€ m
2 (2M? — s) ScalarCO [M?, M2, s, m, m, m] —2 (2M? — t) ScalarCO [M?, M?, t; m, m, m| +
(2M* — st) ScalarD0 [M?, M?, M?, M?; s, t; m, m, m, m]

2
) + 2DiscB(s, m, m| 4+ 2DiscBlt, m, m]—

There are a few notes concerning the outputs: in the outputs an overall
factor i/(1672) is omitted for brevity, and should be restored during analysis
of the result. The result can contain the term 1/e that always explicitly
displays logarithmic UV and/or IR divergences. During the analysis of the
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results, it should be kept in mind that the term 1/e is equal to (1/e—~+1n4m).
The discussion about the renormalization in QED and QCD can be found,
for example, in the work [13]. The UV and/or IR divergence can be displayed
separately using Part — UVDivergent.

In[8]:=
LoopRefine[sChannel, Part — UVDivergent|

Out[8]:=

4em?

The scattering amplitude, expressed in variable s, t, u, is invariant and
does not change when replacing s <+ t, s <> u, t <> u. Therefore, the first
diagram in Figure 1 a) can be obtained from the second one b) by replacing
t <> u, and the third c) from the second b) — by replacing s <> ¢t. Using this
property, the simple check of result can be done:

In[9]:=

sChannelf[s_,t ,u_] = sChannel /. onShell;

uChannelf[s ,¢t ,w | = uChannel /. onShell;
tChannelf[s ,¢t ,u | = tChannel /. onShell;
FullSimplify|LoopRefine[sChannelf]s, t, u| - uChannelf[s, u, t]]]
FullSimplify|LoopRefine[uChannelf[s, t, u] - tChannelf[t, s, u]]]

Out[12]:= 0
Out[13]:= 0
-0.03 oox 0.06f
S
-0.04 3
0.04} Toox
-0.05 3
L 0.02} ]
2 -0.06 E g Tbox
= u
-0.07}> 3 0.00
-0.08 E
0.09 i’ T -0.02} Q
_010 1 1 1 1 |- _004 -I 1 1 1 1
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Figure 2. The real (left panel) and imaginary (right panel) of the "box”-diagrams for the case
t=0

The real and imaginary parts of the integral (7) for all “box”-diagrams as
function of s are shown in Figure 2 for the case t = 0.

The second type of Feynman diagrams contributed to the mm-scattering
amplitude is the diagram with the meson as intermediate state. As the
intermediate state there can be scalar, vector, axial-vector mesons if they
appear in the Lagrangian of the model. The diagrams with intermediate
meson propagator are shown in Figure 3, where triangle vertexes correspond
to M — mm decay and d) e) and f) will be denoted as s-, u-, t- channels
accordingly. According to the Lagrangian (1), in the model only scalar and
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pseudo-scalar quark-antiquark states are present and as the intermediate state
the scalar o-meson appears. Accordingly, for this case, the triangle vertexes
correspond to o — 7 decay. The total amplitude for the meson-exchange
diagram is written as:

iT7 = iT°94D_(p)ilo™™, (8)

where D, is the meson propagator. As it was noticed above, the meson
propagator in the NJL model has the form (5), but in the 1/N,_ consideration
at T' = 0 it is reasonable to consider the meson propagator in the pole
approximation:

2
IMqq
Dy(x) = , 9
() M2, —x —iT My, (9)
where M), is the meson mass, g,s,, is the meson-quark coupling constant
and I';, is the meson width.

P1 P3
o,p

p1TDp2
P2 P4

d) €) 1)

Figure 3. The meson-exchange diagrams for 77 scattering

The ¢ — mm triangle amplitude is written as:

Lo — g 92qu26/ (ddl;d Tr{l'y(¢; + m)L'9(ga +m)l3(q3 +m)}

where vertex factors I'; are I'; = ', = i759,,, for pionand I';, =T', = 1g,,, —
for o-meson, the momenta ¢; depend on the diagram.

(.2 —m?][ge2 — m?][qz2 —m?] (10)

In[14]:=

triags = Looplntegrate[Spur[vy.k + mq, vs5, v.(k - pg) + mq, L, v.(k + py) + mq, v5].k,
k, m, (k - py), m, k + p;, mj;

triagu = LoopIntegrate[Spur|y.k + mq, v5, v.(k - p3) + mq, 1, v.(k - py) + mq, 5], k,
k7 m, (k - p3)7 m, k - P m]a

triagt = Looplntegrate[Spur[y.k + mq, v5 v.(k - py) + mq, 1, v.(k - p1) + mq, v5], k, k,
m, (k - Pg)sm, k- py, m]?

In[17]:=

sTriagInt = LoopRefine[triags /. onShell]

uTriaglint = LoopRefine[triagt /. onShell];

tTriagInt = LoopRefine[triagu /. onShell];

Out[17]:=

-8m - 4m DiscBl[s, m, m| - 4m (% + Log [%]) + 2m (2 M? - s) ScalarCO[M?2, M2, s, m, m,
m]
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Combining the result for triangle diagrams and the propagator (9) according
to equation (8), the final result for the meson-exchange diagram can be
obtained. The real and imaginary parts of the amplitudes as a function s are
shown in Figure 4 for the case ¢ = 0. It is clearly seen in Figures 2, 4 that all
results at ¢ = 0 have the threshold at s ~ M.

0.08 7o ] 0.015}
0.06 s .

T, o
0.04 R Ts

== 0.010} ]
0.02 ]
= T E
0.00
002 0.005} 1
-0.04 : 107
-0.08f, , . 3 0.000| , , , , , ,
0.0 0.2 0.4 0.6 0.8 02 03 04 05 06 07 08

S S

Figure 4. The real (left panel) and imaginary (right panel) parts of the sigma-exchange 7
scattering amplitudes for the case t = 0

3. The scattering lengths and the cross section

The invariant scattering amplitude in common view has the form [14]:

(cpe; dpy|T |ap,; bpy) =
= 5ab50dA<57 t, u) + 50,65de(87 t, U) + 5ad5bCC(S7 t, U/), (11)

where s,t,u are the Mandelstam variables and s + ¢t + u = 4M? for the
mr-scattering. The amplitude of definite total isospin I (I = 0,1, 2) defined
by A; , can be projected out from equation (11):

The functions A(s,t,u), B(s,t,u), C(s,t,u) are combined taking into ac-
count the isospin factors in the amplitudes in equations (7) (see Table 2).

Some practical results can be obtained after combining the functions
A(s,t,u), B(s,t,u), C(s,t,u) and restoring factors (gfrqq) in integrals
Jhox o When the scattering is at the kinematic threshold, the scattering

s, t,urY s,t,u”

lengths can be obtained as a, = SQLWAZ-. At the conditions s = 4M2 u =1t =0,

the length a; = 0 as the a; has the meaning of the scattering “volume” [15].
In this work the parameters from the equations (6) were used with M, =
0.14, M, = 0.562, m = 0.28, g,,, = 3.66, g,,, = 2.66. For these parameters
the values ay = 0.147 a5 = —0.0475 were obtained.
As the general kinematics was used to write the amplitude T, the total cross
section can be evaluated. According to the charge and isospin conservation law,

the following reaction for mr-scattering can exist: 797° — 7079 7970 — 77—,
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it — giat, 7t~ — 7fx . In this work for analysis the reaction

77~ — w7~ was chosen as the most complete set of experimental data can
be found for this reaction. The total amplitude for this case with taking into
account the Clebsch—Gordan coefficients and isospin amplitudes is:

e w1 1 1
77‘- oo :6A2+§A1+§A0. (13)

Table 2
The isospin factors

Diagram Isospin factor
gbox 2(§abged 4 gacgbd _ gadgeb)
g bow 2(§abged — gacgbd 4 sadgeb)
g boa 2(—gabged 4 gacgbd 4 gadgseb)

77 460 5ed
77 44ecbd
Te 45074¢b

In Figure 5 (left panel) the real, imaginary parts and the absolute value of
the scattering amplitude are shown for the case ¢t = 0.

150 140f
Tl 120}
100
100}
50 .sé 80
ob L ImiT] 5 60}
R 4o}
~%0 { 20f
-100 ] of ° . . . .
00 02 04 06 08 10 12 14 0.0 0.5 1.0 15 2.0
S s, GeV

Figure 5. Left panel: the real, imaginary parts and absolute value for the scattering
amplitude for the reaction #*n~ — «t7~ at ¢ = 0. Right panel: total cross section

The total cross section in the center of mass of the system is defined using
the standard expression:

1 " e
- - dt |~ —rw 2 14
Ol 1671')\(8,77’?,2) [ ’ | ’ ( )
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where A(s, M2) = (s —4M?2)s, t* = 0 and t~ = 4M2 — s. Tt is clearly seen,
that in the center of mass of the system there exists the kinematic threshold
for the reaction: s > 4M2.

In literature there is a wide range for the o-meson mass and its width
M (400 < 1000), I (600 = 1000) can be found. In Fig. 5 (right panel) the
total cross section for the reaction 77~ — 77~ is shown with experimental
data taken from [16], [17]. The result was obtained for M, = 0.75 GeV,
L', =0.05 GeV, g,y =4

4. Conclusion

The pions are involved in many physical processes in a wide energy range.
For instance, during the heavy ion collision the pions are the final state for
many hadronic decays and moreover, the pion annihilation contributes to the
dilepton spectra. The electroweak pion decays (7+ — pu* + v, or 70 — 27)
are involved into a star cooling, etc. That is why the pion pion scattering
attracts the special interest.

In this work the mm-scattering amplitude is calculated in the frame SU(2)
NJL model based on the QCD Lagrangian. The model reproduces the most
important low-energy theorems, describes the mechanism of spontaneous
chiral symmetry breaking, vector dominance, mass spectra for light mesons
and strong and electroweak decays of the ground meson states. When to the
model the Polyakov-loop dynamics is added, which as a classical field couples
to quarks, the model describes the confinement properties [18]. The main
advantage of the NJL-like models is the possibility to include the temperature
as a parameter using the Matsubara mechanism, that makes the model
applicable to the description of matter under critical condition.

Nevertheless, the calculation of the pion-pion scattering amplitude within
the framework of this model meets difficulties when the general kinematics and
finite temperature are used (see [1], [2], [12]). Nowadays the finite temperature
amplitude was obtained in the kinematic limit s = 4M?2,u =t = 0. This
limit leads to the correct values of the scattering lengths a, a;, ay, but does
not allows to calculate the total cross section, lifetime or width of the pion.
Other models, for example, sigma-model gives the simple expression for the
scattering amplitude [19], but does not take into account the quark structure
of mesons.

In this work the pion-pion scattering amplitude was obtained in the frame
of the NJL model at T" = 0 using the dimensional regularization of the
integrals, which is used in Package-X [9]. To make a simple check of the
program, the scattering lengths a, and a, were obtained. At zero temperature,
the results are a, = 0.147, ay = —0.0475, which are consistent with the
Weinberg values a}Y = TM2/327f2 = 0.158, a}V = M2 /247 f2 = 0.03 oV =
—2M?2 /327 f2 = —0.045 [20] and other NJL results [2], [12]. At the threshold
s = 4M2 u =t = 0 the length a; = 0, as it plays the role of a volume of
the reaction. Besides that, the most important contribution to a; is made
by the diagrams with p-meson, which is not included in the model with
Lagrangian (1).
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The total cross section for the reaction 7*7~ — 77~ is shown in Figure 5
with experimental data from [16], [17]. The difference in experimental and
model results is due to the fact that the simplest model with pseudo-scalar
and scalar meson was used. The scattering amplitude involved only "box™-
and o- exchange diagrams, skipping more high-mass mesons. At the same
time for model the M ~ 0.7 GeV was used instead of 0.4-0.55 GeV according
to PDG. It is obviously that including the vector p-meson with the mass
~ 0.77 GeV would lead to the shift of the maximum to the correct point with
s ~ 0.7 GeV. The axial-vector a;-meson with higher mass is a reason for the
second maximum at s > 1.5 GeV. To take into account p-meson and other
heavy mesons, the Lagrangian (1) should be changed and the set of equations
(6) should be self-consistently extended for additional mesons.
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ITpuMmeHeHUEe cpeacTB KOMIIBIOTEPHOI aJjIre0phl
K BBIYHMCJIEHUIO aMILJIUTYAbI TT-PACCEeTHUS

FO. JI. Kanmuuosckuii?, A. B. ®puzen', E. JI. Poroxxuna' ?,

JI. 1. Tonsrkunal 2

L O6sedunénnvii unemumym adeprvia uccaedosanud
ya. 2Koavo-Kropu, 0. 6, Jlybra, Mockosckasn obaacmo, 141980, Poccus
2 Vnusepcumem «y6ray
ya. Ynusepcumemcekan, 0. 19, /lybna, Mockosckasn obaacmov, 141982, Poccus

Ilenbio mamnoit paboThI ABIIETCA Pa3padOTKa IMIPOrpaMM I PACIéTa aMILIUTY-
Abl pacCedHnd IJIEMEHTAPHBIX YaCTHUIl, a TaKzKe€ aBTOMaTHU3aIlusd TAaKUX pa.C‘IéTOB
C WCIIOJIb30BAHUEM CHCTeM KOMIbIoTepHoil anrebper (Mathematica, Form, Cadabra).
B craThbe paccmaTpuBaeTcst IpoIece paccestHUs MHOHA, Ha, IIMOHe B paMKax 3ddek-
tusHOU KX/I-mMoTtuBupoBannoit monesin Hamby—Mona—Jlazunuo ¢ nymst apomaramu
KBapkKoB. [l pacuéra aMIuTypl paccesiaus (HadnHas ¢ pacuéra PeiliHMaHOBCKUX
JuarpaMM U 3akaHduBas BbraucjenneM OeiHMAaHOBCKUX MHTEIDAJIOB B OJIHOIIETIIE-
BOM MPUOJINZKEHNN) UCTIOb30Basica naker Package-X mist Mathematica. MaTerpasibt
QeitHMaHA B OIHOMIETIEBOM TPUOJINKEHUN BBIYUC/ISIIUCH JIJTs CJIydasi obIeil Kuaema-
tuku. B Package-X B 0CHOBe BbIUUC/IEHUS WHTETPAJIOB JiekuT MeTo DeitHnManOBCKOM
apaMeTpU3aAINN C ITOCJIELYIONIel TPOCTPAHCTBEHHOM perysgpusarueii. /i mposep-
KU KOPPEKTHOCTH BBIYMCJIEHU ObLI IPOU3BEAEH pacdér JIuH paccednusd ag = 0,147
u ay = —0,0475 nys caydas HyJIeBOR TeMIlepaTypbl, H ObLIO IOCTPOEHO IIOJIHOE Cede-
HHE pacCedHnd KaK le)yHKL[I/II/I S. HOqueHHbIe pe3yabTaThl CPaBHUBAJIUCH C JAPYTUMN
MOJIEJISIMU U SKCIIEPUMEHTAJIHHBIMU JAHHBIMH.

Kuarouessbie ciaoBa: DeifHMaHOBCKIE MHTErPAJIbI, OJHOMIETIEBOE IPUOIMKEHNE, T0JI-

HOE CEeYEHWEe PACCESTHUsI, JJINHBI PACCESHUs, CUCTEMBI KOMIIBIOTEPHON areOphl,
Package-X
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The quasi-potential approach is very famous in modern relativistic particles physics.
This approach is based on the so-called covariant single-time formulation of quantum
field theory in which the dynamics of fields and particles is described on a space-like
three-dimensional hypersurface in the Minkowski space. Special attention in this
approach is paid to methods for constructing various quasi-potentials. The quasi-
potentials allow to describe the characteristics of relativistic particles interactions in
quark models such as amplitudes of hadron elastic scatterings, mass spectra, widths
of meson decays and cross sections of deep inelastic scatterings of leptons on hadrons.

In this paper Sturm-Liouville problems with periodic boundary conditions on a seg-
ment and a positive half-line for the 2m-order truncated relativistic finite-difference
Schrodinger equation (Logunov—Tavkhelidze-Kadyshevsky equation, LTKT-equation)
with a small parameter are considered. A method for constructing of asymptotic
eigenfunctions and eigenvalues in the form of asymptotic series for singularly per-
turbed Sturm—Liouville problems with periodic boundary conditions is proposed. It
is assumed that eigenfunctions have regular and boundary-layer components. This
method is a generalization of asymptotic methods that were proposed in the works
of A.N. Tikhonov, A.B. Vasilyeva, and V.F Butuzov. We present proof of theorems
that can be used to evaluate the asymptotic convergence for singularly perturbed
problems solutions to solutions of degenerate problems when ¢ — 0 and the asymptot-
ic convergence of truncation equation solutions in the case m — oco. In addition, the
Sturm—Liouville problem on the positive half-line with a periodic boundary conditions
for the quantum harmonic oscillator is considered. Eigenfunctions and eigenvalues
are constructed for this problem as asymptotic solutions for 4-order LTKT-equation.

Key words and phrases: asymptotic analysis, singularly perturbed differential
equation, Sturm-Liouville problem, relativistic finite-difference Schréodinger equation,
periodic boundary conditions, quasi-potential approach
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1. Introduction

The relativistic finite-difference analog of the Schrédinger equation
(Logunov—Tavkhelidze-Kadyshevsky equation, LTK-equation) with the quasi-
potential in the relativistic configurational space for the radial wave functions
of bound states for two identical elementary particles without spin has the
form [1]-[13]:

[HE + V(r) — 2ev/ @2 + m2e2]y(r,1) = 0, (1)

. 2 .
H = 2mc? ch (ﬁD> - ALY exp (ﬁD> ,

me mr(r 4 L) me

where m is a mass, ¢ is a momentum, [ is an angular momentum of each
elementary particle and V(r) is a quasi-potential (a piecewise continuous
function).

Asymptotic solutions in the form of regular and boundary layer parts
of boundary value problems for LTK-equation with the quasi-potential on
a segment and on a positive half-line were constructed in the works [14]-[16],
and the question of the asymptotic behavior of the solutions was investigated
when a small parameter € — 0. Also in these works the truncation method
was applied to LTK-equation. Thus, LTK-equation of infinite order was
reduced to the equation of finite 2m-order. Boundary value problems on
a segment and on a positive half-line were formulated for this “truncated”
equation (Logunov—Tavkhelidze-Kadyshevsky truncated equation, LTKT-
equation). Eigenfunctions and eigenvalues in the form of asymptotic series
were constructed for these problems and the solution behavior was studied
when the order of LTKT-equation tends to infinity 2m — oc.

In the paper [17] mass spectra and probabilities of radiative decays of
heavy quarkonia were obtained in the framework of the constituent quark
model of hadrons based on the relativistic Logunov—Tavkhelidze-Kadyshevsky
equation.

Researchers pay a lot of attention to the description of quantum systems
that consist of one-dimensional linear chains of n identical harmonic oscillators
with a nearest neighbor interaction. Periodic boundary conditions, where the
n-th oscillator is coupled back to the first oscillator, and fixed wall boundary
conditions, where the first oscillator and the n-th oscillator are coupled to
a fixed wall, was considered in the paper [18], [19].

In this paper Sturm-Liouville problems with periodic boundary condi-
tions on a segment and a positive half-line are formulated for the truncated
to order 2m relativistic finite-difference Schrodinger equation (Logunov—
Tavkhelidze-Kadyshevsky equation, LTKT-equation) with a small parameter.

For these singularly perturbed problems a method is proposed for con-
structing eigenfunctions and eigenvalues in the form of asymptotic series.
This method allows to obtain asymptotic solutions in the form of regular and
boundary-layer parts. It is also possible to investigate the question of asymp-
totic solutions behavior when ¢ — 0 and 2m — oo. The Sturm-Liouville
problem for 4-order LTKT-equation on a positive half-line with periodic
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boundary conditions is formulated for the quantum harmonic oscillator quasi-
potential and eigenfunctions and eigenvalues in the form of asymptotic series
are constructed.

2. The Sturm—Liouville problems
for the LTKT-equation

We consider the quasi-potential equation [3|-[5] in a relativistic configura-
tion space for the radial wave functions of bounded states for two identical
elementary particles

[HE + V(r) — 2¢7/q2 + m2e2]y(r, 1) = 0, (2)

2 1 :
Hrad _ ch ch ( ify D) + m exp <ﬁD> —

mc mr(r + Zh) mc
00 2 00
=3 o () P g S ()
= @Cpt \mc mr 1"+ p!
dP
pr— 4
drp’

where m is a mass, ¢ is a momentum, [ is a moment of elementary particles
and V (r) is a quasi-potential.

We can limit the speed of light to the infinity (¢ — oo) formally. In this
case, the equation (1) becomes the non-relativistic Schrodinger equation [20]

[—h2D? + K21l + 1) /r* + mV (r) — ¢*] ¥(r) = 0. (3)

Let physical parameter be A =1, m =1, e =% and [ = 0 (case of S-wave)
in (1) where

Ao = 2¢°/V/1+e22+1L,v=V(r), ¢=(1+ 0.2562)\5700))\5700.

We can rewrite the equation (1) in the form as under

[Zio - )‘s,oo]ws,oo(r> = 07 (4)
LS, = Ly + 2
c _op 2(—1)”
=D Ly o(r), Ly = oD, € (0.1,

p=1
Ly=Ly+v(r)= —D? + v(r),

io: 2p—2 f:2<_1)p+1 2p—2 12p+2
=) P2, =) 2222
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The equation (1) is an infinite order differential equation with a small
parameter (¢ < 1) at higher derivatives and we can classify it as singularly
perturbed equations.

We can truncate the equation (4) to a finite equation of 2m-order with
m > 1 and it can be rewritten as follows

[ng - Ae,Qm]q/)e,Qm (’I“) =0,

m
L5, =Ly +e2L5, => e® 2Ly, +v(r),
p=1

= 2p—2 = 2(_1>p+1 2p—2 N)2p+2
Lo =Y %2l =Y L _cw2pwe2
m ~ D o (2p—|—2)”

where L, is the self-adjoint 2-order elliptic operator, ng is the self-adjoint
2m-order elliptic operator, . ,,(r) is the solution of the 2m-order equation.

We can formulate the boundary value problem A2™ on a segment [0, 7]
and the boundary value problem B2™ on a positive half-line [0, +o00) for

defining the eigenfunctions [¢), 5, ,]52; and the eigenvalues [A, ,,, ,]52; for
this differential equation as follows
[Lom = Ac 2] Yeom () =0, (5)
where A _
Dzw€72m<0> — Dzwa’2m<ro), ’l/ — O, 1, 72m — 1, (6)
are the periodic boundary conditions of the problem A?™ and
D', 9, (0) = D", 5, (+00), i=0,1,...,2m —1, (7)

are the periodic boundary conditions of the problem B2™.

If we assume € = 0, we can get the degenerate problems A, and B, for
defining the eigenfunctions [t ,]52; and the eigenvalues [ 52, of following

type as under
[Ly — Aot (1) = 0, (8)
where . ,
Dl%(o) = D2¢0(T0>7 1=0,1, (9)
is the periodic boundary conditions of the problem A, and

is the periodic boundary conditions of the problem B,.

We can consider the question of the behavior of the eigenfunctions
[ 2m 4321 and the eigenvalues [A, 5, ,]52; of the problems A2™ and B2™
in the case when a small parameter tends to zero (¢ — 0) but fixed order

2m of the operator EQM, and in the case when the order m is increased but
a small parameter ¢ is fixed.
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The eigenfunctions [, 5,,, 4152 and [, |52, are the solutions of the corre-
sponding problems A2™, A, and B?™, B,. These solutions are elements of
a Hilbert space H(Qp) with an inner product (¢, ¢) g, = fﬂr W(r) (r)dr
(¥, € H(Qp)), in which there is a set of a linear continuous self-adjoint oper-
ators A(Qp) : H(Qp) — H(Qp) of problems A2™ B2™ A, B, (ng, L, e A,

m > 2), where Qp (I' = A, B) is a domain of the operator (a subscript A
corresponds to a segment [0,r,] and a subscript B is a positive half-line
[0, +00)).

Let |A(Qp)|; denotes the norm of operators A(Q) and we can write

1Ay,
ver g0 1Vl

[ A = ], = (@, 0)5

We can give the sufficient conditions for the solvability of the problems A,
By and A?™ B2™,

Condition 1. The operator L, for the periodic boundary conditions of the
problems A, or B, must be positively defined, i.e.

(Lz(@Do),wo)H(QF) = / Ly (o )b dr = | Dy |? dr +/ v(r)g dr >0,

Qp Qr Qr

for any functions v(r) € C(I') and ¢, € H(Qp) from domain Qp, and it
must satisfy the boundary conditions of the corresponding degenerate problems

(A, or By).

Condition 2. The operator L§,, under boundary conditions of problems
A2™ or B2™ must be positive, i.e.

— 2(_1)P+1 2p—2 2p+2
(L§m¢s,2maw5,2m)H(Qr) = - (2p + 2>”€ P /Q (D Pt ¢5,2m> we,2m dr =
p:

T

=D ool 2| PP g, [Pdr >0,
I o,

for any functions v_ o, € H(Qp) from domain Qr, and it must satisfy the

boundary conditions of the corresponding singularly perturbed problem (Agm or
B2m),

It is known that the degeneration of the problems A%™ B2™ into the
problems A, B, are regular if the number of roots with negative real parts
and positive real parts of an additional characteristic equation, which in our
case has the form

2m < —1 ? 2m\2p—2 _
Pla >=§_;<(2p;”<a yr2 = g,
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coincide with the number of boundary conditions that drop down on the left
and, respectively, on the right when we replace the consideration problems
AZm B2™ to problems A, B,.

Let’s now consider the generalized characteristic form of the operator
m

821"*2L2p, which is obtained by replacing D? with (i&)2P
p=1

m6) =Y S i)

The regular degeneration of the problems A2™ B2™ to A,, B, is fulfilled
if the following condition is true.

Condition 3. If the following inequality take place for the real part of the
sum . (§)

2
(2p)!t

m
P2 >0 T >0,
p=1

Re (m. (€)=

p=1

where C' is not depended on &, then problems A2™ and B?™ degenerate into
problems A, and B regularly.

Let’s assume that a set of eigenvalues A, 5, 1 < Al gm0 < oo <Al < oo
and A\g; < Ago < ... <A, < ... is ordered in ascending order [, 5,, 1|52,
[Ao,Ji21, and this set of eigenvalues corresponds to a complete orthonormal

set of eigenfunctions [¢), 5, 11521, [t 152
Since existence domains 2, of operators ZQm and L, coincide for the
problems A%™ and A, and also for any function v € 4, that satisfies

the boundary conditions of the problem A2™, the following inequality from
Condition 2

€,2m

(L§m¢6,2m7w€,2m>H(QA) > (L2w6,2m7¢5,2m)H(QA)7

holds true, then the following estimate inequality occurs A\
vy=1,2,..
A similar estimate takes place for the problems B2™ and B,.

€,2m,y > )‘0,7’

3. Constructing of asymptotic solutions for boundary
value problems

3.1. General scheme for constructing of the asymptotics. Regular
and boundary series

We can use methods of the singular perturbations theory of differential
equations and find solutions to problems A%™ and B2™.

Let’s search for a formal solution 1), 5, (r) of the problems A2™ and B2™
in the form of asymptotic series
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OYg o (1) = Vo (1,€) + Iy 0(py, &) + Qoptb(py, ) =

= ng(QZZm,k(r) + 1oy, k(1) + Qo 1 ¥(p2)), (11)
k=0

where a partial sum

J
®j¢s,2m<r) = Z €k<,¢_]2m,k(r> + H2m,k¢(p1) + Q2m,k¢<p2)>7

k=0

satisfies inequalities for solutions of the problem A2™

j+1
max ’ws,Qm - @jws,Qm’ < MA et )
T€[0 4,706 4]

and the problem B2™

max | o, — O, 9| < Mp eIt
r6[6B700+)

and similar inequalities for the boundary conditions of these problems, where
My, Mg and 04 < 1, 65 < 1 are positive constants that are independent of
r and €.

The asymptotic solution for 1 have the form as under

€,2m

J
¢€,2m (T) = Zék(&Qm,k(r) + H2m,kw<p1> + Q2m,k¢<p2>) + 5]2m <T>7

k=0

EJQm <T) = ws,2m - @jwsﬂm?
where 22™ (r) = e/*123™(r) is error of the asymptotic approximation of the

J
solution ¢E72m by a partial sum @jwa,Qm'

We can write the regular part of the asymptotic expansion in the form

Vo (1,6) = 152m,0(7’) + 51;2m,1(7°> + 52"&2m,2(7“) +..,

and the singular parts of the asymptotic expansion have the forms as under

Iy, %(py, €) = Iy, 0¥(py) + €lly,, 190(py) + €21y, 50(py) + ..,

for describing the behavior of the solution on the left edge of a segment [0, 7]
or a positive half-line [0, +00),

Qam¥P(p2,€) = sz,(ﬂ/’(f%) + 5Q2m,1¢(,02> + 52Q2m,2¢(/)2) T

for describing the behavior of the solution of the problem A%™ on the right
edge of a segment [0, 7,].

It is known that the function Q,,,%(py,€) = 0 for the problem B*™, since
the solution of the problem B is chosen so that it tends to zero when r — +o0
together with all its derivatives. Here we use new independent (stretched)
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variables p; = r/e and py = (ry — r)/e for the boundary functions Il,,, ;v,

QQm k¢ :
Similarly, we can present the simple eigenvalue of A_ 5, in the form of the
asymptotic series in powers of the small parameter € in the form as under

Acom = Aomo +EAgm1 + €5 Ao + oo, (12)

where the partial sum

J
_ E k
®j>‘5,2m - € )‘Qm,k7
k=0

satisfies the condition |\, 5, —©;A, 5,,| < M &7+t where M > 0 is a positive
constant that is independent of r and e.

So an asymptotic approximation of the eigenvalue A, 5, has the form as
under

J
_ E k A 2m
)‘5,2m - € )‘Qm,kz + Aj ’
k=0

where A2 = gIHLAIM parA2™ = X\_,  —©;A_,,, is an error of the asymp-
totic approximation of the eigenvalue A, ,,, for this partial sum.

In addition, we assume that the function v(r) can be decomposed as
a convergent series in the neighborhood of the points » = 0 and r =,

v(r) =Y vkt w(r) =) vi(r—ry)’,
and - -
vipy) = D vletpt, w(py) = Y (—1)l2esps, (13)
s=—1 s=—1

where p; = r/e and p, = (r, —r)/e are the stretched variables.

3.2. The main terms of the asymptotic series

We can determine the terms of the asymptotic series of the decomposition
Vot Moy 10, Qo xth and Ay, . of the problems AZ™ and BZ™ if we
substitute the decomposition (11), (12) and (13) in the equation (5) and the
boundary conditions (6) of the problem A%™ and the equation (5) and the
boundary conditions (7) of the problem B2™, and then we equate all members
of the series that stand at equal powers of a small parameter .

We should use additional requirements for the boundary functions

HQm,kw<pl> - 07 QZm,k¢(p2) — 07 k= 07 17 27 SR

where ¢ — 0 and a fixed r. These requirements allows to select the solutions
Iy, ¥ and Qy,, ;¥ that tend to zero outside the boundary layer only.
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3.2.1. Building a zero approximation of the asymptotic expansion

We can get the systems of equations and determine the solutions 1;2,”’0,
IL,,, 0%, Qam ot and Ay, o of the problems A?™ and BZ™ in a zero approxi-
mation in the form

[L2 - )‘2m,0] QEZm,O = 07 L2 = _D2 + U<T>7

™ o(—1)P d2P

Ly My o0 =0, L}, = ,
2 2m,0 2 ]; (2]9)” dp?p
™ o(—1)P d2P
L3, Qoo =0, L3, = ;

Di (&Zm,O(O) + H2m,0w(0>> = Dl (&2m,0<7_0) + Q2m,0w<F)) )
H2m,0¢(p1) — 0, QQm,O¢(p2> — O, g — 0, Z - O, 17 2, “ee ,2m - ]_,
where 7 = r,, for A?™ and 7 — +o0 for B2™,

The eigenfunctions [1;2m,0,7]:i1 and the eigenvalues [),,, .52, coincide
with the solutions of the corresponding degenerate problems A, or B,.

Thus, we can determine the boundary functions Il,,, 4¥(p;), Qg 0¥ (P2)
if we find the solutions of the boundary value problems as under

L%mHZm,Ow = 07 L%m@%’n,ow = Oa

DiHZm,Ow(O) + DiquQm,O (0) = DZQ2m,O¢(7_a> + DilZZm,O (7_4)7
H2m,0¢(p1) — 0, QQm,O¢<p2) — 0, g — 07 Z — 0, ]_, 2, ,2m - ]_.

We can write the functions Il,,, 4% (p;) and Qy,, ¢¥(ps) in the forms

m—1
2m,1 m
Iy, 0¥ (p1) = Ceo eXp(—a% p1>,
¢=1
m—1
2m,2
Qam,0¥(p2) = Cio eXp(—agmpg).
¢=1

Hence, the number of arbitrary constants C’?g’l and C’?TS”Q equals the number

of disappearing boundary conditions of problems A%2™ or B2™ when we try
formulate the degenerate problems A, or B,.

Let the values agm (¢ =1,...,2m — 2) be the roots of the additional charac-
teristic equation

2m o~ (=1 2m\2p—2 __
P(a ):222@)”(& )22 =,
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Since an algebraic equation
Re(agm) >0, (=1,m—1, Re(agm) <0, ¢(=m,2m—2,

is biquadrate; thus, it has the same number of roots with positive and negative
real parts.

We can get the following relations from the boundary conditions

D'y, h(0) — DiQ2m,o¢(f) = —Di152m70(0) + Di&Qm,O(?)a

where i = 0,1,2,...,2m—1, and we can derive a system of 2m linear equations
like that . .
D2mc2m — b2m, (14)

for finding coefficients C’?g’l, C’?%ﬁ (¢ =1,2,...,m—1), where a system has
form as under
D2m — (D%T 0 ) ,
0 D%En

D%gn = (dl,rC>7T~r,LC_:117 dl,rC = (_a%m)r—1’
D%Qn = (d2,rc>:?§_:117 d2,r§ = _(agm)r—l,

~2mT 2m,1 2m,1 2m,2 2m,2
C = (C’LO’ ""7Cmf’1,0701,0’ 7"‘7Om771,0)7

and where

- pl 7"'7p72nn117Q%m7"'7QEnn11>7
p?m = _Diw2m,0<0)7 qum = Di¢2m,0<77>7 1= 07 17 M) 2m — 17

are block matrices.
Since the values of agm((’ = 1,2m —2) are pairwise different and the

matrices D27, D35, D*™ are non-degenerate and there is an inverse of D™
matrix (D?™)~!, so then the only solution of the algebraic system (14) exists
and it has the form: C>™ = (D?™)~1b?",

Thus, a zero approximation of 1;277%0, Iy, 0%, Qam 0¥ Ao o Of the prob-
lems A2™ and B2™ could be constructed completely.

3.2.2. Further construction of the asymptotic series

We can get the systems of the equations for the problems A2™ and B2™ and
use the additional conditions for finding the solutions ¥y, 1, Iy, ¥, Qo ¥
and Ay, 1 in the case k > 0 in this form

n n 2m
[Ly — )\Qm,o]%m,k = )\Qm,kw2m,0 —hj (1),

L%mHZm,kw = Q%ZL (:01)7 L%mQZm,k¢ = ggin(/)z),
Di (J}Zm,ka)) + H2m,k:¢<0)) = DZ (¢2m,k(f> + QQm,k¢(f))a
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Uy, 10(p1) = 0, Qg x¥(p2) =0, e =0, k=1,2,..., i=0,1,...,2m—1,

2m _ 2p+2,/, 7
M) = ; p ol Vamkeon T ; A2 Vom k-

1 k—
(%
g%l:n (pl) - - P ! HZm,szlw + E ()‘Zm,p - Ull)pzlj) H2m,k;7p72¢7
1 —0

2 k—2
(%
gg?(pZ) = D ! Q2m,k—1w + Z (AQm,p ( )p ;z2)p12)> QQm k—p— 2¢
2 p=0

If the parameter X is a simple proper value of the self-adjoint operator A
that acting in the Hilbert space H () and if the function ¥ € H(p) is
the corresponding normalized eigenfunction [ @) = 1 then in the space

T

H,(Qp) (Hy{(92p) is an orthogonal complement to the function 1 in the space

H(Qp)) and then there is the operator A — A\I that has a bounded inverse

operator (A — /\I);I1

1(Qr)

Hence, the equation Ay — A\p = wip — h, h € H(2p) can be solved and the
solution of this equation could be presented as under

w = (hﬂw)H(QF) (A AI)Hl(QF (CU’(/J - h>7

where (wip — h) € H{(Qp). )
Thus, we can get the solutions vy, 1. ,, and Ay, ;. , for any k& >0

(pseudo-resolvent).

Ao ke = (him»djo,n)H(QF) = / hm(r) Yo (r)dr, n=12 .,
QF
_ . .
w2m,k,n = (LZ - )‘2m,0,n)H1(Qr)hz )

where H;(Qr) is the orthogonal complement to eigenfunctions v ,, € H (),
= A, B) of the degenerate boundary value problem A, or B, where

1Yo nll o) = 1-
We can find the boundary functions Iy, ;%(p;1), Qo k¥ (p2) for k > 0
from the boundary value problems in the form

L%mH2m,k¢ = 9?12”, L%mQ2m,k¢ = 932”7 (15)

D', 1 (0) — D'Qy,, 1 (T) = _Dir‘I}2m,k<0> + Di,&Qm,k(Tn)? (16)
H2m,k¢(ﬁ1) — 0, sz,klb(pg) —0,e—=0, ¢=0,1,....2m—1. (17)

We can write the functions II,,, ;¥ and Qs,, ;% as under
o, 1 ¥(p1) = Uy, 1 00(py) + gy, 100" (1), (18)

sz,lﬂ/}(Pz) = QZm,qu(pQ) + QQm,kw*(p2>7 (19)
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where

m—1
Iy, xP(py) Z C .k Tt exp (—O%mm) )
=1

m—1

Qamm, k¢ p2) Z 2m 2 exp (—oz?”pz)

¢=1

are the general solutions of the homogeneous equations (15), (17), and

—

m—

Mo, x ¥ (p1) = Z ?773’1(,01) exp (—af’”pl) ;
¢=1
m—1

Qom k¥ (p2) = Z sz 2(/)2) exp (—o%mpg) ’
¢=1

are the partial solutions of these inhomogeneous equations.
Since, the roots a?™ are pairwise distinct, then the Vronsky determinants

W [emed™ e et W [0tz et
. 2 m—1
that are composed of the function systems [exp (—acmplﬂc and
=1

[exp ( Oég ,[)2)} " 11 are non-zero.

Using the method of constant variation, we can find the partial solutions
of the inhomogeneous equations (15), (17), i.e

D%Tfh =Fy, D%Qn(% =F,,

o= (M )

U A T ey
a7 — (19 ) AT ea) )
dp, dpy

F—ll— = (07 cee ,O,Q%ZL>’ F; = (07 A 707g§]€m)7

where det |D?7*| # 0, det [D37*| # 0.

We can find the functions C’gj}z’l(pl) and C’g”Z’Q(pg) from the systems as
under Q; = (D) 'Fy, Qy = (D35")'F,.

After integrating and substituting the solutions in (18), (19), we can find
as many arbitrary constants as the boundary conditions of the problems A%™
or B2™ fall out when we proceed to analysis of the degenerate problems A,
or B.

Thus, this algorithm allows us to find the asymptotic solutions of the
problems Agm and B?™ with any desired degree of accuracy of a small
parameter 7.
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4. Asymptotic analysis of the solutions

We can formulate the following theorem for the justification of the asymp-
totic solutions of the problems A%™ and BZ™.

Theorem 1. If the self-adjoint elliptic operators Ly, Lo, satisfy Conditions
1-8 for the problems A%™, B?™,  A,, By and the function v(r) € C* is
represented as the uniformly converging series in the neighborhood of the point
r = 0 and the neighborhood of the point r = r

00 00
=Y ot w(r) =) wilr—ry)’,

s=—1 s=—1

the asymptotic solutions of boundary value problems A*™ and B*™ egist.
The corresponding n eigenvalue A, o, ,, and the corresponding n eigenfunction

Ve om.n(T) of the operator sz have the following asymptotic representations

— 2 +1 A 2m
)‘E,Qm,n = >‘2m,0,n + ‘5)‘2m,1,n +e )‘Qm,Q,n +...+¢& AJ ’

s ,2m, n Z EJ w2m k,n ) + HZm,k,anOl) + QZm,k,nw(pZ» + €j+12]2m<7,>7

where Xy, 0.0 = Ao, 18 n-th simple eigenvalue and &Qm’()’n(r) = g, is the
n-th function of the operator Ly for boundary value problems A, and B,; the

funCtions me,k,n <T>7 H?m,k,n?ﬁ? QQm,k,nw and the values Of )‘Qm,k,n fO’f' k>0
are determined from the systems of the equations and the boundary conditions
given in Paragraph 2.

The estimations for the residual members z?m('r’) and A?m have form as
under | DZ2™ | g + |27 | = O(e7t1), AF™ = O(1), for p-order derivative of
the partial sum © b, o, , is [DI2Z7" | = O(e7 1), 1 < g < s, 8 > 2m—2,
in the inner subdomain [0, 75 — 0] is | DT222™ |y = O(7), |q] <'s, in border
regions (0,0] and [ry —0,1q) is [DI225™ |y = O(e77971), 1 < g < s

Proof. It is assumed that the function © ¢, 5, ,(r) satisfies the boundary
conditions of the problems A?™ and B?™ and

[0l = =1 [Yeomln =1+ 0().

Using series for the constructions of a solution, we can get
[L‘;m - @j/\e,Qm} @wa,Zm (r) = €j+1fj2m7

where ffm is the restricted function (||f]2m||H =0(1)).
According to the estimate, we have the evaluation in the form as under

<50 — MOl g/ 140 s

inf |\ — A,
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where 1 € QO is an arbitrary function from the scope of the operator 'Egm
and A > 0 is an arbitrary real number.

Using the evaluation |4, ,,[ 5 = 1+ O(¢), we can get that

— ~JF+1LA2m
A - @j)\E,Qm -_— 6'7 A] P

£,2m,n
where |A%™] < ||fj||H/||®j1/16’2m |, Hence, we can get the estimate A3™ =
O(1).

Let TY be a closed linear shell consisting of eigenfunctions O;%e 9m.n(T),

corresponding to the corresponding eigenvalues ©;A, 5., ., that are lying on

a segment [\, , —d, Ay, + d], where d is a number d > X (||l2m JQ/)E om —
O\ 2 ©;%. 9| < o), then there is such a function Py € 79, |l = 1,
for which the following inequality |© 1, 5,, — %[, < 2%/d is satisfied.

If € is sufficiently small, then the following inequalities occur

)‘6,2m,n—1 - )‘O,n—l < d? )‘E,Qm,n - )‘O,n < d7 )‘a,2m,n+1 - )‘O,n-i-l < d?

WheI‘e 3d - min[}\o’n - )\O,bel; AO,’I’L+1 —_— AO,TL]'

Thus, a segment [Ao.n — d; Ag ,, + d] contains the single eigenvalue A, o, ,

of the operator Lt which is relevant to the single normalized eigenfunction

2m>
Ve 9m.n (1), Which coinciding with the normalized function 17, and there is
the estimation

% 2, = © % 20m,n/ 1€ 2 | a1 < O(7).

Thus, we can get the estimation |27 = o(1), where 27" = /™1 22™ =

we,Qm,n 0 we 2m,nr and ws 2m,n H® ¢E,2m,n”H wa,Zm,n'

Since the inequality A = N> ¥ =1,2,... is true and there is the ratio

€,2m,y
(L5 = ©jAc 2Ot o (1) = L7 | f3™ 5 = 0(1),
we can get the following estimations

L% = A 2m ™ |1 = O(7H)

E,2m]

and ||L2m j " < LS, — Ae,zm]EJZmHH + |>‘€,2m| ||5]2'm||h = o(e’*1).
Using Conditions 1-3 and assuming that the function ij-m satisfies the

boundary conditions of the problems A?™ and B2™, we can get the following
estimations

m—1
12203 < ) e DPEm G + | DM + |22 < C 20D [wm 7,
p=1
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where the constant C' > 0 which is independent of r and ¢ and the function
w3™ is the restricted function for which the estimation [w?™ |y = O(1) takes
place.

This implies the estimate for 5J2m that is in the conditions of the theorem.

5. Solutions behavior analysis of the problems A2™
and B?™ in the case m — o0

Here we investigate the question about the behavior of the eigenfunctions
and the eigenvalues of A2™ and B2™ problems in the case of unlimited
increasing of 2m-order LTKT-equation.

Let’s consider the problems of A2™ B2™ and A2™*2 B2m+2 for finding
[ws,Zm,'y]:/il? [)‘E,Qm,fy]'c;ozl and [w672m+277]:fo:17 [)‘5,2m+2,'y]$il' Here we assume
that the eigenvalues are arranged in order of monotonic increase.

Let the relations

2m+2 _ 2m+2 _
A2m ?ﬁa,n - w£,2m+2,n - wa,2m,n’ AQm >‘s,n - )‘672m+27n - )‘E,2m7n7

take placev where Hwe,2m+2”H = 17 ||¢5,2m||H =1
We can formulate the following

Theorem 2. If the positive self-adjoint elliptic operators act in the space
H(Qp), Ly, Ly, and satisfy Conditions 1-3 for the problems A2™, B>™ A,
B, then we have the following estimates for m — oo

|A2m+2)\ | < HZE . ’EE || < 2g2m
2m enl X 2m-+2 2milH X (2m+2)”7

|AZm2y 2
2m FenlH S (om oyl

Proof. We can get the ratios

2(_1>m+1€2m oms2

om+271 _ T T _
Ao L =15 Lam = (2m + 2)!! ’

2m+2

)‘6,2m+2,n < SUP[(<A32+2L + ng)% ¢>H] < )‘6,2m,n + )‘7
%)

”SOHH =1, (¢7¢€,2m,7)H =0, Y= In—1,

where ) is the largest positive eigenvalue of the operator A" 2 and there
is the following inequality A < |AZ™+2L|,.

2m+2)\

om Aenl <[L5 — L5, |, where

We get the inequalities |A Smt2

|AZTF2N 1 < 262/ (2m + 2)!1.

e,nl
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Thus, there is the equality

252m

2m+2 —~
[L2m+2 )‘6,2m+2]A " P, = mvzm,

where 0,,, is the restricted function, |y, | = O(1), (Vgy,, A3 24 ) = 0.
We can assume that the operator (L2m +2 — Acomy2) has a limited inverse

operator (me 12— Acom +2)g (a pseudo-resolvent) and there are the ratios

2m4-2 2% 7 1=
AQ% wa = (2m + 2)” <L§m+2 — )‘a,2m+2>;{17}2m’
5 ) 2€2m
and [|AZ Y, g < Gm o Thus, the theorem is proved. 0

6. Construction of an asymptotic solution in the case
of the oscillator potential

We can consider the boundary value problem B2™ on the [0, c0+) axis

with the quasi-potential of a linear harmonic oscillator in the form v(r) = r2.
Analysis of this problem allows to describe the behavior chains of harmonic
oscillators with periodic boundary conditions when they are very far apart
from each other.

The solution of the degenerate boundary value problem B, is an orthonor-
mal system of Hermite functions

Vo = [n!2n\/ﬂil/2 exp(—rz/Q)Hn(r), A, =2n+1, n=135,..,

where )
[n/2] 2,r,n—2m

m!(n —2m)!’

We can show that the zero approximation has equality 1/;2m707n = Vo -
We can find the functions Iy, o ,%(p;) and Qq,, ¢ ,¥(p2) in the form

m—1
H2m,0,n¢(:01) = Z Cokn exXp(—aypy), Q2m,o,n¢(:02) =0,
k=1
d* ¢2 0,n(0)
s—1 4 m,0,n
COk:n Z € k,s d )

1
Hl#s (al o as)

Al,s -
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A r=1 . ) q:17277(m_1)/27 Z7S:17"'7m_]"

=A = —
2, 2g+1
e e Hlis(al _as)

Dty (0) = [n12ny/7) 2 Difexp(=r2/2) H,, (1)) | (p—gyp 7 = 1,3,5, ..

The first approximation of the solution has the forms

¢2m,1,n = ¢0,na )‘Qm,l,n =0,

m—1
H2m,1,nw(p1> = Z Clin exp(—agp), sz,l,nw(fb) =0,

k=

ds
Clkn ng 1Aks wQZZ"Lln( )

The next approximation has the following ratios

—

- 1
me,Z,n = wO,n’ )‘Zm,Z,n = 61(%2 + (TL + 1>2)7 n= 1a 3; 5; ceey

m—1
H2m,1,n¢<pl> = Z Fkn<r7€) exp(—gflakr)’ Q2m,2,nw<;02> = Oa
k=1
m—1
Fkn(r7 6) = Rkn + plTkn7 Rkn = Clk:n - )‘Qm,O,n Z Clpan,k7
p=0
T ClinA B B 1
kn — —VY1kn2m,0,n Pk k> kk — )
! 2m.0 Hﬁék(ag - ak)
m—1
Z (ak a])
_ =Lk _ 1

By k , Bop= .
[ (05— o 7% (o — )T (05— o)

Thus, we can continue the procedure for constructing the asymptotic series
and building an asymptotic solution of the problem under consideration with
accuracy up to any given order €.

7. Conclusions

Recently, there is a great interest in studying properties of bound states
of a quarkonium such as charmonium cc and bottomonium bb. These states
are similar to the properties of positronium (the bound state of an electron
and a positron). Special attention of researchers who deal with bound states
of quarks is paid to quasi-potential methods. The quasi-potential approach
allows to describe the characteristics of relativistic elementary particles such
as amplitudes of hadron elastic scattering, mass spectra and widths of meson
decays, and the cross sections of deep inelastic scattering of leptons on
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hadrons. Since experimental measurements of relativistic elementary particles
are carried out with high accuracy, the quark systems models allow to use the
precision calculation of various parameters. Experiment has amassed a wealth
of high precision data on quarkonium production in relativistic heavy ion
collisions at RHIC and LHC in different kinematical regimes that provides
a challenging testing ground for theory and phenomenology.

We use a quasi-potential approach in our work. The quasi-potential method
in the field theory is based on a two-time Green function for particle systems.
The bounded states of such systems are described by a wave function that
satisfies a quasi-potential Schrédinger-type equation that depends on energy
and non-local potential. The main advantage of this quasi-potential equation is
its three-dimensional character. We have shown the absence of a non-physical
parameter of relative time for this equation. This quasi-potential wave
equation can be obtained for any system numbers of particles with arbitrary
spins. This approach was successfully applied to calculate corrections to
the energy levels of hydrogen-like systems within the framework of quantum
electrodynamics. The great number of properties of the elementary particles
amplitude scattering at high energies is explained using a quasi-potential
Lippman—Schwinger equation with a Gaussian potential. The quasi-potential
method has a number of advantages among the methods of studying the
relativistic two-body problem. The advantage of this approach is that quasi-
potential equations are written out in three-dimensional space, which makes
it possible to use the methods of non-relativistic quantum mechanics.

In this paper Sturm—Liouville problems with periodic boundary condi-
tions on a segment and a positive half-line are formulated for the truncated
to order 2m relativistic finite-difference Schrédinger equation (Logunov—
Tavkhelidze-Kadyshevsky equation, LTKT-equation) with a small parameter.
For these singularly perturbed problems a method is proposed for construct-
ing asymptotic solutions with accuracy up to any given order e. With the help
of this method asymptotic solutions in the form of regular and boundary-layer
parts are obtained and the question of asymptotic solutions behavior when
e — 0 is investigated.

The behavior of solutions is investigated in the case m — oo and estimation
of this behavior is given. It makes possible to determine the convergence of
solutions of the Sturm—Liouville problems for LTKT-equation with periodic
boundary conditions in the case m — oo.

In non-relativistic quantum mechanics, the particle in a one-dimensional
lattice is a problem that occurs in the model of a periodic crystal lattice. The
potential is caused by ions in the periodic structure of the crystal creating
an electromagnetic field, so electrons are subject to a regular potential inside
the lattice. This is a generalization of the free electron model, which assumes
zero potential inside the lattice.

In this work the Sturm—Liouville problem on the positive half-line with
a periodic boundary conditions for the quantum harmonic oscillator is con-
sidered and eigenfunctions and eigenvalues are constructed as asymptotic
solutions for 2m-order LTKT-equation. Their solutions allow to describe the
behavior chains of harmonic oscillators with periodic boundary conditions
when they are very far apart from each other. We can use more complex
quasi-potentials and describe the bounded states of the elementary particles
in the quark-gluon plasma.
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AcumnroTudeckoe perenue 3amaun IItypma—JInyBuiis
C MIEPUOANYECKUMU T'PAHUYIHBIMU yCJIOBUSIMU
JJI PEeJIATUBUCTCKOTO KOHEYHO-PA3HOCTHOTO YpPaBHEHUS
IIpéaunarepa

1. B. Amupxanos!, 1. C. KosiocoBa?, C. A. Bacuibes?

L O6sedunénnmil uncmumym sadeprox uccaedosanudl
ya. Koavo-Kropu, 0. 6, Hyona, Mockosckas obaacmo, Poccus, 141980
2 Poccutickuti yrueepcumem opysctve napodos
ya. Muxayzo-Maxaas, 0. 6, Mockea, Poccus, 117198

Onucanne B3aMMOIEHCTBUST PEJIAITUBACTCKAX JACTUIL B PAMKaX KBa3UIIOTEHIINA b
HOT'O TIOJXOJIa MUPOKO IMPUMEHSIETCsl B COBPEMEHHON (pu3mke. JTOT MOJIX0 OCHOBAH
Ha TaK HA3bIBAEMOI KOBAPUAHTHOUW (DOPMYJIMPOBKE KBAHTOBON TEOPUU IOJIsI, B KO-
TOPO#l 9Ta Teopusl PACCMATPUBAETCS HA MIPOCTPAHCTBEHHO-TIONO00HON TPEXMEPHOIt
TUMEPIOBEPXHOCTHU B mpocTpancTBe MuakoBckoro. Ocoboe BHUMaHME B 3TOM TOIXOIE
YIIEJSIeTCS METOaM TOCTPOCHUS PA3JNYHBIX KBA3UIIOTEHIINAJIOB, & TAKKE MCIIOIb30-
BAHUIO KBA3UIIOTEHITNAJLHOTO TIO/IXOA JJIsi OIIMCAHUS XaPAKTEPUCTUK CBI3aHHDBIX
COCTOSTHUI B KBAPKOBBIX MOJE/IAX, TAKAX KAK aMILIATYIbI & IPOHHOTO YIIPYTOro pacce-
SIHUSI, MACC-CIIEKTPBI U MIUPUHDBI PACIAIOB ME30HOB, CEYEHUs IIyOOKOTO HEYIIPYTOro
paccedgHus JIEITOHOB HA & IPOHAX.

B nmacrosieit pabore chopmymuposanst 3agaqu [lrypma—JIuyBuinsa ¢ nepuogu-
YEeCKMMU FPAHUYHBIMU YCJIOBUAMU HA OTPE3KE W HA IOJIO2KUTEILHON MOy IPAMOit
JIJIS YCEUEHHOT'O PEJIATUBUCTCKOTO KOHEYHO-PA3HOCTHOTO ypasHeHus I1Ipénuarepa
(ypasuenue Jlorynosa—Tasxemunze—Kazpimesckoro, LTKT-ypaBuenue) ¢ MajibiM
napaMeTpoM IpU cTapuleil IPOU3BOIHON.

[esibro paboOThI SABJISIETCST TOCTPOEHUE ACUMITOTUYECKUX perteHnil (CoBCTBeHHbIX
dyHKImii 1 cOGCTBEHHBIX 3HAYEHWIT) B BUJE PEryJISIPHBIX U [OPAHCIONHBIX Ya-
cTeil perenuil Nyt 9TOM CHHTYJIApHO BO3MyIénnoi 3agaqn lrypma—JInyBuiis.
OcHoBHasl 3aj1a9a UCCJIE0OBAHUS COCTOUT B ACUMIITOTUYECKOM aHAJIU3€E IMOBEIeHIe-
CKUX PEIIeHuil paccMaTpuBaeMoil 3aa4qu B ciydae € — 0 m m — co. Hamu Obin
[IPEJJIOZKEH METOJI MOCTPOEHUST ACUMIITOTUIECKUX PeleHnit (co6CTBeHHBIX (DYHK-
Uit ¥ COOCTBEHHBIX 3HAYEHMUIT), KOTOPBIN sABJISAETCH 0OOOIIEHNEM aCUMITOTUIECKIX
METOJIOB PEeIeHUs] CUHTYJISPHO BO3MYIIEHHBIX 3aJ1a4, MIPEJICTABJIEHHBIX B paboTax
A.H. Tuxonosa, A.B. Bacunnesoit u B. ®. Byryzosa. OcHoBHO# pe3ysibTar JaH-
HOM paboOThI — MOKA3aHHBIE TEOPEMbI 00 ACUMIITOTUYIECKON CXOAUMOCTU PEITeHU
CUHTYJISSPHO BO3MYIIEHHOW 33/1a9u K PEIIEeHUsIM BBIPOXKJIEHHON 3asa4 1npu € — 0
u cxonumoctu perrennit yceuéunoro LTKT-ypasuenus B cityuae m — co. Kpome To-
ro, B cTaThbe HaMu paccMmarpuBaercsd 3aga4a [IIrypma—/InyBuiisg Ha mM0I0KUTETHHON
nostyocu it LTKT-ypaBuenus 4-ro nopsijika ¢ NEPUOAMIECKUMU TPAHUIHBIMUA yCJIO-
BUSAMH JIJIs KBAHTOBOI'O TAPMOHUYECKOTO OCIUJLIATOPA. JJist 9TOi 3a/1a9m IOCTPOEHDI
ACUMIITOTUYECKUE TIPUOJIMKEHUsT COOCTBEHHBIX (DYHKITNI 1 COOCTBEHHBIX 3HAYEHUH
7 TTOKA3aHA WX CXOAUMOCTH K PEIICHUIO BBIPOXKICHHON 3aIatH.

KirogeBble ciioBa: acCUMITOTHYECKHM aHAIW3, CHHTYJISPHO BO3MYIIEHHOE
muddepernnuaibaoe ypaBaenue, 3agada Llrypma—JlnyBusuis, peasTuBucTCKOe
KOHeTHO-pa3HocTHoe ypaBuerue [IIpémaunrepa, mepuomuaeckue KpaeBble yCIOBU,
KBa3UIIOTEHIIUAIbHBIN ITOJXO/T,
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The paper considers a class of smoothly irregular integrated optical multilayer
waveguides, whose properties determine the characteristic features of guided propaga-
tion of monochromatic polarized light. An asymptotic approach to the description of
such electromagnetic radiation is proposed, in which the solutions of Maxwell’s equa-
tions are expressed in terms of the solutions of a system of four ordinary differential
equations and two algebraic equations for six components of the electromagnetic field
in the zero approximation. The gradient of the phase front of the adiabatic guided
mode satisfies the eikonal equation with respect to the effective refractive index of
the waveguide for the given mode.

The multilayer structure of waveguides allows one more stage of reducing the model
to a homogeneous system of linear algebraic equations, the nontrivial solvability
condition of which specifies the relationship between the gradient of the radiation
phase front and the gradients of interfaces between thin homogeneous layers.

In the final part of the work, eigenvalue and eigenvector problems (differential and
algebraic), describing adiabatic guided modes are formulated. The formulation of
the problem of describing the single-mode propagation of adiabatic guided modes is
also given, emphasizing the adiabatic nature of the described approximate solution
of Maxwell’s equations.

Key words and phrases: smoothly irregular integrated optical multilayer waveg-
uides, eigenvalue and eigenvector problem, single-mode propagation of adiabatic
guided modes

1. Introduction

Fundamental results in the theory of regular waveguides were obtained for
closed (metallic) waveguides by A. N. Tikhonov and A. A. Samarskii [1], and for
open (dielectric) waveguides by A. G. Sveshnikov [2] and V. V. Shevchenko [3].
Among the irregular waveguides, one can distinguish transversely irregular and
longitudinally irregular waveguides. For transversely irregular waveguides, the
equations and the corresponding solutions allow the separation of variables [4].

(©) Sevastianov A.L., 2020
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Here the incomplete Galerkin method developed by A. G. Sveshnikov [2], [5],
[6] received the greatest recognition.

For closed longitudinally irregular waveguides, B. Z. Katsenelenbaum de-
veloped the method of cross sections [7], which was generalized for open
longitudinally irregular waveguides by V. V. Shevchenko [8|. These models do
not describe depolarization and hybridization of guided modes in irregular sec-
tions of waveguides. A. A. Egorov, L. A. Sevastyanov and A.L. Sevastyanov
developed the foundations of the theory of smoothly irregular 3D dielectric
and, in particular, integrated optical waveguides [9], [10], which was success-
fully applied to a number of three-dimensional integrated optical waveguides
and smoothly irregular 3D waveguide devices based on them [11]-[13]. The
mathematical basis of the model of adiabatic guided modes (AGMs) is the as-
ymptotic method and the method of coupled modes. The asymptotic method
for solving a boundary value problem for a system of differential equations
with respect to a small parameter ¢ allows it to be reduced to a system of or-
dinary differential equations with special boundary conditions, the method
of solving which is known. The coupling of two second-order equations for
modes of two different polarizations when solving the original system of equa-
tions by the asymptotic method, manifests itself in the first approximation as
a weak (of the order of §) coupling of two linear oscillators. It reflects the vio-
lation of the structure regularity caused by a change in the phase constant of
smoothly irregular dielectric waveguides.

In this paper, we consider an approach to the construction of a model
of propagation of electromagnetic radiation in integrated optical smoothly
irregular waveguide structures. Traditionally, such models are described using
Maxwell’s equations. The paper considers only monochromatic radiation,
depending on time as exp(iwt). Such time dependence of the solution allows
considering a model of steady-state guided propagation of electromagnetic
radiation.

2. Basic concepts and notations

Guided propagation of monochromatic polarized electromagnetic radiation
in integrated optical waveguides is described by Maxwell’s equations. The
electromagnetic field is described using complex amplitudes. A material
medium is considered, consisting of dielectric subdomains that fill the entire
three-dimensional space. The permittivities of the subdomains are different
and real, and the permeability is everywhere equal to the permeability of
vacuum. It follows that in the absence of foreign currents and charges, the
induced currents and charges are equal to zero.

In the absence of foreign charges and currents, the scalar Maxwell’s equa-
tions follow from the vector ones, and the boundary conditions for the normal
components follow from the boundary conditions for the tangential compo-
nents [14]. The constitutive equations are assumed to be linear. Thus, the
electromagnetic field in a space filled with dielectrics in the Gaussian system
of units is described by equations

10B 10D
rotE = ——aa—t, rotH = _19D D=¢cE, B=_uH, (1)
c
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where E, H are the electric and magnetic field strength vectors, D is the
electric displacement vector, B is the magnetic flux density vector, c is the
velocity of electromagnetic waves in vacuum.

At the interface between dielectric media 1 and 2, the tangential compo-
nents of electric and magnetic field strengths satisfy the following boundary
(matching) conditions:

H |, =H.,, E][ =E/|. (2)

-
The asymptotic boundary conditions for guided modes at infinity

IE| m 0, [H] m 0, (3)

ensure uniqueness of the solution of the problem (1)—(3).

In equations (1), € is the medium permittivity, x is the medium permeability.
Let us denote by n = ,/u€ the refractive index of the medium (hereinafter —
of a dielectric layer of the considered multilayer dielectric structure).

3. The considered class of objects

The object of our consideration is the guided propagation of monochromatic
electromagnetic radiation of the optical range in thin-film integrated opti-
cal structures. Such structures are complex waveguide structures formed by
the deposition of additional waveguide layers of various (smoothly irregular)
geometric configurations on the base waveguide. As a base waveguide, we con-
sider a regular planar three-layer waveguide filling the entire three-dimensional
space (open waveguide): a substrate layer (substrate) is located in the lower
half-space, then a guiding layer of constant thickness is located, and a cladding
layer is located in the upper half-space. In this case, the guiding layer (core)
is optically denser compared to the substrate and the cladding. By a thin-film
waveguide, we mean a waveguide whose core thickness is comparable to the
wavelength of propagating radiation.

Integrated optical waveguide structures are formed by introducing into the
three-layer planar dielectric waveguide additional layers of variable thickness
h(y, z). The additional waveguide layers are specified by the interface between
the additional and waveguide layers x = h(y, z) and directly affect phase
distribution ¢(y, z) and effective refractive index ng(y, z) of the composite
waveguide system. The phase velocity is smaller and the effective refractive
index n.4(y, z) is greater in the locations where the total thickness of the
waveguide layers is greater.

In particular, it can be a few-mode integrated optical waveguide imple-
mented in the form of a three-layer dielectric “plate”. On this structure, a local
but smoothly irregular optical inhomogeneity is deposited, i.e., an additional
dielectric layer of variable thickness. A thin-film waveguide generalized lens
(TFWGL) (see Figure 1) is an example [11], [12].
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Figure 1. Schematic of Luneberg TFWGL with an additional waveguide layer having
cylindrical symmetry

In such integrated optical waveguide, a normal mode of the planar waveguide
(allowed by the structure!, see Appendix) travelling from infinity (or from
a point source in the plane of the planar waveguide) is deformed when meeting
the localized irregularity (optical inhomogeneity). However, it preserves the
structure of a ‘transverse resonance’, i.e., the structure of a standing wave
in the ‘transverse’ (vertical) direction. Gorelyshev, Neishtadt et al. [20], [21]
formulate this conditions as conservation of an adiabatic invariant.

After passing the irregularity region, the deformed “adiabatically invariant”
guided (quasi)mode restores the initial (vertical) parameters of a normal mode
of a regular waveguide (or transforms into a superposition of normal modes).

For convenience, let us define the Cartesian coordinate system so that all
spatial subdomains corresponding to infinite dielectric layers be bounded by
planes parallel to the yOz-plane and surfaces asymptotically parallel to the
yOz-plane, so that hereafter ¢ = e(x), p = 1.

We will call smoothly irregular the optical structures satisfying the inequal-
ities specified by the geometry of the additional waveguide layer:

8h‘ oh

—|, |=—| <« 1.
oyl |0z

In weakly inhomogeneous 3D media the electromagnetic radiation prop-
agation is described by locally planar waves or adiabatic approximations
to the solutions of the Maxwell’s equations, obtained using the asymptotic
method [22]. By analogy with locally plane and locally spherical 3D waves [22],

LFrom the theory of planar regular waveguides [15]-[19] it is known that an electromagnetic
wave propagates through a regular waveguide in the form of a normal guided mode.
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[23], we seek the guided propagation of electromagnetic monochromatic po-
larized radiation in a smoothly irregular integrated optical waveguide in the
form of modified locally normal guided modes of reference waveguides®.

The adiabatic approximation of the solution of Maxwell’s equation obtained
in this way will preserve the adiabatic invariants that reflect the guided
character of light propagation (the so called transverse resonance condition [15],
[26].

This work is devoted to the search for a model of adiabatic guided prop-
agation of monochromatic electromagnetic radiation in smoothly irregular
integrated optical structures. The technique for finding it is based on an as-
ymptotic approach in the form of locally normal guided modes of a locally
planar reference waveguide. The adiabatic approximation of the solution of
Maxwell’s equations obtained in this way will preserve adiabatic invariants
reflecting the waveguide nature (the so-called transverse resonance condition)
of light propagation.

4. Basic equations of the adiabatic guided mode model

Let us recall the earlier assumptions made for the considered integrated
optical waveguides and the electromagnetic radiation propagating along them.

1. Electromagnetic radiation is optical and monochromatic with a fixed
wavelength \ € [380; 780], nm.

2. The thickness of the guiding layer (core) of the base thin-film waveg-
uide is comparable to the length of the propagating monochromatic
electromagnetic radiation d ~ A.

3. The surface of additional waveguide layer (z = h(y, z)) satisfies the

8h‘ oh

oyl 10z

4. The integrated optical waveguide is a material medium consisting of
dielectric subdomains that fill the entire space.

5. The permittivities of the subdomains are different and real, and the
permeability is everywhere equal to the magnetic permeability of vacuum.

6. There are no external currents and charges. It follows from this that in
the absence of external currents and charges, the induced currents and
charges are equal to zero.

7. A Cartesian coordinate system is introduced as follows: the interfaces
between the dielectric media of the basic three-layer waveguide are parallel
to the yOz-plane. In this case, the subdomains of space corresponding
to the cladding and substrate layers are semi-infinite, the additional
waveguide layers are asymptotically parallel to the yOz-plane, so that

e =¢(x).
In Cartesian coordinates associated with the geometry of the substrate (or

a three-layer planar dielectric waveguide), Maxwell’s equations are written in
the form

limiting conditions < 1.

I The notion of reference waveguides (dielectric planar) is presented in papers by Kat-
senelenbaum and Shevchenko [7], [8], [24], [25].
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OH, OH, ¢9E, 0B, 0E,  u0H,

dy 9z c ot dy 0z c ot
OH, OH, _ faE@l OE, OE, _ ,uaH (4)
0z ox c Ot 0Oz ox c Ot
OH, OH, €0k, ok, OFE, _ pOH,

or Oy c ot dx OBy ¢ ot

To construct the model of adiabatic guided modes (AGMs) we represent the
solutions of (4) in the form of locally normal guided modes of a locally planar

reference waveguide (see [7], [8], [27]), which in the method of asymptotic
expansion take the form

Bla,y, 2, 1) = ZMexp{zwt—zkw@(y, 2}, (5)

H(z,y,2,t) = i M exp {iwt — ikyp(y,2)} . (6)

In the notation E’S (z,y,2,1), Fls (z,y, z,t) the separation of x with a semi-
colon means the following assumption

OE (x,y,2)|| ||OF,(z,y, 2) 1||0E,(z,y, 2)
‘ By ) 92 ~ ol e Il J=TY% (7)
and
8FIS T, 2 8ﬁ5 T,Y, 2 1 6’ﬁs T, Y, 2 _
H ( Y ) ’ ( Y ) ~ = ( Y ) y J=%Y,%, (8)
w Ox
where | | is the Euclidean norm and w is the circular frequency of the

propagating monochromatic electromagnetic radiation.

Using the approach of the asymptotic expansion method with respect to
the dimensional small parameter w™! [23], [28], [29], we substitute expres-
sions (5), (6) into the system of equations (4) and equate the coefficients at
equal powers of the small parameter w™!. As a result, with the relations (7)
and (8) taken into account, in the zero approximation of the method of as-

ymptotic expansion with respect to small parameter we arrive at a system of
homogeneous equations:

—zkog HE + kog‘pﬂy ikye B2, 9)
HZ
ik, 2P MGy gy (10)

0z ox
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a(gg +ikog—zH3 = ikye EZ, (11)
—ikog@E'z + k;og EY = ikopuHE, (12)
ik, giEm 355 — ikopHY, (13)
aaExy +zkzog Ef = ikopuH;. (14)

By means of simple transformations, we reduce it to the form of interest to
us. Namely, from the relation (12) we get the expression

dp1 Ly Opl

E? = ——L
0 0y e Oz ¢

y
-Hyg,

which we substitute into equations (13)—(14) that take the form

8EZ dp ( Opl Op 1 .
ik -Hj Hy> — ikouH? 1
Ox 082( Dy e +8z YPokHo> (1)
OEY . L Oy ( Opl Op 1
=0 — ik uH? — ik, — —H; Hy>. 16
ox okHo Zoay( (9y5 +625 (16)
From relation (9) we get the expression
Hy =92 1g Oelpy
Jy p 9z
and substitute it into equations (10)—(11), which take the form
OH§ dp [(Op 1 oy
COHS i eBY 4 ik <__Ez - __Ey) 1
ox ¥ +208 dyp °  dzp (17)
OHY Dy (Op Op
= tkoe E§ — ik EZ — ——Ey> 18
ax  0f 08y<8yu O dzpu (18)

Ultimately, Maxwell’s equation reduced in the zero approximation to two
algebraic equations and four differential equations of the first order.

At any fixed values of (y, z), equations (15)—(16), (17)—(18) take the form
of a system of ordinary differential equations of the first order. Hereinafter, we
deal with the zero approximation of the asymptotic expansion with respect to
the small parameter; therefore, the index of the order of smallness is omitted:

dH* ik, Oy <8g0 Op
27 T (T e Yy
dx + @ 0z \ 0y 0z

dHY  iky 6@ (8@ dp
T Rpr_ TRy
dx 14 8y oy 0z

) +ikyeEY =0,
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dE* ik, 0p (Op Op ) .

O LTI (Pgy TP =) ke uHY =
dx e 0z (82 Oy okt 0
dEY ik, O0p (O¢ dy )

O LT IP (y TP e ik uHA =
dx + e 0y (82 dy R 0

In addition, for any fixed values of (y, z) the algebraic equations are valid

Eo_g<8ZH —8—H>, HO_—<8yE B )

Remark 1. In the proposed form (5)—(6) of the desired solutions of

0 dp
Maxwell’s equations the quantities 8_90 and 6_ have the meaning of phase
Y z

constants of guided propagation of radiation in the directions Oy and Oz in
all layers of the waveguide simultaneously, i.e., they determine the effective
refractive index of the waveguide under study for the given adiabatic guided

mode:
99 y,2) 4 99 y,2) 2 = ng(y, 2)- (19)

From the analysis carried out, we conclude that with the accepted assump-
tions the zero approximation to the guided solution of Maxwell’s equations is
given by the following relations:

E('x?yvzat) o Eo(ﬁ;ywz) e it — i p
{Fl(x,y,z,t)}_{ﬁo(x;y,z)} p {iwt —ip(y, 2)},

with
< iy (52) (52) i (s (52))
< 2
5 () 0 (52 (52
aHy 0 0 20)
2 ¥ Y 2
M o _Z’{"O(ay)(a )Ey“k0< - a_> )EO’
JOHG 00\ 1y »
L (w_@) )E ik (22) (22 s
and ool . 9pl ool
g:___so_ 2, 991 1y Hm__gp_EZ__SO_Ey 21
Eg 8yH+8z Hg, Hj Dy 0 9ap (21)
as well as
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For thin-film multilayer waveguide, consisting of optically homogeneous
layers, from (2) the conditions of the electromagnetic field matching at the
interfaces between the media follow:

nx E-+nxEt=0, (22)
nxH +nx H"=0. (23)
From (3) the asymptotic conditions follow
0 F0 0 fO
Ey7Ez7Hy7Hz mo (24)

The system of equations (20), (24) for any fixed (y, z) defines a problem of
finding eigenvalues (@gp)z (y, z) and eigenfunctions (EZJ,, E, HZ, Hﬁ)T(y, z),
j

normalized to unity:

[1Ef e =1, [ | dz =1,

5. Algebraic model of adiabatic guided modes

In the case of a multilayer integrated optical waveguide consisting of
homogeneous dielectric layers (possible, with complex permittivities) the
relations (20), (22)—(24) are valid with generally non-horizontal interfaces
between the layers (see Figure 2).

el Al —=e0

i, =(1, —oh /oy, —oOh/éz)

x=h(y.z)
ii,=(1, —oh,/8y, —oh,/éz)

x=h,(y,z)

(1, —éh /ay, —oh/oz)

x=h(y.z)
*
. ; Z
ii,=(1, —oh, /oy, —oh,/oz)
-
/\T_/\ x=hy(.2)
|2]-| 7] —==—0

Figure 2. Structure of a multilayer thin-film waveguide
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In this case, in each inner layer the four-dimensional system of ordinary
differential equations with constant coefficients has a four-parameter system
of fundamental solutions. Then the general solutions of equations (20) in the
layers take the form

ﬁ(x; Y,2) = C’1515”96 + 025267’3: + 035367& + 045467’{

. B —I(Ay — A4)\/—,u6 + ay k’o\/ + 88“22 — uax}
o) = 890 9 -
8y Dz
exp{kzo\/ 8Z —uz—:m} (A; + As) (,us— 8£2)
¢ d¢ ’
8y 9z
—(Ay + Ay) (,ue — aa—‘f eXp {—ko\/aa—“f 8{;’; — usaz}
Hz(x) = 900 -
op oy
8y 9z
I(A; — Ay)eexp {k:o\/ +92 - — ,UEJ?} \/6522 88“; — pe
N Ip 9
ay Dz
0% 0p?
H,(r) = (A2+A4)exp{ —kg <p —|—8—i—u€aj},
E, (x)= (A, + A4;) exp{ \/ —Z—,uex},
where

i = (H*(z;y, 2); B*(x;y, 2); HY (239, 2); BY (239, 2))"

and v, = iko\/—g,u + @2 + 2.

The rest components of the electromagnetic field are calculated using
formulas (21), and all the six components enter the explicit form of rela-
tions (22), (23).

In the substrate and cladding layers due to asymptotic conditions the
two-dimensional systems of ordinary differential equations with constant
coefficients have two-parametric systems of fundamental solutions.

The solution unique for all layers satisfies the matching conditions at the
interfaces between the layers, i.e., determines a system of linear algebraic
equations for indefinite coefficients, which specify the expression of particular
solutions in the layers in terms of the systems of fundamental solutions.
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At an arbitrary smooth interface between two dielectric media, described
by the equation F(x,y,z) = x — h(y,z) = 0 (see Figure 3), conditions (22)
and (23) take the form

. oh oh oh oh\ T
nxEl=(E~—_-FE-"._E —E-"FE —F =" 2
|:n>< ] ( yaZ zayv z m827 Yy may> ) (5)

. oh oh oh or\ T

H =(H-"_-H-"._H —H-"-H —H — 2
[nx ] ( Y0z oy’ z oz Y m@y) (26)
XA

i =(1, —oh /oy, —oh/oz)

x=h(y.z2)

>
Z

Figure 3. Equation of a normal to the interface between the layers

2
In the expressions (25) and (26) the denominator \/1 + (g—Z) + (%)2 in

the expressions for the normal was omitted, since it is nonzero and coincides
in both sides of equations (25), (26). It is worth noting that only two of three
components of the obtained vectors (25) and (26) are linearly independent.
Therefore, for writing the boundary conditions we will use the following

expressions:
(Al + Al 8h> (A2 + A2 8h>
0 =h(y,?) 9 =h(y,z)
(Al A}C gh> = <A2 A?E gh) ,
Y7 \a=n(y,2) Y7 lan(y,2)

where A = {E, H } Moreover, for a planar boundary F(z,y,z) = x — const
the above expressions simplify to the following form:

Al = A

2|
Y Ylz=const ’

#lx=const

:l

xr=const Zlx=const

The above relations should be completed with the asymptotic condition (24).

Thus, in each inner layer of a k-layer waveguide the four-dimensional
general solution is parametrized by four indefinite coefficients, in the substrate
and cladding layers at the expense of asymptotic conditions the number of
coefficients is reduced by two in each layer. Therefore, there is a total of
4(k—2)+ 242 = 4(k — 1) coefficients. To each of (k — 1) interfaces four
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equations correspond, making the total of 4(k — 1). Thus, we have 4(k — 1)
linear homogeneous algebraic equations for 4(k — 1) unknown coefficients.

Returning to the calculation of the electromagnetic field in the multilayer
waveguide, we seek a nontrivial solution to the homogeneous system of linear
algebraic equations with respect to the coefficient of expansion over the
fundamental system of solutions in each dielectric layer:

—

M (h(y, 2), Vh(y, 2), o(y, 2), Vo(y, z)) A = 0. (27)

To find nontrivial fields E, H at an arbitrary point (y, z) the condition of
solvability should be satisfied for the system of homogeneous linear algebraic

equations
! det (M ((y, 2), Vh(y, 2), (3, 2), V5, 2))) = 0. (28)

Thus the system of homogeneous linear algebraic equations (27), nontrivially
solvable under the condition (28), is an algebraic model of adiabatic guided
modes in a smoothly irregular multilayer integrated optical waveguide. The
roots of equation (28) are a set of eigenvalues and the solution of the system of
equations (27) after substitution of each particular root is the corresponding

eigenvector normalized by the condition HEH =1.

6. Results

Thus, in the course of several stages of sequential reduction, we have
formulated a number of problems of modeling the adiabatic guided modes in
a smoothly irregular integrated optical multilayer waveguide.

Problem 1. The problem of finding eigenvalues and eigenfunctions within

the AGM model

E(.ﬁ(),y,Z,t) EO('CC;Z/?Z) . .
. =< exp {iwt —ip(y, 2)}, 29
{H(%y’z’w} { _ )} p {iwt —ip(y, 2) } (29)

is formulated as follows:

8 Yy . 8(’())2 z
Oz Y (az> o=t (w < v) ) (30)
OF; 0N\ Ly . (09N (09 ...
o = ik (ew— (%) ) Hy + ik <_z> _y> H;
oy dp\ (O y 0o\ ..
P = ik <_y> (E Ey +iky | ep — <_y E%,
(31)
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Eigenfunctions (Eg,ES,HS,HS)?F (:U;(Vgp)j) correspond to eigenvalues
J

2
The accompanying components of the electromagnetic field are calculated by
the formulas:

Op 1 Op 1 Op 1 Op 1
Er=_P g gy pgr %P g %P gy 32
0 dye © 9ze W O " dyp 0 Qzp O (32)

Problem 2. The problem of finding eigenvalues of eigenfunctions within the
AGM model

E(@,v,%1 = Eo(ziy,2) exp {iwt — 1 z
{I:j(:l:,y,z,t)} {ﬁo(ﬂi;y,z)} p{ SO(y’ >}’

is formulated as follows:

0’Eg 45 2\ O°Hy 1o 2) gy
5o TR (en— (V9)*) By =0, "0 + I3 (en— (V)*) Hy = 0. (33)

Eigenfunctions (Eg, HS, )T (.CE; (Vgo)j) correspond to eigenvalues (V(p)?.
j

The accompanying components of the electromagnetic field are calculated by

the formulas
a Yy . 890 ? z
(82) Hy — ik, (eu— <8y> ) Hg,
0 . )

Problem 3. Following the ideology of the cross section method, the steady-
state regime of guided propagation of electromagnetic radiation within the

frameworks of the AGM model, i.e., the solution of Maxwell’s equations rotH =

- — — — S\ T —
ikeE, rotE = —ikuH with asymptotic conditions (E,H) (x) —— 0 is

XT—r£00

sought in the form of a sum

(B 1) (w.9,2) =3 Cy (0.2) (B.H) (2, 5)),
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where (E,ﬁ)T(m,Bj) are solutions to the equations (30)—(31), (32) with
additional condition:
— — S\T . — S\ T
V(EH) (x,y.2) == iB,C; (y,2) (E.H) (x,5)),

J

—

where B(y, z) = V(y, 2).

Problem 4. Following the ideology of the method of cross sections, the
steady-state regime of guided propagation of electromagnetic radiation within
the frameworks of the AGM model, i.e., the solution of Maxwell’s equa-

tions rot(rotH) = k3epE, rot(rotE) = kiepH with asymptotic conditions
L \T L
(E, H) (x) ——— 0 is sought in the form of a sum

r—£00

—

(B H) (2.9,2) =3 C4 (9.2 (B H) (2. 5)),

> o\ -
where (E, H) (:I:,ﬁj> are solutions to the equations (33), (34) with additional

condition:
V(B ) (2,9,2) ==Y i8,C5 (0,2) (B H) (2, 6),

J

where B(y, 2) = Ve(y, ).

The single-mode regime is specified by ansatz

— >\T - S\ T
(E.H)_ (@,y,2) = C5 (v,2) (B, H) " (2,6))
with the additional condition
T -
J

@ (E7ET) (:z:,y,z) = _iﬂjcﬂj(y?z) (E,FI)T(;E’Bj)’

where Ay, 2) = Vo(y, 2).

Remark 2. Similar to the method of cross sections [24], [25], [30], the
solution of the last equation has the form

Ci0:2) = 50— exp{z’ko / (@@,Z)dwﬁz(y,@dz)}

Y0520

which together with relations (29), (30)—(31), (32) concludes the description
of the adiabatic character of the model under consideration.
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7. Conclusion

The development of methods for the rigorous and approximate analysis of
smoothly irregular integrated optical waveguides requires the development
of new mathematical models of the corresponding objects, as well as the
use of new methods for studying the problems arising in this case. The
fundamental problem of electrodynamics of smoothly irregular waveguide
three-dimensional (3D) structures is the development of stable methods and
algorithms for solving the corresponding Maxwell’s equations.

The paper considers an approach to the formulation of the problem of prop-
agation of electromagnetic radiation in integrated optical smoothly irregular
waveguide structures. Traditionally, similar problems are formulated based
on Maxwell’s equations. In this paper, only monochromatic radiation is con-
sidered, which is reflected in the dependence of solution on the frequency
of propagating radiation. This type of time dependence of the solution al-
lows considering a steady-state electrodynamic problem for electromagnetic
radiation.

The problem of finding the eigenvectors (guided modes) and eigenvalues is
considered using the model of adiabatic guided modes in the framework of the
zero approximation of the asymptotic expansion for a planar regular three-
layer optical waveguide. Considering that the permittivity and permeability
are piecewise constant functions, the problem is solved in each subdomain
with constant values of ¢, p with subsequent matching of solutions at the
interfaces between the dielectric media. In each layer e, 4 have constant values,

and the construction of the entire fields E, H requires setting and solving the
problem of finding ¢(y, 2).

The paper considers a class of smoothly irregular integrated-optical multi-
layer waveguides, the properties of which determine the characteristic features
of waveguide propagation of monochromatic polarized light in them. An as-
ymptotic approach to the description of this type of electromagnetic radiation
is proposed, reducing the solutions of the system of Maxwell’s equations to
a form, which is expressed in terms of the solutions of a system of four ordi-
nary differential equations and two algebraic equations for six components of
the electromagnetic field in the zero approximation.

The multilayer structure of waveguides allows one more stage of reducing the
model to a homogeneous system of linear algebraic equations, the nontrivial
solvability condition of which specifies the relationship between the gradient
of the phase front of radiation and the gradients of interfaces between thin
homogeneous layers.

In the final part of the work, eigenvalues and eigenvector problems (differ-
ential and algebraic) describing adiabatic guided modes are formulated. The
problem of describing the single-mode propagation of adiabatic guided modes
is also formulated with emphasis on the adiabatic nature of the described
approximate solution of Maxwell’s equations.
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Appendix. Normal modes of a regular planar optical
waveguide

“Plane” guided modes

The monographic literature [15]-[19] widely describes normal modes of a reg-
ular planar dielectric waveguide propagating along the axis Oz from —oo
to oo (and/or back). In the vertical direction (along the Oz axis) they
have the structure of standing waves, while in the horizontal direction along
the waveguide they are travelling waves and are considered (not quite cor-
rectly) steady-state (‘invariant’) in the direction transverse with respect to
the propagation direction (along the axis Oy).

The vertical distribution of the electromagnetic field of a T'E mode expressed
in terms of the ‘leading’ transverse component of the electric field E, is given

by the equation
dzEy )
(@) + (e~ ), () = 0. (35)

Two other components of the electromagnetic field of the T'E mode are
expressed in terms of the leading one by the formulas

| dE,
v w Y ko dx

(36)

These three relations can be derived from Maxwell’s equations in the
form (4).

For T'M modes analogous relations that follow from Maxwell’s equations
have the form

d (1di, )

o (252 ) @)+ (n= ) ) =0, (37)
8 | dH,

B ="H, B,=—— Y 38

vy F ikye dx (38)

Equations (35) and (37) in multilayer waveguides composed of uniform reg-
ular dielectric layers, in each subdomain of the real axis (at the intersection
of each layer with the vertical axis) take the form of second-order linear or-
dinary differential equations with constant coefficients. Therefore, the most
common form of solutions to these equations is obtained using a fundamen-
tal system of solutions. Consequently, the distributions of the corresponding
leading components of the electromagnetic field are written in the form of ex-
pansions of general solutions in terms of (sin(xx), cos(xx)) or (exp {+i(xx)})
and the expansion coefficients of the particular solution are determined from
the boundary conditions (22)—(23).

These solutions, in particular, can be obtained according to the following
algorithm.
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For guided T'F modes we get a homogeneous system of linear algebraic equa-
tions (SLAE) with matrix Mz3(3) with respect to variables A¥, AT, AT, A7

Al exp {’ygal} = A exp {ix{al} + A7 exp {—ix{al} ,
g esp {olar} = 3 (47 exp firder} - A7 exp {-indar}).
AT exp {ix{aQ} + A7 exp {—ix{aQ} = A_ exp {—vgaQ} )

J .
T (AJr exp {leaQ} A7 exp {—zx1a2}> = —;YTCOAC exp {—fyg%} .

The homogeneous SLAE (]\2/ E) A=0is nontrivially solvable if and only if
its determinant is zero,

det (M) = 0. (39)

For guided T'M modes a system of homogeneous linear algebraic equations
is obtained with the matrix Mz3,(8) for unknowns Bf, Bf,By B, the
solutions of which yield the values of the unknown amphtude coefﬁments

B} exp {fygal} = B exp {ix{al} + By exp {—ix{al} :

J , )
B} exp {%al} k?; (BIr exp {ix{al} — B exp {—ileal}> ,

B exp {ixiaQ} + B exp {—ix{ag} = B_ exp {—72@2} ,

zk:o

day).

The homogeneous SLAE (M H) B=0is nontrivially solvable if its deter-
minant equals zero

ko 1 (B+exp {2X1a2} By eXp{—2X1a2}> ko

det (M) = 0. (40)

Here A and B are the coeflicients of expansion of TE and T'M modes in
terms of the fundamental system of solutions, respectively.

Equations (39) and (40) are equivalent to the dispersion relations in the
trigonometric form

X sd = arctg (7 > + arctg (7 ) + mm (41)
X1 X1
for guided TE modes and
X yd = arctg (Eﬂfn> + arctg (Elifn) +mm (42)
cAl €sX1

for guided T'M modes.
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If the expressions for the electromagnetic field strength are presented in
complex form with the described dependence on the rest coordinates and
time taken into account, i.e., in the form

T . .

(Ey, H,, HZ) (1,9, 2,t) = (Ay, Ay, A3) T (2, y, 2) exp {iwt —icg(z,y,2)},
T . )

(Hy, E,, EZ) (m,y,2,t) = (By, By, B3)T(z,y, 2) exp {iwt — iy (z,y,2)}

with real-valued amplitude A(B) and phase ¢ (@), then the phase remains
constant in time along x, defines a travelling wave along z, and is constant
along y. In other words, the phase front of the described solution to Maxwell’s
equations is “planar” (i.e., linear in the yOz-plane) and defines a “plane” ( i.e.,
linear in the yOz-plane) wave. There exist “forward” and “backward” waves
travelling in opposite directions along the z-axis. The can be identified with
the “plane” (in the yOz-plane) waves emitted by infinitely remote sources.

“Cylindrical” guided modes

Now let us proceed to the guided modes of a regular planar dielectric waveg-
uide, excited by a source linear along the Oz-axis and point-like in the
yOz-plane, localized at the point (0, z,). The structure of the modes along
the Oz-axis completely coincides with that of “plane” guided and leaky TE
and T'M modes. Let us analyze the structure of cylindrical guided modes
propagating in the yOz-plane

. N\ E.H
(?[) (z,y,2,t) = (g) B (x) exp {iwt — ik, S},

where 7% = y? + (2 — 2)%; y = rsinf, 2 = 2, + rcosf. In the yOz-plane
circular fronts propagate from the origin of polar coordinates y = rsin6,
z = %y + rcosb.

Thus, in both cases the solutions for the normal modes are written as

EH
E _ (B, e it —ikge(y, 2)}

where:
— ¢(y, z) = Bz for the modes from an infinitely remote source and
— ¢(y,2) = B\/y? + (2 — 2y)? for the modes from a localized source.
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AcuMnToTYecKuii MeToa MOCTPOEHUST MO I
agnadbaTnvecKnX BOJIHOBOJHBIX MO/,
MJIAaBHO-HEPETYJ/JISIPHbIX MHTErPpaJIbHO-ONTUYECKUX
BOJIHOBOJ/IOB

A. JI. CeBacThbIHOB

Poccutickut ynusepcumem dpyorcoHvr Hapodos
ya. Muxayzo-Maxaas, 0. 6, Mocksa, 117198, Poccus

B pabore paccmoTpeH Kitacc IJIABHO HEPETYJIAPHBIX WHTETPAJIbHO-ONTHYECKUX
MHOT'OCJIOMHBIX BOJTHOBOJOB, CBOMCTBA KOTOPBIX OIPEJIEIIIOT XapaKTEePHBIE Y€PThHI
BOJIHOBOJIHOT'O PACIPOCTPAHEHUA B HUX MOHOXPOMATHIECKOT'O IOJIAPU30BAHHOTO
cBeta. Ilpenjoxken acUMITOTUYECKUI ITOAXOJ K ONUCAHUIO JAHHOTO BUIA IJIEK-
TPOMArHUTHOIO U3JIyU€HUs, B PE3Y/IbTATE KOTOPOr'O PEIEHNUs CUCTEMbI YPABHEHU
MakcBesuia peayupyercsa K TAKOMY BHUIY, KOTOPBIH BbIPAYKACTCI Uepe3 PEIeHus
CHCTEMBI YeTHIPEX OOBIKHOBEHHBIX MU (EPEHITNAILHBIX YPABHEHNN U ABYX aJired-
pamYeCcKnX ypaBHEHWH Ui IIIECTU KOMIIOHEHT JIEKTPOMATHUTHOTO TIOJIsi B HYJIEBOM
npubamKenuu. I'paguent ¢azoBoro GpoHTa aanadaTUICCKON BOTHOBOTHON MOJIbI
Y/IOBJIETBOPSIET yPABHEHUIO SUKOHAJIA OTHOCUTEIHHO 3(MEMEKTUBHOIO MOKA3ATE S
MIPEJIOMJIEHUS] BOJTHOBO/IA OTHOCUTEJIFHO JIAHHON MO/IBI.

MuorocsoitHast CTPYKTypa BOJHOBOJOB ITO3BOJISIET TPOU3BECTH €IE OJUH ITAI
PELYKIMK CHCTEMBI YPABHEHUI MOJIEIN K OJHOPOIHON CHCTEME JIMHEHHDBIX aJredpan-
YeCKUX YPaBHEHU, yCJIOBUE HETPUBUAJILHON Pa3PEIINMOCTH KOTOPOH 33/1aéT CBA3b
rpajuenTa Ga30BOro (ppoHTa M3JIyUEeHHs C IPaJIMeHTAME ITIOBEPXHOCTEH pasjesia
MEXKJIy TOHKAMU OHOPOIHBIMU CJIOSIMHU.

B 3aBeparomieii wactu paborsl cchopmyupoBanbl 3agaau (auddepenipaibaast
u anrebpanyeckas) Ha COOCTBEHHBIE 3HAYEHUs U COOCTBEHHBIE BEKTODBI JIJIsl OIMCA~
HUs a/1rabaTUIecKnX BOJHOBOJHBIX Moj. [IpuBesena Takxxke opMyIupoBKa 3a1a49u
OIMCAaHUs OJJHOMOJIOBOTO PEXKUMa PACIPOCTPAHEHUS A uabaTHIeCKUX BOJHOBOIHBIX
MOJI, TIOTYEPKUBAIONIALA aInabaTHIECCKN XapaKTEP OIMUCHIBAEMOTO ITPUOJIHKEHHOTO
pemrenus ypasaenuit Makcsesia.

KuroueBsblie cjioBa: MJIaBHO HEPETY/ISPHBbIE HHTEIPAJIbHO-ONTHYECKNE MHOTOCIONHBIE
BOJIHOBO/IBI, 331291 HA COOCTBEHHbBIE 3HAYEHUS I COOCTBEHHDBIE BEKTOPHI, OJTHOMO/IOBbII
PEXKUM PACIPOCTPAHEHUsT aIMAa0ATUIECKUX BOJIHOBOJIHBIX MO,
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The constructive form of the Kuryshkin-Wodkiewicz model of quantum measure-
ments was earlier developed in detail for the quantum Kepler problem. For more
complex quantum objects, such a construction is unknown. At the same time, the
standard (non-constructive) model of Holevo-Helstrom quantum measurements is
suitable for any quantum object. In this work, the constructive model of quantum
measurements is generalized to a wider class of quantum objects, i.e., the optical
spectrum of atoms and ions with one valence electron. The analysis is based on ex-
perimental data on the energy ordering of electrons in an atom according to the
Klechkovsky—Madelung rule and on the substantiation of a single-particle potential
model for describing the energy spectrum of optical electrons in alkali metal atoms.
A representation of the perturbation of a single-particle potential in the form of
a convolution of the potential of an electron in a hydrogen atom with the Wigner
function of a certain effective state of the core in an alkali metal atom representa-
tion allows reducing all calculation algorithms for alkali metals to the corresponding
algorithms for the hydrogen atom.

Key words and phrases: models of quantum measurements, energy spectrum of
alkali metal atoms, method of single-particle potential, perturbation of discrete
spectrum of an observable

1. Introduction

The energy spectrum E,, = —R/(2n?) of a valence electron in a hydrogen
atom is described by the discrete spectrum of Hamiltonian H = —A/2 —1/r
of the quantum Kepler problem with Hamilton function H(q,p) = p*/(2m) —

e?/|7|. In addition to operator H, the measured spectrum of the valence
electron also depends on the state p of the quantum probe of a measur-
ing instrument, i.e., is described by the discrete spectrum of the measured

observable O ,(H) = Oy, (H « W) [1].
The constructive form of the Kuryshkin—-Wodkiewicz quantum measure-
ment model is thoroughly developed for the quantum Kepler problem |[2]

(©) Zorin A.V., 2020
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and quantum oscillator [3|, [4]. For more complex quantum objects, such
a construction is unknown. At the same time, the standard (nonconstructive)
Holevo—Helstrom quantum measurement model is applicable to any quantum
object, any quantum system [5], [6].

The goal of this paper is to generalize the constructive quantum measure-
ment Kuryshkin-Wodkiewicz model to a wider class of quantum objects and
to develop a quantum measurement model for optical spectrum of atoms
and ions with one valence electron. We will consider the alkali metal atoms
that consist of a core (atomic nucleus and electrons of all filled shells) and
a valence (outer) electron, as well as ions with one valence electron.

2. Hydrogen atom

Quantum mechanics understands the description of the hydrogen atom as
the description of the electron in this atom. Its energy spectrum has a very
simple form

R
En=—5 3 (1)
when the atom is theoretically considered as an isolated quantum object.
In the process of measurement, the quantum object is no more isolated, it
becomes an open system incorporated in a more complex ‘object + probe’
quantum system [7]-[10].
The measured energy spectrum of an electron in a hydrogen atom is

~

perturbed with respect to the spectrum (1): E,, = E, +0E,,.

Thus, a problem of description (constructing a mathematical model) of
the measured values of the hydrogen atom optical spectrum. This model
incorporates the Weyl-Kuryshkin quantization rule and the rigging of the
above mentioned model: {y,} is the mixed state of the quantum probe, the
smoothed (perturbed) classical observable is A« Wy, 1(q,p), and the Weyl
rule applied to it is Oy, 1(A) = Oy (A). Theoretical study of the spectrum
of this operator and the numerical calculation of the discrete spectrum parts
affiliated with {¢,} are published in Ref. [11]. For the hydrogen atom the
model is verified with the relative accuracy of ~ 10716,

Before discussing the dependence of the perturbation dF, in the hydrogen
atom induced by the action of the measuring instrument with a quantum
probe in the state {(,}, we recall what is known about the discrete energy
spectrum Efl of the valence electron in an isolated alkali metal atom with
the atomic number Z.

3. Energy spectrum of a valence electron in alkali
metal atoms

Quantum mechanical description of the valence electron in a hydrogen
atom is provided by the Schrédinger equation

Hyy(7) = eyp(7) (2)
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with the operator Hy, = Oy (H), where Oy is the Weyl quantization rule,
transforming the Hamiltonian Kepler function H = $*/2 — 1/|#| into Hamil-
tonian operator Hy = —V2/2 — 1/|7|. Equation (2) for the eigenvalues (the
energy spectrum of the electron in the hydrogen atom) and eigenfunctions
(the discrete spectrum wave functions of the hydrogen atom) has exact solu-
tions [12]:
1
E€n = _W’ wnlm (?> = Rnl<r>lem (07 30),

where ¥ = (7,0, ¢) are spherical coordinates and n,l,m are the principal,
orbital, and azimuthal quantum number, respectively.
While in the hydrogen atom and hydrogen-like ions, the spectral lines are
ordered according to the law
1
- 3
2”2 ( )

i.e., the energy spectrum is degenerate with respect to the orbital and
azimuthal quantum numbers, in the energy spectrum of valence (optical) elec-
trons in the alkali metal atoms the orbital degeneracy is removed (see Eq. (4)).
The degeneracy with respect to azimuthal quantum number remains in any
potential having a spherical symmetry.

In the book by V.N. Kondratyev [13] in Table 9 on page 181 the following
data are presented for the optical spectra of alkali metals (in Hartree atomic
units):

-y ()
" a6
namely:

(3) Li:
€20 = —0.1982754792, €21 = —0.1302870145,
e30 = —0.07465200225, e31 = —0.05710578080, €32 = —0.05562970375,
ed0 = —0.03883874030, e41l = —0.03190061096, e42 = —0.03128127346,
e50 = —0.02375325800, €51 = —0.02033207896, €52 = —0.02001600960,
e60 = —0.01601242872, e61 = —0.01408066718, €62 = —0.03128127346;

(11) Na:

e30 = —0.1888838814, e31 = —0.1115650818, €32 = —0.05592778605,

e40 = —0.07245191330, e41 = —0.05146315410, e42 = —0.03140683790,
€50 = —0.03800798912, €51 = —0.02949906632, €52 = —0.02008024064,
e60 = —0.02335452320, e61 = —0.01909585773, €62 = —0.03140683790;

(19) K:

€40 = —0.1595965400, e41 = —0.1010881942, €42 = —0.03366251684,
€50 = —0.06516440980, e51 = —0.04810386124, €52 = —0.02122122550,
€60 = —0.03517930894, €61 = —0.02802348772, €62 = —0.03366251684;
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(37) Rb:

€50 = —0.1534672079, e51 = —0.09542857065, €52 = —0.03523536413,
€60 = —0.06354834915, e61 = —0.04622131078, €62 = —0.06530578980;

(55) Cs:

e60 = —0.1431368322, e61 = —0.09046170025, e62 = —0.2075805080,
e70 = —0.06074477220, €71 = —0.04452676553.

As a result of splitting in the spectrum (4), the ordering of the spectral
(energy) levels with increasing energy changes in comparison with the ordering
in the hydrogen atom (3). This new ordering obeys the so-called Klechkovsky—
Madelung rule [14]-[16]. The relation of this order with the pairs (n,[) of the
principal and orbital quantum number is phenomenologically described by
formula (4) and is determined by the increase of the pair (n +1(,1): 1s, 2s, 2p,
3s, 3p, 4s, 3d, 4p, 5s, 4d, bp, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, 8s, 5g. Here the
values [ = 0,1, 2,3, ... correspond to the indices s, p,d, f, ....

At the phenomenological level, the consideration of optical spectra of alkali
metal atoms leads to a necessity of using potential function in the form [13]:

Vo= (1o (2) (3 e (3)"+),

where ¢, ¢y, ... are constants determined by the distortion character of the
Coulomb field of the nucleus, r, being the Bohr radius (for hydrogen atom).

4. Pseudopotential method for description
of multielectron atoms

For atoms having more than one electron, even the simplest ones, the
Schrodinger equation can be solved directly neither analytically, nor by
numerical methods. For this reason, the study of spectra of multielectron
atoms is based on an approximate model. The approximation is based on the
idea of self-consistent field that implies independent motion of each electron
in a certain average field created by other electrons and atomic nucleus. A set
of orbitals used for constructing the wave function is referred to as atomic
configuration [11]. The most adequate scheme based on single-electron orbitals
and atomic configuration is the Hartree-Fock approximation.

In fact the meaning of configuration is to assign to the entire atom a set
of approximate integrals of motion, specified by set of labels {nj,lj, Zj},
where the subscript j enumerates the filled orbitals, and Z; is the occupation

number, i.e., the number of electrons at the j-th orbital. The number of
exact integrals of motion is typically insufficient for complete classification.
Therefore, approximate but well-preserved integrals of motion are of primary
importance [11]. To find out which orbitals in an atom are filled, the Aufbau
rule should be used, namely, for ground state the distribution of electrons
over the orbitals should correspond to the minimal energy compatible with
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the Pauli principle. The result of applying the Aufbau rule directly depends

on the ordering of energy levels in the single-electron effective potential U, (r).
Far from the nucleus, the electron is subjected to the attractive Coulomb

potential of the atomic nucleus, shielded by all other electrons, so that

1
U,(r) ~ 0 >, (5)

where r, is the characteristic radius of the atom. Near the nucleus, the
shielding effect vanishes and the electron is attracted by the Coulomb potential
of a bare atomic nucleus

Z
U,(r)~——, r<r,.
,

Considering the outer (valence) electrons, it is possible to construct a model
of effective potential U, (r) based on the approximate behavior (5).

If the deviation of the effective single-electron potential U,(r) from the
dependence —1/r can be considered a small perturbation, then the spectrum
remains ordered like in a hydrogen atom. However, when considering the
periodic law this is not true, which is an evidence of strong deviations of the
effective potential from the Coulomb potential, leading to essential changes in
the spectrum. An overlap of groups of energy levels with different principal
quantum numbers n appears together with a new type of ordering according
to (n+1,n).

The notion of n-shell, i.e., states with the same principal quantum number
n arises from the fact that for pure Coulomb potential in a hydrogen atom
these states are energy degenerate. If the potential slightly differs from the
Coulomb one, the degeneracy is removed, but the energy levels with the
same n remain densely grouped in the energy scale. In this case, the notion
of a shell remains physically significant. Otherwise, if the deviation from
Coulomb potential is large, a complete regrouping of energy levels occurs
and the hydrogen-like shells loose physical meaning, becoming merely formal
entities. On the contrary, the notion of ‘subshell’ labelled by a pair of quantum
numbers {n, [} always remains significant for atoms, since the energy levels are
degenerate with respect to azimuthal quantum number m in any spherically
symmetric potential.

A valence electron in an atom of alkali metal allows approximate quantum
mechanical description using a single-particle model:

g T V)| 6 = 2006 (©)

2m

For the first-order approximation the effective single-particle potential in
the Thomas—Fermi method can be expressed as

2/3
VA 8v/2
UTE(r) = ;x(kr), k= (—% ) ZY3.

through a table-defined function x/(r).
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Since the middle of the last century, researchers have been looking for
a theoretical justification for the fact that in a many-electron atom the
single-particle potential has a form that provides the “Aufbau rule” — the
Klechkovsky—Madelung rule. In a number of articles and then in the book [15],
Klechkovsky constructed this justification, starting from the Hartree—Fock
approximation. The pseudopotential is expressed through the tabular function
X, which is approximated by the expression:

v(@) = (1 +az) 2.

At the same time, a number of researchers concluded that the desired
pseudopotential has the form:

T S B
Uy (r) Ny R aﬁ(g\/i) .

Demkov and Ostrovsky [17], [18] substantiated the existence of such a single-
particle potential proceeding from the geometric-symmetry model of the
hydrogen atom by V.A. Fock [19].

ot = [+ (5)] o

In [17], [18] Demkov and Ostrovsky established that equation (7) provides
the most precise description of Klechkovsky—Madelung rule at = 1/2. In
subsequent papers [20], [21] Demkov and Ostrovsky’s proof was questioned,
but the result was confirmed.

Remark 1. Subsequently, when considering the multielectron atom in the
framework of the quantum field theory, Kholodenko et al. [22], [23] confirmed
the correctness of the Demkov—Ostrovsky proof, and also generalized this
result to such a degree that he began to describe not only the Klechkovsky—
Madelung rule, but also exceptions to it (see also [24], [25]).

These potentials are in good agreement with the experimentally observed

spectra:
1 1

T Tt o) T 2n
in Hartree atomic units.

The solution obtained is not universal, since there are exceptions to the
Madelung rule in transition metals, as well as among lanthanides and actinides.
Quantum-mechanically, these exceptions, as well as the rule itself, are still
considered using relativistic Hartree-Fock calculations. The results obtained
do not yet detail the exceptions. Kholodenko and Kaufman [23], using
quantum field theory, showed that the Demkov—Ostrovsky potential does
indeed give the correct answer. In addition, thanks to work [26], it became

possible to identify the Demkov—Ostrovsky potential U 1[/)5)(7‘) with the Hartree—
Fock potential.
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Remark 2. It was shown in [22] that, confining oneself to quantum me-
chanical methods, it is impossible to derive Madelung’s rule with exceptions.
Madelung’s rule and its exceptions contain much more information than is
required for its use in chemistry. Recall that the invention of quantum me-
chanics in 1925-1926 was initially driven by the needs of atomic physics.
Subsequently, quantum mechanics was extended to quantum field theory,
which led to the development of the Standard Model of particle physics. Not
surprisingly, particle physics methods have recently been applied to the pe-
riodic table of elements [25], [27]. In [22]|, it was demonstrated that the
Madelung rule and its exceptions can be described within the framework of
this model.

5. Modeling the measured energy spectrum of alkali
metal atoms

So far, we have mainly dealt with the study of the quantum-measured
energy state of the valence electron in the hydrogen atom. The energy
spectrum of a non-measured (isolated) hydrogen atom has the form ¢,,; =
—1/(2n?), degenerate with respect to the orbital quantum number /. The
measurement procedure slightly perturbs potential energy V,(7¥) = —1/r of
the isolated hydrogen atom to V,(7) = —1/r + 0V, (7), so that the perturbed
spectrum of the hydrogen atom subjected to measurement has the form
ef = —1/(2n?) + 6E}. Under such weak perturbation, the ordering of
spectral lines remains unchanged.

However, even in first spectral lines of alkali metals the Klechkovsky—
Madelung ordering is observed.

In “hydrogen-like” alkali metal atoms the spectral terms have the form

R

F? =—— .
" 2nt o)

In the process of measurement, the “measured” energy spectrum takes the
form
7 R

EZ =—— " L §EZ
nl,k 2(n+0_lZ)2 K

where the contributions §E! and §EZ are obtained from convolution V (r) *
Wi,,1(q,p), where

Vi) = s
VT S S A
Ualr) r(1+2)% f aﬁ<8\/§>' ®)

Therefore, the Weyl-Kuryshkin quantization rule is adequate for alkali
metals to the same degree as adequate is potential V, (r,4) that takes into
account small corrections to the centrally symmetric potential.
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Ref. [23] shows the coincidence of the Demkov—Ostrovsky potential (7)
with the Hartree-Fock potential (6). Similar to the potential V (7) from the
Kuryshkin-Wodkiewicz quantization rule [28], potential VZ(7) from equa-
tion (8) is an ﬁo—compact perturbation of the potential V!(7) that equals
zero at infinity (see the papers by B. Simon [29], [30] about Kato theorems).
Thus, potential U O(r) satisfies the conditions of the theorem from Ref. [31].

6. Kuryshkin—-Wodkiewicz quantum measurement
model for alkali metal atoms and ions with one valence
electron

For valence electron in a hydrogen atom the potential has the form
Vi(r) = —1/r and the energy spectrum is €, = —1/(2n?). In the pro-
cess of measurement with an instrument whose quantum part is in the state
p=72.¢; ]%)(%‘ both the potential and the spectrum are perturbed:

p:Vi(r) = V(1) = Vi(r) + 8V, (r),

1 ~ ~
=5V +C I+ (V, = V=W, =V +0V,) I

For a valence electron in an atom of alkali metal, the potential has asymp-

totic expressions

A 1
L V) s
r r—=0 r—00 r

approximately equals V_ g(7) from the Hartree—Fock method and conventionally

has the form .
r R
\/ = +4/ - . (9)

Then the spectrum is traditionally presented in the form

1 1

Z
I e R —— T (10)
T2, 200+,

B 2v
Ull?2 Or) = T 2R

l

According to the theorem of Ref. [31], there exists such an abstract state

Pz = ij ’wj><d]j’7 that
pz: Vi(r) = Vy(r) = (Vi x W,z) (1) = Vi(r) + 6V(r), (11)
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1 1
PziEn = "5 5 Em=— 2 = 7 (12)
2 (n) 2(n+o0f)

nl
Now let us apply the procedure of measuring the energy spectrum of the
valence electron in an alkali metal atom with an instrument whose quantum

part is in the state p,, = > _¢; ]%)(@Dj‘. As a result of the measurement the
perturbation of the pseudopotential and the spectrum will occur:

nl

Pap [Z(r> ; [pZap<T) = ([Z * pap) (’I“) - Z<T) +9 Pip(r>’ (1?’)
1
Z Z Z
Pap * €ni = — €n + (de :
= g o ),

nl

Let us rewrite relation (13) in more detail

VZ (r)= (Vs W, )(r)=((VixW,.) =W, )(r)=
= (Vi +6V) « W, ) (r) = Vi(r) + 6V, (r) + (8V, « W, ) (7).

In this case

pap

2 1
H? «W, = (H +W, )W, :((p———>*w >*W

and

0,(H) = O (11 < Wp) = Ony ( (1 = 1)+ W, ) =

1 ~ -~
:_§V2_|_Cp[_|_(vp:Vl*szvl—l—évp)I.

7. Discussion

Ref. [28] describes a program calculating elements of the Ritz matrix and
storing them in external files. According to the Ritz method, the eigenvalues
of the Ritz matrix are spectral values of the quantity under study, i.e., the
energy. This algorithm consists in solving generalized eigenvalue problem
Mz = BZ, where M is the Ritz matrix and B is the matrix of pair scalar
products of auxiliary functions in the Kuryshkin quantum mechanics. The
program allows calculating Ritz matrices of arbitrary dimension. However,
there are hardware limitations. To date the calculations are possible for
matrix dimension of 55 and 91. Parameter F, is the only one to be fitted to
experimental data. For example, Figures 1 and 2 show the dependences of
discrepancies on E, for first few energy levels of lithium atom and Figure 3 for
sodium atom. The discrepancy functions are seen to have expressed minima
that determine the effective fitted values of the parameters.
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Let us describe an algorithm for restoring the effective potential parameters
for a valence electron in an alkali metal atom and the parameters of the energy
spectrum perturbation of this valence electron in the process of measurement.

1. Known “theoretical” spectrum (10) and (12) of the valence electron in an
alkali metal atom, we can restore p, = > f;|1h;)(¢,] from (12):
— for individual “segments” of the spectrum (10) and (12);
— for the “initial part” of the spectrum (10) and (12) from the spectrum
ordered according to the Klechkovsky—Madelung rule.
2. Restore V(r) = (Vy * W,z)(r) from (11).
3. Compare the restored pseudopotential with the effective pseudopoten-
tial (9) (current verification).

4. Restore p,, = > ¢; [¢;)(1h;| from individual segments of table-defined
spectrum using the calculated { ij } from item 1:

0, (H?) = Oy (HZxW, ) =0y ((H'xW, ) =W, ).
5. Check by means of the calculated probabilities of “optical transitions”
and compare with the data from [32] (final verification).

8. Conclusion

In Refs. |2], [28] the Kuryshkin—-Wodkiewicz model of quantum measurement
was implemented in application to the quantum Kepler problem. Earlier the
quantum measurement model in certain modifications has been implemented
in application to the quantum oscillator problem [3], [4]. In the present paper
the Kuryshkin-Wodkiewicz model, realizing the Weyl-Kuryshkin quantization
rule [2], [28], is generalized to quantum systems with one valence electron,
e.g., atoms of alkali metals. The analysis is based on experimental data on
the energy ordering of electrons in an atom according to the Klechkovsky—
Madelung rule and on the substantiation of a single-particle potential model
for describing the energy spectrum of optical electrons in alkali metal atoms.

The author of Ref. [31] obtained a representation of the perturbation of
a single-particle potential in the form of a convolution of the potential of an
electron in a hydrogen atom with the Wigner function of a certain effective
state of the core in an alkali metal atom. This representation allows reducing
all calculation algorithms for alkali metals to the corresponding algorithms
for the hydrogen atom. The proof of the model consistency is based on two
Kato theorems [29], [30]. In the course of the proof, explicit formulas were
obtained for the discrete spectrum of a valence electron for various spectral
series, depending on the serial parameters of the disturbance of the spectrum
of an isolated object in the process of quantum measurements.
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Mogesab KBaAaHTOBBIX M3MEPEHUIA
Kypbinnknana—ByakeBuya J1jisi aTOMOB HI€JIOYHBIX
METAJIJIOB

A. B. 3opun

Poccutickuti ynusepcumem dpyorcho, 1apodos
ya. Muxayro-Maxaas, 0.6, Mocksa, 117198, Poccus

KoncrpyktuBnas dopma Momem KBAaHTOBLIX n3Mepennit Kyporinknna—Boakesuaa
panee ObLIa OAPOOHO paspaboraHa IJid KBaHTOBOM 3adadn Kerutepa. st 6osee
CJIO2KHBIX KBAHTOBBIX O6’]:>€KTOB TaKasd KOHCprKI_[I/IH HEN3BECTHA. B TO 2Ke€ BpeMd CTaH-
naprHasi (HEKOHCTPYKTHBHAs) MOJIEIh KBAHTOBBIX M3MepeHHil X0JIeBO—XeIcTpoMa
MMOJIXOIUT JJIsl JIFOOOrO KBAHTOBOTO OObeKTa. B mamHON paboTe KOHCTPYKTHUBHAS
MOJIeJIb KBAHTOBBIX M3MepeHMii 0600IeHa Ha 0oJjiee IMUPOKUNA KJIACC KBAHTOBBIX
O6']:)€KTOB7 TO €CTh Ha OINTHYECKHUI CIIEKTp aTOMOB W MOHOB C OJHMM BaJICHTHBIM
3JIEKTPOHOM. AHAJIN3 OCHOBAH HA SKCIEPUMEHTAJIBHBIX JTAaHHBIX 00 SHEPreTHYECKOM
VIIOPAJOYEHNH 9JIEKTPOHOB B aToMe 10 npaBuity KiiedkoBckoro—MaeayHra u Ha
O6OCHOBH.HI/II/I O,Z[HOqaCTI/IqHOfI HOTeHI_[I/IaJIbHOﬁ MozZe I IJIgd OIIMCaHUA SHEPreTUICeCKO-
IO CIEKTPa ONTUUYECKUX JIEKTPOHOB B aTOMaX IMEJOIHBIX MeTasoB. IIpeacraBienue
BO3MYIIIEHUsT OJHOYACTUIHOIO MOTEHINAJIA B BUIE CBEPTKHU MOTEHIIUAJIA DJIEKTPO-
Ha B aToMe Bojiopona ¢ dpyukimeir Burnepa HeKoToporo 3h@eKTUBHOIO COCTOSHUS
OCTOBa B IIPEJICTABJIEHUE aTOMAa IEJIOTHOI0 MeTaJIIa TO3BOJISeT PeIyIMpPOBaTh BCE
aJITOPUTMBI pacyeTa sl MEeJ0IHBIX METAJLJIOB K COOTBETCTBYIOIIAM AJTOPUTMAM
JJIsl aTOMa BOJIOPO/IA.

KuroueBbie ciioBa: MOJIe I KBAHTOBBIX U3MEPEHUN, SHEPTETUIECKHUI CIIEKTP aTO-

MOB IIEJIOYHBIX METAJIJIOB, METOJ OJTHOYACTUIHOIO TTOTEHINAJIA, MOJIE/b KBAHTOBBIX
U3MEpEeHUii, BO3MYIIEHUE JUCKPETHOTO CIIEKTPa HAOIIOAAeMOit



