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The history of using machine learning algorithms to analyze statistical models
is quite long. The development of computer technology has given these algorithms
a new breath. Nowadays deep learning is mainstream and most popular area in
machine learning. However, the authors believe that many researchers are trying to
use deep learning methods beyond their applicability. This happens because of the
widespread availability of software systems that implement deep learning algorithms,
and the apparent simplicity of research. All this motivate the authors to compare
deep learning algorithms and classical machine learning algorithms.
The Large Hadron Collider experiment is chosen for this task, because the authors

are familiar with this scientific field, and also because the experiment data is open
source. The article compares various machine learning algorithms in relation to
the problem of recognizing the decay reaction 𝜏− → 𝜇− + 𝜇− + 𝜇+ at the Large
Hadron Collider. The authors use open source implementations of machine learning
algorithms. We compare algorithms with each other based on calculated metrics. As
a result of the research, we can conclude that all the considered machine learning
methods are quite comparable with each other (taking into account the selected
metrics), while different methods have different areas of applicability.
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1. Introduction

Machine learning is a branch of mathematical modeling related to the con-
struction of surrogate statistics models. Recent years this area has been
experiencing really intensive growth, related to the development of computer
technology and the ability to analyze grate amount of data (Big Data). Nowa-
days machine learning approaches, in particular deep learning, demonstrate
their high efficiency in data science. Particularly significant results are ob-
tained in classification and cluster analysis of data with unknown structure.
The most popular tendency in machine learning is deep learning. It became
mainstream area in machine learning and other areas were pushed aside.
In this paper, the authors try to study if deep learning is really superior

to all other machine learning methods. Previously, the authors conducted
a comparative analysis of the most popular software products for working with
neural networks networks [1], and also tried to generalize the methodology
for working with machine learning models [2].

1.1. Paper structure

This paper has following structure. In section 2 we describe the problem of
the decay reaction recognition 𝜏− → 𝜇− + 𝜇− + 𝜇+. A brief introduction to
the physics of the process is given.
The section 3 briefly describes the software we use.
The 4 section briefly describes the classification task, provides the termi-

nology from the field of machine learning, we also consider metrics that are
used to evaluate efficiency of classifiers.
We apply the Python language and the modules described to the problem

in the section 3 . We use metrics to evaluate the effectiveness of various
machine learning methods.

2. The violations of the Standard model

Currently, the main model that describes particle physics is a Standard
model formulated in 1960–1970 [3]. Standard model it has passed many
experimental tests. However, with from a methodological point of view, this
theory is not satisfactory [4]. For example, the Standard model does not
describe a number of phenomena, such as explanation of matter–antimatter
asymmetry. Research in the field of theoretical and experimental physics
that try to expand the standard model and describe phenomena that are not
available to it have a collective name: physics beyond the standard model.

2.1. Preservation of lepton numbers

The Large Hadron Collider (LHC) is the main tool for studying physics be-
yond the Standard model. At the LHCb detector (LHG beauty experiment)
experiments are being performed [5] whose purpose is the detection of phe-
nomena that contradict theoretical settings of standard model. In particular,
one of these phenomena is associated with violation of preserving the lepton
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number (𝐿) and the lepton flavor (𝐿𝑒, 𝐿𝜇, 𝐿𝜏). For leptons, the heuristic di-
vision into three generations, which is necessary for existence asymmetries of
matter and antimatter:

— the first generation consists of an electron and an electron neutrino
(𝑒−, 𝜈𝑒),

— second generation — muon and muon neutrino (𝜇−, 𝜈𝜇),
— third generation — 𝜏-lepton (tau) and tau neutrino (𝜏, 𝜈𝜏).
As we can see from the Table 1, according to the standard model each

lepton has four numbers 𝐿𝑒, 𝐿𝜇, 𝐿𝜏 and 𝐿 and for every reactions between

particles the sum of the numbers on the right side of the reaction equation
must be equal to the sum of the numbers on the left side (Lepton number
conservation).

Table 1

Reactions between particles in the standard model

Particle 𝑒− 𝑒+ 𝜇− 𝜇+ 𝜏− 𝜏+ 𝜈𝑒 ̄𝜈𝑒 𝜈𝜇 ̄𝜈𝜇 𝜈𝜏 ̄𝜈𝜏

𝐿 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1

𝐿𝑒 +1 -1 0 0 0 0 +1 -1 0 0 0 0

𝐿𝜇 0 0 +1 -1 0 0 0 0 +1 -1 0 0

𝐿𝜏 0 0 0 0 +1 -1 0 0 0 0 +1 -1

This rule holds, for example, in the following tau decay reaction:

𝜏− → 𝑒− + 𝜈𝜏 + ̄𝜈𝑒, 1𝜏 = 1𝑒 + 1𝜏 − 1𝑒.

However, there is a hypothetical tau decay reaction of the following type:

𝜏− → 𝜇− + 𝜇− + 𝜇+, 1𝜏 ≠ 1𝜇 + 1𝜇 − 1𝜇.

Ultrahigh energies proton collisions are performed at the LHC. On average
the collision generates about 80 various particles, most of which are unstable
and fast disintegrate. Among them, there are tau that can occur in one of
the the next five reactions:

— Prompt 𝐷−
𝑠 → 𝜏,

— Prompt 𝐷− → 𝜏,
— Non-prompt 𝐷−

𝑠 → 𝜏,
— Non-prompt 𝐷− → 𝜏,
— 𝑋𝑏 → 𝜏.
The task is to build a classification model that must be trained to recognize

the decay reaction 𝜏− → 𝜇− + 𝜇− + 𝜇+. For training the classifier one [6]
provides real data from LHC (background events) with the addition of signal
data (signal events). The signal data is a simulation of the reaction 𝜏− →
𝜇−𝜇−𝜇+.
The classifier requires the following two properties.



108 DCM&ACS. 2020, 28 (2) 105–119

— Small discrepancy between real data and simulation. For Estimation of
discrepancy data check_agreement.csv is provided This data relates to
the reaction 𝐷+

𝑠 → 𝜙(→ 𝜇−𝜇+)𝜋+ which is topologically very similar to
the desired response of the decay 𝜏−. Also the value of the Kolmogorov–
Smirnov test coefficient must be less than 0.09.

— Also the classifier should have weak correlation with the mass 𝜏−. Data
in a file is provided to evaluate the correlation check_correlation.csv
and the Kramer–von Mises test (CvM).

3. Software

To apply all the described classification methods, we use Python language
and a number of modules: SciKit Learn [7], Keras [8], XGBoost [9] and
hep_ml [10]. Let’s give a brief description here for each of them.
SciKit Learn [7] is library for data processing, which implements various

methods of classification, regression analysis, clustering, and other algorithms
related to machine learning training that does not use neural networks. The
library is written in Python and uses a number of libraries from the SciPy
stack to accelerate calculations. The current version has the number 0.22.2,
but the project is quite mature.
SciKit Learn implements almost all of classifications algorithms we

described. So the Logistic Regression method is implemented in a sub-
module linear_model, Gaussian Naive Bayes method is in the submodule
naive_bayes, the ensemble submodule implements Random Forest and Gra-
dient Boosting Classifier methods. In the submodule sklearn.metrics there
are functions that calculate various metrics for estimation of quality of the
classifier.
The XGBoost library is considered the best implementation of gradient

boosting. It has API for many languages, including Python. We use it along
with SciKit Learn to apply Gradient Boosting Classifier. Also due to the
specifics of the task we use hep_ml module because it is specially designed
for physics problems.
The Keras [8] library provides a high-level software interface for building

neural networks. It can work on top of TensorFlow, Microsoft Cognitive
Toolkit (CNTK) [11] or Theano [12]. The library is written completely in
Python and distributed under the MIT license. Current version is 2.3.1. The
library is based on the following principles: simplicity usage, modularity, and
extensibility. Our choice of this libraries about is justified in the article [1].
The modularity principle allows one to describe neural layers separately,

optimizers, activators, and so on, and then combine them into one model.
The model is fully described in Python. Created model one can save to disk
for future use and distribution.

4. Classification models

The classification model is based on an array of data, presented in tabular
form. The process of model construction is usually consists of fitting numeric
parameters and is also called model training. The propose of the model is
to predict the value dependent variable. In the case of a binary classifier
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a dependent variable can only take two values: 0 or 1. In in this case, the
dependent variable is most often called binary response or just response. One
can also meet the terms: goal, outcome, label, and 𝑌–variable [13]–[15].
The model parameters are adjusted based on independent parameters

variables that are represented by columns of the table. The following terms
are also used: predictor variable, attribute and 𝑋–variable.
There are two types of predictor variables numeric and factorial (another

term — categorical) predictor variables. Numeric variables are continuous
and can take any values from some interval on the numeric axis, and the
factor variables are discrete, not necessarily numeric, and can take values
from a finite set. A special type of factor variables are indicator variables.
Such variables accept only two values (0 or 1).
Depending on the model, it may be necessary to convert factor variables

to numeric values or numeric to factor. So when applying multiple linear
regression to an array of data with factor variables we need to convert them
to numeric type. For example, we can use logit conversion. On the contrary,
using the naive Bayesian classifier to continuous data, this data must be
converted to factor type.

4.1. Metrics for evaluating classification models

A number of numerical methods are used to evaluate the classifier’s perfor-
mance characteristics (metrics) that allow us to compare different classifiers
with each other and choose the most optimal one for the given tasks [14].
The classifier is evaluated based on control sample (also called test or

verification sample). This sample consists of already classified elements and
allows one to measure the performance of the classifier.
Let’s assume that the size of the control sample is 𝑁 and the binary classifier

detects the response 𝑌 and assigns it 1 or 0. Since this detection is performed
on the basis of a control sample, the event class is already known and we can
check classification results. All possible predictions fit into four case.

1. True-positive (TP) — classification result is 1 and true value is 1;
2. False-negative (FN) — classification result is 0 but true value is 1;
3. False-positive (FP) — classification result is 1 but true value is 0;
4. True-negative (FN) — classification result is 0 and true value is 0.

Let’s describe the main metrics that are used for classifier evaluation and
specify functions from the module sklearn.metrics [7], [16], which are used
to calculate this metrics.
Let the total sample size is 𝑁, and the classifier has defined 𝑇 𝑃 true-positive,

𝐹𝑁 false-negative, 𝐹𝑃 false-positive and 𝑇 𝑁 of true-negative cases. We can
calculate the following table 2 called the confusion matrix.
The classification of metrics is based on this matrix. It shows the number

of correct and incorrect predictions grouped into categories by response type.
Other names of this matrix are error matrix or confusion matrix. To calculate
this matrix we use the confusion_matrix function from SciKit–Learn library.
Accuracy is calculated as the percentage of events that the classifier identified

correctly. Calculated using the formula:

𝐴𝑐𝑐 = 𝑇 𝑃 + 𝑇 𝑁
𝑁

,
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Table 2

The confusion matrix

Prediction

True (1) False (0) Total

Data
True (1) 𝑇 𝑃 𝐹𝑁 𝑇 𝑃 + 𝐹𝑁
False (0) 𝐹𝑃 𝑇 𝑁 𝐹𝑃 + 𝑇 𝑁
Total 𝑇 𝑃 + 𝐹𝑃 𝐹𝑁 + 𝑇 𝑁 𝑁

and using the accuracy_score function.

Recall is the percentage of correctly classified events of type 1. Calculated
using the formula:

𝑅𝑇 𝑃 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

,

and using the recall_score function. Terms are also used are sensitivity or
true-positive rate.

Specificity is percentage of correctly classified events of type 0 (also called
zeros). Calculated using the formula:

𝑅𝐹𝑃 = 𝑇 𝑁
𝑇 𝑁 + 𝐹𝑁

,

and also using the recall_score function (for binary classifier this function
returns both recall and specificity). The term false-positive rate is also used.

Precision is percentage of predicted units that are actually zeros. Calculated
using the formula:

𝑃𝑐𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃

,

and also using the precision_score function.

One can create a classifier that will relate all events to class 1. For such
a classifier, the recall will be equal to 1, and specificity 0. An ideal classifier
should detect events from class 1, without incorrectly identifying events of
class 0, as events of the 1 class. Thus a balance must be maintained between
recall and specificity. To evaluate this balance, one uses a graphical method
called ROC-curve — receiver performance curve.

The ROC curve is a graph of recall versus specificity. For plotting on one
axis is delayed recall, and on the other specificity. The graph of an absolutely
ineffective classifier will be represent a diagonal line. More effective classifiers
will have a graph in the form of an arc. The stronger the arc pressed against
the upper-left corner, the more effective it is classifier. The data required to
build the curve is calculated with the roc_curve function.

For a more accurate estimation of the ROC curve, one uses a metric
indicator AUC — area under the ROC curve. A classifier with a ROC curve
as a diagonal line will have 𝐴𝑈𝐶 = 0.5. The more effective the classifier, the
closer the AUC value is to 1. AUC is calculated by the auc function.
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4.2. Logistic Regression

Logistic regression [17], [18] is an analog of multiple linear regression, with
the exception of binary response. To adapt multiple linear regression for this
case is necessary to do fallowing steps:

— represent the dependent variable as a probability function, with values
from segment [0, 1] (probabilistic outcome);

— apply the cutoff rule — any outcome with probability, greater than the
threshold is classified as 1.

If classical multiple regression models the response as linear function from
predictor variables:

𝑦 = 𝛽0 + 𝛽1𝑥1𝛽2𝑥2 + 𝛽3𝑥3 + … + 𝛽𝑛𝑥𝑛,

then the logistics response function is modeled using the logistics response
function (logit-function or sigmoid):

𝑝 = 1
1 + exp(𝛽0 + 𝛽1𝑥1𝛽2𝑥2 + 𝛽3𝑥3 + … + 𝛽𝑛𝑥𝑛)

.

The range of values of such function is the interval (0, 1), we can interpret its
values as the probability of the response.
To fit parameters, we consider not the function itself, but the log-odds

function:

𝑙 = ln
𝑝

1 − 𝑝
= 𝛽0 + 𝛽1𝑥1𝛽2𝑥2 + 𝛽3𝑥3 + … + 𝛽𝑛𝑥𝑛,

which map the probability 𝑝 from the interval (0, 1) to real numbers set.
Then one uses the maximum likelihood method to select parameters based
on a training sample.
After selecting the parameters it remains to select cut-off threshold. For

example, if one puts it equal to 0.5, then all the response with value 𝑝 < 0.5
will be classified as 0, and with the value 𝑝 >= 0.5 as 1.
In the sklearn library, the function that implements the logistic regres-

sion algorithm is located in the linear_model module and it is called
LogisticRegression.

4.3. Gaussian Naive Bayes

Naive Bayesian classifier [15], [19] is a binary classifier. Assignment to
a particular class is based on the conditional probability 𝑝(𝑦|𝑥1, … , 𝑥𝑛) which
is calculated based on the Bayes theorem:

𝑝(𝑦|𝑥1, … , 𝑥𝑛) = 𝑝(𝑦, 𝑥1, … , 𝑥𝑛)
𝑝(𝑥1, … , 𝑥𝑛)

= 𝑝(𝑥1, … , 𝑥𝑛|𝑦)𝑝(𝑦)
𝑝(𝑥1, … , 𝑥𝑛)

.

Next, we make the «naive» statement that all predictor variables are inde-
pendent and, therefore, the joint probability is 𝑝(𝑦, 𝑥1, … , 𝑥𝑛) and it can be
calculated using the formula:
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𝑝(𝑦, 𝑥1, … , 𝑥𝑛) = 𝑝(𝑦)
𝑛

∏
𝑖=1

𝑝(𝑥𝑖|𝑦).

If predictor variables are assumed to be numeric (i.e. continuous values),
then a second «naive» statement is made about the continuity of the distri-
bution function and about the type of distribution. Most often, the normal
distribution and a Gaussian Naive Bayes classifier are used.

The advantages of a Naive Bayes classifier include simplicity (there are
only few hyperparameter settings) and speed.

In the sklearn library, the function implementing the Gaussian Naive
Bayes classifier algorithm is located in the naive_bayes module and is called
GaussianNB.

4.4. Bagging and Random Forest

Tree models [20] or decision trees is a popular, relatively simple, and yet
effective classification method.

Decision trees define a set of classification rules. The rules correspond to
the sequential split of the data into segments. Each rule can be expressed
as a «if-then» condition imposed on a predictor variable. For each predictor,
split value is defined, which divides records into those where the value of the
predictor variable is greater and those where it is less. A set of such rules
forms a tree whose leaves correspond to one of the two required classes (for
a binary classifier).

Tree models advantages is the simplicity of the results interpretation and
the ability to reproduce the branching rules in natural language. However, one
should avoid overtraining of these models. Overtraining means that branching
rules start to take random noise into account. To prevent overtraining, one
should limit the depth of tree branches.

Trees became particularly popular with the introduction of the ensemble
approach. Its essence is to use a set of decision trees and train them on the
same data with further taking the average or weighted average of their results.

Among the methods of training, a method called bagging or bootstrap
aggregation. The bootstrap process involves repeatedly retrieving a random
set of data from a sample. The number of extracted records is less than the
sample size. The most common is bootstrap with replacement. Replacement
means that the extracted data is returned to the sample after use, mixed, and
used for subsequent retrievals. The begging process consists of training trees
on multiple bootstrap samples with returns.

The random forest machine learning algorithm uses begging and selects
predictor variables in addition to bootstrap. In other words, each new tree is
built on a random subset of variables, rather than on all possible variables.
There is empirical rule that it is most efficient to select only

√
𝑛 predictor

variables from 𝑛 each time.

In the sklearn library, the function that implements the random
forest algorithm is located in the ensemble module and is called
RandomForestClassifier.
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4.5. Gradient Boosting Classifier

Gradient boosting method [21] consists of combining a large number of simple
models to produce one that is more accurate than each individual simple
model itself. A set of simple models is called ensemble, and by boosting we
mean the sequential process of building simple models.
The gradient boosting algorithm is one of the most commonly used machine

learning algorithms. We will give only a brief qualitative description here,
without going into mathematical details [22], [23].
At each step of gradient boosting, the selected loss function is minimized

by gradient descent. The loss function is constructed for the selected base
algorithm. Most often the underlying algorithm is the decision tree algorithm.
When building each subsequent model, the errors of the previous one are
taken into account. This is done by defining the data that does not fit into
the previous simple model and adding the next model that processes this data
correctly. When configuring the algorithm, the maximum number of models
in the ensemble is specified, and when this number of iterations is reached,
the algorithm stops. Each model from the ensemble is assigned a certain
weight and their predictions are generalized.
In the sklearn library, the function that implements the gradient

boosting algorithm is located in the ensemble module and is called
GradientBoostingClassifier.
In addition to the implementation included in scikitlearn, Python also

has the XGBoost [9] library, which is highly optimized and has interfaces for
a large number of programming languages (C/C++, Java, Ruby, Julia, R).
In addition to the implementations from these two libraries, we used the

gradient boosting implementation from the hep_ml [10] library, which contains
machine learning methods used in the field of high-energy physics.

4.6. Neural Network

In the article [1], the authors compared various libraries for building neural
networks [8], [12], [24]–[26]. The result of the speed and the accuracy tests
show that Keras library provides the most optimal solution. Therefore, to
solve the problem of recognizing the decay reaction 𝜏− → 𝜇− + 𝜇− + 𝜇+ we
build neural network using this library.

5. Application of the considered methods

We carry out a comparative analysis of classifiers from section 4 by applying
them to the problem of determining muon decay. The problem is a binary
classification problem and is based on data from the LCH and generated data
for detecting muon decay. Training and test data are presented in csv files.
The data contains the values of 40 analyzed parameters. The target attribute
is the «signal» attribute, which takes the values 0 or 1. For training classifiers,
the data set was divided into training and test samples in the ratio of 8 to
2, the number of records for training classifiers is 54042, and the number of
records for testing is 13511.
We choose MLP (multi-layer perceptron) architecture for the neural network.

The network consists of fully connected layers with Batch Normalization layers
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between them that prevent overtraining. Each of the fully connected layers
contains a different number of neurons. The input layer consists of 28 neurons,
the hidden layers contain 100, 120, 60, and 20 neurons, and the output layer
contains 2, according to the number of classes in the data.
All classifiers were tested on a small discrepancy between real data and

simulation (Kolmogorov–Smirnov test, the test value for the classifier should
be less than 0.09) and a weak correlation with ground test (Cramer–von
Mises (CvM), the test value for the classifier should be less than 0.002) In
the table 3 lists the values of these tests.

Table 3

Results of the Kolmogorov–Smirnov and the Kramer–von Mises tests

Classification Kolmogorov–

Smirnov test

Kramer–von Mises

test

Random Forest 0.03682 0.00092

Logistic Regression 0.03309 0.00103

Gaussian Naive Bayes 0.04722 0.00113

Gradient Boosting

Classifier

0.05162 0.00089

Xgboost 0.06327 0.00089

UGradient Boosting

Classifier

0.05587 0.00102

MLP 0.01139 0.00079

For all classifiers, the main metrics are calculated (table 4) for test data, and
the results of comparing the classifiers are presented as a diagram (Figure 1).
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Figure 1. The results of the comparative analysis of classifiers
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Table 4

The metric values on the test data

Classification Accuracy ROC-AUC Recall F1 Rrecision

Random Forest 0.857 0.851 0.877 0.885 0.892

Logistic Regres-

sion

0.831 0.815 0.880 0.867 0.854

Gaussian Naive

Bayes

0.784 0.759 0.858 0.832 0.808

Gradient Boost-

ing Classifier

0.862 0.854 0.889 0.889 0.890

xgboost 0.861 0.853 0.890 0.889 0.888

UGradient-

BoostingClassi-

fier

0.863 0.868 0.847 0.885 0.927

MLP 0.750 0.787 0.640 0.762 0.941

6. Discussion

The paper presents a comparative analysis of various machine learning al-
gorithms on the example of the problem of determining the decay reaction
𝜏− → 𝜇− + 𝜇− + 𝜇+ at the LHC. We study following algorithms: Logis-
tic Regression, Gaussian naive Bayes classifier, gradient boosting classifier,
bootstrap aggregating (bagging) and random forest, neural network model
(machine learning algorithm — MLA). For each of the algorithms, we build
a classifier using Python libraries and calculate metrics calculated that can
be used to determine the most effective model.

All classifiers successfully passed tests for a small discrepancy between real
data and simulation (Kolmogorov–Smirnov test) and for a weak correlation
with mass (Kramer–von Mises test), which indicates a good quality of the
constructed classifiers for this problem.

To conduct a comparative analysis of machine learning methods, we calcu-
late the most important metrics for each model: accuracy, ROC–AUC score,
recall, F1-score, precision. In the aggregate of all metrics, the random forest
and the gradient boosting method (and their modifications) have the best
results. Logistic Regression, Gaussian Naive Bayes and a model based on
a fully connected neural network show worse results. However, the neural
network surpass other classifiers by the value of the precision metric. This
means that the neural network can better distinguish classes from each other
than other classifiers.
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7. Conclusion

A comparative analysis of various machine learning algorithms is carried
out on the example of the problem of determining the decay reaction 𝜏− →
𝜇− + 𝜇− + 𝜇+ at the Large Hadron Collider. As the compared algorithms
were chosen: Logistic Regression, Naive Bayesian approach with normal
distribution, the method of gradient boosting (Gradient boosting classifier),
bootstrap aggregation in combination with random forest, a model based
on a neural network (machine learning algorithm—MLA). For each of the
algorithms, using the libraries for the Python language, a classifier was built
and metrics were calculated, based on which the most effective model can be
determined.
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Сравнительный анализ методов машинного обучения
на примере задачи определения мюонного распада

М. Н. Геворкян1, А. В. Демидова1, Д. С. Кулябов1, 2

1Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2Лаборатория информационных технологий

Объединённый институт ядерных исследований
ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Применение алгоритмов машинного обучения для анализа статистических
моделей имеет достаточно длинную историю. Развитие компьютерной техники
дало этим алгоритмам новое дыхание. Особенно громкую известность получи-
ло такое направление машинного обучения, как глубинное обучение. Однако
авторы полагают, что многие исследователи пытаются использовать методы
глубинного обучения за пределами их применимости. Этому способствуют как
широкая распространённость программных комплексов, реализующих алгорит-
мы глубинного обучения, так и кажущаяся простота исследования. Всё это стало
побудительным мотивом для проведения сравнения алгоритмов глубинного обу-
чения и классических алгоритмов машинного обучения.
В качестве задачи был выбран эксперимент на Большом адронном коллай-

дере, поскольку авторы знакомы с данной научной областью, а также потому,
что данные эксперимента доступны публично. В статье проводится сравнение
различных алгоритмов машинного обучения применительно к задаче распозна-
ния реакции распада 𝜏− → 𝜇− + 𝜇− + 𝜇+ на Большом адронном коллайдере.
Используются готовые свободные реализации алгоритмов машинного обучения.
Алгоритмы сравниваются друг с другом на основе вычисляемых метрик. В ре-
зультате исследования можно сделать вывод, что все рассмотренные методы
машинного обучения вполне сопоставимы друг с другом (с учётом выбранных
метрик), при этом разные методы имеют разные области применимости.

Ключевые слова: мюонный распад, машинное обучение, нейронные сети
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In the recent years thanks to the modern and sophisticated technologies the
astronomers and astrophysicists were able to look deep into the Universe. This
vast data poses some new problem to the cosmologists. One of the problems is to
develop an adequate theory. Another one is to fit the theoretical results with the
observational one. In this report within the scope of the isotropic and homogeneous
Friedman–Lemaitre–Robertson–Walker (FLRW) cosmological model we study the
evolution of the Universe filled with dust or cosmological constant. The reason to
consider this model is the present universe surprisingly homogeneous and isotropic
in large scale. We also compare our results with the data from the SAI Supernovae
Catalog. Since the observational data are given in terms of Hubble constant (𝐻)
and redshift (𝑧) we rewrite the corresponding equations as a functions of 𝑧. The
task is to find the set of parameters for the mathematical model of an isotropic and
homogeneous Universe that fits best with the astronomical data obtained from the
study of supernovae: magnitude (𝑚), redshift (𝑧).
Key words and phrases: fitting, cosmology, Friedmann’s Universe, data analysis

1. Introduction

Based on modern data, it is established that the universe is not stationary
today, but it is expanding with acceleration [1]–[8]. This fact was established
by studying large amounts of data on supernovae, including those that are
remote in huge distances. The peculiarity of this work is that the objects
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contained in the database [9], [10] are located mainly at distances of non-
cosmological scale, which may be reflected in the descriptive power of certain
Friedmann models of the Universe.

2. Friedmann model

The equations of General relativity describing the evolution of the Universe
are complex enough to solve them exactly. So Friedmann suggested that we
instead accept two simple assumptions: (1) the universe looks exactly the
same in all directions; (2) this condition holds true for all its points. Based on
General relativity and these two simple assumptions, Friedmann showed [11]
that the universe may not be stationary. This model was further independently
developed by Lemaitre [12], Robertson [13]–[15] and Walker [16].

The equations describing the evolution of the Universe, and which we will
solve, look like this:

⎧{{
⎨{{⎩

𝐻̇ + 𝐻2 = −4𝜋𝐺
3

(𝜀 + 3𝑝),

̇𝑎 = 𝐻𝑎,
̇𝜀 = −3𝐻(𝜀 + 𝑝).

(1)

Here: 𝐻 — Hubble parameter, 𝑎 — scale factor, 𝜀 — energy density, 𝑝 —
pressure. To solve this system, we need another condition — the connection
between 𝑝 and 𝜀.
Let 𝑝 = 𝑓(𝜀). This relationship is called the equation of state. In our case

(the dust Universe), this equation reduces to a trivial one: 𝑝 = 0.
Let’s go back to system (1), which is a system of differential equations

with respect to time. First, we need to go from time to redshift, since the
observational data contains this value.

The red-shift is defined as

𝑧 = 𝜆𝑜 − 𝜆
𝜆

, (2)

here 𝜆𝑜 is the wavelength during detection, 𝜆 is the wavelength during
emission.

1 + 𝑧 = 𝜆𝑜
𝜆

= 𝜈𝑜
𝜈

= 𝑎(𝑡𝑜)
𝑎(𝑡)

, (3)

𝑑𝑧
𝑑𝑡

= −𝑎(𝑡𝑜)
𝑎2(𝑡)

̇𝑎(𝑡) = −𝑎(𝑡𝑜)
𝑎(𝑡)

̇𝑎(𝑡)
𝑎(𝑡)

= −(𝑧 + 1)𝐻. (4)

Using equations (4), (3), and the second equation from the system (1), we
obtain the first equation for the scale factor with respect to 𝑧:

𝑑𝑎
𝑑𝑧

= − 𝑎(𝑡𝑜)
(𝑧 + 1)2 . (5)
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Similarly for the equation on 𝐻:

𝑑𝐻
𝑑𝑧

𝑑𝑧
𝑑𝑡

+ 𝐻2 = −4𝜋𝐺
3

(𝜀 + 3𝑝) => 𝑑𝐻
𝑑𝑧

= 1
1 + 𝑧

[𝐻 + 4𝜋𝐺
3𝐻

(𝜀 + 3𝑝)] . (6)

The third equation from system (1) is converted to an equation with respect
to 𝑎. Then the result (1) is rewritten as:

⎧
{{{
⎨
{{{
⎩

𝑑𝐻
𝑑𝑧

= 1
1 + 𝑧

[𝐻 + 4𝜋𝐺
3𝐻

(𝜀 + 3𝑝)] ,

𝑑𝑎
𝑑𝑧

= − 𝑎(𝑡𝑜)
(𝑧 + 1)2 ,

𝑑𝜀
𝜀 + 𝑝

= −3𝑑𝑎
𝑎

.

(7)

Since the astronomical data contains a magnitude, it is necessary to associate
the Hubble parameter with the magnitude. Let’s do this with another
equation — the equation for the distance that light travels:

𝑑𝐷
𝑑𝑡

= 𝑐 => 𝑑𝐷
𝑑𝑧

𝑑𝑧
𝑑𝑡

= 𝑐 => 𝑑𝐷
𝑑𝑧

= − 𝑐
(1 + 𝑧)𝐻

, (8)

and the equation for magnitude:

𝑚 = −2.5 lg 𝐷2
0

𝐷2 , (9)

The complete system of equations will then take the form:

⎧
{{{{{{{
⎨
{{{{{{{
⎩

𝑑𝐻
𝑑𝑧

= 1
1 + 𝑧

[𝐻 + 4𝜋𝐺
3𝐻

(𝜀 + 3𝑝)] ,

𝑑𝑎
𝑑𝑧

= − 𝑎(𝑡𝑜)
(𝑧 + 1)2 ,

𝑑𝜀
𝜀 + 𝑝

= −3𝑑𝑎
𝑎

,

𝑑𝐷
𝑑𝑧

= − 𝑐
(1 + 𝑧)𝐻

,

𝑚 = −2.5 lg 𝐷2
0

𝐷2 .

(10)

With the condition 𝑝 = 0:

𝜀 = 𝜀𝑜(1 + 𝑧)3. (11)
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Substitute (11) and 𝑝 = 0 in the first equation from (10), then the solution
of this dif. equations with the initial condition 𝐻(0) = 𝐻0:

𝐻 = √8𝜋𝐺𝜀0
3

(1 + 𝑧)3 + (𝐻2
0 − 8𝜋𝐺𝜀0

3
) (1 + 𝑧)2. (12)

Substitute (12) in the fourth equation from (10):

𝛼 = 𝐻2
0 − 8𝜋𝐺𝜀0

3
, 𝛽 = 8𝜋𝐺𝜀0

3
.

𝐷 = −𝑐 ∫ 𝑑𝑧
(1 + 𝑧)2[𝛼 + 𝛽(𝑧 + 1)]1

2
. (13)

Substituting 𝛽𝑥 + 𝛼 = 𝑡2 and integrating with the condition 𝐷(0) = 0,
we get:

𝐷 = − 𝛽
𝛼3

2
ln

√
𝛼 + √𝛼 + 𝛽(1 + 𝑧)√

1 + 𝑧(
√

𝛼 +
√

𝛼 + 𝛽)
−

−
√

𝛼 + 𝛽(1 + 𝑧) − √𝛼 + 𝛽(1 + 𝑧)
𝛼(1 + 𝑧)

. (14)

The results of the approximation are shown in the table 1.

Table 1

The result of the approximation in the case of 𝑤 = 0 (dust)

RMSE MSE 𝐻0, (km/s)/Mpc Ω𝑚 𝐷0, m

1.4438 1.0478 68.0001 5.7764 9.7200 × 1020

In the third equation from (10) we get rid of time and substitute 𝑝 = 0,
we get:

𝜀 = 𝜀0𝑎−3. (15)

Now substitute H from the second equation from (1) and (15) to the first
equation from (1):

̈𝑎 = −4𝜋𝐺
3

𝜀0𝑎−2. (16)

We also solve it numerically with initial conditions 𝑎(0) = 1, ̇𝑎(0) = 𝐻0.

3. LCDM-model

LCDM-model is short for Lambda-Cold Dark Matter, a modern cosmological
model based on the assumption of isotropy and homogeneity of the Uni-
verse [17]. The space environment in this model consists of several components:
dark energy (Λ-member), cold dark matter, ordinary matter, and radiation.
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Table 2

LCMD-model parameters

𝐻0, (km/s)/Mpc Ω𝑚 Ω𝑟𝑎𝑑 𝜀𝑐𝑟𝑖𝑡, 𝑘𝑔/𝑚3 ΩΛ

67.74 0.3082 0.0001 8.62 × 10−27 0.6911

Model parameters [18] are shown in table 2.

The first and fourth equations from (10) will take the form:

⎧{{
⎨{{⎩

𝑑𝐻
𝑑𝑧

= 𝐻
1 + 𝑧

+ 𝐻2
0

𝐻
(Ω𝑟𝑎𝑑(1 + 𝑧)3 + 1

2
Ω𝑚(1 + 𝑧)2 − ΩΛ(1 + 𝑧)−1) ,

𝑑𝐷
𝑑𝑧

= − 𝑐
(1 + 𝑧)𝐻

.
(17)

And equation for the scale factor:

̈𝑎 = −𝐻2
0 (Ω𝑟𝑎𝑑𝑎−3 + 1

2
Ω𝑚𝑎−2 − Ω𝐿𝑎) . (18)

We also solve it numerically with initial conditions ̇𝑎(0) = 𝐻0, 𝑎(0) = 1.
RMSE and MSE for the LCDM model are 1.4612 and 1.0579, respectively.

4. Comparison of models

Comparison of theoretical results and observations within the scope of LRS
Bianchi type-I model was performed in [19]–[21].

An approximation of the m(z) curve using the parameters of the LCDM
model and the Friedmann model is shown in figure 1.

Figure 1. The dependence of the magnitude on the redshift for the LCDM-model

and the Friedmann model
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The dependencies of 𝐻(𝑧) are shown in figure 2, and the dependencies of
the scale factor and Hubble parameter on time are shown in figures 3–5.

Figure 2. Dependence of the Hubble parameter on the redshift for the LCDM-model

and the Friedmann model

Figure 3. Dependence of the scale factor on time for the LCDM-model and the Friedmann

model

Figure 4. Dependence of the Hubble parameter on time for the LCDM-model
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Figure 5. Dependence of the Hubble parameter on time for the Friedmann model

Table 3

Metrics for the quality of models for all 𝑧

RMSE MSE Model

1.4438 1.0478 Dust

1.4612 1.0579 LCDM

Comparison of quality metrics is shown in table 3.

Thus, it can be seen that the data from the SAI Supernovae Catalog is
better described by the model of the dust Universe with a critical density of
Ω𝑚 = 5.7764 than by the LCDM model. The Friedmann universe collapses
after ≈ 1.3𝑡0 of the age of the Universe (𝑡0 = 1/𝐻0). In turn, the LCDM
model simulates an expanding Universe with acceleration. The explanation
for this conclusion is the fact that the data contains a huge number (5359
out of 5614) of supernovae located in regions where the redshift 𝑧 < 0.5. At
scales where 𝑧 < 0.5, the model of the Friedmann Universe is more efficient.
Let’s look at this in more detail. Divide our data into two sets: the first

data set will contain data with redshift values 𝑧 < 0.5, and the second data
set with redshift values 𝑧 > 0.5.
We get approximations in these cases. The results are shown in figures 6–7.

Quality metrics in tables 4–5.

Table 4

Metrics for the quality of models at

𝑧 < 0.5

RMSE MSE Model

1.4502 1.0506 Dust

1.4803 1.0781 LCDM

Table 5

Metrics for the quality of models at

𝑧 > 0.5

RMSE MSE Model

1.0888 0.7285 Dust

0.9602 0.6001 LCDM
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Figure 6. The dependence of the magnitude on the redshift for the LCDM-model and the

Friedmann model at 𝑧 < 0.5

Figure 7. The dependence of the magnitude on the redshift for the LCDM-model and the

Friedmann model at 𝑧 > 0.5

5. Discussion

As we have already mentioned, thanks to modern technology astronomers
and astrophysicists have been gathering a huge number of data about the past
and present of our Universe. These helps us not only understand the past of
the Universe, but also predict the future. Based on those data cosmologists try
to construct the theoretical models and compare them with the observational
data obtain the reliable one. Here we did the same within the scope of the
simplest models. The idea was to construct some mathematical models which
can be used in future for more complicated and realistic cases.

6. Conclusions

It was shown that the efficiency of the LCDM-model based on dark energy
dominance better describes the behavior of the Universe at large scales than
the model based on dust dominance. This corresponds to the modern view of
the evolution of the Universe.
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Применение моделей Фридмана для описания
эволюции Вселенной на основе данных SAI

Supernovae Catalog

А. С. Гавриков1, 2, Биджан Саха1, В. С. Рихвицкий1

1Институт физических исследований и технологий
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Объединённый институт ядерных исследований
ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

В последние годы благодаря современным и изощрённым технологиям аст-
рономы и астрофизики смогли заглянуть вглубь Вселенной. Полученные при
этом данные ставят перед космологами новые проблемы. Одна из проблем за-
ключается в разработке адекватной и достаточной теории. Другая проблема
заключается в сопоставлении теоретических результатов с результатами наблю-
дений. В настоящем докладе в рамках изотропной и однородной космологической
модели Фридмана–Леметра–Робертсона–Уолкера (FLRW) мы изучаем эволю-
цию Вселенной, заполненной пылью или космологической постоянной. Причина
рассмотрения этих моделей заключается в том, что нынешняя Вселенная удиви-
тельно однородна и изотропна в больших масштабах. Мы также сравниваем наши
результаты с данными из каталога SAI Supernovae Catalog. Поскольку данные
наблюдений даны в терминах постоянной Хаббла (𝐻) и красного смещения (𝑧),
мы перепишем соответствующие уравнения в виде функций от 𝑧. Задача состоит
в том, чтобы найти набор параметров для математической модели изотропной
и однородной Вселенной, который лучше всего соответствует астрономическим
данным, полученным при изучении сверхновых: звёздная величина (𝑚), красное
смещение (𝑧).
Ключевые слова: фитирование, космология, Вселенная Фридмана, анализ
данных
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In recent years spinor field is being used by many authors to address some burning
issues of modern cosmology. The motive behind using the spinor field as a source
for gravitational field lies on the fact that the spinor field not only can describe
the different era of the evolution but also can simulate different substances such
as perfect fluid and dark energy. Moreover, the spinor field is very sensitive to the
gravitational one and depending on the gravitational field the spinor field can react
differently and change the spacetime geometry and the spinor field itself differently.
This paper provides a brief description of the nonlinear spinor field in the Friedmann-
Lemaitre-Robertson-Walker (FLRW) model. The results are compared in Cartesian
and spherical coordinates. It is shown that during the transition from Cartesian
coordinates to spherical ones, the energy-momentum tensor acquires additional non-
zero non-diagonal components that can impose restrictions on either spinor functions
or metric ones.

Key words and phrases: spinor field, FLRW model, Cartesian coordinates, spheri-
cal coordinates

1. Introduction

In 1998, it was found that the universe is not just expanding, but doing so
with acceleration. Many hypotheses are proposed to explain this phenomenon.
The most significant of them is the hypothesis of the existence of dark energy,
which evenly fills the entire Universe and has a negative pressure. Some
perfect liquid or scalar field is used to describe dark energy.
But there is another approach. Using the spinor field as a source of

gravity. In recent years it was shown that the spinor field can give rise to
a singularity-free Universe [1]–[5]. Beside this the spinor field can accelerate
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the isotropization process of the initially anisotropic spacetime [3], [4], [6], [7].
Finally, the spinor field can be considered as an alternative model for dark
energy [7]–[17].

Moreover, it was shown that spinor field is very sensitive to gravitational
one [18] and its specific behavior in presence of the gravitational field can
alter the geometry of the spacetime as well as the components of the spinor
field itself [19].

This is possible due to the specific behavior of the spinor field in the
presence of a gravitational field. The spinor field in cosmological models has
already been considered in [3], [9], [20]. But in all these works, the spinor field
is considered in Cartesian coordinates. A spinor field in spherically symmetric
spaces was considered in [21]–[23].

As can be seen from all these works, non-diagonal components of the
energy-momentum tensor can impose additional restrictions on either metric
functions or spinor functions. In this paper we consider the spinor field in
the framework of a spherically symmetric FLRW model. The results are
compared with those obtained in Cartesian coordinates.

2. Basic equations

The action for a gravitational field and a nonlinear spinor field can be
written as follows:

𝑆(𝑔, 𝜓, 𝜓) = ∫ ( 𝑅
2𝜘

+ 𝐿𝑠𝑝) 𝑑Ω, (1)

where 𝑅 is a Ricci scalar, 𝜘 = 8𝜋𝐺, 𝐺 is a gravitational constant, 𝐿𝑠𝑝 is

a Lagrangian for a nonlinear spinor field, which looks like this:

𝐿𝑠𝑝 = 𝑖
2

(𝜓𝛾𝜇∇𝜇𝜓 − ∇𝜇𝜓𝛾𝜇𝜓) − 𝑚𝜓𝜓 − 𝐹, (2)

where 𝑚 is the mass, 𝐹 = 𝐹(𝐾) is the nonlinear term. The 𝐾 parameter

takes one of 4 values: 𝐼, 𝐽, 𝐼 + 𝐽, 𝐼 − 𝐽. Here 𝐼 = 𝑆2 = (𝜓𝜓)2 and

𝐽 = 𝑃 2 = (𝜓𝛾5𝜓)2.

From the expression (2), we can get the equations for the spinor field:

𝑖𝛾𝜇∇𝜇𝜓 − 𝑚𝜓 − 𝐷𝜓 − 𝑖Υ𝛾5𝜓 = 0, (3)

𝑖∇𝜇𝜓𝛾𝜇 + 𝑚𝜓 + 𝐷𝜓 + 𝑖Υ𝜓𝛾5 = 0, (4)

where the following symbols are entered:

𝐷 = 2𝑆𝐹𝐾𝐾𝐼 = 2𝑆 𝑑𝐹
𝑑𝐾

𝑑𝐾
𝑑𝐼

,

Υ = 2𝑃𝐹𝐾𝐾𝐽 = 2𝑃 𝑑𝐹
𝑑𝐾

𝑑𝐾
𝑑𝐽

.
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From (2), (3) and (4) an alternative form of the Lagrangian can be obtained:

𝐿 = 2𝐾 𝑑𝐹
𝑑𝐾

− 𝐹(𝐾). (5)

The covariant derivatives ∇𝜇 are defined as follows:

∇𝜇𝜓 = 𝜕𝜇𝜓 − Γ𝜇𝜓, (6)

∇𝜇𝜓 = 𝜕𝜇𝜓 + 𝜓Γ𝜇, (7)

where Γ𝜇 is a spinor affine connection that is defined as follows:

Γ𝜇 = 1
4

𝑔𝜌𝛿 (𝜕𝑒(𝑏)
𝜎

𝜕𝑥𝜇 𝑒𝜌
(𝑏) − Γ𝜌

𝜇𝜎) 𝛾𝛿𝛾𝜎, (8)

where 𝑒(𝑏)
𝜎 is a system of orthogonal 4-vectors that obey the following expres-

sions:

𝑒(𝑎)
𝜇 𝑒𝜈

(𝑎) = 𝛿𝜈
𝜇, 𝑒(𝑎)

𝜇 𝑒𝜇
(𝑏) = 𝛿𝑎

𝑏 , (9)

𝑔𝜇𝜈(𝑥) = 𝑒𝑎
𝜇(𝑥)𝑒𝑏

𝜈(𝑥)𝜂𝑎𝑏. (10)

The expression for the energy-momentum tensor is as follows:

𝑇 𝜌
𝜇 = 𝑔𝜌𝜈𝑇𝜈𝜇 − 𝑔𝜌𝜈 ̃𝑇𝜈𝜇 − 𝛿𝜌

𝜇[2𝐾𝐹𝐾 − 𝐹(𝐾)], (11)

where the following symbols are used:

𝑇𝜈𝜇 = 𝑖
4

(𝜓𝛾𝜇𝜕𝜈𝜓 + 𝜓𝛾𝜈𝜕𝜇𝜓 − 𝜕𝜇𝜓𝛾𝜈𝜓 − 𝜕𝜈𝜓𝛾𝜇𝜓), (12)

̃𝑇𝜈𝜇 = 𝑖
4

𝜓(𝛾𝜇Γ𝜈 + Γ𝜈𝛾𝜇 + 𝛾𝜈Γ𝜇 + Γ𝜇𝛾𝜈)𝜓. (13)

3. Cartesian coordinates

This section uses the following metric:

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡) [𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2] . (14)

Nontrivial components of the Einstein tensor in this metric have the following
form:

𝐺0
0 = −3 ̇𝑎2

𝑎2 , (15)

𝐺𝑖
𝑗 = − (2 ̈𝑎

𝑎
+ ̇𝑎2

𝑎2 ) 𝑖, 𝑗 = 1, 2, 3. (16)
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From metric (14), we can use (10) to find expressions for tetrads:

𝑒(0)
0 = 1 𝑒(1)

1 = 𝑎(𝑡) 𝑒(2)
2 = 𝑎(𝑡) 𝑒(3)

3 = 𝑎(𝑡). (17)

Expressions for Γ𝜇 are obtained from (17) and (8):

Γ0 = 0 Γ1 = ̇𝑎
2

𝛾1𝛾0 Γ2 = ̇𝑎
2

𝛾2𝛾0 Γ3 = ̇𝑎
2

𝛾3𝛾0. (18)

From (3), (4) (6), (7) and (18) we get the equations for the spinor field:

𝑖𝛾0 ( ̇𝜓 + 3
2

̇𝑎
𝑎

𝜓) − 𝑚𝜓 − 𝐷𝜓 − 𝑖Υ𝛾5𝜓 = 0, (19)

𝑖 (𝜓̇ + 3
2

̇𝑎
𝑎

𝜓) 𝛾0 + 𝑚𝜓 + 𝐷𝜓 + 𝑖Υ𝜓𝛾5 = 0. (20)

Non-trivial components of the energy-momentum tensor are obtained from
(11), (12), (13), (18), (19) and (20):

𝑇 0
0 = 𝑚𝑆 + 𝐹(𝐾), (21)

𝑇 1
1 = 𝐹(𝐾) − 2𝐾𝐹𝐾, (22)

𝑇 2
2 = 𝐹(𝐾) − 2𝐾𝐹𝐾, (23)

𝑇 3
3 = 𝐹(𝐾) − 2𝐾𝐹𝐾. (24)

The complete system of Einstein equations looks like this:

3 ̇𝑎2

𝑎2 = 8𝜋𝐺(𝑚𝑆 + 𝐹(𝐾)), (25)

2 ̈𝑎
𝑎

+ ̇𝑎2

𝑎2 = 8𝜋𝐺(𝐹(𝐾) − 2𝐾𝐹𝐾). (26)

A more detailed description of this case can be found in the work [24].

4. Spherical coordinates

A completely different situation occurs when moving from Cartesian coor-
dinates to spherical ones. The transition is performed as follows:

𝑥 = 𝑟 sin(𝜃) cos(𝜑), (27)

𝑦 = 𝑟 sin(𝜃) sin(𝜑), (28)

𝑧 = 𝑟 cos(𝜃). (29)

The following metric is obtained from (27), (28), (29) and (14):

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)[𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2(𝜃)𝑑𝜑2)]. (30)
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The nontrivial components of the Einstein tensor remain unchanged. Ex-
pressions for tetrads are obtained from (30) using (10):

𝑒(0)
0 = 1 𝑒(1)

1 = 𝑎(𝑡) 𝑒(2)
2 = 𝑎(𝑡)𝑟 𝑒(3)

3 = 𝑎(𝑡)𝑟 sin(𝜃). (31)

Expressions for affine connectivity are obtained from (31) and (8):

Γ0 = 0, (32)

Γ1 = 1
2

̇𝑎𝛾1𝛾0, (33)

Γ2 = 1
2

( ̇𝑎𝑟𝛾2𝛾0 + 𝛾2𝛾1), (34)

Γ3 = 1
2

( ̇𝑎𝑟 sin(𝜃)𝛾3𝛾0 + sin(𝜃)𝛾3𝛾1 + cos(𝜃)𝛾3𝛾2). (35)

Substituting (32), (33), (34) and (35) into (3) and (4) is obtained:

𝑖𝛾0 ̇𝜓 + 𝑖3
2

̇𝑎
𝑎

𝛾0𝜓 + 𝑖𝑈𝛾1𝜓 + 𝑖𝑉𝛾2𝜓 − [𝑚 + 𝐷]𝜓 − 𝑖Υ𝛾5𝜓 = 0, (36)

𝑖𝜓̇𝛾0 + 𝑖3
2

̇𝑎
𝑎

𝜓𝛾0 + 𝑖𝑈𝜓𝛾1 + 𝑖𝑉𝜓𝛾2 + [𝑚 + 𝐷]𝜓 + 𝑖Υ𝜓𝛾5 = 0, (37)

where 𝑈 = 1/𝑎𝑟 and 𝑉 = cot(𝜃)/2𝑎𝑟. Now (11), (12), (13), (32)–(35) and
(36)–(37) produce non-zero components of the energy-momentum tensor:

𝑇 0
0 = 𝑚𝑆 + 𝐹(𝐾), (38)

𝑇 1
1 = 𝐹(𝐾) − 2𝐾𝐹𝐾, (39)

𝑇 2
2 = 𝐹(𝐾) − 2𝐾𝐹𝐾, (40)

𝑇 3
3 = 𝐹(𝐾) − 2𝐾𝐹𝐾, (41)

𝑇 0
1 = cot(𝜃)

4𝑟
𝐴3, (42)

𝑇 0
2 = −3

4
𝐴3, (43)

𝑇 0
3 = 3

4
sin(𝜃)𝐴2 − 1

2
cos(𝜃)𝐴1, (44)

𝑇 1
3 = −cos(𝜃)

4𝑎
𝐴0. (45)

From (15), (16) and 𝑇 0
0 –𝑇 1

3 we get the complete system of Einstein equations.
For diagonal elements we have:

3 ̇𝑎2

𝑎2 = 8𝜋𝐺[𝑚𝑆 + 𝐹(𝐾)], (46)
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2 ̈𝑎
𝑎

+ ̇𝑎2

𝑎2 = 8𝜋𝐺[𝐹(𝐾) − 2𝐾𝐹𝐾]. (47)

Expressions for non-diagonal elements:

cot(𝜃)
4𝑟

𝐴3 = 0, (48)

−3
4

𝐴3 = 0, (49)

3
4
sin(𝜃)𝐴2 − 1

2
cos(𝜃)𝐴1 = 0, (50)

−cos(𝜃)
4𝑎

𝐴0 = 0, (51)

where 𝐴𝜇 = 𝜓𝛾5𝛾𝜇𝜓 — components of the 4-pseudovector. This shows
that the equations are identical for diagonal components, but non-diagonal
components impose some additional conditions on either metric functions
or spinor functions. These restrictions will be discussed in more detail in
the next section. But this requires equations for spinor invariants. They are
obtained from (36)–(37) and look like this:

̇𝑆 + 3 ̇𝑎
𝑎

𝑆 + 2Υ𝐴0 = 0, ̇𝑃 + 3 ̇𝑎
𝑎

𝑃 − 2[𝑚 + 𝐷]𝐴0 = 0, (52)

̇𝐴1 + 3 ̇𝑎
𝑎

𝐴1 + 2𝑈𝐴0 = 0, ̇𝐴2 + 3 ̇𝑎
𝑎

𝐴2 + 2𝑉 𝐴0 = 0, (53)

̇𝐴0 + 3 ̇𝑎
𝑎

𝐴0 + 2𝑈𝐴1 + 2𝑉 𝐴2 + 2[𝑚 + 𝐷]𝑃 − 2Υ𝑆 = 0. (54)

In this instance (𝛾5)2 = 1. The first integral of this system is equal to:

𝑆2 + 𝑃 2 + (𝐴0)2 − (𝐴1)2 − (𝐴2)2 = 𝐶
𝑎6 , 𝐶 = 𝑐𝑜𝑛𝑠𝑡. (55)

5. Restrictions on the spinor functions

As mentioned earlier, the equations (48), (49), (50) and (51) impose re-
strictions on either the metric function or the spinor functions that are the
solution of the equations (36)–(37). It follows from (48)–(51) that 𝐴3 = 0
and 𝐴0 = 0. A restriction on 𝐴1 and 𝐴2 looks like this:

𝐴1 = 3
2
tan(𝜃)𝐴2. (56)

Using (56) and equations from (48) to (51) we get the following:

𝑆2 + 𝑃 2 + (𝐴0)2 − (𝐴2)2 [9
4
tan2(𝜃) + 1] = 𝐶

𝑎6 . (57)
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It can also be shown [24] that if 𝑚 ≠ 0, then:

𝐾 = 𝐼 = 𝑆2 = 𝐶1
𝑎6 , 𝐶1 = 𝑐𝑜𝑛𝑠𝑡. (58)

If 𝑚 = 0, then:
𝐾 = 𝐶2

𝑎6 , 𝐶2 = 𝑐𝑜𝑛𝑠𝑡 (59)

for 𝐾 = 𝐼, 𝐾 = 𝐽, 𝐾 = 𝐼 + 𝐽 and 𝐾 = 𝐼 − 𝐽.

6. Discussion

Though there is a number of papers dealing with FLRW cosmological model
with spinor fields, we did it again. Main idea was to see how the coordinate
transformation effects the behavior of spacetime evolution and the spinor
field. Moreover, mathematically it may help us to model different type of
stars using the spinor field as a source field. In that sense this study is the
beginning of the further studies that we plan to carry out in future.

7. Conclusions

Within the scope of spherically symmetric FLRW model we study the role
of the spinor field in the evolution of the Universe. It is found that the usual
transition from Cartesian coordinates to spherical ones leads to the appearance
of non-zero non-diagonal components of the energy-momentum tensor. The
presence of these components leads to some restrictions on spinor functions.
However, these limitations may not always directly affect the solution of
Einstein’s equations. For example, if 𝐾 = 𝐼 = 𝑆2, these restrictions will not
affect the solution of the equations (25) and (26).
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Спинорное поле в сферически симметричной
Вселенной Фридмана

Саха Биджан1, 2, Е. И. Захаров1, В. С. Рихвицкий2

1Институт физических исследований и технологий
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2Лаборатория информационных технологий

Объединённый институт ядерных исследований
ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

В последние годы спинорное поле используется многими авторами для решения
некоторых актуальных вопросов современной космологии. Мотив использования
спинорного поля в качестве источника гравитационного поля заключается в том,
что спинорное поле может не только описывать различные этапы эволюции
Вселенной, но и моделировать различные типы вещества, такие как идеальная
жидкость и темная энергия. Кроме того, спинорное поле очень чувствительно
к гравитационному, и в зависимости от гравитационного поля спинорное поле
может реагировать по-разному, изменяя тем самым геометрию пространства-
времени. В настоящей работе дается краткое описание нелинейного спинорного
поля в модели Фридмана–Леметра–Робертсона–Уолкера (FLRW). Результаты
сравниваются в декартовых и сферических координатах. Показано, что при
переходе от декартовых координат к сферическим тензор энергии-импульса
имеет дополнительные ненулевые недиагональные компоненты, которые могут
накладывать ограничения как на спинорные функции, так и на метрические.

Ключевые слова: спинорное поле, модель FLRW, декартовы координаты, сфе-
рические координаты
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The article discusses the kinematic support, which allows reducing the horizontal
dynamic effects on the building during earthquakes. The model of a seismic isolation
support is considered from the point of view of classical mechanics, that is, we
assume that the support is absolutely solid, oscillating in a vertical plane above
a fixed horizontal solid plate. This approach allows a more adequate description
of the interaction of the support with the soil and the base plate of the building.
The paper describes the procedure for reducing the complete system of equations
of motion of a massive rigid body on a fixed horizontal perfectly smooth plane to
a form suitable for applying the finite difference method and its implementation in
the Sage computer algebra system.
The numerical calculations by the Euler method for grids with different number

of elements are carried out and a mathematical model of the support as a perfectly
rigid body in the Sage computer algebra system is implemented. The article presents
the intermediate results of numerical experiments performed in Sage and gives a brief
analysis (description) of the results.

Key words and phrases: kinematic support, seismic isolation support, mathe-
matical model, finite difference method, computer algebra system, Sage, numerical
calculations

1. Introduction

As one of the types of seismic protection of buildings in seismically active
regions of the Earth, among others, auxiliary “seismic suppression” supports
are used. A large number of standards of such supports are known with a high
level of reliability of operation and a high ability to damp seismic waves of
high magnitude. They are high-tech in manufacturing, are sold at high prices
and, thanks to efficiency and reliability, are in high demand among large
construction companies and in areas with a high standard of living.
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At the same time, in poor areas of developing countries, citizens and mu-
nicipalities cannot afford to use them. However, it is precisely in such regions
that residents most often suffer from the devastating effects of earthquakes.
The Soviet, and then the Russian school of seismic protection architecture
was able to offer inexpensive and effective solutions in the form of so-called
kinematic supports.

In our country and abroad, a large number of active seismic protection sys-
tems for buildings have been proposed, developed and applied. Among them
are those proposed by A. Kurzanov, S.Yu. Semenov [1], [2], Yu. P. Cherepin-
sky [3], V.V. Nazina, etc. Some of these systems were practically implemented
in real buildings [1], [2], [4], [5], making it possible to assess their workability
for building industry. Vibration tests were carried out at many facilities [6],
[7], which provided experimental data on the behavior of these systems under
dynamic impacts. However, essentially all developed systems need additional
analysis under full-scale conditions. Therefore, many aspects of the real be-
havior of seismic protection systems are difficult to study theoretically or on
models due to the very large number of factors affecting the behavior of the
structure during an intense earthquake.

Kinematic supports are vertically placed cylinders on which the building
rests. Neither the place of entry of the support into the ground or concrete
slab, nor the contact with the horizontal slab of the building placed on such
supports, are fixed rigidly. Supports can be made in the form of short concrete
pillars with an outer cage of steel pipe or a reinforcing cage of carbon composite
or basalt composite nets. It is promising to use in the construction of concrete
racks with dispersed reinforcement basalt fiber, since such concretes have
increased resistance to cracking and tensile strength during bending.

The essence of the kinematic support is that when the base is displaced
by a certain design value, the building slightly rises, receiving some addi-
tional kinetic energy. In this case, a returning torque arises, bringing the
”base-building” system to its original state (position before the earthquake).
Residential buildings constructed using seismic isolating supports have full-
scale confirmation of the reliability of the structure and have proven themselves
successful in experimental studies [1], [2].

The aim of our work is to create an adequate mathematical model of the
support and its interface with the building, which will help to design kinematic
supports taking into account the operational requirements of customers.

The solution to this problem can be approached from two sides. First,
it is possible to create a model of elastic support in the Ansys, system [8].
With this approach, the main difficulty is the selection of adequate boundary
conditions for the place where the support is in contact with the soil and base
plate of the building.

The second approach proposes to consider the support from the point of
view of classical mechanics, assuming it to be a perfectly rigid body, oscillating
in a vertical plane above a fixed horizontal absolutely smooth plate, but more
adequately describe the interaction of the support with the ground and the
building plate.

From the point of view of analytical mechanics, the motion of kinematic sup-
ports is the motion of a complex system of bodies with non-holding bonds [9].
The mathematical basis of the dynamics of such systems was developed
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by outstanding mathematicians J. Dalamber, S. Poisson, Yu.A. Arkhangel-
sky, V.V. Kozlov, A.P. Markeev and others. In our work, we will follow
the formalism developed by A.P. Markeev.
Models of rigid body mechanics are systems of a large number of ordinary

differential equations (ODEs) that are not resolved with respect to derivatives
[10], [11]. They, as a rule, do not allow an analytical solution. Therefore, we
are going to use the finite difference method. For its successful application,
it is important to solve the equations for derivatives by increasing the order.
Due to the large number of equations, this procedure turns out to be rather
complicated. Therefore, it seems natural to execute it in a computer algebra
system (CAS). Computer-aided study of such models is carried out in two
stages:

1) symbolic transformations reducing the system to normal form, used in
the standard formulation of the Cauchy theorem;

2) numerical solution of this system using the finite difference method (rk4).

We chose the Sage system [12], because it can execute both the first and
second stages. To test the described approach, we took the simplest model
that describes the complete system of equations of motion of a massive rigid
body along a fixed horizontal perfectly smooth plane [10], [11].

2. Description of the mathematical model

Let the seismic isolation support be a rigid body and have the shape of
a cylinder, in which one of the bases has a spherical shape. The support is
installed between the foundation of the building (a horizontal rigid plate)
and the building itself. The support touches the foundation of the building
always with a spherical end [13]. We assume that when oscillating or when
horizontal forces act on the foundation of the structure, the point of contact
of the support and the base plate always lies in the plane 𝑂𝑥𝑦.
To describe the vibration of the support, we will use the model of motion

of a rigid body on the surface [10], [11] and adapt this model to our task.

The motion of the body will be considered relative to the fixed laboratory
coordinate frame 𝑂𝑥𝑦 with the origin 𝑂 at a certain point of the plane. The
axis 𝑂𝑧 is directed vertically, 𝑛 is the unit vector of inner normal to the body
surface at point of the axis 𝑧. Let 𝐺𝜉𝜂𝜁 denote the moving coordinate frame
rigidly coupled to the body with the origin at its center of gravity 𝐺 and
the axes directed along the principal axes of inertia 1. The orientation of
the body with respect to the fixed laboratory frame is specified by the Euler
angles 𝜙, 𝜓, 𝜃 or by the matrix of direction cosines 𝑎𝑖𝑗. The unit vector of the
𝑧-axis in the frame 𝐺𝜉𝜂𝜁 is specified by the components 𝑎31, 𝑎32, 𝑎33:

𝑎31 = sin 𝜃 sin𝜙, 𝑎32 = sin 𝜃 cos𝜙, 𝑎33 = cos 𝜃.

Assume 𝜉, 𝜂, 𝜁 to be the principal axes of inertia with respect to the gravity
center. Let 𝑀 be the point of contact between the horizontal plane 𝑂𝑥𝑦 and
the support (see Figure 1). Its coordinates 𝜉, 𝜂, 𝜁 in the frame 𝐺𝜉𝜂𝜁 will be
functions of angles 𝜙, 𝜃, determined from the form of equation 𝐹(𝜉, 𝜂, 𝜁) = 0
that specifies the shape of the body surface [10], [11]. The sign of function 𝐹
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is chosen such that 𝑛 = − ∇𝐹
|∇𝐹|

. Then the quantities 𝑎𝑖𝑗 for the axis 𝑧 are

expressed in terms of the Euler angles as

⎧
{
{
{
⎨
{
{
{
⎩

𝑎31 = sin 𝜃 sin𝜙 = − 1
|∇𝐹|

𝐹
∇𝜉

,

𝑎32 = sin 𝜃 cos𝜙 = − 1
|∇𝐹|

𝐹
∇𝜂

,

𝑎33 = cos 𝜃 = − 1
|∇𝐹|

𝐹
∇𝜁

.

(1)

Figure 1. Motion of a perfectly rigid body above the perfectly smooth horizontal plane

Following the studies presented in Refs. [10], [11], [14], [15], let us consider
the full system of equations of motion for a massive rigid body on a fixed
horizontal perfectly smooth plane and introduce the following unknown
functions of time 𝑡: center of gravity coordinates 𝑥, 𝑦, 𝑧 of the body in
the laboratory frame; Euler angles 𝜙, 𝜓, 𝜃; components 𝜉, 𝜂, 𝜁 of radius vector
𝜌 of point 𝑀 of contact of the support and the plane (base plate) relative to
the gravity center, and magnitude 𝑁 of the normal reaction of the plane.
To determine the unknowns listed above the following equations and rela-

tions will be used:
a) The equations that represent the theorem of momentum variation. The

external forces are the reaction of the plane 𝑅 = 𝑁 ⋅ 𝑛 directed vertically
(𝑁 ⩾ 0) and the gravity force. The equations are:

⎧{
⎨{⎩

𝑚 ̈𝑥 = 0,
𝑚 ̈𝑦 = 0,
𝑚 ̈𝑧 = −𝑚𝑔 + 𝑁,

(2)

where 𝑚 is the body mass, 𝑔 is the free fall acceleration.
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b) The equations that represent the theorem of angular momentum varia-
tion:

⎧{{{
⎨{{{⎩

𝐴𝑑𝑝
𝑑𝑡

+ (𝐶 − 𝐵)𝑞𝑟 = 𝑁 (𝜂𝑎33 − 𝜁𝑎32) ,

𝐵𝑑𝑞
𝑑𝑡

+ (𝐴 − 𝐶)𝑟𝑝 = 𝑁 (𝜁𝑎31 − 𝜉𝑎33) ,

𝐶𝑑𝑟
𝑑𝑡

+ (𝐵 − 𝐴)𝑝𝑞 = 𝑁 (𝜉𝑎32 − 𝜂𝑎31) ,

(3)

where 𝑝, 𝑞, 𝑟 are the projections of the angular velocity vector 𝜔 on the axes
of the coordinate system 𝐺𝜉, 𝐺𝜂, 𝐺𝜁 rigidly bound to the body; 𝐴, 𝐵, 𝐶 are

the principal moments of inertia with respect to these axes.

c) The relations represented by the Euler kinematic equations:

⎧{
⎨{⎩

𝑝 = ̇𝜓 sin 𝜃 sin 𝜙 + ̇𝜃 cos 𝜙,
𝑞 = ̇𝜓 𝑠𝑖𝑛 𝜃 cos 𝜙 − ̇𝜃 sin 𝜙,
𝑟 = ̇𝜓 cos 𝜃 + ̇𝜙.

(4)

d) The Poisson equations:

⎧{
⎨{⎩

̇𝑎31 = 𝑎32𝑟 − 𝑎33𝑞,
̇𝑎32 = 𝑎33𝑝 − 𝑎31𝑟,
̇𝑎33 = 𝑎31𝑞 − 𝑎32𝑝

(5)

indicating the fact that vector 𝑛 defines an invariable direction in the fixed
coordinate frame 𝑂𝑥𝑦𝑧;

e) The equation of the body surface in the coordinate frame rigidly bound
to the body and having the origin at its center of gravity:

𝐹(𝜉, 𝜂, 𝜁) = 0. (6)

In our case, the body surface equation is the equation of a sphere (the
support has spherical shape at the point of contact with the plate):

𝜉2 + 𝜂2 + (𝜁 + 𝑎)2 = 𝑅2. (7)

f) The constraint equation

𝑧 = −𝜌 ⋅ 𝑛 = −(𝑎31𝜉 + 𝑎32𝜂 + 𝑎33𝜁) (8)

means that the support moves contacting with the plate all the time. Equa-
tions and relations (1)–(8) determine a complete system of equations of motion
of a massive rigid body on a fixed horizontal perfectly smooth plane that can
be written in the following form:
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⎧
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎩

𝑚 ̈𝑥 = 0,
𝑚 ̈𝑦 = 0,
𝑚 ̈𝑧 = −𝑚𝑔 + 𝑁,

𝐴𝑑𝑝
𝑑𝑡

+ (𝐶 − 𝐵)𝑞𝑟 = 𝑁(𝜂𝑎33 − 𝜁𝑎32),

𝐵𝑑𝑞
𝑑𝑡

+ (𝐴 − 𝐶)𝑟𝑝 = 𝑁(𝜁𝑎31 − 𝜉𝑎33),

𝐶𝑑𝑟
𝑑𝑡

+ (𝐵 − 𝐴)𝑝𝑞 = 𝑁(𝜉𝑎32 − 𝜂𝑎31),
̇𝑎31 = 𝑎32𝑟 − 𝑎33𝑞,
̇𝑎32 = 𝑎33𝑝 − 𝑎31𝑟,
̇𝑎33 = 𝑎31𝑞 − 𝑎32𝑝,

𝐹(𝜉, 𝜂, 𝜁) = 0,
𝑧 = −𝜌 ⋅ 𝑛 = −(𝑎31𝜉 + 𝑎32𝜂 + 𝑎33𝜁),

𝑎31 = sin 𝜃 sin 𝜙 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜉

,

𝑎32 = sin 𝜃 cos 𝜙 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜂

,

𝑎33 = cos 𝜃 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜁

,

𝑝 = ̇𝜓 sin 𝜃 sin 𝜙 + ̇𝜃 cos 𝜙,
𝑞 = ̇𝜓 sin 𝜃 cos 𝜙 − ̇𝜃 sin 𝜙,
𝑟 = ̇𝜓 cos 𝜃 + ̇𝜙.

(9)

From relation (1) and equation (7), we get explicit expressions of 𝑎𝑖𝑗 for
the spherical base of a kinematic support:

⎧{{{{
⎨{{{{⎩

𝑎31 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜉

= − 1
√4𝜉2 + 4𝜂2 + 4(𝜁 + 𝑎)2

⋅ 2𝜉 = − 1
𝑅

𝜉,

𝑎32 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜂

= − 1
√4𝜉2 + 4𝜂2 + 4(𝜁 + 𝑎)2

⋅ 2𝜂 = − 1
𝑅

𝜂,

𝑎33 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜁

= − 1
√4𝜉2 + 4𝜂2 + 4(𝜁 + 𝑎)2

⋅ 2𝜁 = − 1
𝑅

(𝜁 + 𝑎).

(10)

Using the formulae (10), is it easy to express the components 𝜉, 𝜂, 𝜁,
therefore, we can get rid of the Poisson equations in the system (9), since the
values of 𝑎𝑖𝑗 and components 𝜉, 𝜂, 𝜁 are already known. According to the two
first equations of (9), the center of gravity moves so that its projection on
the base horizontal plane moves rectilinearly. Hence, it is obvious that the
appropriate equations can be disregarded, too.
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After a number of executed transformations and assumptions, the system
(9) takes the form

⎧
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎩

𝑁 = 𝑚 ̈𝑧 + 𝑚𝑔,

𝐴𝑑𝑝
𝑑𝑡

+ (𝐶 − 𝐵)𝑞𝑟 = 𝑁(𝜂𝑎33 − 𝜁𝑎32),

𝐵𝑑𝑞
𝑑𝑡

+ (𝐴 − 𝐶)𝑟𝑝 = 𝑁(𝜁𝑎31 − 𝜉𝑎33),

𝐶𝑑𝑟
𝑑𝑡

+ (𝐵 − 𝐴)𝑝𝑞 = 𝑁(𝜉𝑎32 − 𝜂𝑎31),

𝜉2 + 𝜂2 + (𝜁 + 𝑎)2 = 𝑅2,
𝑧 = −𝜌 ⋅ 𝑛 = −(𝑎31𝜉 + 𝑎32𝜂 + 𝑎33𝜁),

𝑎31 = sin 𝜃 sin 𝜙 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜉

= − 1
𝑅

𝜉,

𝑎32 = sin 𝜃 cos 𝜙 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜂

= − 1
𝑅

𝜂,

𝑎33 = cos 𝜃 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜁

= − 1
𝑅

(𝜁 + 𝑎),

𝑝 = ̇𝜓 sin 𝜃 sin 𝜙 + ̇𝜃 cos 𝜙,
𝑞 = ̇𝜓 sin 𝜃 cos 𝜙 − ̇𝜃 sin 𝜙,
𝑟 = ̇𝜓 cos 𝜃 + ̇𝜙.

(11)

Equations (11) are reduced to the form convenient for using the computer
algebra system Sage, so that further simplifications and the solution of these
equations will be carried out in this CAS. In the next section we investigate
the solubility of this system of equations in Sage.

3. Resolving the system with respect to derivatives

The system (11) includes both differential equations and algebraic ones
(relations). Let us use Sage to reduce it to a simper form. It is obvious that
from the system (11) via the values of the direction cosines 𝑎31, 𝑎32, 𝑎33, we
can explicitly express variables 𝜉, 𝜂, 𝜁 as follows:

⎧{
⎨{⎩

𝜉 = −𝑅 ⋅ 𝑎31 = −𝑅 ⋅ sin 𝜃 sin 𝜙,
𝜂 = −𝑅 ⋅ 𝑎32 = −𝑅 ⋅ sin 𝜃 cos 𝜙,
𝜁 = −𝑅 ⋅ 𝑎33 − 𝑎 = −𝑅 ⋅ cos 𝜃 − 𝑎.

(12)

Provided that 𝜉, 𝜂, 𝜁 (12) and 𝑎31, 𝑎32, 𝑎33, are known, it is possible to
express the values of the function 𝑧.
Let us write in Sage the equation

𝑧 = −𝜌 ⋅ 𝑛 = −(𝑎31𝜉 + 𝑎32𝜂 + 𝑎33𝜁)
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from system (11) and substitute into it the expressions for 𝜉, 𝜂, 𝜁 and 𝑎31, 𝑎32,
𝑎33, then function 𝑧 will be represented by the following symbolic expression:

𝑧 = 𝑅 ⋅ cos𝜙2 ⋅ sin 𝜃2 + 𝑅 ⋅ sin𝜙2 ⋅ sin 𝜃2 + (𝑅 ⋅ cos 𝜃 + 𝑎) ⋅ cos 𝜃.

We substitute the obtained expression of 𝑧 into equation 𝑁 = 𝑚 ̈𝑧 + 𝑚𝑔
and calculate the normal reaction of the plane:

𝑁 = (2 ⋅ 𝑅 ⋅ cos𝜙2 ⋅ cos 𝜃2 ⋅ ̇𝜃2 + 2 ⋅ 𝑅 ⋅ cos 𝜃2 ⋅ sin𝜙2 ⋅ ̇𝜃2 − 2 ⋅ 𝑅 ⋅ cos𝜙2 ⋅ sin 𝜃2⋅
⋅ 𝜃2 − 2 ⋅ 𝑅 ⋅ sin𝜙2 ⋅ sin 𝜃2 ⋅ ̇𝜃2 + 2 ⋅ 𝑅 ⋅ cos𝜙2 ⋅ cos 𝜃 ⋅ sin 𝜃 ⋅ ̈𝜃 + 2 ⋅ 𝑅 ⋅ cos 𝜃⋅
⋅ sin𝜙2 ⋅ sin 𝜃 ⋅ ̈𝜃 − 𝑅 ⋅ cos 𝜃2 ⋅ ̇𝜃2 + 2 ⋅ 𝑅 ⋅ sin 𝜃2 ⋅ ̇𝜃2 − (𝑅 ⋅ cos 𝜃 + 𝑎) ⋅ cos 𝜃⋅

⋅ 𝜃2 − 𝑅 ⋅ cos 𝜃 ⋅ sin 𝜃 ⋅ ̈𝜃 − (𝑅 ⋅ cos 𝜃 + 𝑎) ⋅ sin 𝜃 ⋅ ̈𝜃) ⋅ 𝑚 + 𝑔 ⋅ 𝑚.

As soon as all quantities 𝜉, 𝜂, 𝜁, 𝑎31, 𝑎32, 𝑎33, 𝑁, and 𝑝, 𝑞, 𝑟 are explicitly
expresses, we substitute them into equations 2–4 of the system (11) and of
the form

⎧{
⎨{⎩

Φ(𝜙, 𝜓, 𝜃, ̇𝜙, … ̈𝜃) = 0,
Ψ(𝜙, 𝜓, 𝜃, ̇𝜙, … ̈𝜃) = 0,
Θ(𝜙, 𝜓, 𝜃, ̇𝜙, … ̈𝜃) = 0.

(13)

Explicit expressions for Φ, Ψ, Θ were be found in Sage [12].

The system (13) is linear with respect to ̈𝜙, ̈𝜓, ̈𝜃. Now we resolve the
obtained system of differential equations with respect to higher derivatives
using the function solve (). Ultimately, we arrive at the system of differential
equations of the 6-th order resolved with respect to higher derivatives. The
system incorporates three equations of the second order with respect to Euler
angles. For further solution of the problem we have to decrease the order of
the differential equations to the first one.
To reduce the order of the system of differential equations, we perform the

changes ̇𝜙 = 𝑢, ̇𝜓 = 𝑣, ̇𝜃 = 𝑤. As a result, we get a system of six first-order
differential equations.

4. Numerical experiments in SAGE

Let us implement explicit Euler method, in order to confirm the absence of
errors related to transformation of data types.
The calculations by the Euler method will be performed using the grids with

𝑁 = 400, 800, 1600 under the following initial conditions: 𝜙0 = 0.1, 𝜓0 = 0.1,
𝜃0 = 𝜋 +0.5, 𝑢0 = 1.5, 𝑣0 = 1.5, 𝑤0 = 0, ℎ = 2𝜋/𝑁, 𝑡 = 0, 𝐴 = 304, 𝐵 = 304,
𝐶 = 400, 𝑅 = 1.5, 𝑎 = 0.2, 𝑚 = 500, 𝑔 = 9.8 where 𝑁 is the number of
steps; ℎ is the step; 𝜙0, 𝜓0, 𝜃0 are the Euler angles at the initial moment of
time; 𝑢0, 𝑣0, 𝑤0 are the initial velocities; 𝐴, 𝐵, 𝐶 are the moments of inertia.
The results obtained by the Euler method are presented in Figures 2–7. For
𝑁 = 400 the results are plotted by dash lines, for 𝑁 = 800 by dash-dot
lines, and for 𝑁 = 1600 by dot lines. The accuracy of the obtained results is
estimated using the Richardson method (see Figures 9, 10).
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Figure 8 shows graphs. The distance between the center of mass and the
plane ground oscillates as it shown on Figure 8.

Figure 2. The angle 𝜓 as a function of time

for the grids with 𝑁 = 400, 800, 1600
Figure 3. The angle 𝜙 as a function of time

for the grids with 𝑁 = 400, 800, 1600

Figure 4. The angle 𝜃 as a function of time

for the grids with 𝑁 = 400, 800, 1600
Figure 5. Rate of angle 𝜓 change with time

for the grids with 𝑁 = 400, 800, 1600

Figure 6. Rate of angle 𝜙 change with time

for the grids with 𝑁 = 400, 800, 1600
Figure 7. Rate of angle 𝜃 change with time

for the grids with 𝑁 = 400, 800, 1600
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Figure 8. The center of mass height above the plane for the grids with 𝑁 = 400, 800, 1600

Figure 9. Accuracy of Euler solution

estimated by Richardson method

for the grids with 𝑁 = 400, 800, 1600

Figure 10. Accuracy of Euler solution

estimated by Richardson method

for the grids with 𝑁 = 400, 800, 1600

The results obtained by the Euler method for the assumed boundary
conditions show that the angles 𝜓, 𝜙 linearly increase with time (see Figures 2
and 3), while the angle 𝜃 experiences harmonic-like oscillations with growing
amplitude (see Figure 4).
Figures 5–7 show that the rates of change of the Euler angles vary according

to a harmonic-like law, the amplitude of oscillations increasing with time.

5. Conclusions

A crude mathematical model of a kinematic support is constructed, in which
the support is considered as a perfectly rigid body oscillating in a vertical
plane above a fixed horizontal perfectly smooth plate. The approximate model
is rigid and does not take friction into account.
A procedure for reducing the system of differential equations of the model

to a form suitable for applying the finite difference method is described and
implemented in the Sage computer algebra system.
An explicit Euler method is implemented for grids with the number of

partitions 400, 800, 1600 and the accuracy of the solution is estimated by the
Richardson method.
For the initial and boundary conditions specified by us, the time dependence

of Euler angles and their rates is determined. The results of numerical
experiments are consistent with the general idea that small deviations lead to
small oscillations of the support.
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The problems and lines of study that will be addressed at further stages of
the research are identified as follows. First, to solve the problem, we have to
to determine the correct additional conditions under which the construction
is stable or loses stability, i.e., when at strong ground vibrations the center
of gravity horizontally shifts beyond the limits of return movement of the
support and the support begins to tip over [16]. After finding the correct
initial and boundary conditions, to create an adequate mathematical model
of the support, we will take friction into account, specifying the reaction of
the plane (base plate), and the effect of earthquakes on the movement of the
supports.
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Моделирование кинематических опор в Sage

О. К. Кройтор1, М. Д. Малых1, С. П. Карнилович2

1Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2Институт физических исследований и технологий

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

В статье рассмотрена кинематическая опора, которая позволяет снижать
горизонтальные динамические воздействия на здание во время землетрясений.
Модель сейсмоизолирующей опоры рассматривается с точки зрения классиче-

ской механики, то есть предполагается, что опора — абсолютно твёрдое тело,
колеблющееся в вертикальной плоскости над неподвижной горизонтальной твёр-
дой плитой. Данный подход позволяет более адекватно описать взаимодействие
опоры с грунтом и плитой здания.
В работе описана процедура сведения полной системы уравнений движения

тяжёлого твёрдого тела по неподвижной горизонтальной абсолютно гладкой
плоскости к виду, пригодному для применения метода конечных разностей, и её
реализация в системе компьютерной алгебры Sage.
Проведены численные расчёты методом Эйлера для сеток с разным количе-

ством разбиений и реализована математической модель опоры как абсолютно
твёрдого тела в системе компьютерной алгебры Sage. В статье представлены про-
межуточные результаты численных экспериментов, полученных в Sage, и дан
краткий анализ (описание) результатов.

Ключевые слова: кинематическая опора, сейсмоизолирующая опора, мате-
матическая модель, МКР, система компьютерной алгебры, Sage, численные
расчёты


