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The article is an overview. We carry out the comparison of actual machine learning
libraries that can be used the neural networks development. The first part of the
article gives a brief description of TensorFlow, PyTorch, Theano, Keras, SciKit
Learn libraries, SciPy library stack. An overview of the scope of these libraries and
the main technical characteristics, such as performance, supported programming
languages, the current state of development is given. In the second part of the article,
a comparison of five libraries is carried out on the example of a multilayer perceptron,
which is applied to the problem of handwritten digits recognizing. This problem
is well known and well suited for testing different types of neural networks. The
study time is compared depending on the number of epochs and the accuracy of
the classifier. The results of the comparison are presented in the form of graphs of
training time and accuracy depending on the number of epochs and in tabular form.

Key words and phrases: machine learning, neural networks, MNIST, TensorFlow,
PyTorch

1. Introduction

Due to the vast development of machine learning and data science, it is
not possible to review the diversity of available software solutions. In this
section we will consider only the most popular libraries and frameworks for
neural networks development and machine learning.
The most common language for building neural networks at the moment is

the Python language [1]. There is a number of reasons why this language has
occupied this domain.
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— Python is easy-to-learn language actively used in the field of school
and university education. Because of this, it has gained popularity not
only in industrial programming, but also among professionals who use
programming as a research tool.

— The standard cpython interpreter makes it easy to create bindings for
C-function calls, allowing Python to be used as a convenient interface
for low-level libraries.

— The community has created a wide range of tools for interactive Python
code execution and data visualization (e.g. [2]–[4]). Especially it is useful
for scientific research, where almost always there is no original clear
algorithm of solutions and it is necessary to conduct a scientific search.

A significant disadvantage of Python is its low performance, which can be
overcome by writing critical parts of software in a compiled language (it is
usually C or C++) or by using cython [5] translator.
Many machine learning libraries are also written in two or more languages.

The part of software, which handles main part of computations, is usually
implemented in C or C++ (the core part or backend). Pure Python is used
for bindings to organize a convenient and easy to use interface (interface part
or frontend). So, if a library is implemented in pure Python, then in most
cases:

— It is an add-on to another, lower-level library and provides a more
user-friendly and easy-to-learn interface;

— It is designed for educational purposes or for prototyping.

Note also that all the libraries in this review are free open source software.
Also note that Python 2 support will be discontinued from the beginning of
2020 for vast majority of python libs.

2. Overview of machine learning (ML) libraries

From all reviewed libraries, only TensorFlow and PyTorch directly compete
with each other. Other libraries complement each other’s functionality and
specialize in their own area.

2.1. Scientific Python (SciPy)

Scientific Python libraries set is not directly related to machine learning, but
many machine learning libraries rely on Scientific Python components in their
work. Let us briefly describe the main components included in this set.

— NumPy [6] is the library which implements high performance arrays
and tools for them. The computational core is written in C (52% of
code base) with the interface part in Python (48% of code base). Linear
algebra functions heavily rely on LAPACK library. NumPy implements
variety of linear algebra methods for working with vectors, matrices and
tensors (multidimensional arrays in this case). It also supports parallel
computing by utilizing vector capabilities of modern CPUs.

— SciPy [7] is the library that implements many mathematical methods,
such as algebraic equations and differential equations solvers, polynomial
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interpolation, various optimization methods, etc. For a number of meth-
ods the Fortran (about 23% of the total code base) and C (20% of the
code base) libraries are used.

— Pandas [8] is the library designed to work with time series and table data
(DataFrame data structure). It is written almost entirely in pure Python
using NumPy arrays and is often used in machine learning to organize
training and test samples.

In addition to these three main libraries, the scientific Python stack also
includes Matplotlib [3] for data visualization and plotting, and a set of
interactive shells, such as iPython and Jupyter [2].

2.2. TensorFlow

TensorFlow [9], [10] is an open source library used primarily for deep machine
learning. It was originally developed on by Google’s divisions, but in 2015 it
was released as free open source software under the Apache License 2.0. The
current stable version is 2.1.0.
The computational core is written in C++ (60% of all code) using CUDA

technology, which allows one to utilize graphics cards in calculations. The
interface part is implemented in Python (30% of all code base). There are also
unofficial bindings for other languages, but only C++ and Python interfaces
are officially supported.
The library is based on the principle of data flows (dataflow), according to

which the program is organized in the form of computational blocks associated
with each other in the form of a directed graph which is called computational
graph. Data is processed by passing from one block to another.
Such application architecture makes it easy to use parallel calculations on

both multi-core CPUs and distributed cluster systems. In addition, it is well
suited for building neural networks in which each neuron is presented by an
independent component.
In addition to the computational graph, TensorFlow uses a data structure

called tensor. It is similar to the tensor from differential geometry in the
sense that it is a multidimensional array.

2.3. PyTorch

The PyTorch [11] library was created on the basis of Torch [12]. The original
Torch library was developed in C and used Lua as the interface. With the
growth of Python popularity in machine learning, Torch has been rewritten
in C++11/CUDA (60% code) and Python (32% code). Initial development
was conducted in the company of Facebook, but currently PyTorch is an
OpenSource library, distributed under a BSD-like license. The current version
is 1.3.1.
PyTorch, as well as TensorFlow, is built on the basis of dataflow concept.

The main difference from TensorFlow is that in TensorFlow computational
graph is static, then in PyTorch the graph is dynamic. This means that one
can modify the graph on the fly, adding or removing nodes as needed. In
TensorFlow, the entire graph must be specified before the model run.
The developers of PyTorch emphasize that Python is tightly integrated

into the library (library is more pythonic). This makes it easier to use than
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TensorFlow, as the user does not have to dive into low-level parts written in
C++.
It is worth noting, however, that TensorFlow surpasses PyTorch in popular-

ity, as it appeared earlier and is used in many educational courses on machine
learning.

2.4. Theano

Theano [13] library is a Python interface for the optimizing compiler. It allows
user to specify functions and after that translates them to C++. Then Theano
compiles C++ code to run it on the CPU (using g++ for compilation), or on
the graphics accelerator (using nvcc to utilize CUDA). In addition, automatic
differentiation algorithms are built into the library.
After optimization and compilation, the functions become available as reg-

ular python functions, but have high performance. Vector, matrix, and tensor
operations are supported and efficiently parallelized on available hardware
(multi-core processor or graphics accelerator).
With support for multidimensional array operations and automatic differ-

entiation, Theano is widely used as a backend for building neural networks.
In particular, it can be used by the Keras library.
Theano is written almost entirely in Python, but requires NumPy, SciPy, py-

CUDA and BLAS, as well as g++ or NVIDIA CUDA compilers (recommended
for optimal performance).
Development of the library was suspended in 2017, but resumed in 2018.

The current version is 1.0.4.

2.5. Keras

The Keras [14] library provides a high-level programming interface for building
neural networks. It can work on top of TensorFlow, Microsoft Cognitive
Toolkit (CNTK) [15] or Theano [13]. The library is written entirely in Python
and is distributed under the MIT license. Current version 2.3.1
The library is based on the following principles: ease of use, modularity,

extensibility.
The modularity principle allows you to separately describe the neural layers,

optimizers, activator functions, etc, and then combine them into a single
model. The model is fully described in Python. The created model can be
saved to disk for further use and distribution.

2.6. SciKit Learn

SciKit Learn [16] is the library for data processing. It implements various
methods of classification, regression analysis, clustering and other algorithms
related to classical machine learning. It is written almost entirely in Python
(98% of all code base), but uses NumPy and SciPy for algorithms implemen-
tation. Despite the fact that number of current version is 0.21.1, the project
is very stable, as it has been developing since 2007.
SciKit Learn is suitable for traditional machine learning and data prepro-

cessing tasks. This library does not support the concept of dataflow and
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does not allow one to create his own models. The absence of a computa-
tional graph does not allow flexible scale of models for multi-core processors
and graphics accelerators and forces to limit the degree of parallelism that is
implemented in NumPy.

3. Comparative analysis of machine learning libraries

3.1. Description and architecture of neural network

For the comparative analysis of deep machine learning libraries, we choose
the problem of handwritten digit recognition from the MNIST database and
the neural network [17] to solve it.
The MNIST database is contained in a CSV file, where comma-separated

digits are written. In a CSV file, the first value is a marker that represents
the corresponding digit. Next value is the size of the digit image in pixels,
consisting of 784 values and having a dimension of square 28x28.
The training file consists of 60 thousand copies, and the test file of 10

thousand copies. To solve the problem we choose the MLP (multilayer
perceptron) architecture. Perceptron was one of the first models of neural
networks, which was supposed to simulate the neural processes in human mind.
This model was proposed by Frank Rosenblatt in 1957 and first implemented
in 1960 [18]. A multilayer perceptron according to Rosenblatt differs from
a single layer in that it contains additional hidden layers.
The neural network (Figure 1) consists of an input layer, two hidden layers,

and one output layer. The input layer contains 784 neurons, the hidden layers
contain 256 neurons, and the output layer 10, according to the number of
features. The activation function in hidden layers is ReLU, which has the
form 𝑓(𝑥) = max(0, 𝑥) [19]. Stochastic gradient descent (SGD) [20] is used
as the optimization algorithm.

1

2

3

...
782

783

784

1

2

...
255

256

1

2

...
255

256

1

10

28× 28

Input image

ReLU ReLU

SoftMax

Input layer

Inner layer 1, Inner layer 2

Output layer

Figure 1. A multilayer perceptron for the recognition of handwritten digits
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3.2. Software implementation of a neural network using various
libraries

With each library from the overview above, we built perceptron models.
Each neural network was trained, and training time and accuracy were
measured for a different number of training eras. We used these measurements
for comparative analysis of libraries. The constructed graphs describe the
dependence of learning time and accuracy on the number of eras (Figures 2–6).
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Figure 2. Results of a neural network built with the help of the Keras library
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Figure 3. Results of a neural network built with the help of the SciKit Learn library

The first plot shows the dependence of time on the number of epochs. The
second plot shows the dependence of accuracy on the number of epochs.
Below is the summary table of the results of neural network training at 50

epochs for different libraries (see Table 1).
On the diagram (Figure 7) the time and accuracy values are shown for the

considered libraries. All values are normalized.
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Figure 4. Results of a neural network built with the help of the PyTorch library
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Figure 5. Results of a neural network built with the help of the TensorFlow library
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Figure 6. Results of a neural network built with the help of the Theano library
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Table 1

Results of comparative analysis of machine learning libraries

Library Accuracy, % Time, sec.

MLPClassifier 93.45 146.90

Keras 98.56 113.80

TensorFlow 89.07 63.48

Theano 97.38 257.29

PyTourch 98.07 1492.29

MLPClassifier Keras Tensorflow Theano PyTourch0.0

0.2

0.4

0.6

0.8

1.0
acc
time

Figure 7. The time and accuracy values

In the PyTorch library, the learning time increases faster than in all other
libraries with the growth of epochs, which time is approximately the same.
The learning time of TensorFlow, Scikit-learn and Keras libraries varies from
1 to 3 seconds per epoch. While this indicator in PyTorch exceeds 8 seconds,
which is several times higher than the training time of other libraries.
The accuracy of the TensorFlow library does not exceed 0.9, which is low

compared to other libraries. Scikit-learn also showed a low accuracy result.
The PyTorch library shows a good accuracy result only with a large number
of epochs, but with the growth of the number of epochs, the learning time
increases greatly. The minimum accuracy was 98.07. The Keras and Theano
libraries are the most accurate and their accuracy is kept at 0.98.

4. Conclusion

Based on the comparison of different libraries, a number of conclusions
can be drawn. Almost all libraries except PyTorch show approximately
the same learning time. In the case of PyTorch, the longer learning time
can be explained by the support of a dynamic computational graph, which
apparently imposes additional computational costs. In turn, the TensorFlow
library showed an average accuracy result, behind PyTorch and Theano.
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Обзор и сравнительный анализ библиотек машинного
обучения для построения нейронных сетей

М. Н. Геворкян, А. В. Демидова, Т. С. Демидова,
А. А. Соболев

Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Статья носит обзорный характер. В ней проведено сравнение актуальных биб-
лиотек машинного обучения, которые могут быть использованы для построения
нейронных сетей.
В первой части статьи даётся краткое описание библиотек TensorFlow, PyTorch,

Theano, Keras, SciKit Learn, стека библиотек SciPy (NumPy, SciPy, Pandas,
Matplotlib, Jupyter). Делается обзор области применения перечисленных биб-
лиотек и основных технических характеристик, таких как быстродействие,
поддерживаемые языки программирования, текущее состояние разработки. Сре-
ди рассматриваемых библиотек только PyTorch и TensorFlow непосредственно
конкурируют друг с другом. Остальные библиотеки взаимодополняют друг друга
и часто используются совместно при построении различных моделей машинного
обучения.
Во второй части статьи проводится сравнение пяти библиотек на примере мно-

гослойного перцептрона, который применяется к задаче распознания рукописных
цифр. Данная задача хорошо разработана и является модельной для тестиро-
вания различных реализаций нейронных сетей. Сравнивается время обучения
в зависимости от количества эпох и точности работы классификатора. Резуль-
таты сравнения представлены в виде графиков времени обучения и точности
в зависимости от количества эпох и в табличном виде.

Ключевые слова: машинное обучение, нейронные сети, MNIST, TensorFlow,
PyTorch
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Robinson–Schensted–Knuth (RSK) correspondence occurs in different contexts of
algebra and combinatorics. Recently, this topic has been actively investigated by
many researchers. At the same time, many investigations require conducting the
computer experiments involving very large Young tableaux. The article is devoted to
such experiments.
RSK algorithm establishes a bijection between sequences of elements of linearly

ordered set and the pairs of Young tableaux of the same shape called insertion
tableau 𝑃 and recording tableau 𝑄. In this paper we study the dynamics of tableau
𝑃 and the dynamics of different concrete values in tableau 𝑃 during the iterations
of RSK algorithm. Particularly, we examine the paths within tableaux 𝑃 called
bumping routes along which the elements of an input sequence pass. The results

of computer experiments with Young tableaux of sizes up to 108 were presented.
These experiments were made using the software package for dealing with 2D and
3D Young diagrams and tableaux.

Key words and phrases: Robinson–Schensted–Knuth correspondence, Young
tableaux, Young graph, Markov process, central measure, Plancherel measure, as-
ymptotic representation theory

1. Introduction

Robinson–Schensted–Knuth (RSK) algorithm also known as Robinson–
Schensted–Knuth correspondence which maps permutations to the pairs of
Young tableaux, plays an important role into various combinatorial prob-
lems. The combinatorics of Young diagrams and Young tableaux including
RSK algorithm, finds numerous applications in physics, mathematics and
informatics [1]–[3].
RSK correspondence can be easily generalized from the case of permutations

to the case of infinite sequences of linearly ordered set. In such instance, an
insertion tableau is a semi-standard Young tableau filled by elements of this

© Duzhin V. S., 2019
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ordered set. This implies that the RSK algorithm is applicable to a sequence
of random independent values uniformly distributed over the interval [0,1], i.e.
to the Bernoulli scheme. A correspondence between two dynamical systems
such as Bernoulli shift and iterations of Schützenberger transformation was
built in [4]. Later [5] it was proved that this correspondence is isomorphism.
It was also proved there that the first element of an infinite sequence of
uniformly distributed random values can be unambiguously restored only by
the limit angle of inclination of Schützenberger path of a recording tableau.
In practice, we are interested in the restoration of the first element of

a finite sequence. Unlike the case of infinite sequences, we also need an
insertion tableau 𝑃 in addition to a recording tableau 𝑄 to restore the first
element. Since tableau 𝑃 changes during every iteration, the investigation of
tableau 𝑃 evolution properties is also important for studying the algorithms
of restoration of an entire sequence.
The results of computer experiments related to the estimation of the first

element value in a finite segment of an infinite sequence using tableau 𝑄 are
given in [6]. The subject of this article is to examine how tableau 𝑃 changes
during RSK insertions.

2. Definitions

Young diagrams are popular combinatorial structures which correspond
to integer partitions. There are many ways to present a Young diagram.
Particularly, in this paper we define it by so-called French notation as left-
justified and bottom-justified finite set of square boxes (see Figure 1 (a)).

x

y

12

12

0

(a) French notation

x

u

v

y

20-2

(b) Russian notation

Figure 1. An example of a Young diagram

Another way of presenting Young diagrams called Russian notation is shown
in Figure 1 (b). The Russian notation was proposed by Vershik and Kerov [7]
and is derived from the French notation by rotating the axes 45 degrees
counterclockwise. Note that the diagram in Figure 1 (b) is normalized in such
a way that the total area of boxes is 1. This notation is used in many papers
because it makes studying the Plancherel measure much easier.
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It is convenient to consider Young diagrams as vertices of infinite oriented
graded graph called the Young graph. In this graph, edges connect diagrams
which differ in one box. If the edge connects a diagram 𝜆𝑛 of the size 𝑛 with
a diagram 𝜆𝑛+1 of the size 𝑛 + 1, then 𝜆𝑛+1 can be obtained from 𝜆𝑛 by
adding a single box.
If we assign to each edge a certain transition probability, a Markov process

will be defined on the graph. The most important class of such processes is
the class of central processes for which the probabilities of different paths
between a fixed pair of diagrams are equal. A complete description of all
central processes on the 2D Young graph was obtained by Vershik in [8]. The
only central process on the Young graph with o(𝑛) speed of growth along the
axes is called the Plancherel process. This process and explicit formulas of its
transition probabilities are described in [8].
The limit shape of the Plancherel process called the Vershik–

Kerov–Logan–Schepp (VKLS) limit shape [7] is given by the formula:

𝑆 =
⎧{
⎨{⎩

2
𝜋(𝑢 arcsin(𝑢) +

√
1 − 𝑢2), |𝑢| ⩽ 1,

|𝑢|, |𝑢| ⩾ 1,
(1)

where 𝑢 is a coordinate in the Russian notation.
A Young tableau 𝜏 is a Young diagram 𝜆 filled by values increasing in rows

and columns. These values can be elements of an arbitrary linearly ordered
set. Wherein we say that 𝜆 is a shape of 𝜏. A standard Young tableau (SYT)
is a Young diagram filled by integers [1,𝑛], 𝑛 > 0 which grow strictly in rows
and columns. It is easy to see that a Young tableau corresponds to a path
on the Young graph. The numbers in tableau set the order of adding the
boxes when walking from the root of the graph. A semistandard Young tableau
(SSYT) is a Young tableau with values strictly increasing in columns and
weakly increasing in rows.
In addition to the finite Young tableaux consisting of 𝑛 boxes, infinite

tableaux can be considered as well. By infinite Young tableau we mean
a mapping 𝜎 ∶ ℤ2

+ ⇒ ℕ such that for the fixed 𝑖, 𝑗 ∈ ℕ the values 𝜎𝑖,𝑘 and
𝜎𝑘,𝑗, 𝑘 ∈ ℕ grow strictly. These infinite tableaux are also called enumerations

of the integer lattice ℤ2
+. For the case of SYT or SSYT, some integers may be

missing, i.e. the corresponding mapping ℤ2
+ → ℕ is not necessary bijective.

In this research we consider SYT filled by integers and SSYT filled by real
numbers belonging to the interval [0, 1].

3. Robinson–Schensted–Knuth algorithm

RSK algorithm establishes a bijection between a set of permutations of 𝑛
distinct integers and a set of pairs of standard Young tableaux of size 𝑛 of
the same shape. These tableaux are called insertion tableau 𝑃 and recording
tableau 𝑄.
At the beginning, the first value of a permutation is put into the empty

tableau 𝑃 and 1 is inserted in the tableau 𝑄. In each step of the algorithm,
the next value 𝑣 of permutation is being compared with values of the first
column of 𝑃. If 𝑣 exceeds all these values, it is being put on the top of the



V. S.Duzhin, Investigation of insertion tableau evolution… 319

first column. Otherwise, it replaces the closest larger value of the first column.
The replaced value is being bumped in the second column and being processed
in the same way. This process continues until a certain value is put on the top
of a column at position (𝑥, 𝑦). Finally, the index of a processed value is being
put into tableau 𝑄 at (𝑥, 𝑦). So, 𝑃 and 𝑄 tableaux are supported to have
the same shape. The algorithm finishes when all the values of a permutation
are processed.

Note that above steps can be performed in reverse order, i.e. a permutation
can be constructed from a pair of Young tableaux of the same shape. Such
a procedure is called reverse RSK algorithm. Also, RSK algorithm is applicable
to any ordered sequences such as sequences of integer or real values.

RSK algorithm defines two equivalence relations on a set of permutations.
The permutations are called Knuth-equivalent if they correspond to the same
tableau 𝑃 and dual Knuth-equivalent if they correspond to the same tableau
𝑄. Another Donald Knuth’s definition of these equivalence classes directly
in terms of permutations is given in [9]. Some interesting properties of
Knuth-equivalent and dual Knuth-equivalent permutations were investigated
in [6].

4. Visualization of Plancherel tableaux

In order to study the properties of the RSK algorithm, it is of interest to
examine how the shape of tableau 𝑃 changes in time. The evolution of tableau
𝑄 has a simple description: it is proved by Donald Knuth that RSK transforms
an uniformly distributed random sequence in a pair of Plancherel-distributed
Young tableaux. Therefore, tableau 𝑄 grows as a tableau in a Markov process
which generates the Plancherel measure.

There exists an interesting way to visualize a Young tableau in the 3D space
proposed by A. M. Vershik. Consider a function on the set of boxes of the
corresponding Young diagram. The values of this function are the numbers
within the corresponding boxes. A Young tableau can be represented as a 3D
graph of this function.

For the Plancherel tableaux, with a rise of their sizes this graph tends
to a surface which can be described as follows. Consider a set of positively
directed rays on the 2D plane emanating from the origin. Each ray intersects
with the VKLS limit shape (1) at some point (𝑥′, 𝑦′). For a point (𝑡 ⋅ 𝑥′,
𝑡 ⋅ 𝑦′) which lies on this ray, 𝑧 = 𝑡2. So, this surface intersects with the planes
containing axis 𝑧 along parabolas which touches the coordinate plane 𝑥,𝑦 in
the origin. This property completely characterizes the surface. An example
of such a visualization for the tableau 𝑃 of size 105 is shown in Figure 2 (a).
Note that the coordinates (𝑥, 𝑦) are divided by

√
𝑛.

A very similar picture can be produced by generating a Markov chain of
Plancherel distributed Young diagrams. Figure 2 (b) demonstrates how the

number of added box divided by 105 depends on normalized coordinates of
this box in a Young tableau.
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Figure 2. (a) Values of boxes in tableau 𝑃 after 105 RSK iterations; (b) Positions of added

boxes in Plancherel process after adding 105 boxes

5. Bumping forest

Each time a new value comes to the input of the RSK algorithm, it bumps
a certain element in the first column of tableau 𝑃 and takes its position. Then,
the bumped element bumps another element in the second column and so on.
A bumping route is a sequence of all boxes bumped in a single RSK iteration.
A bumping route is defined for each position in the first column.
Bumping routes were presented in [10]. Also a problem of hydrodynamic

description of bumping routes was raised there. The limit behaviour of
bumping routes including explicit formula of their limit shape was described
in [11]. The possible use of bumping routes to speed up the RSK algorithm
was discussed in [12].
In the current research we have constructed all the bumping routes for

tableau 𝑃 of size 108. Some of them are shown in Figure 3.
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Figure 3. Some bumping routes of tableau 𝑃
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A bumping tree is a set of bumping routes converging into a single box.
A bumping forest is a union of all bumping routes. Figure 4 (a) demonstrates
an example of a Young tableau and its bumping forest. The bumping forest
itself is illustrated in Figure 4 (b).

1 2 4 6 12 14 18 22 24 28 41 44 64 71 75 84 87 99

3 5 7 11 20 25 30 33 46 48 51 83 88

8 9 10 15 31 34 42 54 57 68 77 91

13 16 21 23 38 45 53 62 81 92

17 19 26 47 49 56 63 73

27 35 36 55 61

29 37 50 69 80

32 40 60 70 85

39 43 66 76 95

52 65 78

58 67 79

59 82

72 86

74 96

89

90

93

94

97

98

100

(a) (b)

Figure 4. (a) A Young tableau and its bumping forest; (b) A bumping forest

6. Dynamics of insertion tableau

Along with studying the dynamics of the entire tableau, we are also in-
terested in investigating the dynamics of concrete values in tableau 𝑃. Here
we discuss the results of our computer experiment dedicated to analysis of
motion of these values within a semi-standard Young table 𝑃 filled by ran-
dom real numbers from the interval [0, 1]. The idea of this algorithm is
as follows. Firstly, we construct tableau 𝑃 of size 𝑘. Next, the observed
value 𝑧 is fed to the input of RSK. Then, we observe how the position of 𝑧
changes while RSK processes next 𝑛 − 𝑘 values. Each trajectory is close to
a Vershik–Kerov–Logan–Schepp limit shape (1).
The results of this experiment is illustrated in Figure 5. We examined

trajectories of 9 different numbers: 𝑧 = [0.1, 0.2, … , 0.9]. The horizontal
curves are trajectories of different 𝑧. Black points are the final positions of 𝑧
for 𝑘/𝑛 = [0.1, 0.3, 0.5, 0.7, 0.9], 𝑛 = 107.
It is easily seen from the Fig. 5 that the dynamics of motion of different

values in RSK looks very similar. The average dynamics of a certain 𝑧 can be
obtained by rescaling the unique average motion dynamics of 𝑧 = 1.
Note that, with a rise of 𝑛, the motion of these value continues until they

eventually reach the coordinate plane. Unfortunately, this process often takes
a really huge amount of RSK iterations what makes it hard to simulate it
using available computation power.
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Figure 5. Evolution of random values in RSK algorithm

7. Conclusions

The results of numerical experiments presented in this article demonstrate
two types of dynamics in an insertion tableau of the Robinson–
Schensted–Knuth algorithm. The first investigated dynamics is a modification
of tableau after a single RSK iteration when a new value moves along a certain
path called a bumping route. The second dynamics is related to the motion
of the concrete value during many RSK iterations. Numerical experiments
for studying these dynamics are presented in this paper.
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Исследование эволюции записывающей таблицы
в соответствии Робинсона–Шенстеда–Кнута

В. С. Дужин

Кафедра алгоритмической математики
Санкт-Петербургский государственный электротехнический университет

«ЛЭТИ»
ул. Профессора Попова, д. 5, Санкт-Петербург, 197376, Россия

Соответствие Робинсона–Шенстеда–Кнута (RSK) встречается в различных
контекстах алгебры и комбинаторики. В последнее время данная тема актив-
но исследуется специалистами из различных областей науки. В то же время
многие такие исследования требуют проведения компьютерных экспериментов
с таблицами Юнга чрезвычайно больших размеров. Эта статья посвящена таким
численным экспериментам.
Алгоритм RSK устанавливает биекцию между множеством последовательно-

стей элементов из линейно упорядоченного множества и множеством пар таблиц
Юнга одинаковой формы, называемых записывающей таблицей 𝑃 и нумерую-
щей таблицей 𝑄. В настоящей работе изучается динамика таблицы 𝑃, а также
динамика позиций различных значений, перемещающихся по таблице 𝑃 в те-
чение итераций алгоритма RSK. В частности, исследовались пути в таблице 𝑃,
называемые путями выталкиваний, вдоль которых перемещаются значения из
входной последовательности в процессе работы алгоритма RSK. Приводятся ре-
зультаты компьютерных экспериментов над таблицами Юнга с размерами до

108. Эти эксперименты были проведены с помощью программного пакета для
работы с двумерными и трёхмерными диаграммами и таблицами Юнга.

Ключевые слова: соответствие Робинсона–Шенстеда–Кнута, таблицы Юнга,
граф Юнга, марковские процессы, центральная мера, мера Планшереля, асимп-
тотическая теория представлений
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A new analytical and numerical solution of the electrodynamic waveguide problem
for leaky modes of a planar dielectric symmetric waveguide is proposed. The con-
ditions of leaky modes, corresponding to the Gamow-Siegert model, were used as
asymptotic boundary conditions. The resulting initial-boundary problem allows the
separation of variables. The emerging problem of the eigen-modes of open three-layer
waveguides is formulated as the Sturm-Liouville problem with the corresponding
boundary and asymptotic conditions. In the case of guided and radiation modes, the
Sturm-Liouville problem is self-adjoint and the corresponding eigenvalues are real
quantities for dielectric media. The search for eigenvalues and eigenfunctions corre-
sponding to the leaky modes involves a number of difficulties: the problem for leaky
modes is not self-adjoint, so the eigenvalues are complex quantities. The problem of
finding eigenvalues and eigenfunctions is associated with finding the complex roots
of the nonlinear dispersion equation. To solve this problem, we used the method of
minimizing the zero order. An analysis of the calculated distributions of the electric
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advantages of our approach to the study of leaky modes.
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1. Introduction

In the books by Marcuse [1], [2], Adams [3], Snyder and Love [4], Tamir [5],
and other authors the terms “leaky rays” and “leaky modes” appear when
discussing the propagation of polarized light in fiber optical waveguides with
the refractive index of the core smaller than that of the cladding, and in
planar waveguides with plates of material optically denser than the waveguide
layer itself. In this case, Marcuse writes that the outflow of light from such
a waveguide is akin to tunneling through a potential barrier in quantum
mechanics. The “leaky light”, in contrast to the “emitted light”, propagates
for quite a long time along the axis of the optical fiber. Similarly, in a planar
waveguide, the resulting electromagnetic radiation propagates for some time
at some distance along the waveguide, in contrast to the emitted light.

At the initial stage of the study of “leaky” modes, T. Tamir et al. [6]–
[12], A.W. Snyder et al. [13]–[18], as well as other research teams [19]–[25],
investigated the dispersion equations of optical waveguides written in terms
of transition matrices from the point of view of choosing one (two) roots of an
analytical function. The studies were executed using the theory of residues in
Cauchy integrals.

In the papers by V. Shevchenko [24], [25] the behavior of guided modes
during the transition of their wave numbers beyond critical values was ana-
lyzed, their transformation into leaky modes was shown, and the choice of
quadrants to which the wave numbers should shift when passing through crit-
ical values was justified. At frequencies below critical, the reflection from the
waveguide walls ceases to be complete, so that the waveguide modes continue
to propagate experiencing incomplete internal reflection, because of which
some radiation from the waveguide occurs. Such (improper) waveguide waves
with radiative damping are called leaky waves.

Open waveguides as radiating systems were first investigated by Hansen [19],
who proposed an antenna structure implemented using leaky waves. However,
there was no understanding of the physical mechanism of the resulting waves.
After all, the leaky waveguide mode is characterized by a complex longitudinal
wave number with constant attenuation due to radiation losses.

In this case, the longitudinal attenuation leads to an exponential increase
in the wave amplitude in the transverse direction. This fact violates the usual
radiation condition for guided modes, described by the solutions of self-adjoint
problems for the Helmholtz equation. The behavior of the resulting waves
that seems non-physical was clarified by Marcuvitz [23] and Oliner [6]–[9].

In the papers by Oliner et al. [6]–[12], a detailed study of the complex roots
of the dispersion equation that do not correspond to the guided modes is
given. The study begins with the assumption that exponentially damped
waves correspond to such roots, the experimental observation of which was
earlier reported in Refs. [20]–[22]. First, using ray technique, and then with the
help of mode analysis, the authors analyzed the wave solutions corresponding
to four different roots of the fourth-power dispersion equation. Two of these
roots correspond to solutions that exponentially decrease in the direction
of propagation and are located symmetrically with respect to the axes of
coordinates and the origin of coordinates. The rest two roots are rejected.
Many publications of that time have been devoted to the analysis of the
relative position of the variety of roots [6]–[18].
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In the first decades of the study of leaky waves, the method of steepest
descent was used as the most common method for their numerical search.
In this case, the trajectory of the fastest descent comes close to the leakage
poles, they begin to make a significant contribution or even dominate in the
general directional pattern of an open waveguide. The field distribution of the
resulting leaky wave increases in the transverse direction. However, the field
amplitude remains finite in a wedge-like region of space that allows leakage.

As shown by Marcuvitz [23], these complex poles can correspond to leaky
modes. Although they do not make a direct contribution to the correct
spectral solution and can therefore be characterized by non-physical growth
towards infinity, they can nevertheless accurately describe the radiation field in
limited spatial domains. In Ref. [26], e.g., it is noted that in most publications
on leaky modes there are no plots of fields of various types for leaky modes
calculated numerically (see, e.g., [4], [5], [27]–[35]). In this case, the authors
of some publications (e.g., [34]) propose to replace the leaky modes with
radiative ones in limited domains. Our studies have shown that this can
lead, firstly, to a large error in the calculation of losses, and secondly, to
an inaccurate calculation of the field profiles of leaky modes at distances
exceeding several wavelengths (⩾ 2) of the electromagnetic radiation used.
The replacement of one wave with another sometimes used requires serious
analysis in each specific case. As a consequence, there is an urgent need to
develop new algorithms for calculating the fields of both radiative and leaky
modes, surpassing the standard methods, e.g., the FDTD method, in count
rate and not inferior to them in accuracy.
In quantum physics, such solutions of the stationary Schrödinger equation

are called Gamow resonances [36], [37] or Siegert quasi-states [38]. In recent
decades, some researchers (see [39], [40]) solve boundary-value problems for
the Helmholtz equations with the asymptotic conditions of Siegert leaky waves,
obtaining numerical results interpreted by them as leaky waves. We propose
to obtain (using a numerical method) the solutions of boundary problems
for wave equations with asymptotic conditions of Siegert leaky waves. The
numerical solutions obtained using this approach coincide with the solutions
of Refs. [27]–[29], [33], [35], [41], but additionally allow description of the
phase fronts of leaky waves and “angular outflow cones”.
In our opinion, a more rigorous justification of the model of leaky waves of

open waveguide systems can be obtained by starting calculations not from
the Helmholtz equation, as is traditionally done, but from the wave equation
preceding the Helmholtz equation, and most importantly, more adequately
reflecting the wave nature of leaky modes.

2. Statement of the problem of modeling leaky modes
of symmetric waveguides

Consider (Figure 1) a symmetric three-layer planar waveguide consisting of
a dielectric film having the height ℎ with real refractive index 𝑛𝑓, surrounded
by a cladding layer with real refractive index 𝑛𝑐 < 𝑛𝑓.

The propagation of radiation in such structures is described by the Maxwell
equations, material equations [3]–[5], and boundary conditions that distinguish
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the class of solutions interesting for the researcher — in the present case, the
leaky modes [6]–[12], [26], [42].

Figure 1. Symmetric three-layer dielectric waveguide

The generally accepted model of the electromagnetic field in a planar
(infinitely extended along the 𝑂𝑦-axis) are fields that are independent of the
variable 𝑦. In this case, Maxwell’s equations are considerably simplified, since
𝜕𝐸𝛼/𝜕𝑦 = 𝜕𝐻𝛼/𝜕𝑦 ≡ 0 for any 𝛼 = 𝑥, 𝑦, 𝑧, and they are divided into two
independent subsystems — the subsystem for the so-called TE-modes and
for the TM-modes. The subsystem for the TE-modes can be represented as
a single wave equation for the master component 𝐸𝑦

( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑧2 − 𝑛2 (𝑥)
𝑐2

𝜕2

𝜕𝑡2 ) 𝐸𝑦 = 0, (1)

with the boundary conditions

⎧{{
⎨{{⎩

𝜕𝐸𝑦

𝜕𝑥
− 𝑖𝑘0𝑝𝑐 (𝛽) 𝐸𝑦∣

𝑥=ℎ+0

= 0,

𝜕𝐸𝑦

𝜕𝑥
+ 𝑖𝑘0𝑝𝑐 (𝛽) 𝐸𝑦∣

𝑥=−0

= 0,
(2)

and the initial conditions

𝐸𝑦 (𝑥, 𝑧, 𝑡)∣ 𝑧=0
𝑡=0

= 𝐸0
𝑦 (𝑥) , (3)

where 𝑝𝑐 (𝛽) = √𝑛2
𝑐 − 𝛽2, and 𝑐 is the electrodynamic constant, 𝑛 (𝑥) is the

variable refractive index of the considered three-layer waveguide, defined
below. The subsystem for the TE-mode also includes two equations for the
connection of components 𝐻𝑥, 𝐻𝑧 with the master component 𝐸𝑦.

As a model of leaky modes propagation, we will consider Eq. (1), i.e., in
other words, we will consider the propagation of leaky modes in terms of
a wave process. As asymptotic boundary conditions, we will consider the
conditions of leaky modes corresponding to the Gamow-Siegert model [36]–
[40].
In the case under consideration, the function describing the refractive index

depends only on 𝑥, which makes it possible to separate the variables in Eq. (1).
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As a result, we obtain solutions corresponding to leaky modes propagating in
the positive direction of the 𝑧-axis:

𝐸+
𝑦𝑗∣𝑥>ℎ

= 𝐴+
𝑐𝑗 ⋅ exp{𝑖𝑘0√𝑛2

𝑐 − 𝛽𝑗
2𝑥 + 𝑖𝑘0𝛽𝑗𝑧 − 𝑖𝜔𝑡} , (4)

𝐸+
𝑦𝑗∣𝑥<ℎ

𝑥>0
= 𝐴+

𝑓𝑗 ⋅ exp{𝑖𝑘0√𝑛2
𝑓 − 𝛽𝑗

2𝑥 + 𝑖𝑘0𝛽𝑗𝑧 − 𝑖𝜔𝑡} +

+ 𝐵+
𝑓𝑗 ⋅ exp{−𝑖𝑘0√𝑛2

𝑓 − 𝛽𝑗
2𝑥 + 𝑖𝑘0𝛽𝑗𝑧 − 𝑖𝜔𝑡} , (5)

𝐸+
𝑦𝑗∣𝑥<0

= 𝐵+
𝑐𝑗 ⋅ exp{−𝑖𝑘0√𝑛2

𝑐 − 𝛽2
𝑗 𝑥 + 𝑖𝑘0𝛽𝑗𝑧 − 𝑖𝜔𝑡} , (6)

where 𝜔 is the frequency, and 𝛽𝑗 are the eigenvalues of the non-self-adjoint
Sturm-Liouville problem with boundary conditions that extract the leaky
modes [3], [34], [41]:

⎧{
⎨{⎩

𝑋″ + 𝑘2
0𝑛2 (𝑥) 𝑋 = 𝑘2

0𝛽2𝑋,
𝑋′ (0) + 𝑖𝑘0√𝑛2

𝑐 − 𝛽2𝑋 (0) = 0,
𝑋′ (ℎ) − 𝑖𝑘0√𝑛2

𝑐 − 𝛽2𝑋 (ℎ) = 0,
(7)

The eigenfunctions of the problem (7) are defined as general solution of
the ordinary differential equation subject to the boundary conditions of this
problem, that is, they have the form

𝑋 (𝑥) =

⎧{{
⎨{{⎩

𝐴𝑐 ⋅ 𝑒𝑖𝑘0√𝑛2
𝑐−𝛽2(𝑥−ℎ), 𝑥 > ℎ,

𝐴𝑓 ⋅ 𝑒𝑖𝑘0√𝑛2
𝑓−𝛽2𝑥 + 𝐵𝑓 ⋅ 𝑒−𝑖𝑘0√𝑛2

𝑓−𝛽2𝑥, 0 < 𝑥 < ℎ,

𝐵𝑐 ⋅ 𝑒−𝑖𝑘0√𝑛2
𝑐−𝛽2𝑥, 𝑥 < 0

(8)

and the constants 𝐴𝑐,𝑓, 𝐵𝑐,𝑓 are determined from the field joining conditions

at the boundaries of the waveguide layer 𝑥 = 0 and 𝑥 = ℎ, which with Eq. (8)
taken into account constitute a homogeneous system of linear algebraic
equations:

⎛⎜⎜⎜⎜⎜⎜
⎝

1 −𝑒𝑖𝑘0𝑝𝑓ℎ −𝑒−𝑖𝑘0𝑝𝑓ℎ 0
𝑖𝑘0𝑝𝑐 −𝑖𝑘0𝑝𝑓𝑒𝑖𝑘0𝑝𝑓ℎ 𝑖𝑘0𝑝𝑓𝑒−𝑖𝑘0𝑝𝑓ℎ 0

0 1 1 −1
0 𝑖𝑘0𝑝𝑓 −𝑖𝑘0𝑝𝑓 𝑖𝑘0𝑝𝑐

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐴𝑐
𝐴𝑓

𝐵𝑓

𝐵𝑐

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

0
0
0
0

⎞⎟⎟⎟⎟⎟
⎠

, (9)

where 𝑝𝑐 = √𝑛2
𝑐 − 𝛽2, 𝑝𝑓 = √𝑛2

𝑓 − 𝛽2.

The homogeneous system of Eqs. (9) has a nontrivial solution if and only
if the determinant of the matrix of the system (9) is zero [43]. The equality
to zero of the determinant of the matrix of the system (9) can be achieved
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for some values of the spectral parameter 𝛽, which, in turn, determine the
eigenvalues of the problem (7).
In each subdomain 𝑥 > ℎ, 0 < 𝑥 < ℎ, and 𝑥 < 0 the solution of the wave

equation corresponding to the leaky modes is representable as a wave with
a complex wave vector. In the case of a field corresponding to leaky modes
running in the positive direction of the 𝑧-axis for 𝑥 > ℎ and 𝑥 > ℎ due to the
symmetry of the waveguide, the wave vector is determined as

�⃗�±
𝑗 = 𝑘0

⎛⎜
⎝

±√𝑛2
𝑐 − 𝛽2

𝑗

𝛽𝑗

⎞⎟
⎠

(10)

and in the waveguide layer (0 < 𝑥 < ℎ) there are two waves with wave vectors

�⃗�±
𝑓𝑗 = 𝑘0

⎛⎜
⎝

±√𝑛2
𝑓 − 𝛽2

𝑗

𝛽𝑗

⎞⎟
⎠

(11)

the modules of the wave vectors being equal to the corresponding wave

numbers: ∣�⃗�±
𝑗 ∣ = 𝑘0𝑛𝑐 and ∣�⃗�±

𝑓𝑗∣ = 𝑘0𝑛𝑓.

We formulate the problem of finding solutions corresponding to the leaky
modes as an eigenvalue problem for a differential operator with non-self-adjoint
boundary conditions (7), which we will further solve numerically.

3. Description of the algorithm for numerical solution
of the leaky mode problem

The spectral problem for a differential operator with non-self-adjoint bound-
ary conditions (7) is formulated numerically as a problem of approximate
determination of complex solutions of the equation

det𝑀 (𝛽) = 0, (12)

where 𝑀 (𝛽) denotes the coefficient matrix of Eqs. (9) [42]. In the case of
a problem similar to (7), but with self-adjoint boundary conditions, any
classical method of finding the real roots of the equation can be applied (see,
e.g., [44]–[46]). Our problem (7) is not self-adjoint, therefore, the eigenvalues
of this problem are generally complex and the standard methods for root
search can no longer be applied.
The problem (12) can be reformulated as a problem of finding the minimum

of a function of two variables as follows. The desired quantity 𝛽 = 𝛽′ + 𝑖𝛽″ is

a complex number. Any solution ̃𝛽 = ̃𝛽′ + 𝑖 ̃𝛽″ of Eq. (12) will be also a local
minimum of the non-negative function

𝐹 (𝛽′, 𝛽″) = |det𝑀 (𝛽′ + 𝑖𝛽″)|2. (13)

The eigenvalues corresponding to the leaky modes are localized in the first
quadrant of the complex plane Re (𝛽) > 0, Im (𝛽) > 0; moreover 0 < Re (𝛽) <
𝑛𝑐 (see Refs. [34], [47], as well as our papers [42]).
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To find all the local minima of function (11) in this region, it is proposed
to introduce a mesh in the region 0 < Re (𝛽) < 𝑛𝑐, 0 < Im (𝛽) < 𝐵, where
𝐵 is a constant that defines the boundary of the search for eigenvalues [42].
The nodes of the introduced mesh are used as initial approximations for the
numerical method of finding the minimum of the function of two variables (13).
In Refs. [42] the Hook-Jeeves method [48] was used, but there are also other
efficient numerical methods for zero-order multidimensional minimization [48].

4. Analysis of leaky modes in terms of inhomogeneous
plane waves

Consider the complex values

𝑝𝑐𝑗 = √𝑛2
𝑐 − 𝛽2

𝑗 = 𝑝′
𝑐𝑗 + 𝑖𝑝″

𝑐𝑗, 𝑝𝑓𝑗 = √𝑛2
𝑓 − 𝛽2

𝑗 = 𝑝′
𝑓𝑗 + 𝑖𝑝″

𝑓𝑗,

and 𝛽𝑗 = 𝛽′
𝑗 + 𝑖𝛽″

𝑗 in the solutions (4)–(6), explicitly distinguishing their real

and imaginary parts, which will allow us to reformulate Eqs. (4)–(6) in terms
of inhomogeneous waves, whose amplitude is also a function of coordinates 𝑥
and 𝑧:

𝐸+
𝑦𝑗∣𝑥>ℎ

= 𝐴+
𝑐𝑗 ⋅exp{−𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧}⋅exp{𝑖𝑘0𝑝′

𝑐𝑗𝑥 + 𝑖𝑘0𝛽′
𝑗𝑧 − 𝑖𝜔𝑡} , (14)

𝐸+
𝑦𝑗∣𝑥<ℎ

𝑥>0
= 𝐴+

𝑓𝑗 ⋅ exp{−𝑘0𝑝″
𝑓𝑗𝑥 − 𝑘0𝛽″

𝑗 𝑧} ⋅ exp{𝑖𝑘0𝑝′
𝑓𝑗𝑥 + 𝑖𝑘0𝛽′

𝑗𝑧 − 𝑖𝜔𝑡} +

+ 𝐵+
𝑓𝑗 ⋅ exp{𝑘0𝑝″

𝑓𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧} ⋅ exp{−𝑖𝑘0𝑝′

𝑓𝑗𝑥 + 𝑖𝑘0𝛽′
𝑗𝑧 − 𝑖𝜔𝑡} , (15)

𝐸+
𝑦𝑗∣𝑥<0

= 𝐴+
𝑠𝑗 ⋅exp{𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧}⋅exp{−𝑖𝑘0𝑝′

𝑐𝑗𝑥 + 𝑖𝑘0𝛽′
𝑗𝑧 − 𝑖𝜔𝑡} . (16)

Consider the expression (14) in the form of an inhomogeneous wave

𝐸+
𝑦𝑗∣𝑥>ℎ

= 𝐴𝑐𝑗 (𝑥, 𝑧) ⋅ exp{𝑖𝑘0𝑝′
𝑐𝑗𝑥 + 𝑖𝑘0𝛽′

𝑗𝑧 − 𝑖𝜔𝑡} , (17)

where 𝐴𝑐𝑗 (𝑥, 𝑧) is the amplitude of the inhomogeneous wave defined as

𝐴𝑐𝑗 (𝑥, 𝑧) = 𝐴+
𝑐𝑗 ⋅ exp{−𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧} . (18)

Consider in more detail the inhomogeneous wave in the form (17) with
variable amplitude 𝐴𝑐𝑗 (𝑥, 𝑧). If such waveguide parameters exist for which
the inhomogeneous wave (17) of some 𝑗-th mode propagates in the direction
⃗𝑠𝑗 = (𝑘0𝑝′

𝑐𝑗, 𝑘0𝛽′
𝑗)

𝑇
, along which 𝐴𝑐𝑗 (𝑥, 𝑧) → 0, then such wave will decay

(of course, if such direction exists). If a direction ⃗𝑠𝑗 = (𝑘0𝑝′
𝑐𝑗, 𝑘0𝛽′

𝑗)
𝑇
exists,

along which 𝐴𝑐𝑗 (𝑥, 𝑧) = Const, then the wave (17) will become homogeneous

and, correspondingly, if a direction ⃗𝑠𝑗 = (𝑘0𝑝′
𝑐𝑗, 𝑘0𝛽′

𝑗)
𝑇
exists, along which
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𝐴𝑐𝑗 (𝑥, 𝑧) → ∞, then the wave will have infinitely growing amplitude along
such a direction.
Consider first the case 𝐴𝑐𝑗 (𝑥, 𝑧) = Const. The representation (18) allows

choosing a direction in the plane 𝑥𝑂𝑧, along which 𝐴𝑐𝑗 (𝑥, 𝑧) = Const. This

direction is described by the equation −𝑘0𝑝″
𝑐𝑗𝑥 − 𝑘0𝛽″

𝑗 𝑧 = 0. The symmetric
direction 𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧 = 0 will be responsible for the constant amplitude of

the inhomogeneous wave, corresponding to Eq. (16). The domain above the
line −𝑘0𝑝″

𝑐𝑗𝑥 − 𝑘0𝛽″
𝑗 𝑧 = 0 corresponds to the domain of the amplitude growth,

as well as the domain below the line 𝑘0𝑝″
𝑐𝑗𝑥 − 𝑘0𝛽″

𝑗 𝑧 = 0 (see Figure 2).

Figure 2. Amplitude growth/attenuation regions and a constant amplitude line of an

inhomogeneous plane wave on 𝑥𝑂𝑧 plane

The region of existence of leaky modes corresponding to non-uniform waves
with non-increasing amplitude is shown in Figure 2 (the cone between two
dashed lines). Namely, if the wave vector of the non-uniform wave is located in
the cone between two dashed lines, then this leaky mode has a non-increasing
amplitude and can propagate in the positive direction of the 𝑧-axis.
Let us consider the inhomogeneous wave (14) in more detail. As shown in

Appendix (see (22)), in the region 𝑘0𝑝″
𝑐𝑗𝑥 + 𝑘0𝛽″

𝑗 𝑧 < 0 of a non-uniform wave
the amplitude will increase indefinitely, therefore we will consider the wave (14)
in the region 𝑘0𝑝″

𝑐𝑗𝑥 + 𝑘0𝛽″
𝑗 𝑧 ⩾ 0, see Figure 2. This exponential growth is

real within a limited transverse distance surrounding the origin [49]. Using
conservation of energy flux, one can show [49] that any mode that decreases
exponentially as it propagates must increase exponentially transverse to the
direction of propagation. However, it is evident that exponential growth of
the field (and mode energy) that extends to infinity is unphysical since we
have a finite energy source. A more detailed analysis of this problem is beyond
the scope of our paper.

5. Numerical analysis of leaky modes of symmetric
three-layer waveguides

Let us proceed to numerical analysis of the obtained representation of
the leaky modes (14)–(16). Since the structure of the waveguide under
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consideration is symmetric, it is sufficient to consider only Eq. (14). We
give in Figure 3 the calculated values of the complex phase deceleration
coefficient calculated for a waveguide with 𝑛𝑐=1.47, 𝑛𝑓=1.565, 𝜆 = 0.55 𝜇𝑚
and ℎ = 1.1𝜆.

Figure 3. Complex eigenvalues corresponding to the leaky modes of a symmetric waveguide

Let us analyze the distribution of the electric field strength of the first three
leaky modes at a fixed point in time.

(a) three-dimensional image (b) two-dimensional projection

Figure 4. The real part 𝐸𝑦 (𝑥, 𝑧, 𝑡∗) for the first leaky mode

As seen from Figure 4, the field is concentrated in a cone formed by lines of
constant amplitude, and the maximum intensity is observed at the boundaries
of the cone where the amplitude is maximal. Outside the cone, there is an
area of infinite growth of the amplitude of inhomogeneous waves represented
by Eqs. (14)–(16); in this area the inhomogeneous waves characterizing the
leaky mode in cladding layers cannot exist.
Inside the guiding layer, on the contrary, the field represented by

Eqs. (14)–(16) attenuates rather rapidly and becomes almost completely
damped at a distance of several wavelengths. The fields in the coating layer
and the substrate are inhomogeneous waves, whose amplitudes decay expo-
nentially the stronger, the smaller the distance to the waveguide layer. Due
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to the rapid attenuation of the field in the waveguide layer and the gradual
removal (escape) of inhomogeneous waves, which characterize the behavior of
the leaky mode in the cladding layers, one can observe a virtual “separation”
of the leaky mode from the waveguide layer. A similar “separation” is also
characteristic of higher leaky modes (see Figures 5, 6).

(a) three-dimensional image (b) two-dimensional projection

Figure 5. The real part 𝐸𝑦 (𝑥, 𝑧, 𝑡∗) for the second leaky mode

(a) three-dimensional image (b) two-dimensional projection

Figure 6. The real part 𝐸𝑦 (𝑥, 𝑧, 𝑡∗) for the third leaky mode

Further propagation of the emerging mode occurs outside the waveguide
layer in the direction of the corresponding wave vectors in the upper and
lower cladding layers. The leaky mode will propagate at an angle 𝜃𝑗 =
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𝑎𝑟𝑐𝑡𝑔 (
Re (𝑝𝑐𝑗)
Re (𝛽𝑗)

) in the top layer and at an angle −𝜃𝑗 in the substrate in

the form of two independent inhomogeneous waves.
We also note that experimental data on the propagation of leaky modes,

which qualitatively agree with the results obtained by us, are given in [50]
(see Figures 4(b), 5(b), 6(b)). In the experimental studies given in [50], leaky
modes also propagate in a cone, and are also characterized by the presence of
“separation” of the leaky mode from the waveguide layer.
It is commonly assumed that for the leaky modes the amplitude increases

with the distance 𝑥 from the waveguide along the vertical axis (at a fixed
longitudinal distance 𝑧and in the absence of losses in the waveguide). However,
as it propagates along the axis 𝑧, this mode decays due to permanent energy
losses from the waveguide layer to the environment. Functionally, the fields
of leaky modes (vertical profile) are identical to the fields of ordinary guided
modes; however, since unlike normal guided (homogeneous) modes, the leaky
modes are inhomogeneous waves. In this regard, the representation of leaky
waves of planar waveguides using the solutions of the wave equation seems to
be preferable for us, compared to the traditionally used representation using
the solutions of the Helmholtz equation.
At the same time, some features were revealed that we plan to analyze

in our further publications. It is important to emphasize that the region
of existence of leaky modes corresponding to inhomogeneous waves with
non-increasing amplitude is detected (the cone between two dashed lines in
Figure 2). Moreover, if the wave vector of an inhomogeneous wave is located
in the region of the cone between two dashed lines, then such a leaky mode has
a non-increasing amplitude and can propagate for a sufficiently long distance
in the waveguide without absorption.

6. Conclusion

As is well known, conventional guided modes that exist when the waveguide
layer thickness is above the critical value are considered in the optical beam
representation as plane waves propagating in a regular waveguide due to the
total internal reflection of waves at the interfaces between the waveguide
media. From this point of view, the leaky waves propagate due to the effect of
disturbed total internal reflection: during each act of disturbed total reflection
at the interfaces of the media forming the waveguide, some of the power of
this guided mode is radiated, i.e. “flows out” into the space surrounding the
waveguide.
It is important to emphasize that the number of leaky modes with a gradual

leakage is limited, unlike the continuum of radiative modes. The resulting
gradual leakage waves form a discrete spectrum and are plane inhomogeneous
waves. On the contrary, the radiative modes form a continuum (their spectrum
is continuous) and are plane homogeneous waves. As a result, the replacement
of one kind of these waves with another kind requires serious analysis in
each specific case. From this point of view, the methods developed by us are
undoubtedly useful for theoretical and numerical studies of dielectric and, in
particular, optical waveguides supporting leaky modes, for example, when
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used as basic elements in the development of advanced sensors or various
interface elements in integrated optical processors.
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Appendix

Consider a wave similar to a plane monochromatic wave, but having a com-

plex wave vector �⃗� = (𝑘′
𝑥 + 𝑖𝑘″

𝑥
𝑘′

𝑧 + 𝑘″
𝑧

), that can be represented as a non-uniform

plane wave:

𝑈 (𝑥, 𝑧, 𝑡) = 𝐶 ⋅ 𝑒𝑖𝑘′
𝑥+𝑖𝑘′

𝑧−𝑖𝜔𝑡 ⋅ 𝑒−𝑘″
𝑥𝑥−𝑘″

𝑧𝑧. (19)

Lines of equal phase will be given by equations 𝑘′
𝑥𝑥 + 𝑘′

𝑧𝑧 = Const. Lines
of equal amplitude will be given by equations 𝑘″

𝑥𝑥 + 𝑘″
𝑧𝑧 = Const. Lines

of equal phase and equal amplitude will be orthogonal to each other in non-
absorbing media due to the fact that 𝑘2

𝑥 + 𝑘2
𝑧 = 𝑘2, where 𝑘 is the wave

number corresponding to the medium in which the wave propagates.

In more detail: 𝑘′2
𝑥 + 𝑘′2

𝑧 − 𝑘″2
𝑥 − 𝑘″2

𝑧 + 2𝑖 𝑘′
𝑥𝑘″

𝑥 + 2𝑖 𝑘′
𝑧𝑘″

𝑧 = 𝑘2 and
equating the imaginary parts of the quantities in the right-hand and left-
hand sides of this equality, we obtain a condition 𝑘′

𝑥𝑘″
𝑥 + 𝑘′

𝑧𝑘″
𝑧 = 0 that

represents the scalar product of vectors �⃗�′ = Re (�⃗�) and �⃗�″ = Im (�⃗�), which
is zero, therefore

�⃗�′⊥�⃗�″. (20)

Transition to phase-ray coordinates

We introduce new coordinates attached to the lines of constant phase and
constant amplitude:

{
𝜉 = 𝑘′

𝑥𝑥 + 𝑘′
𝑧𝑧

𝜂 = 𝑘″
𝑥𝑥 + 𝑘″

𝑧𝑧 (21)

By virtue of the previously established orthogonality property (20), the
introduced coordinate system will be orthogonal. In the coordinates 𝜉𝜂,
the form of the considered inhomogeneous plane wave (19) is considerably
simplified:

𝑈 (𝜉, 𝜂, 𝑡) = 𝐶 ⋅ 𝑒−𝜂 ⋅ 𝑒𝑖𝜉−𝑖𝜔𝑡. (22)

In the new variables, according to (22), the amplitude of the inhomogeneous
wave under consideration decreases along the positive direction of the axis
𝑂𝜂,. For each fixed 𝜂 = 𝑞 > 0 the non-uniform wave is characterized by the
amplitude 𝐶 ⋅ 𝑒−𝑞 and the behavior harmonic along 𝜉 (see Figure 7).
For each fixed 𝜉 = 𝑝, the amplitude of the non-uniform wave decreases in

the positive direction of the axis 𝑂𝜂 (see Figure 7).
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Figure 7. Profile of a leaky waveguide wave (mode) in phase-ray coordinates

In the half-plane 𝜂 < 0, the amplitude of the non-uniform wave will increase
indefinitely, therefore from the physical point of view the half-plane 𝜂 < 0
corresponds the so-called shadow region of the non-uniform wave under
consideration.
The proposed representation of a wave with a complex wave vector in the

form of an inhomogeneous plane wave and the subsequent introduction of
phase-ray coordinates clearly demonstrate the essential properties of such
waves and will be further used to analyze leaky waves.
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Вытекающие моды в планарных диэлектрических
волноводах
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В работе предложено новое аналитическое и численное решение волновод-
ной задачи для вытекающих мод планарного диэлектрического симметричного
волновода. В качестве асимптотических граничных условий использовались
граничные условия, соответствующие модели Гамова–Зигерта. Поставленная
начально-краевая задача допускает разделение переменных. Возникающая
в результате разделения переменных задача отыскания собственных мод откры-
тых трёхслойных волноводов формулируется как задача Штурма–Лиувилля
с соответствующими граничными и асимптотическими условиями. В случае
направляемых и излучательных мод задача Штурма–Лиувилля является самосо-
пряжённой, поэтому её собственные значения — действительные величины для
диэлектрических сред. Поиск собственных значений и собственных функций, со-
ответствующих вытекающим модам, сопряжён с рядом трудностей: задача на
собственные значения и собственные функции не является самосопряжённой,
поэтому собственные значения являются комплексными величинами, таким обра-
зом, задача нахождения собственных значений и собственных функций связана
с нахождением комплексных корней нелинейного дисперсионного уравнения.
В работе для решения этой задачи использовался метод минимизации нулевого
порядка. В работе дан анализ рассчитанных распределений напряжённости элек-
трического поля первых трёх вытекающих мод, показывающий возможности
и преимущества предложенного подхода.

Ключевые слова: интегральная оптика, волновод, задача Штурма–Лиувилля,
дисперсионное соотношение, вытекающие моды, компьютерное моделирование
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Pair-copula constructions have proven to be a useful tool in statistical modeling,
particularly in the field of finance. The copula-based approach can be used to choose
a model that describes the dependence structure and marginal behaviour of the data
in efficient way, but is usually applied to pairs of securities. In contrast, vine copulas
provide greater flexibility and permit the modeling of complex dependency patterns
using the rich variety of bivariate copulas which may be arranged and analysed in
a tree structure. However, the number of possible configurations of a vine copula
grows exponentially as the number of variables increases, making model selection
a major challenge in development. So, to learn the best possible model, one has to
identify the best possible structure, which necessitates identifying the connections
between the variables and selecting between the multiple bivariate copulas for each
pair in the structure.
This paper features the use of regular vine copulas in analysis of the co-dependencies

of four major Russian Stock Market securities such as Gazprom, Sberbank, Rosneft
and FGC UES, represented by the RTS index. For these stocks the D-vine structures
of bivariate copulas were constructed, which models are described by Gumbel, Student,
BB1and BB7 copulas, and estimates of their parameters were obtained. Computer
simulations showed a high accuracy of the approximation of the explored data by
D-vine structure of bivariate copulas and the effectiveness of our approach in general.

Key words and phrases: copula, multivariate models, dependence structure, vines,
securities

1. Introduction

In the field of financial analysis, finding new useful models and improving
the existing ones is a constant struggle. Finding an appropriate multivariate
model that efficiently describes the dependence structure as well as marginal
behavior of the data being analyzed can be a very challenging task, especially
in the case of higher dimensions. The approach that relies on copulas tends
to outperform other methods when it comes to financial analysis, for example
modeling financial returns.
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Usually the Student 𝑛-dimensional copula is a good choice for financial
data of various kinds [1], and as such deserves special attention. Of course,
generally speaking, thorough analysis is needed for the best results – especially
if the data being analysed has different behaviour in the tails, in which case
the Student copula might not capture the dependence structure very well.
We will be discussing pairwise model into bivariate copulas as laid out by

Aas [2]. This approach will let us easily track the parameters relevant to
the tail dependence. In order to find the most appropriate approach for our
specific case, we will rely on the detailed comparison and overview of different
approaches by Berg [3].
The relatively recent concept of vines, introduced by T. Bedford and R.

M. Cooke [4], is very relevant to pairwise decomposition of multivariate
distributions. Vines essentially a subclass of trees that can be used to
efficiently represent a pairwise decomposition. We will focus primarily on
𝐷-vines and canonical vines [5], [6]. Our main source for the elements of
copula theory is R. B. Nelsen, H. Joe [7]–[9].

2. Basics of copula theory

Deflnition (pair-copula)

A pair-copula or simply copula is a function 𝐶 ∶ [0, 1]2 → [0, 1] that satisfies
the following properties:
For any 𝑢, 𝑣 ∈ [0, 1]
1) 𝐶(𝑢, 0) = 𝐶(0, 𝑣) = 0;
2) 𝐶(𝑢, 1) = 𝑢, 𝐶(1, 𝑣) = 1.
For any 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ [0, 1] such that 𝑢1 ⩽ 𝑢2 and 𝑣1 ⩽ 𝑣2
3) 𝐶(𝑢1, 𝑣1) − 𝐶(𝑢1, 𝑣2) − 𝐶(𝑢2, 𝑣1) + 𝐶(𝑢2, 𝑣2) ⩾ 0.
One of the most important theorems of copula theory is Sklar’s Theorem.

In terms of probability theory, it states that any joint distribution function
can be can be written in terms of marginal (univariate) distribution functions
and a copula function that can describe the dependence structure between
the random variables.
Sklar’s Theorem.
Let 𝑋 and 𝑌 be random variables with distribution functions 𝐹 and 𝐺,

respectively, and let 𝐻 be their joint distibution function. Then there exists

a copula 𝐶 ∶ [0, 1]2 → [0, 1] such that for any 𝑥, 𝑦 ∈ ℝ the following equation
is true:

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦)). (1)

If 𝐹 and 𝐺 are continuous, then 𝐶 is unique. If not, then 𝐶 is unique only
on RanFxRanG (here RanF is the range of 𝐹 and RanG is the range of 𝐺).
Conversely, if 𝐶 is a copula and 𝐹 and 𝐺 are distribution functions of 𝑋 and
𝑌, respectively, then 𝐻, defined by (1), is a joint distribution function for the
random variables 𝑋 and 𝑌, and 𝐹 and 𝐺 are marginal distribution functions
for 𝑋 and 𝑌, respectively.
It is not hard to describe the 𝑛-dimensional case, as well. But first, we have

to define the notions of 𝑛-Box and the 𝐻-volume of an 𝑛-Box and discuss
notation.
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Let us use the following notation:

a = (𝑎1, 𝑎2, … , 𝑎𝑛) ∈ ℝ𝑛, b = (𝑏1, 𝑏2, … , 𝑏𝑛) ∈ ℝ𝑛,

a ⩽ b means 𝑎𝑘 ⩽ 𝑏𝑘 for all 𝑘 from 1 to 𝑛.
When a ⩽ b we will use the following notation:

[a,b] = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × … × [𝑎𝑛, 𝑏𝑛].

The construction above is called the 𝑛-box. The vectors of the type
c = (𝑐1, 𝑐2, … , 𝑐𝑛) where 𝑐𝑘 equals 𝑎𝑘 or 𝑏𝑘 for all 𝑘 are called the vertices of
the 𝑛-box.
The notion of the 𝐶-volume of the 𝑛-box, 𝑉[a,b]𝐶, is discussed in [10], [11].
Definition (n-copula)

An n-copula is a function 𝐶 ∶ [0, 1]𝑛 → [0, 1] that satisfies the following
properties:
For any u = (𝑢1, 𝑢2, … , 𝑢𝑛) in [0, 1]𝑛
1) 𝐶(u) = 0 if any 𝑢𝑘 = 0.
2) 𝐶(u) = 𝑢𝑘 if all the coordinates except 𝑢𝑘 are equal to 0.
For any a,b ∈ [0, 1]𝑛 such that a ⩽ b

3) 𝑉𝐶[a,b] ⩾ 0.
The 𝑛-dimensional version of Sklar’s theorem is discussed in Nelsen [7], and

conditional copulas are discussed in Patton [12].

3. Decomposition of a multivariate distribution
function using pair-copula constructions

The general product rule (also called the chain rule of probability) allows
us to decompose a multivariate density function in the following, non-unique
way:

𝑓12..𝑛 = 𝑓1𝑓2|1𝑓3|12 … 𝑓𝑛|12…𝑛−1. (2)

If we assume that 𝐹 is strictly continuous and use the definition of a copula
and Sklar’s Theorem, we get

𝑓12..𝑛 = 𝑐12…𝑛𝑓1𝑓2 … 𝑓𝑛. (3)

To get to the pair-copula decomposition we will also have to use the useful
factorizations of this type:

𝑓2|1 = 𝑓1𝑓2𝑐12
𝑓1

= 𝑐12𝑓2. (4)

𝑓3|12 = 𝑓123
𝑓12

=
𝑓1𝑓23|1

𝑓2|1𝑓1
=

𝑓23|1

𝑓2|1
=

𝑓2|1𝑓3|1𝑐23|1

𝑓2|1
= 𝑐23|1𝑓3|1 = 𝑐23|1𝑐13𝑓3. (5)

Now let’s apply (2), (3), (4) and (5) to a 3-dimensional density function to
get a pair-copula decomposition:
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𝑓123 = 𝑓1𝑓2|1𝑓3|12 = 𝑓1𝑐12𝑓2𝑐23|1𝑐13𝑓3 = 𝑐12𝑐13𝑐23|1

3
∏
𝑖=1

𝑓𝑖. (6)

If we pick another conditioning variable we get another decomposition, for
example

𝑓123 = 𝑓1𝑓2|1𝑓3|12 = 𝑓1𝑐12𝑓2𝑐13|2𝑐23𝑓3 = 𝑐12𝑐13|2𝑐23

3
∏
𝑖=1

𝑓𝑖. (7)

The number of possible pair-copula decompositions for a 3-variable density
function is 24 [13], [14] and this number rises rapidly with the number of
dimensions, which makes it very complicated to find the decomposition that
best preserves the known information about the dependence structure. The
concept of vines is very useful in this regard.

4. The concept of vines

Vines are a concept first introduced by Bedford and Cooke [4]. A vine is
a sequence of trees {𝑇𝑖} in which the edges of 𝑇𝑖 are the nodes of 𝑇𝑖+1. Each
vine is a representation of a particular way of decomposing a multivariate
distribution. The two kinds of common vines that we will use in our work
are canonical vines and 𝐷-vines. Different types of vines represent different
types of dependency structures. A canonical vine corresponds to the case
where one “main” variable “interacts” with all the others, while in the case
of a 𝐷-vine there is no such “main” variable. This idea is represented in the
illustrations provided in Figures 1 and 2.
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Figure 1. C-vine

1 5432

12 453423

132 354242

1423 2534

12 23 34 45

13|2 24|3 35|4

14|23 25|34

15|234

T1

T2

T3

T4

Figure 2. D-vine

The following general formulas give us the expressions for the decomposition
of an 𝑛-dimensional density function using the 𝐷-vine and the canonical vine:

D-vine: 𝑓12…𝑛 =
𝑛

∏
𝑘=1

𝑓𝑘

𝑛−1
∏
𝑗=1

𝑛−𝑗

∏
𝑖=1

𝑐𝑖,𝑖+𝑗|𝑖+1,…,𝑖+𝑗−1. (8)
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Canonical vine: 𝑓12…𝑛 =
𝑛

∏
𝑘=1

𝑓𝑘

𝑛−1
∏
𝑗=1

𝑛−𝑗

∏
𝑖=1

𝑐𝑗,𝑗+𝑖|1,…,𝑗−1. (9)

Each edge in each of the trees corresponds to a pair-copula, the density of
which is used as one of the multipliers of the pair-copula construction, as we
can see in (8) and (9). The first tree, 𝑇1, should be constructed in a way that
best represents the supposed dependence structure of the variables.

Alternative constructions may involve using the copula parameter estima-
tions to get insight into the dependence structure — for example, we could
assign a Student-t topula to all the pairs and, knowing that a low number of
df indicates strong dependence, could construct a tree that represents that
dependence structure.

Algorithm 1. Sequential algorithm

Input: Data (𝑥𝑙1, … , 𝑥𝑙𝑛, 𝑙 = 1, … , 𝑁 (realization of i.i.d. random vectors).

Output: R-vine copula specification, i.e., 𝒱, 𝐵.

1: Calculate the empirical Kendall’s tau ̂𝜏𝑗,𝑘 for all possible vari-

able pairs {𝑗, 𝑘}, 1 ⩽ 𝑗 < 𝑘 ⩽ 𝑛.
2: Select the spanning tree that maximizes the sum of absolute
empirical Kendall’s taus, i.e.,

max ∑
𝑒={𝑗,𝑘}in spanning tree

∥ ̂𝜏𝑗,𝑘∥ .

3: For each edge {𝑗, 𝑘} in the selected spanning tree, select
a copula and estimate the corresponding parameter(s). Then

transform ̂𝐹𝑗|𝑘(𝑥𝑙𝑗|𝑥𝑙𝑘) and ̂𝐹𝑘|𝑗(𝑥𝑙𝑘|𝑥𝑙𝑗), 𝑙 = 1, … , 𝑁, using
the fitted copula ̂𝐶𝑗𝑘 (see (2)).

4: for 𝑖 = 2, … , 𝑛 − 1 do {Iteration over the trees}
5: Calculate the empirical Kendall’s tau ̂𝜏𝑗,𝑘|𝐷 for all

conditional variable pairs {𝑗, 𝑘|𝐷} that can be part
of tree 𝑇𝑖, i.e. all edges fulfilling the proximity
condition (see Definition 2.1).

6: Among these edges, select the spanning tree that
maximizes the sum of absolute empirical Kendall’s
taus, i.e.,

max ∑
𝑒={𝑗,𝑘|𝐷}in spanning tree

| ̂𝜏𝑗,𝑘|𝐷|.

7: For each edge {𝑗, 𝑘|𝐷} in the selected spanning
tree, select a conditional copula and estimate
the corresponding parameter(s). Then transform

̂𝐹𝑗|𝑘∪𝐷(𝑥𝑙𝑗|𝑥𝑙𝑘,x𝑙𝐷) and ̂𝐹𝑗|𝑘∪𝐷(𝑥𝑙𝑘|𝑥𝑙𝑗,x𝑙𝐷), 𝑙 = 1, … , 𝑁,
using the fitted copula ̂𝐶𝑗𝑘|𝑑 (see (2)).

8: end for
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5. Numerical experiment: choosing the right vine
structure

We will now apply the theory and methods discussed above to the analysis,
modeling and visualization of the returns of four major Russian companies.
Our data-set consists of the log-returns of Gazprom, Sberbank, Rosneft and
FGC UES from 06.06.2014 to 06.06.2018.
We will use the VineCopula package for the R programming language for

most of our computational needs [15].
Our main goal is to build a model that best represents core features of

our data’s dependency structure. We will use the sequential method [13]
with Akaike’s criterion [11], [16]–[18] (to determinine the most appropriate
copula families) and one of the versions of Prim’s algorithm (to determine
maximum spanning trees [19], [20]) to ultimately determine and specify the
most appropriate vine structure. We have provided the results below.
Figure 3 illustrates the D-vine structure of our model.
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Figure 3. D-vine structure of our model

We also need to verify our model. The verification process involves drawing
observations from the vine and comparing the empirical values of Spearman’s
Rho and some of the plots for the original observations and the sampled
observations. In other words, we must observe how well the dependence
structure was preserved.
For the sake of brevity, let us denote Rosneft by 𝑅, Gazprom by 𝐺, FGC

UES by 𝐹 and Sberbank by 𝑆.
Using AIC and MLE we have determined that:

1. 𝑐𝑆𝐹 is a rotated BB1 copula with 𝜃 = 0.1980236 and 𝛿 = 1.421392.
2. 𝑐𝑆𝐺 is a rotated BB7 copula with 𝜃 = 1.920555 and 𝛿 = 0.7580773.
3. 𝑐𝐺𝑅 is a rotated BB7 copula with 𝜃 = 2.025809 and 𝛿 = 0.9424809.
4. 𝑐𝐺𝑅|𝑆 is a rotated Gumbel copula with 𝜃 = 1.2104850.
5. 𝑐𝑆𝑅|𝐺 is a t-copula with 𝜌 = 0.3746501 and 𝜈 = 6.7874375.
6. 𝑐𝐹𝑅|𝑆𝐺 is a rotated BB8 copula with 𝜃 = 1.4269045 and 𝛿 = 0.8675492.
The D-vine tree structure for our model is presented on Fig. 4–6. Corre-

sponding graphs of bivariate copula density models with estimated parameters
are shown in Fig. 7.
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Figure 4. First tree

Figure 5. Second tree

Figure 6. Final tree
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(a) 𝑐𝑆𝐹 (b) 𝑐𝑆𝐺

(c) 𝑐𝐺𝑅 (d) 𝑐𝐺𝐹|𝑆

(e) 𝑐𝑆𝑅|𝐺 (f) 𝑐𝐹𝑅|𝑆𝐺

Figure 7. Bivariate copula densities for the vine structure of our model
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We drew 1003 observations from our D-vine — the same number as in
our real-world dataset and calculated Spearman’s rho values, shown below
in Table 2. Judging from Table 2 and the overlaid plots, the modeled
dependencies were captured in a satisfactory way. Graphical comparison of
empirical and simulated data with their scatterplots is presented on Fig. 8.

Table 1

Empirical Spearman’s Rho values

for the original observations

G F R

S 0.64 0.5 0.63

G - 0.49 0.67

F - 0.49

Table 2

Empirical Spearman’s Rho values

for the observations from sampling

G F R

S 0.6 0.54 0.65

G - 0.5 0.65

F - 0.53

Figure 8. Real and simulated data comparison

6. Conclusions

In this paper we have demonstrated the usefulness of the vine copula-
based approach to modeling a real-world dataset with a complex dependence
structure. We have successfully specified a model that captures some of the
essential dependencies that characterize our dataset. In a sense, by focus-
ing, for the sake of brevity, exclusively on C-vines and D-vines and specific
methods of copula selction and parameter estimations, we were forced to ne-
glect other approaches which could provide additional insights. Extensive
functionality provided by the VineCopula package for the R programming
language let us circumvent many computational dificulties, allowing for faster
and more efficient analysis.
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Моделирование многомерных структур
статистической зависимости на российском фондовом

рынке

Е. Ю. Щетинин

Департамент анализа данных, принятия решений и финансовых технологий
Финансовый университет при Правительстве Российской Федерации

Ленинградский проспект, д. 49, Москва, 125993, Россия

Модели копул являются эффективным инструментом в статистическом моде-
лировании, в частности в области финансового анализа. Подход к моделированию
многомерных структур с их использованием позволяет описать как структуру
статистической зависимости, так и маржинальные свойства данных, но обычно
применяется к парам ценных бумаг. Наряду с этим, модели вьющихся копул
обеспечивают большую гибкость и позволяют моделировать сложные структу-
ры зависимостей, используя большое разнообразие двумерных копул, которые
могут быть организованы в древовидную структуру. Однако число возможных
конфигураций вьющихся копул растёт экспоненциально по мере увеличения чис-
ла ценных бумаг, что делает выбор модели основной научной проблемой. Таким
образом, чтобы построить модель многомерных структур ценных бумаг, нужно
определить наилучшую возможную структуру, которая требует выявления свя-
зей между её переменными, а также выбора между несколькими двумерными
копулами для каждой пары в структуре.
В данной работе продемонстрировано применение регулярных вьющихся копул

в финансовом анализе статистических связей крупнейших российских ценных
бумаг, таких как Газпром, Сбербанк, Роснефть и ФСК ЕЭС, представленных
в индексе РТС. Для этих ценных бумаг были построены D-vine структуры
попарных копул, включающих модели Гумбеля, Стьюдента, ВB1 и BB7, а так-
же получены оценки их параметров. Компьютерное моделирование показало
высокую точность аппроксимации исследуемых данных и эффективность пред-
ложенного подхода в целом.

Ключевые слова: финансовый анализ, ценные бумаги, многомерные структу-
ры статистических связей, копулы, вьющиеся копулы
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The aim of this work was to study the spectrum of LF and HF oscillations generated
by plasma bunches created and confined in the volume of a microwave cavity immersed
in the magnetic field of a mirror trap. The registration of electrostatic oscillations in
the plasma was carried out using two flat electrodes mounted diametrically opposite
in the central part of the cavity close to its wall. This diagnostic showed the presence
of low-frequency oscillations with frequencies of 130 kHz and 450 kHz. The oscillation
spectrum in the microwave range was recorded at the minimum of the magnetic trap
using a real-time spectrometer and a loosely coupled loop antenna. The registration
of the spectra in the 40 MHz band revealed a regular change in the frequency of the
fundamental oscillation mode of the cavity and the presence of two harmonics of the
synchrotron radiation of the plasma bunch at frequencies of 2.25 GHz and 4.52 GHz,
respectively. According to the obtained data, the parameters of the formed bunch
(density, shape, volume, energy spectra of plasma components) can be restored.

Key words and phrases: gyromagnetic autoresonance, plasma bunches, long mag-
netic mirror trap, electrostatic and electromagnetic oscillations, spectral analysis

1. Introduction

The possibility of generating long-lived plasma bunches with an energetic
electronic component under conditions of gyromagnetic autoresonance (GA)
in the magnetic field of mirror trap in the regime of a reverse magnetic field
has been shown previously [1], [2]. In this mode the reverse pulsed magnetic
field is created by coils located at the maxima of the electric component of the
microwave field of a standing wave and reduced static magnetic strength to
a value that corresponds to the classical electron cyclotron resonance (ECR).
Then, the current in the pulse coils decreases, resulting in restoration of
the initial profile of the magnetic field produced by the stationary magnetic
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coils, and the electrons of the produced ECR plasma become trapped in the
autoresonant acceleration mode.
The aim of this work was to study the spectrum of LF and HF oscillations

generated by plasma bunches created and confined in the mirror trap within
microwave cavity.

2. Experimental setup

The experimental setup is a cylindrical microwave cavity placed in an
axisymmetric magnetic field of a long mirror trap configuration (𝑅 = 1.2,
𝐿 = 80 cm) with magnetic field induction at a trap minimum of 1200 G.
A stationary magnetic field is created by three pairs of coaxial coils fed by
three DC sources.
The pulsed magnetic field required for the implementation of the GA regime

is generated by the pulsed current flowing through a pair of coils axisymmetric
with the cavity and the coils of the stationary magnetic field. The coils of the
pulsed magnetic field are placed symmetrically with respect to the position of
the minimum of the magnetic field in the trap in antinodes of the electric field
of a standing wave TE118-mode. The 3D-design of the experimental setup,
together with the axial distribution of the induction of the resulting magnetic
field at different times of the current rise time in the reversing coils of the
pulsed field, are presented in Figure 1(a).

(a) Magnetic system and topology

of the magnetic field of the long mirror trap

(b) Waveforms describing the characteristic

phases of the installation

Figure 1. Microwave cavity

The direction of the current in the pulsed coils provides the creation
of a pulsed magnetic field with direction of the induction opposite to the
induction of the stationary field, thus reducing locally the resulting magnetic
field to a level corresponding to the ECR value for the operating frequency.
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The reduction of the current in the pulse coils and the restoration of the initial
profile of the stationary magnetic field in the presence of the microwave field
ensure the trapping and acceleration of the initial plasma electrons into the
GA regime and the generation of plasma bunches in two symmetrical zones
of the setup. The operating cycle of the setup is a current pulse in pulsed
magnetic coils with a duration of 900 𝜇s, synchronized with the forward front
of the microwave pulse with a duration of 1.1 ms. The duty cycle of the setup
is shown in Figure 1(b): phase A — reduction of the resulting magnetic field to
values of the ECR within the two zones of the trap, the phase B — formation
of initial plasma under ECR in two local zones of the trap, phase C — mode
of GA-effect, stage D — confinement mode of the produced plasma bunch
in a stationary field of the mirror trap. The restoration of the initial profile
of a stationary magnetic field with small gradients leads to the movement
of produced bunches to the region of the minimum of the trap and their
accumulation. The unit operates in a pulse-periodic mode with a variable
duty of GA-cycle. More detailed information about experimental setup and
diagnostic methods can be founded from [3], [4].
Registration of electrostatic oscillations in the plasma was carried out using

two flat electrodes flush-mounted with the side wall of the cavity at the
midplane. The electrodes are made of the metal disks with a diameter of
12 mm and fixed in the camera ports located in the midplane of the trap, and
were oriented parallel to the cavity walls.
The motion of the bunch within the cavity leads to a change in time of

the charge induced on the electrostatic probe. The charge distribution in the
bunch and its motion dynamics determine the time dependence of the charge
induced on the probe. Therefore, by the current taken from the probe through
a load resistor of 500 Ohms, one can conclude about the bunch parameters
and dynamics.
The oscillation spectrum in the microwave range was obtained at the

minimum of the magnetic trap using a loop microwave probe. The time and
parametric dependences of the frequencies and amplitudes of the recorded
oscillations on various discharge conditions were recorded. Microwave signal
processing was performed using a Tektronix RSA-6114A spectrum analyzer.

3. Experimental results

Processing the voltage waveforms on the load resistance of the wall elec-
trodes using the fast Fourier transform method showed the presence of
low-frequency oscillations with frequencies of 130 kHz and 450 kHz at a pres-
sure of 𝑃 = 1⋅10−5 Torr, which are observed in the final stage of autoresonance
acceleration (delay of 400 𝜇s) (Figure 2).
The motion of an azimuthal and radially asymmetric plasma bunch in the

cavity is accompanied by a complex redistribution of its space charge along
all three coordinates. An electrostatic probe registers the integrated picture
of the distribution of charge density in the near-probe region. The detected
oscillations can be due to both the azimuthal and radial inhomogeneity of
the bunch, and its axial displacements [5], [6].
Oscillations in the microwave range were recorded synchronously with

the signal from the electrostatic probe. The loop microwave probe was
introduced into the resonator port, which is at the minimum of the electric
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component of the working mode, which is a transverse circular waveguide
located perpendicular to the cavity axis at an angle of 45∘ to the oscillation
plane of the high-frequency field vector E.

Figure 2. Spectrum of low-frequency oscillations recorded by electrostatic probe placed near

the side wall of the cavity in the median plane of the trap

A series of experiments was carried out to obtain high-frequency spectra
in the range of the fundamental frequency of oscillations. The measurement
results are shown in Figure 3.

A typical spectrogram of high-frequency oscillations at the fundamental
frequency of the cavity (Figure 3(a)) illustrates the relatively small magnetron
generation bandwidth of the order of 1.5 MHz. The central frequency — 𝑓𝐻𝐹 of
the recorded spectral range does not remain constant over time. Figure 3(b)
shows the dependence of the frequency corresponding to the distribution
maximum on the delay Δ𝑡. GA process starts when the pulsed magnetic
field achieves its maximum value. The delay Δ𝑡 is the time interval between
the moment of maximum value of pulsed magnetic field and the start trigger
of spectrum analyzer. The central frequency of the recorded spectral range
decreases quasilinearly with increasing delay. It should be noted that this
decrease cannot be due to the delay of the magnetron generation frequency
when the complex conductivity of the plasma-loaded resonator changes, since
the high-frequency channel uses a standard circuit with an insulator based on
a circulator with a matched load that absorbs the reflected power.

Special attention is required to the spectra obtained under the same con-
ditions near the end of the microwave pump pulse. Figure 3(c) shows the
spectrogram obtained with a delay Δ𝑡 = 500 𝜇s — this moment corresponds
to the simultaneous end of microwave and magnetic field pulses (the end of
phase C in Figure 1(b)). It can be seen that in addition to the magnetron
generation line, the spectrum contains many other components whose level
is 10 or more dB lower than the signal at the fundamental frequency. This,
apparently, is due to the interaction of the standing wave field with bunch
particles, which by this time have almost completely formed and begin to
shift to the midplane of the mirror trap.
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(a) Spectrogram of high-frequency

oscillations at the fundamental frequency

of the cavity

(b) Dependence of the central distribution

frequency 𝑓𝐻𝐹 on the duration Δ𝑡
of the registration delay relative

to the maximum of the pulsed magnetic field

(c) Spectrogram of high-frequency

oscillations at the fundamental frequency

at Δ𝑡 = 500 𝜇s

(d) Spectrogram of high-frequency

oscillations at Δ𝑡 = 510 𝜇s

Figure 3. Typical spectrograms of high-frequency oscillations and dependence of the central

distribution frequency 𝑓𝐻𝐹 on the duration Δ𝑡 of the registration delay relative to the
maximum of the pulsed magnetic field

Figure 3(d) shows the spectrogram of the signal from the cavity at the
moment of Δ𝑡 = 510 𝜇s. In other words, it is 10 𝜇s after the end of the
pulse of the magnetron generator. It can be seen that the generation of
electromagnetic oscillations at frequencies close to the magnetron frequency
continues with a finite attenuation rate.
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Of particular interest are electromagnetic waves due to the collective motion
of the particles of the bunch. In fact, this is synchrotron radiation of the bunch
electrons accelerated by autoresonance. However, in contrast to classical
synchrotrons and vigglers, in which electrons move along strictly defined
trajectories, in the discussed plasma storage synchrotron, the bunch particles
participate in complex motion along highly non-trivial trajectories. This, of
course, affects the spectral composition of the synchrotron radiation of the
bunches and its radiation pattern. In the present work, synchrotron radiation
was recorded using the same loop microwave probe, which was described
above and was used to measure the spectra of microwave oscillations of the
cavity at the pump frequency. In Figure 4 the corresponding experimental
results are presented.

The upper curve in Figure 4(a) is the integral of the signal recorded from
the loop microwave probe in the vicinity of 2.25 GHz in the 40 MHz band
by the Tektronix RSA-6114A real-time spectrum analyzer. The lower curve
corresponds to the spectral distribution of synchrotron radiation energy in this
frequency range. The recorded spectrum has a very complex shape in which
several peaks of different widths and degrees of overlap can be distinguished.
As a result of this, it would not be right to talk about harmonics of synchrotron
radiation, as is done in its classical consideration [7], [8], however, for brevity
and definiteness of the present work, we will call radiation recorded in this
spectral region the “first harmonic” of synchrotron radiation. It can be
assumed that individual peaks in the recorded spectrum correspond to several
spatially separated parts of plasma bunches coming from their generation
regions near the pulsed-field coils to the confinement region at the midplane
of the trap. Interpretation of these results requires additional studies and
comparison of their results with the results of measurements of bremsstrahlung
and recombination radiation of bunches, as well as data of corpuscular probes
in both the radial and axial directions of observation.

The power integral and spectral distribution shown in Figure 4(b) corre-
spond to the “second harmonic” of the synchrotron radiation of a plasma
bunch. A spectrogram with a central frequency of 4.52 GHz in the 40 MHz
band was obtained with the parameters of the setup and spectrum acquisition
unchanged. Nonlinear changes in the spectral composition of synchrotron
radiation at the “second harmonic” should be noted.

A series of experiments was carried out with a variation in the working
gas pressure, which showed a broadening of the spectrum with increasing
pressure.

4. Conclusion

Processing waveforms from electrodes using the fast Fourier transform
method showed the presence of low-frequency oscillations with frequencies of
130 kHz and 450 kHz at a pressure of 𝑃 = 1 ⋅10−5 Torr, which are observed in
the final stage of autoresonant acceleration. The low-frequency components
in the emission spectrum of a relativistic bunch arise as a result of complex
nonlinear interaction of the bunch particles with external and internal fields,
similar to how it happens in a beam discharge [6], in betatrons [7] and in
plasma engines [9].
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(a) The “first harmonic” 2.25 GHz

(b) The “second harmonic” 4.52 GHz

Figure 4. Spectra of synchrotron radiation
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A comparison of the low-frequency oscillations with the fluctuations in
the intensity of the bremsstrahlung detected in the transverse direction, as
well as the signals of the PMTs recorded in the region of the trap minimum,
shows that they are interconnected and are observed synchronously when the
bunches are shifted to the detection region. Microwave signals (at 2.25 GHz
and 4.52 GHz) are also obtained at a given point in time, and a broadening
of the spectrum is observed with increasing working gas pressure. Radiation
at a frequency of 4.52 GHz was obtained in a trap at the end of a microwave
pump pulse.
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Особенности характерных электромагнитных
колебаний плазменных сгустков в длинном

пробкотроне

А. А. Новицкий, Д. В. Чупров, В. А. Кузнецов, Е. А. Шевцов

Институт физических исследований и технологий
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Целью данной работы являлось изучение спектра НЧ и ВЧ колебаний
генерируемых плазменными сгустками, создаваемыми и удерживаемыми в ра-
бочем объеме высокочастотного резонатора, находящегося в магнитном поле
зеркальной ловушки. Регистрация электростатических колебаний в плазме осу-
ществлялось при помощи двух плоских электродов установленных диаметрально
противоположно в центральной части резонатора в его пристеночной обла-
сти. Эта диагностика показала наличие низкочастотных колебаний с частотами
130 кГц и 450 кГц. Спектр колебаний в СВЧ диапазоне регистрировался в мини-
муме магнитной ловушки при помощи спектрометра реально времени и слабо
связанной петлевой антенны. Регистрация спектров в полосе 40 МГц позволила
выявить закономерное изменение частоты основной моды колебаний резонатора
и наличие двух гармоник синхротронного излучения плазменного сгустка на ча-
стотах 2.25 ГГц и 4.52 ГГц соответственно. По полученным данным могут быть
восстановлены параметры сформированного сгустка (плотность, форма, объем,
энергетические спектры компонент плазмы).

Ключевые слова: гиромагнитный авторезонанс, плазменные сгустки, про-
тяженный пробкотрон, электростатические и электромагнитные колебания,
спектральный анализ
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For the first time, the theoretical model of the spin-electron structure of a single-
layer graphene film was proposed by Wallace. The literature also describes
ferromagnetism generated by none of the three common causes: impurities, de-
fects, boundaries. We believe that the source of ferromagnetism is the spontaneous
breaking of spin symmetry in a graphene film. The classical field model describ-
ing spontaneously broken symmetry is necessarily non-linear. Among non-linear

models, the simplest is the well-known 𝜆𝜑4 model. We believe that, as a first ap-
proximation, we can describe with its help all the characteristics of spin waves that
interest us, their spectra, and the domain structure of ferromagnetism in graphene.
The model admits kink and anti-kink exact solutions and a quasiparticle breather,
which we modeled numerically. We use the kink–anti-kink interaction energy ob-
tained numerically to solve the Schrödinger equation, which simulates the quantum
dynamics of breathers, which underlies the description of spin waves. The solution
of the Schrödinger equation by the Ritz method leads to a generalized problem of
eigenvalues and eigenvectors, the solution of which is mainly devoted to this work.

Key words and phrases: graphene, solitons, kinks, breathers, nonlinear models

1. Introduction

One of the main areas of the theoretical and experimental research is the
study of the properties of graphene, an obvious candidate for the formation
on its basis of the elemental base of future nanoelectronics and spintronics,
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which provides a gain by orders of magnitude in the field of speed, size
and power consumption of devices for storing, transmitting and processing
information. Significant successes were achieved in this area [1]–[7], however,
a number of very unusual for carbon structures properties of graphenes, which
are observed experimentally, have not yet found their adequate theoretical
description. In particular, it was found [2], [3] that in graphene systems
there is a ferromagnetic effect that present right up to room temperatures
and above (Curie temperature exceeds 500 K). Consequently, samples of
graphene films can have their own magnetization due to the presence of
a nonzero spin density of valence electrons distributed in some way on the
two-dimensional carbon lattice. According to researchers, these experimentally
observed ferromagnetic properties of graphene structures require theoretical
justification and the construction of an appropriate mathematical model.

For the first time, the theoretical model of the spin-electron structure
of the single-layer graphene film was proposed by Wallace. After it was
published an extensive bibliography, which we will not concern. The ferromag-
netic properties of graphene structures observed experimentally by different
researchers, by their own admission, require proper justification and con-
struction of the appropriate theoretical model. We believe that the source of
ferromagnetism is the spontaneous breaking of spin symmetry in a graphene
film. Quantum-chemical calculations show that the Wallace model can serve
only as a first approximation, and subsequent approximations allow violation
of the well-known Wallace symmetry.

Quantum-chemical simulation of electron density in a monoatomic graphene
film by the extended functional density method and the advanced Hartree–
Fock method has demonstrated the possibility of the existence of unpaired
electrons, which gives rise to spontaneous violation of spin symmetry in it,
i.e., a nontrivial distribution of spin density. Experimentally it was found that
such a non-trivial distribution does not have a traditional source: impurities,
defects, boundaries [2].

Being caused by spontaneous symmetry breaking, such a distribution of
spin density must satisfy the nonlinear phenomenological equation of the
classical gauge field [8]–[14]. There can be many such fields and equations,
and they all supposedly give results that coincide in a first approximation.

Therefore, the scalar field on the two-dimensional continuum 𝜆𝜑4 was chosen
as the first object of study as a mathematical model of spin density. Here we
made a transition from a discrete set of nodes of a double hexagonal lattice,
in which unpaired electrons and the corresponding electron and spin densities
can be localized.

The nonlinear field model proposed for the distribution of the spin density
of valence electrons in a graphene film makes it possible to describe the
experimentally observed ferromagnetic properties of such films. It is shown
that these solutions (kinks, breathers) allow the formation of some spatially
localized magnetization density configurations on the surface of a graphene
film. The specified scalar field allows localized solutions: kinks and anti-kinks.
The combination of kink and anti-kink is a quasiparticle, i.e. an approximate
solution of the nonlinear equation for a 𝜑4 scalar field. Quantitative estimates
are obtained for the energy and spatial dimensions of such a configuration.
Their characteristic size was tens of nanometers. It is also shown that such
configurations can constitute groups of discrete spectra.
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The problem of the interaction of kinks and anti-kinks with each other
is considered. We also find it interesting to further consider the interaction
of breathers with each other and with other physical fields, as well as the
dynamics of spinons on graphene (fullerene, nanotube) nonplanar surfaces
of various topologies. This work is devoted to a numerical study of the

model 𝜆𝜑4 [15], [16]. Within the framework of the proposed model, the
problems of approximate calculation of potential fields, approximate solution
of the Schrödinger equations and simulation of control of the external field of
population levels [8] are solved.

2. Model description

In this work, we study a theoretical model that describes the properties
of graphene monoatomic layers that form some two-dimensional surfaces
associated with the presence of a nonzero spin density distribution function
on these surfaces formed as a result of spontaneous violation of the spin
symmetry of valence electrons of carbon atoms on these surfaces. Since the
spin density is proportional to the magnetization density, this model allows
us to describe the ferromagnetic properties of graphene structures.
In the framework of the proposed model, a transition is made from the

consideration of a discrete two-dimensional carbon lattice forming a graphene
film to a continuous two-dimensional surface stretched over this lattice. The
indicated two-dimensional surface is the configuration space of the model.
Thus, we are making the transition to a continuum field model.
In the model under consideration, a trivial, identically equal to zero, spin

density configuration is admissible. However, it was experimentally established
that this symmetric field configuration can be spontaneously disturbed to
some physically observable.
Within the framework of the two-dimensional field model under study, there

is an analogue of the Goldstone theorem, known in quantum field theory,
according to which an each broken generator of the initial symmetry of the
field system must correspond to a massless scalar uncharged boson, which in
our case is appropriate to call as a spinon.
In this case, the spontaneous breaking of spin symmetry within the frame-

work of the proposed model should lead to the presence on the graphene
surfaces of quasiparticle spinons, which are vector bosons in 3-dimensional
physical space and scalar pseudo-Goldstone bosons in the two-dimensional
configuration space of the model, since the projection of the quasiparticle
spin on the configuration space is equal to zero.
It is significant that the presence of collective magnetic interactions of

spinons, due to the influence of the total magnetic field, created by all spinons,
on each spinon individually, leads to nonlinearity of the corresponding field
equations and, as a consequence, the possibility of the existence of soliton
configurations on graphene surfaces, which depend, inter alia, on shape and
surface topology.
In addition, the presence of collective interactions in the ensemble of spinons

should lead to the appearance of an effective mass for a spinon, which should
also affect the observed physical consequences, although due to the smallness
of spin-spin interactions large values of this mass can hardly be expected.
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Based on the foregoing, it is clear that the equations for the desired scalar
field given on a certain two-dimensional surface must be nonlinear and defined
on this surface of an arbitrary, generally speaking, shape and topology. The
form and topology in this case determine the boundary conditions for the
field function. The indicated function determines the conditions for the
existence, configuration and dynamics of quasiparticles of this field on a given
two-dimensional surface.
The indicated properties, in particular, are possessed by the field equations

known in quantum theory, which describe, among other things, massless
nonlinear scalar excitations.
Thus, to describe spinon excitations on graphene surfaces, we use one of the

variants of the nonlinear field model, which allows us to calculate the eigen
solutions, effective masses, topological invariants, energy spectra, the dynamics
of various nonlinear spinon configurations, as well as relaxation properties,
Curie temperature, and other characteristics of statistical ensembles of spinons.

3. Interaction model

Consider a model of a nonlinear one-component scalar field 𝜑 on a two-
dimensional surface, the surface density of the Lagrangian of which is set in
the form:

𝐿(𝜑) = 1
2

(𝜕𝜈𝜑𝜕𝜈𝜑) − 𝜆
4

(𝜑2 − 𝜑2
0)2, (1)

where 𝜑0 and 𝜆 are the model parameters. In this case, the field equation
has the form:

[𝜕𝜈𝜕𝜈 − 𝜆𝜑2
0]𝜑 − 𝜆𝜑3 = 0 (2)

In the case when 𝜑 depends only on one coordinate 𝑥 and does not depend
on time, in other words: 𝜑 = 𝜑(𝑥), and the equations of the form (2) have
a set of static solutions, as well as kink and anti-kink solutions:

𝜑±(𝑥) = ±𝜑0 tanh(√𝜆𝜑2
0/2𝑥). (3)

In the vicinity of zero, kinks (anti-kinks) have a domain wall separating
regions with magnetization of different signs.
The kink energy per unit length in the coordinate 𝑦 is calculated by the

formula:

𝐸(𝜑) =
∞

∫
−∞

d𝑥 [1
2

(𝜕𝑥𝜑)2 + 𝜆
4

(𝜑2 − 𝜑2
0)2] =

√
3

8
𝜑3

0
√

𝜆. (4)

The kink energy density along the 𝑥 coordinate is proportional to

[1 − tanh2 (√𝜆𝜑2
0/2𝑥)] and, therefore, is concentrated near zero on the

domain wall.
As in any ferromagnet, in the system under consideration there is a Curie

temperature [1], [2], at which the system of interacting spins is disordered due
to thermal motion. This leads to the decay of the kink and the destruction of
the domain structure. In other words, this is the situation when the energy of
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the thermal motion of an elementary magnetic moment becomes comparable
with its energy in the kink field. This allows a quantitative assessment of the
model parameters.
The substitution of the numerical values gives 𝑑 ≈ 15–30 nm, which looks

quite plausible. The scatter of values for the domain wall thickness is related
to the scatter of the available experimental data on measuring the Curie
temperature. In any case, we see that the calculated domain wall thickness is
tens of bond lengths in the cell. This confirms the correctness of the use of
the proposed continuum model for the graphene lattice.
Consider the case when the solutions for the field function are explicitly

time-dependent. Then we obtain stable single kink and anti-kink solutions
propagating along the coordinate 𝑥 with a constant velocity 𝑉0.

The stable spatially localized field configurations (not only kinks) (in
particular, which are solutions of equations of the form (2)) are of interest for
many practical applications. For qualitative estimates we propose to use some
approximate solutions of equations of the form (4), by using combinations of
existing exact solutions.
+In particular, we can consider the system of kink and +anti-kink inter-

action. In the simplest case, this can be a kink and an anti-kink located at
some distance 𝑎(𝑡) from each other. Moreover, it is very important that kink
and anti-kink interact with each other even at an infinitely large distance
from each other. This is due precisely to the fact that their asymptotics at
spatial infinity are nonzero. In addition, it should be noted that, due to the
nonlinearity of the problem, the sum of exact solutions, generally speaking, is
not an exact solution.
Nevertheless, we choose the field function of the system of interacting kink

and anti-kink in the simple form:

𝜑(𝑥, 𝑎) = [𝜑+(𝑥 + 𝑎) + 𝜑−(𝑥 − 𝑎) − 𝜑0], 𝑎 > 0. (5)

A function of the form (5) for small values of 𝑎 is spatially localized near the
point 𝑥 = 0. Kink and anti-kink at (5), spatially separated by a sufficiently
large (compared to the thickness of the kink itself) distance, interact with
each other, but,however, steadily maintain their own shape.

We numerically look for such 𝑎(𝑡) to satisfy the equation (2). The obtained
solutions will correspond to breathers, that is, stable kink – anti-kink config-
urations, known, for example, for equations like sine-Gordon, Korteweg–de
Vries, and some others, both in discrete and continuous cases.

Consider the Hamiltonian of a system whose field function of the form (5)
satisfies the equation of type 2:

𝐻(𝜑) =
∞

∫
−∞

d𝑥 [𝜕𝜈𝜑(𝑥)𝜕𝜈𝜑(𝑥) + 𝜆
2

(𝜑(𝑥)2 − 𝜑2
0)2]. (6)

This function can be considered as the total energy of the kink in the
anti-kink field (or vice versa), and its dependence on the parameter 𝑎 may
be formally investigated. Then the dependence of the Hamiltonian of the
form (6) on the parameter 𝑎 corresponds to the dependence of the potential
interaction energy of the kink and anti-kink on the distance between them. If
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there are minima in this function, one should expect the presence of bound
states in the kink–anti-kink system. These will be the desired breathers.
We will search for the bound states of the kink–anti-kink in the minima of

potential energy:
𝜕

𝜕𝑎
𝐻(𝜑, 𝑎𝑚) = 0,

𝜕2

𝜕𝑎2 𝐻(𝜑, 𝑎𝑚) > 0.
(7)

You can get the estimate: 𝑎0 ≈ 0.8𝑑. Thus, the ratio of the distance
between the kink and the anti-kink to the size of the kink itself (anti-kink) is
less than unity, which again confirms the correctness of the assumptions used.

3.1. Numerical implementation

Since we consider functions 𝜑(𝑥, 𝑎) of the form (5), depending on the parameter
𝑎, where 𝜑±(𝑥) = ±𝜑0 tanh (√𝜆𝜑2

0/2𝑥) depends on the parameter 𝜑0, the

calculation of the functional 𝐻(𝜑, 𝑎) was performed as follows. First, the
partial derivative

𝜕𝜑
𝜕𝑥 was calculated (the other partial derivatives of 𝜑 are

identically equal to zero due to the choice of the form of the function 𝜑 (5)),
then for given 𝜑0, 𝜆 and 𝑎 the numerical integral (6) is calculated. Thus, with
the fixed parameter 𝜑0 = 1.0 selected, we obtain a numerical dependence
of the potential interaction energy 𝑈(𝑎, 𝜆) The calculations were performed
for various 𝜆 = 0.01 … 100.0. Moreover, for each value of 𝜆 the dependence
is 𝑈𝜆(𝑎) ≡ 𝑈(𝑎, 𝜆) was calculated for the values of 𝑎 from 𝑎 = +0.0 to the
value of 𝑎(𝜆) for which the values of 𝑈𝜆(𝑎(𝜆)) and 𝑈𝜆(2𝑎(𝜆)) coincide with
up to the 5th digit.
Since the dynamics of the breather in the model of spontaneous symmetry

breaking [8], [9] is described by quantum nonrelativistic equations, we model
the dynamics of the pulsation of stationary states of the breather by the
Schrödinger equation.

4. Dynamics model

For the quantum-mechanical stationary wave function of the breather 𝜓𝑏(𝑎),
the Schrödinger equation in the standard form is written:

[− ℏ2

2𝑚𝑏

𝜕2

𝜕𝑎2 𝑈(𝜑, 𝑎)]𝜓𝑏(𝑎) = 𝐸𝜓𝑏(𝑎), (8)

where 𝑚𝑏 is the effective mass of the breather, which is equal in this case
to the sum of the masses of the free kink and anti-kink, and 𝑈(𝜑, 𝑎) is the
potential part of the total energy of the breather, depending on 𝑎, 𝐸 is the
energy of the corresponding stationary state. The movement of the breather
along the generalized coordinate 𝑎 physically corresponds to a change in the
distance between the kink and the anti-kink, while the center of the breather is
fixed along the coordinate 𝑥, only the effective width of the breather changes
(the breather “breathes”).
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4.1. Numerical implementation

The dynamics of the breather is described by the Schrödinger equation:

−d
2𝜑
d𝑥2 + 𝑈(𝑥)𝜑(𝑥) = 𝐸𝜑(𝑥). (9)

We will seek a numerical solution of the equation (9) by using the Ritz–
Galerkin method. Namely, under the assumption that the Schrödinger

operator �̂� is strictly positive, we can construct the Ritz functional and
the energy space in which it reaches its minimum. The local minima of
the Ritz functional uniquely correspond to the eigenvectors of the operator

�̂�. The finite-dimensional approximation of the functional over some com-
plete system of coordinate functions 𝜑𝑘(𝑥) minimizes the function of several
variables. The minimum of this function corresponds to the solution of the

system of linear algebraic equations with the Ritz matrix (�̂�𝜑𝑘, 𝜑𝑙). Te ap-
plication of the Galerkin method to this problem leads to the eigenvalue and
eigenvector problem, as does the Ritz method.
You can use an arbitrary orthonormal basis in the space 𝐿2 of quadratically

integrable functions on the axis as a complete system of coordinate functions.
Moreover, convergence may turn out to be slow, which will lead to the need
to solve systems of linear algebraic equations of large dimension. In order to
build a well-conditioned Ritz matrix, one should choose a strongly minimal

or almost orthogonal complete system of functions with respect to �̂�. By the
way, one should note that the potential energy in the equation (9) is a grid
function, which complicates the analytical study of the known bases in 𝐿2.
At the same time, the quantum operator of a nonlinear oscillator from [17]

has a complete system of eigenvectors. The eigenfunctions of a nonlinear
oscillator form a numerically strongly minimal system of functions for the

operator �̂�. These functions, however, are not orthonormal in the space
𝐿2. This fact complicates the finite-dimensional approximating problem and,
more precisely, leads to the generalized eigenvalue problem and eigenvectors

̂𝐴 ⃗𝑐 = 𝐸�̂� ⃗𝑐.
Then, in the general case, the solution will look like this:

𝜑𝑗 (𝑥) =
∞

∑
𝑘=1

𝑐𝑗,𝑘𝜑𝑘(𝑥),

where 𝜑𝑘(𝑥) are basic functions. Therefore, in order to find the solution (9),
it is necessary to specify some kind of functions 𝜑𝑘(𝑥) and find the values of
the coefficients 𝑐𝑗,𝑘 and 𝐸. From the obtained the numerical values of 𝑉 (𝑥) it
is clear that the form of the potential is similar to the potential of a nonlinear
oscillator, so we take the eigenfunctions 𝜑𝑘(𝑥) for it.
Consider the case 𝑘 = 0, 1, 2. Choose 𝜆 = 1. In this case, 𝑛 = 3, but for

a smaller calculation error, you can choose a value of 𝑛 more than 3. Let
𝑛 = 10. For 𝜆 > 0 the condition must be satisfied: 2𝛽0

𝜆 ⩾ 𝑛. It follows from
this inequality that in our case 𝛽0 ⩾ 5. Consider 𝛽0 = 6. Subsequent 𝛽𝑖 are
calculated using the formula 𝛽𝑖 = 𝛽𝑖−1 − 𝜆. Therefore, 𝛽1 = 5, 𝛽2 = 4. Also,
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to find the form of the functions 𝜑𝑘(𝑥) we need the values 𝑟𝑖 = 𝛽𝑖
2𝜆 . In our

case, 𝑟0 = 3, 𝑟1 = 5
2 , 𝑟2 = 2.

We look for the form of the functions 𝜑𝑘(𝑥) using formulas:

⎧{{
⎨{{⎩

𝜑0 (𝑥) = 1
(1 + 𝜆𝑥2)𝑟0

,

𝜑1 (𝑥) = 𝐴+ (𝛽0) 𝜑0 (𝛽1) ,
𝜑2 (𝑥) = 𝐴+ (𝛽0) 𝐴+ (𝛽1) 𝜑0 (𝛽2) .

(10)

where

𝐴+ = 1√
2

(−√1 + 𝜆𝑥2 𝑑
d𝑥

+ 𝛽𝑖𝑥√
1 + 𝜆𝑥2

) .

+After substitution of the +values 𝜆, 𝛽𝑖, 𝑟𝑖 and simplification of the results,
the functions 𝜑𝑘(𝑥), 𝑘 = 0, 1, 2 will take the form:

⎧{{{{
⎨{{{{⎩

𝜑0 (𝑥) = 1
(1 + 𝑥2)3 ,

𝜑1 (𝑥) = 11𝑥
√

2 (1 + 𝑥2)3 ,

𝜑2 (𝑥) =
9 (10𝑥2 − 1)
2 (1 + 𝑥2)3 .

(11)

The Ritz system takes form:

2
∑
𝑘=0

𝑐𝑘(𝐴𝜑𝑘, 𝜑𝑗) = 𝐸
2

∑
𝑘=0

𝑐𝑘(𝜑𝑘, 𝜑𝑗), 𝑗 = 0, 2, (12)

where the operator 𝐴 = − 𝑑𝑣[2]𝑥 + 𝑉 (𝑥).
Having written the scalar products (𝐴𝜑𝑘, 𝜑𝑗) and (𝜑𝑘, 𝜑𝑗), we get:

−
∞

∫
0

𝑑2

d𝑥2 (
2

∑
𝑘=0

𝑐𝑘𝜑𝑘 (𝑥)) 𝜑𝑗 (𝑥) +
2

∑
𝑘=0

𝑐𝑘

∞

∫
0

𝑉 (𝑥)𝜑𝑘 (𝑥) 𝜑𝑗 (𝑥) d𝑥 −

− 𝐸
2

∑
𝑘=0

𝑐𝑘

∞

∫
0

𝜑𝑘 (𝑥) 𝜑𝑗 (𝑥) d𝑥 = 0.

The same equation can be written in the matrix form:

(𝐷𝑇 + 𝐵𝑇 − 𝐸𝐴𝑇) ⃗𝑐 = ⃗0, (13)

where
𝐷 = (𝑑𝑘𝑗), 𝑘, 𝑗 = 0, 2,
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𝑑𝑘𝑗 = (−𝑑2𝜑𝑘(𝑥)
d𝑥2 , 𝜑𝑗(𝑥)) = − ∫

∞

0

𝑑2𝜑𝑘(𝑥)
d𝑥2 𝜑𝑗(𝑥) d𝑥,

𝐴 = (𝑎𝑘𝑗), 𝑘, 𝑗 = 0, 2, 𝑎𝑘𝑗 = (𝜑𝑘(𝑥), 𝜑𝑗(𝑥)) =
∞

∫
0

𝜑𝑘(𝑥)𝜑𝑗(𝑥) d𝑥,

𝐵 = (𝑏𝑘𝑗), 𝑘, 𝑗 = 0, 2, 𝑏𝑘𝑗 = (𝑉 (𝑥)𝜑𝑘(𝑥), 𝜑𝑗(𝑥)) =
∞

∫
0

𝑉 (𝑥)𝜑𝑘(𝑥)𝜑𝑗(𝑥) d𝑥,

⃗𝑐 = (𝑐0, 𝑐1, 𝑐2)𝑇.
There are four unknowns in the resulting system of equations: 𝐸 and

coordinates ⃗𝑐 = (𝑐0, 𝑐1, 𝑐2)𝑇. In order for the system to be compatible, it is
necessary that |𝐷𝑇 + 𝐵𝑇 − 𝐸𝐴𝑇| = 0.
The expanded form:

∣
∣
∣
∣

𝑑00 + 𝑏00 − 𝐸𝑎00 𝑑10 + 𝑏10 − 𝐸𝑎10 𝑑20 + 𝑏20 − 𝐸𝑎20
𝑑01 + 𝑏01 − 𝐸𝑎01 𝑑11 + 𝑏11 − 𝐸𝑎11 𝑑21 + 𝑏21 − 𝐸𝑎21
𝑑02 + 𝑏02 − 𝐸𝑎02 𝑑12 + 𝑏12 − 𝐸𝑎12 𝑑22 + 𝑏22 − 𝐸𝑎22

∣
∣
∣
∣
= 0. (14)

We introduce the following replacements:

𝑡1 = 𝑑00 + 𝑏00, 𝑡2 = 𝑑11 + 𝑏11, 𝑡3 = 𝑑22 + 𝑏22,
𝑡4 = 𝑑02 + 𝑏02, 𝑡5 = 𝑑10 + 𝑏10, 𝑡6 = 𝑑21 + 𝑏21,
𝑡7 = 𝑑20 + 𝑏20, 𝑡8 = 𝑑01 + 𝑏01, 𝑡9 = 𝑑12 + 𝑏12.

(15)

We get the equation:

(𝑡1 − 𝐸𝑎00)(𝑡2 − 𝐸𝑎11)(𝑡3 − 𝐸𝑎22) + (𝑡4 − 𝐸𝑎02)(𝑡5 − 𝐸𝑎10)(𝑡6 − 𝐸𝑎21) +
+ (𝑡7 − 𝐸𝑎20)(𝑡8 − 𝐸𝑎01)(𝑡9 − 𝐸𝑎12) − (𝑡7 − 𝐸𝑎20)(𝑡2 − 𝐸𝑎11)(𝑡4 − 𝐸𝑎02) −
−(𝑡1 −𝐸𝑎00)(𝑡2 −𝐸𝑎12)(𝑡6 −𝐸𝑎21)−(𝑡3 −𝐸𝑎22)(𝑡5 −𝐸𝑎10)(𝑡8 −𝐸𝑎01) = 0.

Opening the brackets, we obtain the equation of the third degree with respect
to 𝐸.
The resulting numerical values are:

𝐸 = (0.6362135, −10.452091, 24.544966). (16)

5. Conclusion

Thus, we see that the kink plus anti-kink system can form bound states,
that is, breathers which make up some groups corresponding to different
minima of the interaction energy of the kink and anti-kink. These groups of
breathers should noticeably differ in spatial dimensions. It is very likely that
the energy spectra of breathers from various groups can overlap. This, in
turn, allows us to pose the problem of tunneling breathers from one minimum
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to another, the lifetimes in each of these minima, the behavior in external
fields, inverse populations, and other physical features of another, as well as
the problem of the lifetimes in each of these minima and of the behavior in
external fields, inverse populations, and some other physical features of the
system under consideration.
We also note that under certain conditions, the interaction of kinks and

breathers with each other, as well as with external fields (note, not only
electromagnetic, but also, for example, acoustic), should lead to the birth-
destruction of particles, which, in principle, we can describe within the
framework of the proposed model by secondary quantization of the considered
system and calculating the matrix elements of the corresponding scattering
matrix.
Thus, in some sense, we are closing the circle, moving from a general

quantum-field approach to a classical field, then to a quantum-mechanical
model, and again to a quantum-field consideration through second quantiza-
tion.
It seems that the proposed approach will allow us to continue to make

the necessary quantitative estimates even before the numerical simulation
of the problem. We also find it interesting to further consider the dynamics
of spinons on graphene (fullerene, nanotube) non-planar surfaces of various
topologies.
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L.A.Nhật, K.P. Lovetskiy, L.A. Sevastianov, D. S.Kulyabov, Numerical
modeling of stationary pseudospin waves on a graphene monoatomic
films, Discrete and Continuous Models and Applied Computational Sci-
ence 27 (4) (2019) 365–377. DOI: 10.22363/2658-4670-2019-27-4-365-377.

Information about the authors:
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Численное моделирование стационарных
псевдоспиновых волн на моноатомных плёнках

графена

Ле Ань Ньат1, К. П. Ловецкий1, Л. А. Севастьянов1,2,
Д. С. Кулябов1,3

1Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2Лаборатория теоретической физики

Объединённый институт ядерных исследований
ул. Жолио-Кюри, д. 6, г. Дубна, Московская область, 141980, Россия

3Лаборатория информационных технологий
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, г. Дубна, Московская область, 141980, Россия

В экспериментах на однослойных графеновых плёнках наблюдается явление
ферромагнетизма. При этом данный феномен не может порождаться ни одной
из трёх распространённых причин: наличием примесей в графене, наличием де-
фектов в графене, влиянием границ однослойной графеновой плёнки. Авторы
предполагают, что источником ферромагнетизма может служить спонтанное
нарушение спиновой симметрии в графеновой плёнке. Классические полевые мо-
дели, описывающие спонтанное нарушение симметрии, являются нелинейными.
Среди нелинейных моделей одной из простейших является широко известная

𝜆𝜑4 модель. Предполагается, что в рамках данной модели можно описать боль-
шинство интересующих нас характеристик спиновых волн, а также феномен
ферромагнетизма в графене. Эта модель допускает наличие кинковых и антикин-
ковых точных решений, а также существование квазичастицы бризер. Авторами
численно промоделировано квазичастичное решение бризер. Для этого численно
получена энергия взаимодействия решений типа кинк-антикинк. Эта энергия ис-
пользуется для численного решения уравнения Шрёдингера для спиновых волн
со структурой бризеров. Методом Ритца решения уравнения Шрёдингера при-
водятся к обобщённой задаче на собственные значения и собственные векторы.
Эта задача исследуется в данной статье.

Ключевые слова: графен, солитоны, кинки, бризеры, нелинейные модели
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We have developed an efficient computational scheme for integration of the classical
Hamilton equations describing the ion dynamics confined in the radio-frequency
field of the Paul trap. It has permitted a quantitative treatment of cold atom-ion
resonant collisions in hybrid atom-ion traps with taking into account unremovable
ion micromotion caused by the radio-frequency fields (V.S. Melezhik et. al., Phys.
Rev. A100, 063406 (2019)).
The important element of the hybrid atom-ion systems is the electromagnetic Paul

trap confining the charged ion. The oscillating motion of the confined ion is defined
by two frequencies of the Paul trap. It is the frequency of the order of 100 kHz due
to the constant electric field and the radio-frequency of about 1–2 MHz defined by
the alternating electromagnetic field of the ion trap. The necessity to accurately
treat the ion motion in the combined field with two time scales defined by these two
very different frequencies has demanded to develop the stable computational scheme
for integration of the classical Hamilton equations for the ion motion. Moreover, the
scheme must be stable on rather long time-interval of the ion collision with the cold
atom ∼ 10 × 2𝜋/𝜔𝑎 defined by the atomic trap frequency 𝜔𝑎 ∼ 10 kHz and in the
moment of the atom-ion collision when the Hamilton equations are strongly coupled.
The developed numerical method takes into account all these features of the problem
and makes it possible to integrate the system of coupled quantum-semiclassical
equations with the necessary accuracy and quantitatively describes the processes of
atomic-ion collisions in hybrid traps, including resonance effects.

Key words and phrases: cold atoms and ions, Paul trap, radio-frequency field,
classical Hamilton equations, computational scheme

1. Introduction

In the last decade, there has been great interest in ultracold hybrid atomic-
ion systems, which is due to the new opportunities that arise here for quantum
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simulation of various processes and effects from solid state physics to high-
energy physics: electron-phonon coupling in solid state physics, critical
phenomena in high-energy physics, quantum information processing etc. [1].
However, a realization of the hot proposals with cold atom and ions is impeded
by the unremovable ion micromotion caused by the radio-frequency fields of
the Paul traps used for confining ions in the hybrid confined atom-ion sys-
tems [1]. In the recent work [2] a quantum-semiclassical computational scheme
for treating the collisional atom-ion dynamics in the confined geometry of the
hybrid atom-ion traps was suggested where the ion micromotion caused by
the radio-frequency fields of the ion trap was taken into account. In this work
the following problem was considered: an ion confined in a time-dependent
radio-frequency Paul trap with linear geometry, while the atom is constrained
to move into a quasi-one-dimensional waveguide within the ion trap. In this
approach the atom-ion dynamics was treated semiclassically, namely the atom
dynamics is governed by the time-dependent Schrödinger equation, whereas
the ion motion is described by the classical Hamilton equations of motion.
Both equations were integrated simultaneously.

The quantum-semiclassical computational method [3]–[6] specifically de-
signed for particle collisions such as the problem of ionisation of the helium
ion colliding with protons [5] and antiprotons [6] has been employed and
extended to the time-dependent domain, as the radio-frequency ionic confine-
ment by the Paul trap requires. It has demanded to develop a new stable
computational scheme for integration the classical Hamilton equations for
the ion motion. Here, we describe the scheme and demonstrate its efficiency
by using as an example of the specific Li/Yb+ atom-ion pair, since it is the
most promising atomic pair to reach the s-wave regime in Paul traps and it is
currently under intense experimental investigations [7]–[9].

2. Method

A schematic view of the system under investigation is given in Figure 1.
The ion is assumed to be confined in a linear Paul trap, whose electric fields
read as [10]:

Es = 𝑚𝑖
2|𝑒|

𝜔2
𝑖 (𝑥𝑖, 𝑦𝑖, −2𝑧𝑖) ,

Erf = 𝑚𝑖Ω2
rf𝑞

2|𝑒|
cos(Ωrf𝑡) (𝑥𝑖, −𝑦𝑖, 0) .

(1)

Here, 𝑚𝑖 is the ion mass, Ωrf is the radio-frequency (rf), 𝜔𝑖 = Ωrf√𝑎/2 is the
secular frequency, 𝑞 and 𝑎 are dimensionless geometric parameters (i.e. 𝑞𝑧 = 0,
𝑞𝑦 = −𝑞𝑥 ≡ 𝑞, −𝑎𝑧/2 = 𝑎𝑥 = 𝑎𝑦 ≡ 𝑎, and 𝑎 ≪ 𝑞2 < 1). We assume that the
axis of the waveguide in which is travelling the colliding atom is precisely the
𝑧-axis of the Paul trap (see Figure 1). The corresponding ion-trap interaction
potential is given by

𝑈(r𝑖, 𝑡) = 𝑚𝑖𝜔2
𝑖

2
(𝑧2

𝑖 − 𝑥2
𝑖 + 𝑦2

𝑖
2

) + 𝑚𝑖Ω2
rf

2
𝑞 cos(Ωrf𝑡) (𝑦2

𝑖
2

− 𝑥2
𝑖

2
) . (2)
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Figure 1. Pictorial illustration of the atom-ion system confined in hybrid trap. The light-

and dark-grey electrodes (the big bars in the figure) of the Paul trap generate

the time-dependent electric fields needed to confine the ion transversally, whereas

longitudinally a static voltage is applied to ensure confinement (not shown). The atom is

injected from the right to the left into a waveguide, whose centre hosts the ion.

The waveguide is orientated along the longitudinal axis, 𝑧, of the linear Paul trap.
In the transverse directions, 𝑥, 𝑦, the confining potential both for the atom and the ion is

strong

Hence, the classical Hamiltonian describing an ion in a Paul trap is given by

𝐻trap
𝑖 (p𝑖, r𝑖, 𝑡) = p2

𝑖
2𝑚𝑖

+ 𝑈(r𝑖, 𝑡). (3)

When the atom is confined in the optical waveguide within the Paul trap,
the ion experiences its presence via the atom-ion interaction 𝑉𝑎𝑖(|r𝑎 − r𝑖(𝑡)|),
where r𝑎 defines the atom coordinates. The full classical ion Hamiltonian is
therefore given by

𝐻𝑖(p𝑖, r𝑖, 𝑡; r𝑎) = 𝐻trap
𝑖 (p𝑖, r𝑖, 𝑡) + ⟨𝑉𝑎𝑖(|r𝑎 − r𝑖(𝑡)|)⟩, (4)

where

⟨𝑉𝑎𝑖(|r𝑎 − r𝑖(𝑡)|)⟩ = ⟨Ψ(r𝑎, 𝑡; r𝑖)|𝑉𝑎𝑖(|r𝑎 − r𝑖(𝑡)|)|Ψ(r𝑎, 𝑡; r𝑖)⟩ (5)

is the quantum mechanical average of the atom-ion interaction over the
atomic density instantaneous distribution. We see that the ion Hamiltonian
has parametric dependence on the atom position r𝑎. It leads at the moment of
the atom-ion collision to the strong non-separability of the Hamilton equations

𝑑
𝑑𝑡
p𝑖 = − 𝜕

𝜕r𝑖
𝐻𝑖(p𝑖, r𝑖, 𝑡; r𝑎),

𝑑
𝑑𝑡
r𝑖 = 𝜕

𝜕p𝑖
𝐻𝑖(p𝑖, r𝑖, 𝑡; r𝑎)

(6)
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describing the ion dynamics and, as a consequence, to the requirement of
sufficient stability of the computational scheme to this strong perturbation.

The set of classical equations (6) together with the Schrödinger equation
for the atomic wave function Ψ(r𝑎, 𝑡, r𝑖) form the complete set of dynamical
equations for describing the confined atom-ion collision in hybrid traps [2].
In order to integrate simultaneously the equations we need proper initial
conditions with physical significance. At the beginning of the collisional
process, the atom and the ion are assumed to be far away from each other
such that they do not interact (𝑉𝑎𝑖 = 0). In particular, the atom is initially in
the ground state of the atomic trap with the longitudinal colliding energy, that
is, 𝐸coll ≪ 2ℏ𝜔0, whereas the ion performs fast (with respect to atom motion)

oscillations in the Paul trap with mean transversal ̄𝐸⟂ and longitudinal ̄𝐸∥
energies. Since the atom approaches the region of interaction with the ion
very slowly (𝐸coll/ℏ ≪ 𝜔0 ≪ 𝜔𝑖, Ωrf), the initial position of the ion does not
influence the scattering process itself, which depends only on ̄𝐸⟂ and ̄𝐸∥.

Specifically, the classical solution of the ion equations of motion (Mathieu
equation) in the Paul trap (without the atom) are well approximated by

𝐴𝑗 cos(𝜔𝑖𝑡 + 𝜙𝑗)[1 + 𝑞𝑗 cos(Ωrf𝑡)/2], ∀ 𝑗 = 𝑥, 𝑦, 𝑧 [11].
The associated kinetic energy depends on the amplitude 𝐴𝑗, but not on the

phase 𝜙𝑗. Therefore, we choose, without loss of generality, the ion position
at the initial time 𝑡 = 0 in the trap centre with transversal energy, 𝐸⟂, and
longitudinal energy, 𝐸‖. This can be summarised with the following set of

initial conditions:
r𝑖(𝑡 = 0) = (0, 0, 0),

𝑝𝑖,𝑥(𝑡 = 0) = √2𝑚𝑖𝐸⟂,
𝑝𝑖,𝑦(𝑡 = 0) = 0,

𝑝𝑖,𝑧(𝑡 = 0) = √2𝑚𝑖𝐸∥.

(7)

These initial conditions set the mean values of the ion transversal and longitu-

dinal energies as ̄𝐸⟂ = 1.64𝐸⟂ (calculated numerically for our trap parameters

Ωrf = 2𝜋 × 2MHz, 𝜔𝑖 = 2𝜋 × 63 kHz, 𝑎 = 0.002 and 𝑞 = 0.08) and ̄𝐸∥ = 𝐸∥/2,
which is in qualitative agreement with the estimate

̄𝐸⟂ = 𝐸⟂
2

[1 + (𝑞Ωrf
2𝜔𝑖

)
2

] ≃ 1.3𝐸⟂ (8)

from the first-order solution of the Mathieu equation [11], [12].

For the integration of the Hamilton equations of motion, which involve
three considerably different scales of frequencies, namely Ωrf, 𝜔𝑖 as well as 𝜔0
in the quantum mechanical average ⟨Ψ(r𝑎, 𝑡; r𝑖)|𝑉𝑎𝑖(|r̂𝑎 − r𝑖(𝑡)|)|Ψ(r𝑎, 𝑡; r𝑖)⟩,
we employed the second-order Störmer–Verlet method [13].

Simultaneously to the forward in time propagation 𝑡𝑛 → 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 of
the atom wave-packet Ψ𝑗(𝑟𝑎, 𝑡𝑛) → Ψ𝑗(𝑟𝑎, 𝑡𝑛+1) we integrate the Hamilton
equations (6) with the initial conditions (7), which describe the dynamics of
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the ion in the Paul trap. To this end, we have adapted the Störmer–Verlet
method [13] to our problem

p
(𝑛+1/2)
𝑖 = p

(𝑛)
𝑖 − Δ𝑡

2
𝜕

𝜕r𝑖
𝐻𝑖(p

(𝑛+1/2)
𝑖 , r(𝑛)

𝑖 ),

r
(𝑛+1)
𝑖 = r

(𝑛)
𝑖 + Δ𝑡

2
{ 𝜕

𝜕r𝑖
𝐻𝑖(p

(𝑛+1/2)
𝑖 , r(𝑛)

𝑖 ) + 𝜕
𝜕r𝑖

𝐻𝑖(p
(𝑛+1/2)
𝑖 , r(𝑛+1)

𝑖 )} ,

p
(𝑛+1)
𝑖 = p

(𝑛+1/2)
𝑖 − Δ𝑡

2
𝜕

𝜕r𝑖
𝐻𝑖(p

(𝑛+1/2)
𝑖 , r(𝑛+1)

𝑖 ).

(9)

Here,

p
(𝑛)
𝑖 = p𝑖 (𝑡𝑛) , p

(𝑛+1/2)
𝑖 = p𝑖 (𝑡𝑛 + Δ𝑡

2
) , p

(𝑛+1)
𝑖 = p𝑖 (𝑡𝑛 + Δ𝑡) ,

and the same definition for r
(𝑛)
𝑖 .

3. Numerical Example

The computational scheme (9) was successfully applied for numerical inte-
gration of the system of differential equations (6) with the initial conditions (7)
for the Li/Yb+ atom-ion systems confined in the hybrid traps with three abso-
lutely different time-scales 𝑡rf = 2𝜋/Ωrf ≪ 𝑡𝑖 = 2𝜋/𝜔𝑖 ≪ 𝑡0 = 2𝜋/𝜔0 defined
by the frequencies of Paul trap (Ωrf = 2𝜋 × 2MHz and 𝜔𝑖 = 2𝜋 × 63 kHz) and
atomic waveguide (𝜔0 = 2𝜋 × 10 kHz). These three time-scales define the de-
mand to the computational scheme. The scheme must be stable in rather
long time-interval (time of atom-ion collision) ∼ 10𝑡0 = 10 × 2𝜋/𝜔0 and, from
the other side, it must accurately treats the fast oscillations defined by the
frequency Ωrf of the rf-field.
In Figure 2 we present the calculated trajectory of the ion in the Paul trap

(𝑋𝑖 variable) when there is no interaction with the atom: 𝑉𝑖𝑎 = 0. Here, the
convergence over the step of integration on time Δ𝑡 → 0 is demonstrated as
well as the stability of the computational scheme over the entire integration
interval 0 ⩽ 𝑡 ⩽ 10𝑡0. The efficiency of the computational scheme was
confirmed by the calculation of the scattering parameters in the atom-ion
resonant collisions confined in hybrid traps [2] and can be applied for other
resonant low-dimensional atomic and atom-ion systems.
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Figure 2. The calculated evolution in time of the ion trajectory (𝑋𝑖(𝑡)-variable), being
initially at the state with 𝐸⟂/𝑘𝐵 = 𝐸‖/𝑘𝐵 = 4.25𝜇K. The time scale is defined by the

frequency 𝑡0 = 2𝜋/𝜔0 of the atomic waveguide-like trap (𝜔0 = 2𝜋 × 10 kHz)
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Эффективная вычислительная схема для описания
динамики иона в радиочастотном поле ловушки

Пауля

В. С. Мележик1,2

1Объединённый институт ядерных исследований
ул. Жолио Кюри, д. 6, г. Дубна, Московская область, 141980, Россия

2 Государственный университет «Дубна»
ул. Университетская, д. 19, г. Дубна, Московская область, 141980, Россия

В статье разработана эффективная вычислительная схема для интегрирования
классических уравнений Гамильтона, описывающих динамику ионов пленённых
радиочастотным полем ловушки Пауля. Она позволила провести количественные
расчёты резонансных атомно-ионных столкновений в гибридных атомно-ионных
ловушках с учётом неустранимого микродвижения ионов, вызванного радиоча-
стотными полями (V.S. Melezhik et. al., Phys. Rev. A100, 063406 (2019)).
Важным элементом гибридных атомно-ионных систем является электромагнит-

ная ловушка Пауля, удерживающая заряженный ион. Колебательное движение
пленённого иона определяется двумя частотами ловушки Пауля. Это частота по-
рядка 100 кГц из-за постоянного электрического поля и радиочастоты 1–2 МГц
определяется переменным электромагнитным полем ионной ловушки. Необхо-
димость точного описания движения ионов в комбинированном поле с двумя
временными шкалами, задаваемыми двумя сильно различающимися частотами,
потребовала разработки устойчивой вычислительной схемы для интегрирования
классических уравнений (Гамильтона) движения ионов. Кроме того, требуется
устойчивость схемы на достаточно большом интервале времени столкновения
иона с холодным атомом ∼ 10 × 2𝜋/𝜔𝑎, определяемом частотой атомной ловуш-
ки 𝜔𝑎 ∼ 10 кГц, и в сам момент столкновения атома с ионом при сильной связи
уравнений Гамильтона. Разработанный численный метод учитывает все отме-
ченные особенности задачи и позволяет с необходимой точностью интегрировать
систему связанных квантово-квазиклассических уравнений и количественно опи-
сывать процессы атомно-ионных столкновений в гибридных ловушках, включая
резонансные эффекты.

Ключевые слова: холодные атомы и ионы, ловушка Пауля, радиочастотное
поле, классические уравнения Гамильтона, вычислительная схема




