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One of important tasks in a development of gas-condensate fields is to minimize
hydrocarbons loss arising from the gas condensation in pores of the gas-bearing layer.
The search for the optimal gas production regime is carried out both on the basis
of laboratory experiments and on the base of computer simulation. In this regard,
the relevant is the verification of the constructed mathematical models by means of
comparison of numerical results with experimental data obtained on the laboratory
models of a hydrocarbon reservoirs. Within the classical approach on the basis of the
Darcy law and the law continuity for flows, the model is formulated that describes
the passing a multicomponent gas-condensate mixture through a porous medium in
the depletion mode. The numerical solution of the corresponding system of nonlinear
partial differential equations is implemented on the basis of the combined use of the
C++ programming language and the Maple software. Shown that the approach used
provides an agreement of results of numerical simulations with experimental data on
the dynamics of hydrocarbon recoverability depending on the pressure obtained at
VNIIGAZ, Ukhta.

Key words and phrases: computer simulations, multicomponent hydrocarbon sys-
tem, nonlinear partial differential equations, finite difference approximation, passing
of gaz-condensate mixture through a porous medium
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1. Introduction

Recently, due to the decrease in easily recoverable natural gas reserves in
traditional fields, the development of areas with unconventional hydrocarbon
reserves, including gas-condensate fields, has attracted attention [1]–[3]. Gas
production in such fields is difficult due to the presence of the condensate [4]–[6].
Methods for increasing the gas production based on reducing a condensation
is reviewed in the recent paper [7]. The behavior of a multi-component gas-
condensate mixture in a porous medium can be difficult to predict. Indeed,
the phase states of the components can change. Gas has a much lower viscosity
than liquid, thus a boiling of any component gives it an advantage in the
speed of passage. The movement of the mixture is caused by the pressure
drop at the point of its extraction. The pressure drop leads, in turn, to the
possibility of boiling, that is, the phase transition of any component from
a liquid to a gaseous state. A paradoxical result may be the formation of
a condensate plug if the gas thus “erode”.

In this regard, the development of realistic mathematical models can help
predict the physical and technological parameters that ensure optimization
of the gas production regime in the gas-condensate reservoirs. One of actual
problems in this direction is the verification of mathematical models developed
on the basis of the comparison of numerical results with the data of practical
measurements, including the data of laboratory experiments. Traditionally, an
approach based on the classical Darcy law and conservation laws, described
in detail in the literature, is used to model the processes of passage of
multicomponent gas-condensate mixtures through a porous medium (see, for
example, [8]–[13] and references therein). In this framework, one formulates
the system of equations with appropriate initial and boundary conditions
tailored to the specific modeling process, including the geometry of the system,
physical-chemical parameters of the studied process and other factors. In
[14], basing on the numerical solution of a stationary system of equations
we obtained an agreement of numerical results with experimental data from
[15] on stabilization of a two-component gas-condensate mixture passing
through a porous medium. In [16], the experimental results of [17] on the
dynamics of extraction of heavy components of a multicomponent hydrocarbon
mixture in the depletion mode are numerically reproduced in the assumption
of a homogeneous spatial distribution of the pressure and the density of
hydrocarbons.

This work is a continuation of our studies on the numerical analysis of
measurements at VNIIGAZ, Ukhta [17]. As previously, our consideration is
based on the mathematical model described by the Darcy law and the law of
continuity of flows. The approach developed in [16] is generalized to the case
of taking into account the coordinate dependence of physical characteristics of
the system modeled. Based on a numerical solution of the formulated initial-
boundary value problem for a system of nonlinear partial differential equations,
an adequate agreement is obtained between the numerical results and the
experimental data from [17] on the yield of both heavy and light hydrocarbons
in the laboratory model of the gas-bearing formation at a temperature of
25∘C. In the paper, the mathematical formulation of the problem is given,
the computational scheme implemented as a package of C++ and Maple
programs is described, and the results of computer simulations are presented.
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2. General statement of the problem

In general, the dynamic process of the passing the 𝑛-component gas-
condensate mixture of hydrocarbons through a porous medium is described
by a system of equations

𝑢𝛼 = − 𝑘𝛼
𝜇𝛼

∇𝑃𝛼, (1)

𝜕𝜌𝑖 𝛼
𝜕𝑡

+ ∇(𝑢𝛼𝜌𝑖 𝛼) = 𝑉𝑖 𝛼. (2)

Here, the first equation (1) corresponds to the Darcy law, and the the
second one (2) — to the flows continuity law, 𝑉𝑖𝛼 – interfacial transition rates.

The process involves 𝑛 components: 𝑖 = 1 … 𝑛, located at pressure 𝑃𝛼 in
the 𝛼-phase, where 𝛼 = 𝐿 corresponds to the liquid phase, and 𝛼 = 𝐺 to the
gaseous phase.
For components in the 𝛼 phase, the 𝑢𝛼 is the linear flow velocity, 𝑘𝛼 and 𝜇𝛼

are, respectively, the parameters of permeability and viscosity of the 𝛼-phase,
𝜌𝑖 𝛼 is the molar density of the 𝑖-th component in 𝛼-phase (defined as the
local volume average).

It is assumed that the gas and liquid in the pores occupy a separate volumes
divided by the interfacial surface, on which there are surface tension forces.
Concentrations of components in gas and liquids are different, depending on
time and coordinate. Inside the gas and liquid, the pressure 𝑃 is described by
the Peng-Robins equation:

𝑃𝛼 = 𝑃𝛼(𝑣𝛼) = 𝑅𝑇
𝑣𝛼 − 𝑏𝑚𝛼

− 𝑎𝑚𝛼
𝑣𝛼(𝑣𝛼 + 𝑏𝑚𝛼) + 𝑏𝑚𝛼(𝑣𝛼 − 𝑏𝑚𝛼)

. (3)

Here 𝑅 is the gas constant, 𝑇 is the temperature, 𝑣𝛼 is the molar volume
taking into account for a porosity 𝑚 and the gas saturation 𝑆𝛼

𝑣𝛼 = 𝑚𝑆𝛼
𝜌𝛼

, 𝜌𝛼 =
𝑛

∑
𝑖=1

𝜌𝑖 𝛼. (4)

The constants 𝑎𝑚𝛼 and 𝑏𝑚𝛼 are defined as follows [18], [19]:

𝑎𝑚𝛼 = 𝑅2𝑇 2

𝑃𝛼
𝐴𝑚𝛼, 𝑏𝑚𝛼 = 𝑅𝑇

𝑃𝛼
𝐵𝑚𝛼,

𝐴𝑚𝛼 =
𝑛

∑
𝑖,𝑗=1

(1 − 𝑘𝑖𝑗)(𝐴𝑖 𝛼𝐴𝑗 𝛼)1/2𝐶𝑖 𝛼𝐶𝑗 𝛼, 𝐵𝑚𝛼 =
𝑛

∑
𝑖=1

𝐵𝑖 𝛼𝐶𝑖 𝛼,

𝐴𝑖 𝛼 = 0.4572355
𝑃 𝑟

𝑖 𝛼

𝑇 𝑟
𝑖

[(0.37464 + 1.5422𝜔𝑖 − 0.02699𝜔2
𝑖 )(1 − (𝑇 𝑟

𝑖 )1/2) + 1]2 ,

𝐵𝑖 𝛼 = 0.077796074𝑃 𝑟
𝑖 𝛼

/𝑇 𝑟
𝑖 , 𝑃 𝑟

𝑖 𝛼
= 𝑃𝑖 𝛼/𝑃 𝑐𝑟𝑖𝑡

𝑖 , 𝑇 𝑟
𝑖 = 𝑇 /𝑇 𝑐𝑟𝑖𝑡

𝑖 .

Here 𝜔𝑖 is the acentric factor of the 𝑖-th component, 𝑃 𝑐𝑟𝑖𝑡
𝑖 and 𝑇 𝑐𝑟𝑖𝑡

𝑖 are
the critical pressure and the temperature.
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The gas saturation 𝑆𝐺 is defined as the maximal root of the equation

𝑃𝐺 = 𝑃𝐺 (𝑚𝑆𝐺
𝜌𝐺

) = 𝑃𝐿 (𝑚(1 − 𝑆𝐺)
𝜌𝐿

) + 𝑃capillar,

𝑆𝐺 + 𝑆𝐿 = 1, 0 ⩽ 𝑆𝛼 ⩽ 1.
(5)

The molar fractions of the components in the liquid and gas phases 𝐶𝑖𝛼 in
the formulas for 𝐴𝑖𝛼 and 𝐵𝑖𝛼 are calculated as

𝐶𝑖 𝛼 = 𝜌𝑖 𝛼
𝜌𝛼

. (6)

Interfacial transition rates satisfy the condition

𝑉𝑖 𝐺 + 𝑉𝑖 𝐿 = 0 (7)

and are determined from the following relation:

𝑉𝑖 𝛼 = 𝜂𝑖(𝜙�̄�
𝑖 − 𝜙𝛼

𝑖 ), where ̄𝐺 = 𝐿, �̄� = 𝐺, (8)

where 𝜙𝐿
𝑖 , 𝜙𝐺

𝑖 are the Gibbs chemical potentials of the 𝑖-th component, 𝜂𝑖 is
the interfacial coefficient transition, depending on many factors, including the
structure of the rock.
Potential formulae are derived in [19] from equation (3):

𝜙𝛼
𝑖

𝑅𝑇
= ln(𝑃𝛼𝐶𝑖 𝛼) + 𝐵𝑖 𝛼

𝐵𝑚𝛼
(𝑍𝛼 − 1) − ln(𝑍𝛼 − 𝐵𝑚𝛼)+

+ 𝐴√
2𝐵𝑚𝛼

⎛⎜⎜⎜⎜
⎝

𝑛
∑
𝑗=1

(1 − 𝑘𝑖𝑗)(𝐴𝑖 𝛼𝐴𝑗 𝛼)1/2𝐶𝑗 𝛼

𝐴𝑚𝛼
− 𝐵𝑖 𝛼

2𝐵𝑚𝛼

⎞⎟⎟⎟⎟
⎠

×

× ln(𝑍𝛼 + (1 −
√

2)𝐵𝑚𝛼

𝑍𝛼 + (1 +
√

2)𝐵𝑚𝛼
) , (9)

where

𝑍𝛼 = 𝑃𝛼𝑣𝛼
𝑅𝑇

. (10)

Note that in case 𝑃capillar = 0, taking into account for (10), the gas saturation
𝑆𝐺 can be calculated from the equation

𝑍𝐿
𝑍𝐺

= 𝜌𝐺(1 − 𝑆𝐺)
𝜌𝐿𝑆𝐺

. (11)

Here 𝑍𝛼 are the roots of the equation (following from (3))

𝑓𝛼(𝑍) = 𝑍3 + (𝐵𝑚𝛼 − 1)𝑍2 + (𝐴𝑚𝛼 − 3𝐵2
𝑚𝛼 − 2𝐵𝑚𝛼)𝑍+

+ 𝐵𝑚𝛼(−𝐴𝑚𝛼 + 𝐵2
𝑚𝛼 + 𝐵𝑚𝛼) = 0, (12)
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such that

𝑍𝐺 = max{𝑍 ∶ 𝑓𝐺(𝑍) = 0}, 𝑍𝐿 = min{𝑍 ∶ 𝑓𝐿(𝑍) = 0}. (13)

In the experiment [17], where a gas-condensate mixture passes through
a long pipe filled with a porous substance, it is natural to consider the spatially
one-dimensional case with a single coordinate along the pipe. In this case, the

differentiation operator will have the form ∇𝑓 = 𝜕
𝜕𝑥

𝑓. Note that the problem
has a simple generalization to the case of a thin gas-bearing formation with
circular symmetry. In this case, when passing to the polar coordinate system,

the differentiation operator takes the form ∇𝑓 = 1
𝑟

𝜕
𝜕𝑟(𝑟𝑓).

3. Laboratory experiment

In the experiment [17], the laboratory model (LM) of the gas-bearing
formation is a thermostatic cylinder with a narrow pipe (core holder) of
3 cm in diameter and 93.27 cm long inside. A pipe filled with a terrigenous
filler with porosity of 𝑚 = 0.1377, has been saturating under the pressure
of 35 MPa with a nine-component hydrocarbon mixture of CH4, C3H8,
nC4H10, nC6H14, nC7H16, nC9H20, nC10H22, nC12H26, nC16H34 in molar
concentrations, respectively, of 87.01%; 7.00%; 1.11%; 0.70%; 0.86%; 1.19%;
0.94%; 1.02%; 0.17%, and both ends of the pipe are closed. After the
achievement of the phase equilibrium in LM, one end of the tube is opened that
provides a gradual release of the substance through this end while maintaining
a constant rate of its consumption by means of a regulating the pressure
reduction not more than 0.2 MPa/h. The yield of heavy (𝐶5+) and light (𝐶2−4)
hydrocarbons in both liquid and gas phases depending on the pressure were
measured. Aggregate C5+ includes components nC6H14, nC7H16, nC9H20,
nC10H22, nC12H26, nC16H34 of the hydrocarbon mixture, and the aggregate
C2−4 consists of components CH4, C3H8, nC4H10. The experiment was carried
out at two temperature values: 𝑇 = 25∘C and 𝑇 = 60∘C. Here, we present
numerical results only in case 𝑇 = 25∘C.

4. Computational scheme and implementation

Taking into account the conditions the laboratory experiment, we consider
here a spatially one-dimensional case. Since the time 𝑡 and the coordinate
𝑥 do not enter explicitly into the system (1), (2), we pass to arbitrary units,
assuming, in particular, 𝑥 ∈ [0, 1]. The end of 𝑥 = 1 is always closed; the
mixture is extracted through the point 𝑥 = 0.
To numerically solve the system of equations (1), (2), a discrete mesh in

coordinate is introduced with the step ℎ𝑥 = 1/𝑁, with main nodes 𝑥𝑘 =
ℎ𝑥/2 + (𝑘 − 1) ⋅ ℎ𝑥 and intermediate nodes 𝑥𝑘±1/2 = 𝑥𝑘 ± ℎ𝑥/2, where
𝑘 = 1, … , 𝑁, 𝑁 is a number of the discrete mesh nodes.
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The difference equations at the nodes 𝑥𝑘 take the form:

𝑢(𝑘−1/2)
𝛼 = − 𝑘𝛼

𝜇𝛼

𝑃 (𝑘−1)
𝛼 − 𝑃 (𝑘)

𝛼

𝑥𝑘−1 − 𝑥𝑘
, (14a)

𝜕𝜌(𝑘)
𝑖 𝛼

𝜕𝑡
+ 𝑢(𝑘+1/2)

𝛼 𝜌(𝑘+1/2)
𝑖 𝛼 − 𝑢(𝑘−1/2)

𝛼 𝜌(𝑘−1/2)
𝑖 𝛼

𝑥𝑘+1/2 − 𝑥𝑘−1/2
= 𝑉 (𝑘)

𝑖 𝛼 , (14b)

𝜌(𝑘−1/2)
𝑖 𝛼 = 1

2
(𝜌(𝑘)

𝑖 𝛼 + 𝜌(𝑘−1)
𝑖 𝛼 ) − 1

8
(𝜌(𝑘−1)

𝑖 𝛼 − 2𝜌(𝑘)
𝑖 𝛼 + 𝜌(𝑘+1)

𝑖 𝛼 ). (14c)

Here 𝑢(𝑘)
𝛼 = 𝑢(𝑡, 𝑥𝑘)𝛼, 𝜌(𝑘)

𝑖𝛼 = 𝜌(𝑡, 𝑥𝑘)𝑖𝛼, 𝑘 is the number of a coordinate

node.

The difference equations (14) can be interpreted as the modeling the original

(one-dimensional) object as a set of cells 𝑥 ∈ [𝑥𝑘−1/2, 𝑥𝑘+1/2], where 𝜌(𝑘)
𝑖 𝛼 , 𝑃 (𝑘)

𝛼

and 𝑆(𝑘)
𝛼 are, respectively, the average density of 𝑖-component, the pressure

and the saturation of the 𝛼-phase inside each cell. Values 𝜌(𝑘±1/2)
𝑖 𝛼 and 𝑢(𝑘±1/2)

𝛼
are, respectively, the density of 𝑖-components at the boundaries between cells
and the linear velocity of the 𝑖-components across the boundaries.
Note that the scheme (14) allows a simple generalization on the spatially

two-dimensional case for a plane gas-bearing layer with circular symmetry.

The boundary condition for 𝑢𝛼 at the closed end 𝑥 = 1 has the form

𝑢𝛼|𝑥=1 = 0 or, in terms of the difference scheme, 𝑢(𝑁+1/2)
𝛼 = 0. As for the end

𝑥 = 0, it is also closed until 𝑡 = 0, i.e. 𝑢𝛼|𝑥=0,𝑡⩽0 = 0 or 𝑢(1/2)
𝛼 = 0. For 𝑡 > 0,

taking into account the phase equilibrium achieved under the experimental
conditions and the constant yield of the hydrocarbon substance, the boundary
condition is formulated as (𝑢𝛼𝜌𝛼)|𝑥=0 = 𝑞𝛼|𝑥=0, where 𝑞𝛼|𝑥=0 is the given
constant. The initial conditions for the functions 𝜌𝑖𝛼 are chosen so that the
pressure at the initial time is equal to 35 MPa.

To the numerical solution of the Cauchy problem for the system (14), the
fourth-order Runge–Kutta method is implemented as a combined Maple/C++
code, where The Maple part is responsible for the input data, saving and
visualization of the results, while the numerical solution of the system (14) is
written in C++, which, as practice has shown, provides a faster calculation
compared to the previously developed pure Maple implementation.

As in the previous work [16], the numerical simulation continued until the
pressure as a result of MP depletion was reduced to 1 atm. The calculations
were performed with the coordinate step ℎ𝑥 = 0.1 and the time step of 0.0001.
The values of the parameters determining the physicochemical properties of
components in the hydrocarbon mixture are taken from [20]. In calculations
we assumed 𝑃𝐺 = 𝑃𝐿.

The interphase transition coefficient 𝜂𝑖 was chosen in the form 𝜂𝑖 = 𝜂0𝑀𝜘
𝑖 𝑚,

where 𝑀𝑖 is the molar weight of 𝑖-th component, 𝜂0 and 𝜘 are constants to
be varied in order to adequately reproduce the experimental data. The ratios
of viscosity to permeability parameters in the 𝐿 and 𝐺 phases in equation (1)

(𝜆𝐿 = 𝑘𝐿
𝜇𝐿

and 𝜆𝐺 = 𝑘𝐺
𝜇𝐺
) were also adjusted to the experimental data.
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The best agreement with the set of experimental data from [17] for the case
𝑇 = 25∘𝐶 was obtained at 𝜂0 = 0.001713, 𝜘 = 1.370349, 𝜆𝐿 = 0.004631 ×
10−7, 𝜆𝐺 = 2.073255 ⋅ 10−7.

5. Results of computer simulations

Figure 1(a) and Figure 1(b) show the pressure dynamics 𝑃 and gas satura-
tion 𝑆𝐺 at the points 𝑥 = 0.05, 𝑥 = 0.45, and 𝑥 = 0.85 which are, respectively,
near the exit from the LM (solid curves), in the central part of the LM
(dashed), and near the closed end (dotted). As in the laboratory experiment,
the calculated 𝑃 decreases during the LM depletion. It can be seen that 𝑃 in
different parts of the LM is different: closer to the exit region of LM, 𝑃 is less
and faster tends to zero.
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Figure 1. Evolution of the pressure 𝑃 = 𝑃𝐺 = 𝑃𝐿 in MPa (a) and of the gas saturation 𝑆𝐺
(b) in the region of exit from the LM (solid curve), in the central region of the LM (dashed

curve) and in the closed end region (dotted curve).

(c) Evolution of the chemical potential difference (J/mol) for the components nC9H20
(solid), C3H8 (dashed) and CH4 (dotted) at the point 𝑥 = 0.05 in the exit region of the LM

The saturation values in different regions of the LM also differ. When 𝑃
drops in process of depletion, the saturation slightly decreases, and at the
final of the depletion process, at low 𝑃, it noticeably increases in the region
of the LM exit.
The phase equilibrium reached according to the experimental conditions by

the time 𝑡 = 0, begins to be disturbed when the transport factor is turned on,
especially at the of the depletion process. This is confirmed by the increase
in the chemical potential difference (J/mol) shown in Figure 1(c) for the
components nC9H20 (solid), C3H8 (dashed) and CH4 (dotted) at the point
𝑥 = 0.05 corresponding to the exit region of LM.
Figure 2 shows the evolution of the molar densities of the gas components

nC16H26 (dash-dotted line), nC10H22 (solid), nC9H20 (dashed), nC6H14 (dot-
ted line) at the points 𝑥 = 0.05, 𝑥 = 0.35, and 𝑥 = 0.85 which correspond to
the exit region from LM (Figure 2(a)), the internal region of LM (Figure 2(b))
and the closed end region (Figure 2(c)). During the depletion process, the
density of each hydrocarbon component decreases. The “bursts” of increasing
concentrations in the graphs can be explained by the transition of hydrocar-
bon components from the condensed phase to the gaseous state (boiling) due
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to the pressure drop. It can be seen that the boiling begins with the heavi-
est hydrocarbons and is observed first in the exit region of LM (Figure 2(a)),
where the pressure is the lowest. This effect requires the further studies.
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Figure 2. Evolution of molar densities of gas components nC16H26 (dash-dotted line),

nC10H22 (solid), nC9H20 (dashed), nC6H14 (dotted line) in the exit region of the LM (a),

in the inner region of the LM (b) and in the closed end region (c)

Figure 3 shows the results of calculating the yields of heavy (𝐶5+) and
light (𝐶2−4) hydrocarbons depending on the pressure in comparison with
experimental data from [17] at temperature 25∘C. It is seen that the developed
approach provides adequate reproduction of the laboratory experiments. In
particular, computer simulation confirms some increase in the recoverability
of hydrocarbons at low pressure, which occurs, as can be seen from Figure 2,
due to the transition of part of the condensate into a gaseous state.
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Figure 3. (a) Dependence of the yield (g/m3) of heavy hydrocarbons C5+ on the pressure at

the outlet of the MP in the depletion mode at a temperature of 25𝑜C in comparison with

the experimental data from [17].

(b) Dependence of the molar fraction (in %) of heavy hydrocarbons C5+ on the pressure at

the outlet of the MP in the depletion mode at a temperature of 25𝑜C in comparison with

the experimental data from [17].

(c) Dependence of the molar fraction (in %) of light hydrocarbons C2−4 on the pressure at

the outlet of the MP in the depletion mode at a temperature of 25∘C in comparison with the

experimental data from [17]

6. Conclusions

The mathematical formulation of the problem and the Maple/C++ im-
plementation has been developed for numerical simulation of the process of
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extraction of multi-component hydrocarbon gas-condensate composition in
the depletion mode. Accounting for the hydrocarbons distribution along the
length of the LM allowed one to well reproduce the experimental data on
the yield of heavy and light hydrocarbons as a function of pressure obtained
at laboratory model of the reservoir at the temperature of 25∘C (VNIIGAZ,
Ukhta) [17]. Currently, similar calculations are carried out to analyze exper-
imental data obtained at the temperature of 60∘C. In conclusion, we note
that the calculations presented were carried out with a relatively small num-
ber of nodes of a discrete mesh at 𝑥. Increasing the calculation accuracy, as
well as modeling two-dimensional systems based on the proposed difference
scheme, requires a significant increase in computer time, which makes the
parallel implementation of the presented computational scheme using parallel
programming technique relevant.
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Моделирование прохождения газоконденсатной смеси
через пористую среду в режиме истощения

А. В. Волохова1, Е. В. Земляная1,2, В. В. Качалов3,
В. С. Рихвицкий1, В. Н. Сокотущенко2,3

1Объединённый институт ядерных исследований
ул. Жолио Кюри, д. 6, г. Дубна, Московская область, 141980, Россия

2 Государственный университет «Дубна»
ул. Университетская, д. 19, г. Дубна, Московская область, 141980, Россия

3Объединённый институт высоких температур РАН
ул. Ижорская, д. 13, стр. 2, г. Москва, 125412, Россия

Одной из важных задач при разработке газоконденсатных месторождений
является минимизация потерь извлекаемых углеводородов, возникающих из-за
конденсации газа в порах пласта. Поиск оптимальных режимов газодобычи
производится как на основе лабораторных экспериментов, так и на основе ком-
пьютерного моделирования. В этой связи актуальность приобретает верификация
построенных математических моделей на основе сопоставления расчётных дан-
ных с данными, полученными в ходе экспериментов на лабораторной модели
пласта. В рамках классического подхода, основанного на законе Дарси и законе
неразрывности потоков, сформулирована модель, описывающая прохождение
многокомпонентной газоконденсатной смеси через пористую среду в режиме ис-
тощения. Численное решение соответствующей системы нелинейных уравнений
в частных производных реализовано на основе комбинированного применения
С++ и Maple. Показано, что используемый подход обеспечивает количественное
согласие полученных численных результатов с экспериментальными данными,
полученными в ВНИИГАЗ (г. Ухта), по динамике извлекаемости углеводородов
в зависимости от давления.

Ключевые слова: компьютерное моделирование, многокомпонентная система
углеводородов, нелинейные дифференциальные уравнения в частных производ-
ных, конечно-разностная аппроксимация, прохождение газоконденсатной смеси
через пористую среду
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We analyzed numerically computed velocity autocorrelation functions and gener-
alized frequency spectra of charge distribution in homogeneous DNA sequences at
finite temperature. The autocorrelation function and generalized frequency spectrum
(frequency-dependent diffusion coefficient) are phenomenologically introduced based
on the functional of mean-square displacement of the charge in DNA. The charge
transfer in DNA was modeled in the framework of the semi-classical Holstein model.
In this model, DNA is represented by a chain of oscillators placed into thermostat
at a given temperature that is provided by the additional Langevin term. Corre-
spondence to the real DNA is provided by choice of the force parameters, which are
calculated with quantum-chemical methods. We computed the diffusion coefficient
for all homogenous DNA chains with respect to the temperature and found a special
scaling of independent variables that the temperature dependence of the diffusion co-
efficient for different homogenous DNA is almost similar. Our calculations suggest
that for all the sequences, only one parameter of the system is mainly responsible for
the charge kinetics. The character of individual motions contributing to the charge
mobility and temperature-dependent regimes of charge distribution is determined.

Key words and phrases: charge transfer, velocity autocorrelation function, gener-
alized frequency spectrum, DNA, Holstein model

1. Introduction

Kinetics of charge transfer in polarized one-dimensional chains at finite
temperature is an attractive and pressing theoretical problem by itself [1]–[4].
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Its particular importance is related to the discovery of conducting properties
in DNA [5]–[7]. On the first hand, this transfer may determine the biological
functions of DNA. On the second hand, this opens up fresh opportunities in
nanobioelectronics [8]–[10].

A basic qualitative simulation of charge transfer in DNA is a pioneered
Holstein model for describing the charge transfer process in one-dimensional
chains [11]. In the semi-classical approximation, DNA nucleotide pairs are
modeled by a sequence of unconnected oscillators arranged in a chain [12].
A charge travels along a chain in the strong coupling approximation. Motions
of the sites influence the charge propagation, and conversely, the charge
probability density affects the charge motion.

The Holstein model is rather simple and can hardly describe the charge prop-
agation in DNA realistically. Nevertheless, it is nonlinear and demonstrates
different regimes. The study of this model can give qualitative insight into
the nature of charge transfer in one-dimensional chains, including biological
polymers.

The Holstein model is thoroughly investigated. Numerous papers are
devoted to the analytical and numerical analysis of the original quantum
model and its semi-classical approximation. However, the charge transfer
kinetics at finite temperature is still to be understood. Of importance in
this respect is the diffusion coefficient of a charge. Earlier, we studied
its temperature dependence inhomogeneous chains of different nucleotide
structures and found the scales which mainly determine differences in the
charge diffusion in different chains [13].

This work continues the earlier started analysis. In order to better appreci-
ate the kinetics of an added charge propagation along an infinite homogeneous
chain, find all the motions which contribute into its mobility and determine
the diffusion coefficient, we calculate and analyze autocorrelation functions of
the charge propagation velocities and a relevant generalized frequency spec-
trum which is a frequency-dependent diffusion coefficient. We show that the
earlier suggested scale is natural for the model, and the diffusion coefficients
differ only in the low-frequency range for different sequences. In the limit of
high and low temperatures, the nucleotide structure is irrelevant. Analysis of
autocorrelation functions suggests that the charge propagation is contributed
by dissipation and reflection at long distances as well as reflections from neigh-
boring sites. As the temperature grows, these motions arise, coexist, and
alternate. In the limit of finite temperature, the charge diffusion ceases.

A detailed straightforward analysis of the Holstein model kinetics at fi-
nite temperature requires direct numerical simulation concerned with a vast
amount of computations. Determinate time dependencies should be identified
from chaotic trajectories by averaging a large number of such trajectories. An
essential tool to accomplish these ends is our unique method [14], [15], which
enables speeding up calculations by three orders of magnitude as compared
to difference schemes. The approach implies combining Magnus expansion
methods used to reveal a charge evolution with a stochastic difference scheme
applied to calculate motion trajectories of classical sites. This computational
method enabled us to model reasonably sized samples so that to calculate
a velocity autocorrelation function smooth enough to be subsequently ana-
lyzed.
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2. Theory

2.1. Discrete Holstein model in semi-classical approximation.
Modelling a thermostat

The charge transfer in a one-dimensional double-strand chain will be consid-
ered in the framework of the Holstein model. An electron travels along a chain
whose sites are modeled by unconnected classical harmonical oscillators. The
model Hamiltonian reads:

�̂� = ∑
𝑛,𝑚

𝜈𝑛𝑚 |𝑛⟩ ⟨𝑚| + 𝛼 ∑
𝑛

𝑞𝑛 |𝑛⟩ ⟨𝑛| + ∑
𝑛

1
2

𝐾𝑞2
𝑛 + ∑

𝑛

1
2

𝑀 ̇𝑞𝑛
2, (1)

where 𝜈𝑛𝑚 are matrix elements or energies of electron transitions between the
sites 𝑛 and 𝑚, 𝛼 is a constant of electron coupling with displacement of the
𝑛-th site 𝑞𝑛, 𝑀 and 𝐾 are mass and elasticity coefficient of the oscillators,
respectively.
We will deal with homogeneous chains in the nearest neighbor approxima-

tion:
𝜈𝑛𝑚 = 𝜈𝛿𝑛,𝑚±1.

If we seek a solution corresponding to Hamiltonian (1), in the form

|Ψ⟩ = ∑
𝑛

𝑏𝑛 (𝑡) |𝑛⟩ ,

then the relevant Schroedinger equation for a charge and the equation for the
sites motion at finite temperature is written as:

𝑖ℏ𝑑𝑏𝑛
𝑑𝑡

= 𝜈 (𝑏𝑛−1 + 𝑏𝑛+1) + 𝛼𝑞𝑛𝑏𝑛, (2a)

𝑀𝑑2𝑞𝑛
𝑑2𝑡

= −𝐾𝑞𝑛 − 𝛼 |𝑏𝑛|2 + Γ𝑑𝑞𝑛
𝑑𝑡

+ 𝐴𝑛 (𝑡) . (2b)

To model the temperature of the surrounding medium we place the chain in
a Langevin thermostat. For this purpose equation for classical sites (2b) will
include a term with friction (where Γ is a friction coefficient) and a random
force 𝐴𝑛 (𝑡) with a normal distribution and the autocorrelation function:

⟨𝐴𝑛 (𝑡) 𝐴𝑚 (𝑡′)⟩ = 2Γ𝑘𝐵𝑇 𝛿𝑛,𝑚𝛿 (𝑡 − 𝑡′) ,

where 𝑇 is temperature and 𝑘𝐵 is the Bolzmann constant.

2.2. Change-over to dimensionless parameters. Scaling
of autocorrelation functions

If we neglect the influence of quantum equation (2a) on classical equation
(2b), the latter becomes a Langevin-type equation, and the solutions do not
depend on the charge distribution over the chain. In paper [16], we called this
variant of the system an “adiabatic approximation”. In the complete system,
the quantum subsystem affects classical displacements but to a limited extent.
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Therefore we explicitly separate a temperature multiplier in front of them,
proceeding from the expression for dispersion of the oscillator coordinate 𝑞𝑛
with the elasticity coefficient 𝐾:

⟨𝑞2
𝑛⟩ = 𝑘𝐵𝑇

𝐾
.

This expression follows from virial theorem and determines the scale of
variation of a classical oscillator amplitude as a function of temperature:

𝑞𝑛 = √𝑘𝐵𝑇
𝐾

𝑢𝑛.

The time scale specifies the matrix element 𝑡 = 𝜏ℏ/𝜈. Let us rewrite
equations (2) with regard to the chosen scales in dimensionless form:

𝑖𝑑𝑏𝑛
𝑑𝜏

= 𝑏𝑛−1 + 𝑏𝑛+1 + 𝜃𝑢𝑛𝑏𝑛, (3a)

𝑑2𝑢𝑛
𝑑𝜏2 = −𝜔2

0𝑢𝑛 − 𝜒
𝜃

|𝑏𝑛|2 + 𝛾𝑑𝑢𝑛
𝑑𝜏

+ 𝑍𝑛 (𝜏) , (3b)

⟨𝑍𝑛 (𝜏) 𝑍𝑛 (𝜏 ′)⟩ = 2𝛾𝜔2
0𝛿 (𝜏 − 𝜏 ′) ,

where

𝜔0 = ℏ
𝜈

√ 𝐾
𝑀

, 𝛾 = ℏ
𝜈

Γ
𝑀

, 𝜒 = 𝛼2 ℏ2

𝜈3𝑀
, 𝜃 = 𝛼

𝜈
√𝑘𝐵𝑇

𝐾
.

The quantum equation contains only one dimensionless parameter 𝜃, which
is the amplitude multiplier of classical displacements. It is mainly responsible
for the influence of the classical subsystem on the quantum one, depending on
temperature. This fact suggests that the electron distribution kinetics may
mainly depend on 𝜃 for all chain sequences. In particular, the influence of
the classical system becomes negligible for 𝜃 → 0, and the dependence on the
nucleotide sequence completely disappears. Our results demonstrate that this
choice of the scale is appropriate.

Apart from frequency 𝜔0 and friction 𝛾, responsible for oscillator motion
characteristics, the classical equation involves a parameter 𝜒/𝜃, which de-
termines a reverse influence of the quantum subsystem on the classical one.
Analysis of 𝜒/𝜃 suggests that this influence is neglectable for high tempera-
tures. Besides, we also can neglect it in the case of nucleotide chains with
a large matrix element 𝜈. If we set a constant 𝜒 = 0 for these cases, we obtain
an adiabatic approximation considered earlier in [16].

2.3. Charge mean-square displacement and generalized frequency
spectrum

The kinetic properties of stochastic system (3) are described by the velocity
autocorrelation function and the generalized frequency spectrum. These
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functions can be calculated from the density of probability of finding an
electron at site 𝑛 in a chain of length 2𝑁 + 1:

𝑃 (𝑛, 𝜏) = 𝑏𝑛 (𝜏) 𝑏∗
𝑛 (𝜏) .

In the semi-classical approximation the root-mean-square displacements in
dimensionless form are calculated by the formula:

⟨𝑥2⟩ = 𝜉(𝜏) =
𝑁

∑
𝑛=−𝑁

𝑛2𝑃(𝑛, 𝜏). (4)

Then the diffusion coefficient can be found as a slope of the curve 𝜉 (𝜏) on its
linear segment or as an asymptotic value of the derivative of the displacement

with respect to time 𝜂 (𝜏) = 𝜉 (𝜏)′
, or via the integral of the second derivative

of the displacement with respect to time 𝜓 (𝜏) = 𝜉 (𝜏)″
. We will call this

coefficient a static one and denote it as 𝐷 (0):

𝐷 (0) = 1
2

∫
∞

0
𝜓 (𝜏) 𝑑𝜏.

The natural generalization of the static diffusion coefficient is a frequency-
dependent diffusion coefficient 𝐷 (𝜙), which can be found as a generalized
frequency spectrum of the second derivative of the displacement function with
respect to time:

𝐷 (𝜙) = 1
2

∫
∞

0
𝜓 (𝜏) cos (2𝜋𝜙𝜏) 𝑑𝜏, (5)

where 𝜙 is dimensionless frequency which is related to frequency in hertz
(𝑓) as:

𝑓 = 𝜈
ℏ

𝜙 = 2𝜋 𝜈
ℎ

𝜙.

Function 𝜓 (𝜏) in semi-classical approximation is a velocity autocorrelation
function.

3. Results and discussion

At the initial moment a charge was inserted in the center of a homogeneous
chain of length 2𝑁 +1 with temperature distribution of the degrees of freedom
of harmonical oscillators:

𝑏𝑛(0) = 𝛿𝑛,0, 𝑑𝑢𝑛
𝑑𝜏

(0) = 𝒩 (0, 1) , 𝑢𝑛 (0) = 𝒩 (0, 1) , (6)

where 𝛿𝑖,𝑗 is Kronecker delta, 𝒩 (𝜇, 𝜎) is a normal distribution with the mean
𝜇 and dispersion 𝜎2.
The trajectory of the system motion was calculated from initial states (6),

each time with new values of 𝑢𝑛 and �̇�𝑛. The calculations were carried out by
the method, which combines Magnus expansion with a stochastic difference
scheme [14], [15]. For the trajectories to correspond to charge propagation
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along an infinite chain, the chain length 𝑁 was chosen such that during the
time of modeling the front of propagation of the charge probability density
would not come up to its end.
Then we calculated the second derivative of the root-mean-square displace-

ment with respect to (3), (4) by averaging over samples. After that, we found
the frequency spectrum by formula (5) using the fast cosine transform.
We chose the parameters listed in Table 1 as in our previous work [13].

These parameters are typical for DNA.

Table 1

Dimensional parameters of the Holstein model for dsDNA

𝑀 = 10−21 g 𝐾 = 0.062 eV/Å2 Γ = 6 ⋅ 10−10 g/s 𝛼 = 0.13 eV/Å

𝜈𝐴 = 0.030 eV 𝜈𝐶 = 0.041 eV 𝜈𝐺 = 0.084 eV 𝜈𝑇 = 0.158 eV

We repeated the calculations for a set of temperatures and homogeneous
dsDNA chains composed of different nucleotides. Table 2 lists dimensionless
parameters.

Table 2

Dimensionless parameters for dsDNA as a function of a nucleotide sequence

parameter poly A poly C poly G poly T

𝜔0 0.02193 0.01605 0.007837 0.004167
𝛾 0.01316 0.009631 0.004702 0.0025
𝜒 0.004219 0.001654 1.925 × 10−4 2.894 × 10−5

A common property of the velocity autocorrelation functions at any tem-
perature is that they are equal to 4 in the small area after an initial time
instant. This value corresponds to the velocity of the ballistic motion at zero
temperature, which is equal to 2. A comparison of autocorrelation functions
for chains composed of different nucleotides suggests that for the same value
of 𝜃, the functions differ only in the attenuation asymptotics. The spectra
demonstrate differences at low frequencies for finite values of 𝜃 and, accord-
ingly, different diffusion coefficients 𝐷 (0) (see Figure 1, dashed lines). Here
we use the scale were these differences are insignificant. In particular, they
lack in the limit of low and high temperatures.
Earlier in work [13], we carried out a more detailed analysis of the temper-

ature dependencies of the static diffusion coefficient for homogeneous dsDNA
chains with different nucleotide sequences and suggested the scales in which
the temperature dependencies of 𝐷 (0) are close for chains with different se-
quences. Analyzing the spectra in this scale here, we see that differences in
the frequency-dependent diffusion coefficient blend as the frequency is increas-
ing, and virtually disappear at the frequency, where an absolute maximum of
the spectrum is observed (see Figure 1, solid lines).
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Figure 1. Temperature dependencies of the frequency-dependent coefficient; A,

Poly A dsDNA; B, Poly C dsDNA; C, Poly G dsDNA; D, Poly T dsDNA. Dashed lines for

the dependencies of 2𝐷 (0) on 𝜃; solid lines for the dependencies of (max2𝐷 (𝜔))𝜃 on 𝜃

As the temperature changes, the form of autocorrelation functions and
spectra change too. Their analysis enables us to identify four different regimes.
Since we have shown that any differences between the chains with different
nucleotide structures are insignificant in our scale, and their character is
determined, we will deal only with Poly A dsDNA chains in what follows. In
the limit of infinitely small temperatures, the autocorrelation function tends
to attenuate exponent:

𝜓 (𝜏) = 𝜓 (0) 𝑒−𝜏/𝜏0 .
Its generalized frequency spectrum has an analytical form similar to that

of the real part of the frequency-dependent conductivity, according to Drude
formula:

𝐷 (𝜙) = 𝜓 (0) 𝜏0
1 + 4𝜋2𝜙2𝜏2

0
.

In accordance with fluctuation-dissipative theorem, the mobility 𝜇 (𝜔) is
related to 𝐷 (𝜔) as [17]:

𝜇 (2𝜋𝜙) = 𝑒
𝑇

𝐷 (2𝜋𝜙) .

The dependence of 𝜇 (0) on temperature is given in [18].
Notice also that the maximum of the frequency-dependent diffusion coeffi-

cient and, accordingly, the mobility at the relevant frequency is greater than
the static diffusion coefficient (see Figure 1). It suggests that DNA can serve
as a conductor of alternating current.
In the range of extra-low temperatures for near-zero 𝜃, the autocorrelation

functions and the spectra keep monotonously attenuating (see Figure 2) until
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the dimensionless parameter 𝜃 reaches the value 𝜃 = 0.14 in Poly T dsDNA or
𝜃 = 0.3 in Poly A dsDNA. This boundary is slightly different for chains with
different nucleotide sequences (see Figure 1). For the first regime, scattering
at long distances exceeding one site on the average is typical.
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Figure 2. (a) Velocity autocorrelation functions and (b) generalized frequency spectrum of

the charge propagation along Poly A dsDNA in the range of low and extra-low temperatures;

A, 𝜃 = 0.1; B, 𝜃 = 0.2; C, 𝜃 = 0.4; D, 𝜃 = 0.8

In the range of low temperatures, until the dimensionless parameter be-
comes 𝜃 = 1, reflection at long distances arises. In this regime, the velocity
autocorrelation function (see Figure 2(a)) is not monotone and has a single
minimum in the negative range. The absolute value of the minimum increases
with growing 𝜃, while its coordinate decreases. Now the spectra demonstrate
a low-frequency maximum whose frequency increases with growing 𝜃, while
the value decreases (see Figure 2(b)).
Then, up to the value of 𝜃 = 3.5, a range of moderate temperatures is

observed. In this temperature range a high-frequency maximum caused by
oscillations of the autocorrelation function 𝜓 (𝜏) occurs after the first minimum
(see Figure 3(a)). At the same time, the absolute value of the first minimum
of the autocorrelation function keeps growing. High-frequency oscillations
arise while the function attenuates after the first minimum. Thus, in the
range of moderate temperatures, reflection at long distances, and reflection
from neighboring sites coexist.
Looking at the spectrum 2𝐷 (𝜔), we see that the low-frequency maximum

keeps decreasing, while its frequency decreases and approaches the frequency
of the second maximum (Figure 3(b)). The position of the high-frequency
peak on the spectrum is independent of temperature. The first and the second
maxima of the spectrum are well seen and have nearly the same value for
𝜃 = 1.9 (see the inset in Figure 3(b)).
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Figure 3. (a) Velocity autocorrelation functions and (b) generalized frequency spectrum of

the charge propagation along Poly A dsDNA in the range moderate temperatures; A,

𝜃 = 1.2; B, 𝜃 = 1.6; C, 𝜃 = 1.9; D, 𝜃 = 2.4; E, 𝜃 = 3.5

Notice that the value of the parameter 𝜃 = 1.9 for which the high-frequency
peak is approximately equal in value to the low-frequency one is the same
for different types of chains, which is confirmed by the curves of the maxima
shown in Figure 1. The value of the parameter 𝜃 for which the low-frequency
maximum of the spectrum disappears while the high-frequency one emerges
can reasonably be called a critical value. Dimensional critical temperatures
corresponding to the critical parameter are listed in Table 3 for different types
of chains.

Table 3

Critical temperature for 𝜃 = 1.9 and position of high-frequency peak for different nucleotide

sequences

units poly A poly C poly G poly T

𝑓𝑝 THz 14.5 19.8 40.6 76.4
𝑇𝑐

∘ C −134.76 −14.68 811.80 3565.37

Regularity and homogeneity of the chain cause the high-frequency peak. It
occurs at a frequency of 𝜙 = 1/𝜋. The dimension frequency depends only on
matrix element:

𝑓𝑝 = 2 𝜈
ℎ

.

The values of this peak frequency for the different nucleotide sequences are
presented in Table 3. Obviously, in the case of inhomogeneous regular chains,
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these frequencies will be more than one, and the spectra will contain several
relevant peaks.
In the range of high temperatures, motion mainly fulfills as hopping between

neighboring sites. As distinct from the previous regimes, the absolute value of
the first minimum of the autocorrelation function decreases here with growing
𝜃 (see Figure 4(a)). A decrease of its coordinate is considerably retarded and
tends to 1. At the same time, the initial attenuation occurs more sharply.
Initially, the function sharply decreases to zero and then slowly goes to the
first minimum. Oscillations of the autocorrelation function in this regime
occur about the abscissa axis rather than about the low-frequency envelope.
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Figure 4. (a) Velocity autocorrelation functions and (b) generalized frequency spectrum of

the charge propagation along Poly A dsDNA in the range of high and ultrahigh

temperatures; A, 𝜃 = 4.4; B, 𝜃 = 10; C, 𝜃 = 40; D, 𝜃 = 160; E, 𝜃 = 640

The spectrum demonstrates only a high-frequency peak, which decreases
with growing 𝜃 (see Figure 4(b)). The spectrum smoothly widens.
Obviously, in the limit of high temperatures, the spectrum widens and

becomes monotone. The charge propagation ceases.
As is seen from Figures 2–4, for rather high 𝜔, at any temperatures, except

for extra-low and superhigh ones, 𝐷 (𝜔) increases with growing temperature.
This effect is known for static disorder [17].

4. Conclusion

We considered the frequency spectra of the diffusion coefficient (mobility)
of an excess charge in a Holstein molecular chain for different temperatures.
We revealed the character of motions contributing to the charge diffusion

in the Holstein model. The presence of temperature causes a dynamical
disorder even in an ideal chain. Let us call the main differences between
the frequency dependencies of chains with static disorder and those with
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the dynamic disorder caused by temperature fluctuations. In the static case,
the diffusion coefficient increases with growing frequency [17], while in the
dynamic case, more complicated behavior is observed (see Figures 2–4). We
demonstrated the existence of asymptotics at low and high temperatures.
For finite temperatures, we identified four temperature ranges in which
autocorrelation functions and their spectra have similar peculiarities/features.
Accordingly, the charge diffusion inside these ranges demonstrates the same
character. The character is changing in passing to a different temperature
range. Low temperatures cause weak scattering without reflections, as a result
of which the ballistic motion changes for the diffusion one. As the temperature
increases, at first, a reflection at long distances emerges, then it is added
with reflections from neighboring sites. Both these motions slow down the
charge diffusion. In the limit of high temperatures, the motion degenerates
into hopping between neighboring sites, and the charge diffusion ceases.
We revealed the character of motions contributing to the charge diffusion

in the Holstein model.
All the results are presented in dimensionless values, which enabled us to

identify the main parameters and recognize the different regimes.
The autocorrelation functions in themselves, as well as their spectra, are

also a significant result. Their calculation was made possible only with the use
of special unique methods of numerical integration of differential equations.
Presently, DNA is considered to be a promising material for constructing

molecular wires. However, even homogeneous synthetic nucleotide chains
at room temperatures demonstrate deficient mobility in the case of direct
current [19], [20]. A possible solution to this problem, according to the
results obtained, is the use of not direct but alternating current of rather high
frequency.
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В статье проведён анализ автокорреляционных функций скорости
и обобщённых частотных спектров распространения заряда в однородных после-
довательностях ДНК при конечной температуре. Функции рассчитаны численно
в рамках квазиклассической модели Холстейна. Показано, что в системе только
один параметр главным образом определяет кинетику заряда для всех после-
довательностей. Анализ позволил определить характер отдельных движений,
вносящих вклад в подвижность заряда, и выделить различные режимы распро-
странения заряда в зависимости от температуры.

Ключевые слова: перенос заряда, автокорреляционная функция скорости,
обобщённый частотный спектр, ДНК, модель Холстейна
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We study the geodesics motion of neutral test particles in the static spherically
symmetric spacetimes of black holes and naked singularities supported by a self-
gravitating real scalar field. The scalar field is supposed to model dark matter
surrounding some strongly gravitating object such as the centre of our Galaxy. The
behaviour of timelike and null geodesics very close to the centre of such a configuration
crucially depends on the type of spacetime. It turns out that a scalar field black
hole, analogously to a Schwarzschild black hole, has the innermost stable circular
orbit and the (unstable) photon sphere, but their radii are always less than the
corresponding ones for the Schwarzschild black hole of the same mass; moreover,
these radii can be arbitrarily small. In contrast, a scalar field naked singularity
has neither the innermost stable circular orbit nor the photon sphere. Instead,
such a configuration has a spherical shell of test particles surrounding its origin and
remaining in quasistatic equilibrium all the time. We also show that the characteristic
properties of null geodesics near the centres of a scalar field naked singularity and
a scalar field black hole of the same mass are qualitatively different.

Key words and phrases: geodesic, black hole, naked singularity, scalar field

1. Introduction

In recent years new astrophysical observations give us convincing evidence
for the presence of strongly gravitating objects in the center of most of normal
galaxies. These objects are commonly identified with supermassive black
holes, but the modern astrophysical data are not quite enough to exclude
other possibilities, such as naked singularities, boson stars, and wormholes.
For example, the shadow in the centre of the galaxy M87 and the real image of
the photon ring around the shadow, observed by the Event Horizon Telescope
collaboration this year, have been immediately interpreted as the existence
of the photon sphere and, consequently, the event horizon [1]. However, it is
shown in Ref. [2] within a simple model that a naked singularity can also have

© Potashov I.M., Tchemarina J.V., Tsirulev A.N., 2019

This work is licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/



232 DCM&ACS. 2019, 27 (3) 231–241

both the shadow and the photon sphere. In fact, a natural way to distinguish
between the different types of the gravitating objects is to explore spacetime
geometry through the study (both observationally and theoretically) of the
motion of test particles and light rays near the centres of galaxies [3]–[5].

The observational efficiency directly depends on a model in which the
astrophysical data for the central objects will be interpreted. First, one
should not think of the central objects in galaxies as being in vacuum,
because dark matter is mainly concentrated around them. Another problem
is that the nature of dark matter and its distribution near galactic centres
remain unknown at present. This means that a meaningful interpretation of
the observations should be based on an appropriate mathematical model of
the central regions: we model dark matter by a nonlinear scalar field which
is assumed to be minimally coupled to gravity. Our aim is to compare the
behaviour of timelike and null geodesics for a scalar field black hole and
a scalar field naked singularity of the same mass. For such configurations,
the general properties of timelike geodesics were studied in Refs. [6]–[8]. In
this paper, we focus our attention on the comparison of bound trajectories of
massive test particles and light rays in the immediate vicinity of the centres
of scalar field black holes and scalar field naked singularities.

The paper is organised as follows. In Section 2 we describe the necessary
mathematical background for static, spherically symmetric scalar field config-
urations restricting our attention to the case of the minimal coupling between
curvature and a real scalar field. In Section 3 we discuss general features of
bound and unbound orbits of free neutral massive and massless particles. In
Section 4 we consider a simple example which illustrates some characteristic
features of the photon orbits of scalar field black holes and scalar field naked
singularities in comparing with the orbits of massive test particles.

In this paper, we use the geometrical system of units with 𝐺 = 𝑐 = 1
and adopt the metric signature (+ − − −). In tensor notation, we use the
summation convention over repeated indices, and Greek indices take the
values 0, 1, 2, 3.

2. Self-gravitating spherically symmetric scalar field
configurations

We begin with the action

Σ = 1
8𝜋

∫ (−1
2

𝑅 + ⟨𝑑𝜙, 𝑑𝜙⟩ − 2𝑉 (𝜙)) √|𝑔| 𝑑 4𝑥 ,

where 𝜙 is a real scalar field, 𝑅 is the scalar curvature, 𝑉 (𝜙) is a self-interaction
potential, and the angle brackets denote the scalar product with respect to
the spacetime metric. The metric of a spherically symmetric spacetime in the
Schwarzschild-like coordinates can be written in the form

𝑑𝑠2 = 𝐴𝑑𝑡2 − 𝑑𝑟2

𝑓
− 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2),
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where the metric functions 𝐴 and 𝑓 depend only on the radial coordinate 𝑟.
For the metric function 𝐴, it is convenient to make the substitution

𝐴(𝑟) = 𝑓(𝑟)e2𝐹(𝑟),

so that the Einstein-Klein-Gordon equations take the form

−𝑓 ′

𝑟
− 𝑓 − 1

𝑟2 = 𝜙′2𝑓 + 2𝑉 , (1)

𝑓
𝑟

(2𝐹 ′ + 𝑓 ′

𝑓
) + 𝑓 − 1

𝑟2 = 𝜙′2𝑓 − 2𝑉 , (2)

−𝑓𝜙″ − 𝜙′

2
𝑓 ′ − 𝜙′𝑓 (𝐹 ′ + 1

2
𝑓 ′

𝑓
+ 2

𝑟
) + 𝑑𝑉

𝑑𝜙
= 0 , (3)

where a prime denotes differentiation with respect to 𝑟.
By adding equations (1) and (2), we obtain

𝐹 ′ = 𝑟𝜙′2. (4)

Now we can eliminate 𝐹 ′ from the two other equations and, as a result, solve
those in the form of quadratures [9]–[15]. For our goal, we will employ the
integral formulae obtained in Ref. [13]:
A general static, spherically symmetric, asymptotically flat solution of

equations (1)–(3) with an arbitrary self-interaction potential is given by the
quadratures

𝐹(𝑟) = − ∫
∞

𝑟
𝜙′2𝑟𝑑𝑟 , 𝜉(𝑟) = 𝑟 + ∫

∞

𝑟
(1 − e𝐹) 𝑑𝑟 , (5)

𝐴(𝑟) = 2𝑟2 ∫
∞

𝑟

𝜉 − 3𝑀
𝑟4 e𝐹𝑑𝑟 , 𝑓(𝑟) = e−2𝐹𝐴 , (6)

̃𝑉 (𝑟) = 1
2𝑟2 (1 − 3𝑓 + 𝑟2𝜙′2𝑓 + 2 e−𝐹 𝜉 − 3𝑀

𝑟
) , (7)

where the parameter 𝑀 is the Schwarzschild mass.
It is important to stress that each solution of equations (1)–(3) satisfies these
quadratures independently of the monotonicity of the field function.
In order to use these quadratures, we will work with a specially defined

function 𝜉(𝑟) which must satisfy the asymptotic condition

𝜉 = 𝑟 + 𝑂 (1/𝑟) , 𝑟 → ∞, (8)

and then will sequentially find the metric functions (e𝐹 = 𝜉′), the scalar field
(by integrating (4)), the function ̃𝑉 (𝑟), and the self-interaction potential

𝑉 (𝜙) = ̃𝑉 (𝑟(𝜙)). This method is commonly known as ’the inverse problem
method for self-gravitating scalar field configurations’. It is also important
to stress that we consider the scalar field as a phenomenological model of
dark matter rather than as a really existing fundamental field. Note that
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we could include the cosmological constant in the potential as the additional
term Λ/2, but its contribution to the geometry of the central region would
be negligible. The absence of the cosmological constant simply means that
𝑉 (𝜙(∞)) = 0. Therefore, the so-called ’no-hair theorem’ is not essential in
the current astrophysical context.
Using quadratures (5) and (6), we can write algebraically independent

components of the curvature in the orthonormal basis, associated with the
metric (2), in the form

𝑅0101 = 𝜙′2𝑓 − 𝑓 − 1
𝑟2 , 𝑅2323 = 𝑓 − 1

𝑟2 , (9)

𝑅0202 = 𝑅0303 = − 𝑓
𝑟2 + e−𝐹 𝜉 − 3𝑀

𝑟3 , (10)

𝑅1212 = 𝑅1313 = 𝑓
𝑟2 − 𝜙′2𝑓 − e−𝐹 𝜉 − 3𝑀

𝑟3 . (11)

On the other hand, in spherically symmetric spacetimes, the Kretchmann

invariant, 𝐾 = 𝑅𝛼𝛽𝛾𝛿𝑅𝛼𝛽𝛾𝛿/4, equals the sum of the squared curvature

components and, therefore, diverges if at least one of the curvature components
do. Thus, in this case 𝐾 and the scalar curvature 𝑅 diverge at 𝑟 = 0 for all
solutions with the exception of some specific ones satisfying the conditions

𝜉(𝑟) = 3𝑀 + e𝐹(0)𝑟 + 𝑂 (𝑟3) , 𝑓(0) = 1 + 𝑂 (𝑟2) , 𝑟 → ∞.

In the generally accepted manner, we call a solution a naked singularity (a

black hole) if 𝐾 diverges at 𝑟 = 0 and 𝑓 > 0 for all 𝑟 > 0 (respectively, 𝑓 = 0
at some radius 𝑟ℎ > 0 and 𝑓 > 0 for all 𝑟 > 𝑟ℎ).
For a given nonzero scalar field 𝜙(𝑟), it follows directly from (5) that

𝜉′ = e𝐹 > 0 for all 𝑟 > 0 and 𝜉(0) > 0, so that the metric function 𝐴, given
by the quadrature (6), passes through zero and becomes negative as 𝑟 → 0 if
and only if 3𝑀 > 𝜉(0). In other words, the corresponding configuration of
mass 𝑀 will be a naked singularity or a black hole if and only if

0 < 3𝑀 < 𝜉(0) (naked singularities) or 3𝑀 > 𝜉(0) (black holes),

respectively. In what follows we deal only with ’generic’ configurations and
do not consider the special (fine-tuned) case 3𝑀 = 𝜉(0); the latter leads to
a naked singularity or a regular solution.
The geometrical system of units (𝐺 = 𝑐 = 1) does not fix a unit of length.

On the other hand, the geodesic structure of spacetime is scale invariant
at the classical level, and the solution (6)–(7) is invariant under the scale
transformations

𝑟 → 𝑟/𝜆, 𝑀 → 𝑀/𝜆, 𝑉 → 𝜆2𝑉 , 𝜆 > 0,

so that we can use an arbitrary unit of length. By applying 𝜆 = 𝑀 in this
transformation, we can take, as it is usually done in general relativity, the
mass of a scalar field configuration as the current unit of length. Thus, without
loss of generality, we suppose everywhere below that 𝑀 = 1.
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3. Geodesic motion around scalar field configurations

In all stationary spherically symmetric spacetimes we have the conserved
energy and angular momentum of a test particle. Together with the constancy
condition for the norm of the four-velocity, this implies the existence of three
integrals of motion. For the metric (2) they can be written in the form

𝑑𝑡
𝑑𝑠

= 𝐸
𝐴

, 𝑑𝜑
𝑑𝑠

= 𝐽
𝑟2 , (𝑑𝑟

𝑑𝑠
)

2
= e−2𝐹 (𝐸2 − 𝑉

eff
) , (12)

𝑉
eff

= 𝐴 (𝑘 + 𝐽2

𝑟2 ) , (13)

where 𝑉eff(𝑟) is the effective potential, 𝐸 and 𝐽 are, respectively, the specific
energy and the specific angular momentum of a test particle, and 𝑘 = 0 or
𝑘 = 1 depending on whether we are considering null or timelike geodesics;
for null geodesics, 𝑠 is an arbitrary geodesic parameter, but not the interval.
For any asymptotically flat spacetime and for any value of 𝐽, 𝑉eff → 0 or

𝑉eff → 1 as 𝑟 → ∞ depending on whether 𝑘 = 0 or 𝑘 = 1 , respectively. An-
other difference between null and timelike geodesics which is more interesting
is that the behaviour of a null geodesic effectively depends only on the impact
parameter 𝑏, so that

(𝑑𝑟
𝑑𝑠

)
2

= 𝐸2e−2𝐹 (1 − 𝑏2 𝐴2

𝑟2 ) , 𝑏 = 𝐽
𝐸

, (14)

where the coefficient 𝐸2 on the right hand side can be eliminated by redefining
the parameter: 𝜆 = 𝑠𝐸.
It is shown in Ref. [8] that for a scalar field black hole spacetime, defined

by the quadratures (5)–(7) and the conditions (8) and 3𝑀 > 𝜉(0), the lapse
function 𝐴(𝑟) is a strictly increasing function outside the event horizon. In
contrast, for a naked singularity spacetime, satisfying the conditions (8)
and 3𝑀 < 𝜉(0), 𝐴(𝑟) necessarily has at least one minimum in the region
0 < 𝑟 < ∞. These properties give us a key distinguishing feature for the
two types of scalar field configurations: they cause different behaviours of
bound orbits close to the centre. The various numerical simulations with
scalar field black hole solutions allow us to conclude that the radius of
the corresponding innermost stable circular orbit, which is an important
observational characteristic for black holes, is of order 3𝑟ℎ (analogously to
the vacuum case). On the contrary, a scalar field naked singularity has no
innermost stable circular orbit but has a unique degenerated static orbit,
which has 𝐽 = 0 and is located at 𝑟 = 𝑟0, where 𝑟0 is the unique solution of
the equation 𝐴′(𝑟) = 0. From the point of view of a distant observer resting
relative to the centre, a test particle remains at rest in the static orbit all
time. Particles in such a static orbit, together with particles having zero or
small specific angular momentum and specific energy 𝐸2 ⪆ 𝐴(𝑟0), can make
up a spherical shell consisting of cold gas or fluid. For a distant observer, this
shell would look like a shadow similar to that of a black hole.
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The expressions for trajectories of timelike and null geodesics can be
expressed directly from (12) and (14). They are, respectively,

𝜑 = 𝐽 ∫ e𝐹

𝑟2√𝐸2 − 𝑉eff
𝑑𝑟 and 𝜑 = 𝑏 ∫ e𝐹

𝑟2√1 − 𝑏2𝐴2/𝑟2
𝑑𝑟 .

4. Geodesics: analytic examples

For the sake of brevity and simplicity, we will explore a fully analytic,
one-parameter family of solutions defined by the functions

𝜉 = √𝑟2 + 2𝑎𝑟 + 5𝑎2 − 𝑎, e𝐹 = 𝜉′ = 𝑟 + 𝑎√
𝑟2 + 2𝑎𝑟 + 5𝑎2

, (15)

which uniquely determine the metric function 𝐴(𝑟) and the scalar field 𝜙(𝑟).
By direct integration in (6), we obtain

𝐴 = 1 + 2𝑎
3𝑟

− 2 𝑎 + 3𝑚
15𝑎

{
√

𝑟2 + 2𝑎𝑟 + 5𝑎2

𝑟
(1 + 𝑟

𝑎
− 𝑟2

𝑎2 ) + 𝑟2

𝑎2 } , (16)

where 𝑎 is the parameter of ’intensity’ of the scalar field. Using (9)–(11) we
find that the Kretchmann invariant diverges at the centre. In accordance

with the condition 3𝑀 < 𝜉(0), the inequality 𝑎 > 3/(
√

5 − 1) determines the
subfamily of scalar field naked singularities.
The results of numerical simulation of geodesics are presented in Figures 1–3.

0 2010 15 255

-0.2

0

0.5

1.0

1.5

2.0

r

V
ef

f

0 2010 15 255

-0.2

0

0.5

1.0

r

V
ef

f

Figure 1. The left (right) panel shows the effective potentials of massive particles (of

photons): for the scalar field black hole (solid curve) with 𝑎 = 6, 𝑀 = 3, 𝐽 = 7.2 and naked

singularity (dashed curve) with 𝑎 = 6, 𝑀 = 1, 𝐽 = 7.2, and for the Schwarzschild black
hole (dotted curve) with 𝑀 = 3, 𝐽 = 7.2
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Figure 2. The shape of orbits of massive particles. Left panel: the scalar field black hole

with 𝑎 = 5, 𝑀 = 3, 𝐽 = 9, 𝐸2 = 0.948 (solid curve) and the Schwarzschild black hole

(dotted curve) with 𝑀 = 3, 𝐽 = 12, 𝐸2 = 0.9517. Right panel: the scalar field naked
singularities with 𝑎 = 5, 𝑀 = 1 and 𝐽 = 0.5, , 𝐸2 = 0.88 (solid curve) and

𝐽 = 1, 𝐸2 = 0.9011 (dashed curve)
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Figure 3. The shape of orbits of photons. Left panel: the scalar field black hole with

𝑎 = 7, 𝑀 = 3, 𝑏 = 6 (solid curve), the scalar field naked singularity with

𝑎 = 7, 𝑀 = 1, 𝑏 = 6 (dashed curve), and the Schwarzschild black hole (dotted curve) with

𝑀 = 3, 𝑏 = 20. Right panel: analogously to the left panel, but with parameters
𝑎 = 7, 𝑀 = 3, 𝑏 = 2.5 (solid curve), 𝑎 = 7, 𝑀 = 1, 𝑏 = 2 (dashed curve), and

𝑀 = 3, 𝑏 = 12 (dotted curve)

The typical effective potentials are shown in Figure 1, where the difference
between timelike and null geodesics is obvious: in particular, the effective
potentials of photons in the spacetime of a scalar field naked singularity do
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not have extrema, so that there does not exist the photon sphere. In Figure 2,
the shape of geodesics for massive test particles are plotted. The shape of an
orbit depends on the specific angular momentum 𝐽 and the specific energy 𝐸
of a test particle. Numerical simulation shows that the number of oscillations
per revolution decreases with increasing 𝐽 when the value of 𝐸 is fixed, as
well as with decreasing 𝐸 when the value of 𝐽 is fixed. Figure 3 presents
photon orbits. The difference in the behaviour of null geodesics is obvious.

5. Conclusions

The observations of timelike and null geodesics very close to the centres
of galaxies are of great importance, allowing us to study the spacetime
geometry near the centres as well as to understand the nature of the central
supermassive self-gravitating objects. The available astrophysical data are
so far insufficient to identify the strongly gravitating objects and even to
definitely distinguish between black holes and naked singularities. However,
we can hope that the future development of the spatial resolving power of
precise astronomical instruments will be sufficient to observe the central region
of Sgr A* (about 15𝑀 ≈ 0.15𝑚𝑎𝑠). In particular, the facilities of the Event
Horizon Telescope are expected to achieve the required sensitivity within the
next fifteen years [16], [17].
In this paper, we study (in a fully analytical manner) the characteristic

features of the trajectories of null and timelike geodesics in the neighbourhoods
of static, spherically symmetric scalar field black holes and naked singularities,
having in mind the centre of a galaxy surrounded by dark matter. It turns out
that a scalar field black hole, analogously to a Schwarzschild black hole, has
the innermost stable circular orbit and the (unstable) photon sphere, but their
radii are always less than the corresponding ones for the Schwarzschild black
hole of the same mass; moreover, these radii can be arbitrarily small. We
show that a scalar field naked singularity has a positive Schwarzschild mass
(as opposed to vacuum naked singularities), but has neither the innermost
stable circular orbit nor the photon sphere. Instead, such a configuration
has a spherical shell of test particles surrounding its origin and remaining in
quasistatic equilibrium all the time. We have shown that the characteristic
properties of null geodesics near the centres of a scalar field naked singularity
and a scalar field black hole of the same mass are qualitatively different. In
particular, the quasistatic equilibrium shell can consists of sufficiently cold
particles and be observed as a dark shadow surrounded by a photon image. It
means that the observation of only the central shadow, circled by a bright ring,
is not by itself enough to identify with confidence the central objects. In fact,
a key role in the identification of these objects plays observations of the orbits
of stars and gas clouds very close to the centre. Note also (this is important
for astrophysical applications) that the behaviour of geodesics in the region
𝑟 ≳ 15𝑚, where the metrics of a scalar field configuration becomes close to
the Schwarzschild one, is qualitatively similar to each other and quantitatively
almost the same, so that the observations of the geodesic motion in this region
are not sufficiently informative.



I.M.Potashov et al., Geodesic motion near self-gravitating scalar field… 239

References

[1] The EHT collaboration, “First M87 Event Horizon Telescope Results. I.
The Shadow of the Supermassive Black Hole,” The Astrophysical Journal
Letters, vol. 875, no. 1, 2019. DOI: 10.3847/2041-8213/ab0ec7.

[2] R. Shaikh, P. Kocherlakota, R. Narayan, and P. S. Joshi, “Shadows
of spherically symmetric black holes and naked singularities,” Monthly
Notices of the Royal Astronomical Society, vol. 482, no. 1, pp. 52–64,
2018. DOI: 10.1093/mnras/sty2624.

[3] V. I. Dokuchaev and Y. N. Eroshenko, “Weighing of the dark matter at
the center of the Galaxy,” JETP Letters, vol. 101, no. 12, pp. 777–782,
2015. DOI: 10.1134/S0021364015120048.

[4] A. Hees et al., “Testing General Relativity with stellar orbits around
the supermassive black hole in our Galactic center,” Physycal Review
Letters, vol. 118, no. 22, p. 211 101, 2017. DOI: 10.1103/PhysRevLett.
118.211101.

[5] A. V. Zakharov, “Constraints on tidal charge of the supermassive black
hole at the Galactic Center with trajectories of bright stars,” European
Physical Journal C, vol. 78, p. 689, 2018. DOI: 10.1140/epjc/s10052-
018-6166-5.

[6] M. De Laurentis, Z. Younsi, O. Porth, Y. Mizuno, and L. Rezzolla,
“Test-particle dynamics in general spherically symmetric black hole
spacetimes,” Physical Review D, vol. 97, no. 10, p. 104 024, 2018. DOI:
10.1103/PhysRevD.97.104024.

[7] G. Z. Babar, A. Z. Babar, and Y. K. Lim, “Periodic orbits around
a spherically symmetric naked singularity,” Physical Review D, vol. 96,
no. 8, p. 084 052, 2017. DOI: 10.1103/PhysRevD.96.084052.

[8] I. M. Potashov, J. V. Tchemarina, and A. N. Tsirulev, “Bound orbits near
scalar field naked singularities,” European Physical Journal C, vol. 79,
p. 709, 2019. DOI: 10.1140/epjc/s10052-019-7192-7.

[9] K. A. Bronnikov and G. N. Shikin, “Spherically symmetric scalar vacuum:
no-go theorems, black holes and solitons,” Gravitation and Cosmology,
vol. 8, pp. 107–116, 2002.

[10] V. V. Nikonov, J. V. Tchemarina, and A. N. Tsirulev, “A two-parameter
family of exact asymptotically flat solutions to the Einstein-scalar field
equations,” Classical and Quantum Gravity, vol. 25, no. 13, p. 138 001,
2008. DOI: 10.1088/0264-9381/25/13/138001.

[11] J. V. Tchemarina and A. N. Tsirulev, “Spherically symmetric gravitating
scalar fields. The inverse problem and exact solutions,” Gravitation and
Cosmology, vol. 15, pp. 94–95, 2009.

[12] M. Azreg-Ainou, “Selection criteria for two-parameter solutions to
scalar-tensor gravity,” General Relativity and Gravitation, vol. 42, no. 6,
pp. 1427–1456, 2010. DOI: 10.1007/s10714-009-0915-6.

[13] D. A. Solovyev and A. N. Tsirulev, “General properties and exact
models of static selfgravitating scalar field configurations,” Classical and
Quantum Gravity, vol. 29, no. 5, p. 055 013, 2012. DOI: 10.1088/0264-
9381/29/5/055013.



240 DCM&ACS. 2019, 27 (3) 231–241

[14] P. V. Kratovitch, I. M. Potashov, J. V. Tchemarina, and A. N. Tsirulev,
“Topological geons with self-gravitating phantom scalar field,” Journal
of Physics: Conference Series, vol. 934, no. 1, p. 012 047, Dec. 2017. DOI:
10.1088/1742-6596/934/1/012047.

[15] I. M. Potashov, J. V. Tchemarina, and A. N. Tsirulev, “Bound orbits
near black holes with scalar hair,” Journal of Physics: Conference Series,
vol. 1390, no. 1, p. 012 097, Nov. 2019. DOI: 10.1088/1742-6596/1390/
1/012097.

[16] S. Gillessen et al., “An update on monitoring stellar orbits in the galactic
center,” The Astrophysical Journal, vol. 837, no. 1, p. 30, 2017. DOI:
10.3847/1538-4357/aa5c41.

[17] C. Goddi et al., “BlackHoleCam: fundamental physics of the Galactic
center,” International Journal of Modern Physics D, vol. 26, no. 2,
p. 1 730 001, 2017. DOI: 10.1142/S0218271817300014.

For citation:

I.M.Potashov, J.V.Tchemarina, A.N.Tsirulev, Geodesic motion near self-
gravitating scalar field configurations, Discrete and Continuous Models and
Applied Computational Science 27 (3) (2019) 231–241. DOI: 10.22363/2658-
4670-2019-27-3-231-241.

Information about the authors:

Ivan M. Potashov—Master of Science in Mathematics, Assistant of Depart-
ment of General Mathematics and Mathematical Physics (e-mail: potashov.
im@tversu.ru, ORCID: https://orcid.org/0000-0002-7597-4366,
Scopus Author ID: 57200106410)

Julia V. Tchemarina — Candidate of Physical and Mathemat-
ical Sciences, Assistant of professor of Department of General
Mathematics and Mathematical Physics (e-mail: chemarina.

yv@tversu.ru, ORCID: https://orcid.org/0000-0002-9002-887X,
Scopus Author ID: 24460923700)

Alexander N. Tsirulev — Doctor of Physical and Math-
ematical Sciences, Professor of Department of General
Mathematics and Mathematical Physics (e-mail: tsirulev.

an@tversu.ru, ORCID: https://orcid.org/0000-0003-4168-3613,
Scopus Author ID: 16409936300)



I.M.Potashov et al., Geodesic motion near self-gravitating scalar field… 241

УДК 524, 531

PACS 04.20.−q, 04.20.Dw

DOI: 10.22363/2658-4670-2019-27-3-231-241

Геодезическое движение вблизи самогравитирующих
конфигураций скалярного поля

И. М. Поташов, Ю. В. Чемарина, А. Н. Цирулев

Математический факультет
Тверской государственный университет

Садовый пер., д. 35, г. Тверь, 170002, Россия

В работе изучается геодезическое движение нейтральных пробных частиц
в пространстве-времени статических сферически-симметричных чёрных дыр
и голых сингулярностей, порождённых самогравитирующим скалярным полем.
Предполагается, что скалярное поле моделирует тёмную материю, окружаю-
щую некоторый объект с сильным гравитационным полем, такой как центр
нашей Галактики. Поведение времениподобных и изотропных геодезических,
проходящих очень близко к центру такой конфигурации, в решающей степе-
ни зависит от типа пространства–времени. Оказывается, что скалярно-полевая
чёрная дыра, подобно чёрной дыре Шварцшильда, имеет последнюю устойчи-
вую круговую орбиту и (неустойчивую) фотонную сферу, но их радиусы всегда
меньше соответствующих радиусов для чёрной дыры Шварцшильда той же мас-
сы; кроме того, эти радиусы могут быть сколь угодно малыми. Напротив, голая
сингулярность, порождённая скалярным полем, не имеет ни последней устойчи-
вой круговой орбиты, ни фотонной сферы. Вместо этого такая конфигурация
имеет сферическую оболочку из частиц, окружающую её центр и всё время на-
ходящуюся в квазистатическом равновесии. Также показано, что характерные
свойства изотропных геодезических вблизи центра скалярного поля голой сингу-
лярности и центра скалярного поля чёрной дыры, имеющих одинаковую массу
качественно различны.

Ключевые слова: геодезическая, чёрная дыра, голая сингулярность, скалярное
поле



242 DCM&ACS. 2019, 27 (3) 242–262

Computational modeling
and simulation

Research article

UDC 517.9

DOI: 10.22363/2658-4670-2019-27-3-242-262

On the properties of numerical solutions of dynamical
systems obtained using the midpoint method

Vladimir P. Gerdt1, Mikhail D. Malykh2,

Leonid A. Sevastianov1,2, Yu Ying2,3

1 Joint Institute for Nuclear Research
Joliot-Curie St. 6, Dubna, Moscow Region 141980, Russian Federation

2 Department of Applied Probability and Informatics
Peoples’ Friendship University of Russia (RUDN University)
Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation

3 Department of Algebra and Geometry
Kaili University

Kaiyuan Road 3, Kaili 556011, China

(received: November 20, 2019; accepted: December 23, 2019)

The article considers the midpoint scheme as a finite-difference scheme for a dy-
namical system of the form ̇𝑥 = 𝑓(𝑥). This scheme is remarkable because according
to Cooper’s theorem, it preserves all quadratic integrals of motion, moreover, it is the
simplest scheme among symplectic Runge-Kutta schemes possessing this property.

The properties of approximate solutions were studied in the framework of numerical
experiments with linear and nonlinear oscillators, as well as with a system of several
coupled oscillators. It is shown that in addition to the conservation of all integrals of
motion, approximate solutions inherit the periodicity of motion. At the same time,
attention is paid to the discussion of introducing the concept of periodicity of an
approximate solution found by the difference scheme.

In the case of a nonlinear oscillator, each step requires solving a system of nonlinear
algebraic equations. The issues of organizing computations using such schemes are
discussed. Comparison with other schemes, including those symmetric with respect
to permutation of 𝑥 and ̂𝑥.

Key words and phrases: conservative finite-difference schemes, dynamical systems,
Sage, Maple

© Gerdt V.P., Malykh M.D., Sevastianov L.A., YingYu., 2019

This work is licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/



V.P.Gerdt et al., On the properties of numerical solutions … 243

Introduction

One of the most common and popular mathematical models is the Cauchy
problem for an autonomous system of ordinary differential equations. An-
alytical methods make it possible to find the algebraic integrals of motion
[1] for such systems, and numerical methods allow approximate plotting the
particular solutions [2].
Consider an autonomous system of differential equations in an affine space

of dimension 𝑛
̇𝑥 = 𝑓(𝑥). (1)

Here 𝑥 = (𝑥1, … , 𝑥𝑛) is a point in the affine space, 𝑓 = (𝑓1, … , 𝑓𝑛) is a set
of rational functions belonging to ℚ(𝑥). Except the cases where it leads to
ambiguity, we will use the vector notation ̇𝑥 = 𝑓(𝑥). By the algebraic integral
of motion of this system, we mean the algebraic function 𝑔, constant on any
particular solution of the system (1), i.e., satisfying the equation

𝑓1
𝜕𝑔
𝜕𝑥1

+ ⋯ + 𝑓𝑛
𝜕𝑔

𝜕𝑥𝑛
= 0. (2)

It can be shown that the existence of an algebraic integral implies the
existence of a rational integral, therefore only rational integrals are considered
below [3].
The finite difference method is a standard numerical method for solving

systems of ordinary differential equations [2]. The finite-difference scheme for
solving the system of equations (1) describes the transition from the value of
𝑥 taken at some instant of time 𝑡 to the value of 𝑥 taken at the next instant
of time 𝑡 + Δ𝑡. This new value will be denoted below by ̂𝑥. Of course, by
the difference scheme for the system (1) we understand a correspondence
in some sense approximating the system of differential equations, rather an
arbitrary correspondence between the variables 𝑥 and ̂𝑥. Usually, by this
approximation we mean that the system of equations defining the difference
scheme tends to the original system as Δ𝑡 → 0.

Definition 1. By a particular solution of the system (1), found using the
finite-difference scheme, we mean a finite or infinite sequence of points

𝑥(0), 𝑥(1), 𝑥(2), … , 𝑥(𝑚), …

of the 𝑛-dimensional space (or subset considered in it), the first element of
which is taken arbitrarily, and each next element is obtained from the previous
one according to the difference scheme:

𝑥(𝑚+1) = ̂𝑥(𝑚), 𝑚 = 0, 1, 2, …

This approximate particular solution will be associated with the exact
solution of the Cauchy problem

̇𝑥 = 𝑓(𝑥), 𝑥|𝑡=0 = 𝑥(0).

Analytical and numerical methods cannot always be reconciled. It often
turns out that the algebraic integral of motion is known, but a difference
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scheme is used, which does not preserve this integral. Therefore, in numerical
experiments, it is often nothing to do but to observe with regret how the
quantity which remains constant on the exact solution, changes step by step.
Very frequently, the integrals of motion express fundamental laws of nature,
the violation of which introduces new properties into the mathematical model
under consideration, or trivial geometric relationships, the violation of which
makes it difficult to interpret the results of integration.
The idea of contructing finite-difference schemes exactly preserving the

integral of motion of dynamical systems was proposed in late 1980s in the
papers by Yu.B. Suris [4] and Cooper [5], approaching the problem from
different sides, namely, Yu.B. Suris from composing difference schemes for
Hamiltonian systems that preserve a symplectic structure, and Cooper from
preserving integrals. As a result, a large family of Runge-Kutta schemes was
discovered that preserve all quadratic integrals of any dynamical system and
the symplectic structure of the Hamiltonian system [6].
The simplest of this class of schemes is the midpoint scheme. By construc-

tion, the approximate solutions found using this scheme retain all quadratic
integrals. Traditionally, the question of ‘improvement’ of convergence due
to the conservation of integrals remained in the focus of attention. In this
article, we intend to clarify what other qualitative properties of the exact so-
lution are inherited by the approximate one. For completeness, we give an
elementary proof of Cooper’s theorem.

1. Conservation of quadratic integrals

Let 𝑔 be an integral of the system of Eqs. 1. According to Lagrange theorem
about the mean value,

𝑔( ̂𝑥1, … , ̂𝑥𝑛) − 𝑔(𝑥1, … , 𝑥𝑛) =
𝑛

∑
𝑖=1

𝜕𝑔
𝜕𝑥𝑖

(𝑐1, … 𝑐𝑛) ⋅ Δ𝑥𝑖,

where the derivatives are calculated at the point 𝑐, lying somewhere in the
segment connecting the points 𝑥 and ̂𝑥, i.e., 𝑐𝑖 = 𝑥𝑖 + 𝜃Δ𝑥𝑖, 𝜃 ∈ (0, 1).
The Lagrange theorem ensures the existence of a suitable function 𝜃(𝑥, ̂𝑥),

taking the values between 0 and 1 at the real values of 𝑥, ̂𝑥. However, it
provides no method to find this function. If we knew such a function, we
could easily construct a difference scheme that preserves the manifold 𝑔 = 0
exactly. Indeed, let

Δ𝑥𝑖
Δ𝑡

= 𝑓𝑖 (𝑥𝑖 + 𝜃Δ𝑥𝑖) , 𝑖 = 1, 2, … , 𝑛. (3)

Then

𝑔( ̂𝑥1, … , ̂𝑥𝑛) − 𝑔(𝑥1, … , 𝑥𝑛) =
𝑛

∑
𝑖=1

𝜕𝑔
𝜕𝑥𝑖

(𝑐1, … 𝑐𝑛) ⋅ 𝑓𝑖(𝑐1, … , 𝑐𝑛),

and this expression is exactly equal to zero due to (2).
For some classes of functions, the Lagrange theorem allows a constructive

formulation.
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Lemma 1. If 𝑔 is a polynomial from ℂ[𝑥1, … 𝑥𝑛], the degree of which does
not exceed 2 inclusively, then

𝑔( ̂𝑥1, … , ̂𝑥𝑛) − 𝑔(𝑥1, … , 𝑥𝑛) =
𝑛

∑
𝑖=1

𝜕𝑔
𝜕𝑥𝑖

(𝑐1, … 𝑐𝑛) ⋅ Δ𝑥𝑖,

where 𝑐𝑖 = ( ̂𝑥𝑖 + 𝑥𝑖) /2.

Proof. Let 𝑢 be a new auxiliary variable and

𝐺(𝑢) = 𝑔(𝑥1 + 𝑢Δ𝑥1, … , 𝑥𝑛 + 𝑢Δ𝑥𝑛).

According to the Lagrange theorem, there is such value 𝜃 ∈ (0, 1), that

𝐺(1) − 𝐺(0) = 𝐺′(𝜃), (4)

or, in more detail,

𝑔( ̂𝑥1, … , ̂𝑥𝑛) − 𝑔(𝑥1, … , 𝑥𝑛) =
𝑛

∑
𝑖=1

𝜕𝑔
𝜕𝑥𝑖

(𝑐1, … 𝑐𝑛) ⋅ Δ𝑥𝑖,

where 𝑐𝑖 = 𝑥𝑖 + 𝜃Δ𝑥𝑖.
We have to prove that 𝜃 = 1/2.
By the hypothesis of the lemma, 𝑔 is a polynomial whose degree does not

exceed 2, therefore 𝐺″ is a polynomial with respect to 𝑢 whose degree does
not exceed 2, i.e.

𝐺(𝑢) = 𝑎𝑢2 + 𝑏𝑢 + 𝑐, 𝐺′(𝑢) = 2𝑎𝑢 + 𝑏.

But then the Lagrange formula (4) reduces to 𝑎 + 𝑏 = 2𝑎𝜃 + 𝑏, from which
it immediately follows that 𝜃 = 1/2. �

The finite-difference scheme (3) at 𝜃 = 1/2, i.e., the scheme

Δ𝑥𝑖
Δ𝑡

= 𝑓𝑖 ( ̂𝑥1 + 𝑥1
2

, … , ̂𝑥𝑛 + 𝑥𝑛
2

) , 𝑖 = 1, 2, … , 𝑛, (5)

is called the midpoint scheme. Lemma 1 immediately leads to the following
theorem.

Theorem 1 (Cooper, 1983; [5]). The midpoint finite-difference scheme
(5) not only approximates the system (1), but also preserves all linear and
quadratic integrals of this system.

2. Harmonic oscillator

Consider the simplest dynamical system

⎧{
⎨{⎩

̇𝑥 = −𝑦,
̇𝑦 = 𝑥,

(6)
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describing a harmonic oscillator. This system is Hamiltonian, the energy
conservation law for it yields the integral 𝑥2 + 𝑦2 = 𝐶.
Usually it is immediately said without further ado that the solutions of

this system describe periodic rotations along concentric circles in the phase
plane 𝑥𝑦.
The standard discretization does not allow to preserve this description.

Consider for definiteness, the explicit Euler scheme

⎧{
⎨{⎩

̂𝑥 − 𝑥 = −𝑦Δ𝑡,
̂𝑦 − 𝑦 = 𝑥Δ𝑡.

Figure 1 presents the curve in the phase plane, obtained using the Euler
method instead of a unit circle. Thus it is easy to describe the difference
between the exact and approximate solutions. Instead of closed curves,
a spiral in the phase plane appears, or, in terms of classical mechanics, the
time discretization leads to gradual increase of the system energy.

-1.5 -1 -0.5 0.5 1
x

-1

-0.5

0.5

1

1.5
y

Figure 1. Solution of the initial value problem for Eqs. (6) using the Euler method (solid)

and the meanpoint method (dashed), Δ𝑡 = 0.1, 100 steps are maid

Now let us consider the meanpoint scheme

̂𝑥 − 𝑥 = −( ̂𝑦 + 𝑦)Δ𝑡
2

, ̂𝑦 − 𝑦 = ( ̂𝑥 + 𝑥)Δ𝑡
2

(7)

and try to understand the qualitative difference between the approximate
solution and the exact one. According to Cooper’s theorem, this difference
scheme exaclty preserves this integral. Therefore, in the phase plane we get
ovals that seemingly do not differ from a circle (see Figure 1). However,
these curves are still not closed, and the motion along them cannot be
considered perodic, since the values of 𝑥, 𝑦 do not repeat. Therefore, it could
be executed that the absence of closedness and periodicity completely allows
one to distinguish between the approximate solution and the exact one. In
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fact, it is possible to achieve the solution relativity by the appropriate step
choice.

Theorem 2. If we take for 𝛼 the minimal positive root of the equation

(1 + 𝑖𝛼)2𝑁 = (1 + 𝛼2)𝑁, (8)

which in terms of trigonometric functions can be expressed as

𝛼 = tan
𝜋
𝑁

,

then the calculation according to the meanpoint finite-difference scheme (7) with
the step

Δ𝑡 = 2𝛼 = 2 tan 𝜋
𝑁

,

in 𝑁 steps leads to the initial values of 𝑥, 𝑦.

Remark 1. For us it is convenient to use the transcendent formula 𝛼 =
tan 𝜋

𝑁 , however, one could do without it using purely algebraic means. To

emphasize this fact, in the statement of the theorem we have preserved the
algebraic equation, for which this number is a root.

For proof, let us express ̂𝑥, ̂𝑦 in terms of 𝑥, 𝑦, denoting for brevity

Δ𝑡
2

= 𝛼.

Then

{
̂𝑥 + 𝛼 ̂𝑦 = 𝑥 − 𝛼𝑦,

− 𝛼 ̂𝑥 + ̂𝑦 = 𝛼𝑥 + 𝑦
or, in the matrix form

( 1 𝛼
−𝛼 1

) ( ̂𝑥
̂𝑦
) = (1 −𝛼

𝛼 1
) (𝑥

𝑦
) .

Inverting the matrix, we get

( ̂𝑥
̂𝑦
) = 1

1 + 𝛼2 (1 −𝛼
𝛼 1

)
2

(𝑥
𝑦
) (9)

now the proof of theorem 2 is reduced to the proof of the following purely
algebraic lemma.

Lemma 2. If we take for 𝛼 the minimal positive root of equation (8), which
in terms of trigonometric functions can be written as

𝛼 = tan
𝜋
𝑁

,

then 𝐴2𝑁 is a unit matrix.
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Proof. Set for brevity

𝐴 = 1√
1 + 𝛼2

(1 −𝛼
𝛼 1

) .

Assume that we performed 𝑁 steps of the finite-difference scheme, having

started from the values 𝑥, 𝑦 at a certain value 𝑡 = 0, and finished with 𝑥𝑁, 𝑦𝑁

at 𝑡 = 𝑁Δ𝑡. Then

(𝑥𝑁

𝑦𝑁
) = 𝐴2 (𝑥𝑁−1

𝑦𝑁−1
) = ⋯ = 𝐴2𝑁 (𝑥

𝑦
) .

The eigenvalues of the matrix 𝐴 are

𝜆1 = 1 + 𝑖𝛼√
1 + 𝛼2

, 𝜆2 = 1 − 𝑖𝛼√
1 + 𝛼2

.

When a matrix is raised to a power, its eigenvalues are raised to this power,
too.
The equation

𝜆2𝑁
1 = 1 (10)

can be satisfied assuming that

1 + 𝑖𝛼√
1 + 𝛼2

= cos
𝜋
𝑁

+ 𝑖 sin 𝜋
𝑁

or

𝛼 = tan
𝜋
𝑁

.

The equality (10) can be rewritten in the form of the algebraic equation (8);
in this way the minimal positive root of this equation has been found.

At real Δ𝑡 from the equality (10) the equality 𝜆2𝑁
2 = 1 follows. In this

case both eigenvalues of the matrix 𝐴2𝑁 are equal to 1. The eigenvectors of
matrix 𝐴 are also eigenvectors of any power of this matrix, therefore, in this
case two linearly independent eigenvectors correspond to the unit eigenvalue.

This is possible only if the matrix 𝐴2𝑁 coincides with the unit matrix. �

The proved theorem gives rise to the following definition.

Definition 2. The particular solution

𝑥, 𝑥′, 𝑥(2), …

found using a certain finite-difference scheme approximating the system (1),
at a certain numerical value of the step Δ𝑡 will be called periodic, if for some
𝑁 ∈ ℕ

𝑥(𝑁) = 𝑥.
The number 𝑁Δ𝑡 will be called a period of this particular solution.
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Theorem 2 means that the midpoint scheme (7) yields periodic solutions
at a number of step values that form a descending sequence:

Δ𝑡3 = 2 tan 𝜋
3

= 2
√

3 = 3.46,

Δ𝑡4 = 2 tan 𝜋
4

= 2,

Δ𝑡5 = 2 tan 𝜋
5

= 2 √−2
√

5 + 5 = 1.45,

Δ𝑡6 = 2 tan 𝜋
6

= 2
3

√
3 = 1.15,

…

Δ𝑡20 = 2 tan 𝜋
20

= 2
√

5 − 2 √2
√

5 + 5 + 2 = 0.31,
…

converging to zero. The corresponding sequence of periods

𝑁Δ𝑡𝑁 = 2𝑁 tan
𝜋
𝑁

= 2𝜋 + 2𝜋3

3
1

𝑁2 + …

converges to the exact solution period 2𝜋.
Thus, the second most important qualitative property of the exact solution,

i.e., its periodicity, can be preserved, too. Moreover, even for small values of
𝑁, in this way it is possible to get a solution that is qualitatively similar to
the exact one.
For example, for 𝑁 = 10 and the step value

Δ𝑡 = 2 tan 𝜋
10

= 2
5

√−10
√

5 + 25 = 0.64

we arrive at a periodic scheme with the period 𝑇 = 10Δ𝑡, that differs from
the period of the exact solution by a noticeable value of

𝑇 − 2𝜋 = 0.21.

In the phase plane 𝑥𝑦 a regular decagon is obtained that obviously differs
from a circle, too. However, even in this case the trajectory in the phase plane
is exactly closed and the motion is periodic. In other words, the approximate
solution found using the midpoint scheme turns out to be qualitatively similar
to the exact one, being rather different quantitatively.
In our opinion, when using the harmonic oscillator model, there is not

enough reason to think that the characteristic time scale, taken as physically
small, is really small from the point of view of computational mathematics.
Therefore, the real reason in favor of using the continuous form of the Newton
equations rather than the discrete one is that the traditional method of
discretization leads to a violation of the fundamental laws of mechanics (the
law of energy conservation) and to a solution, whose properties differ from
the expected periodicity. The use of periodic difference schemes removes this
difficulty.
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3. A system of coupled oscillators

A system of coupled oscillators can be described as a Hamiltonian system
with the Hamiltonian

𝐻 =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑚𝑖𝑗𝑦𝑖𝑦𝑗 −
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑘𝑖𝑗𝑥𝑖𝑥𝑗.

It is assumed that the kinetic and potential energy

𝑛
∑
𝑖=1

𝑚𝑖𝑗𝑦𝑖𝑦𝑗,
𝑛

∑
𝑖=1

𝑘𝑖𝑗𝑥𝑖𝑥𝑗

are described by positively defined quadratic forms.

In the matrix form the system is written as 𝑀 ̈⃗𝑥 = −𝐾 ⃗𝑥.
Since the matrices 𝐾 and 𝑀 are symmetric and positively defined, the

generalized eigenvalue problem 𝐾 ⃗𝜉 = 𝜆𝑀 ⃗𝜉 yields 𝑛 eigenvectors ⃗𝜉1, … , ⃗𝜉𝑛
that form a basis ℝ𝑛, orthonormalized with the weight 𝑀, corresponding to
𝑛 positive eigenvalues 𝜆1 = 𝜔2

1, … , 𝜆𝑛 = 𝜔2
𝑛. In this basis

⃗𝑥 =
𝑛

∑
𝑖=1

𝑧𝑖(𝑡) ⃗𝜉𝑖,

where 𝑧𝑖 = ⃗𝜉𝑇
𝑖 𝑀 ⃗𝑥.

The differential equation in these variables is separated into 𝑛 independent
equations

⃗𝜉𝑇
𝑗 𝑀

𝑛
∑
𝑖=1

̈𝑧𝑖
⃗𝜉𝑖 = ⃗𝜉𝑇

𝑗 𝐾
𝑛

∑
𝑖=1

𝑧𝑖
⃗𝜉𝑖

or, due to the basis orthogonality, ̈𝑧𝑗 + 𝜔2
𝑗 𝑧𝑗 = 0, 𝑗 = 1, … , 𝑛.

Each of these equations separately describes the vibration of a harmonic
oscillator with the frequency 𝜔𝑗. Therefore, the positive numbers 𝜔1, … , 𝜔𝑛
are called eigenfrequencies of the system of coupled oscillators. Now from the
formula

⃗𝑥 =
𝑛

∑
𝑖=1

𝑧𝑖(𝑡) ⃗𝜉𝑖

it is seen that the oscillations of the coupled system will be a superposition
of harmonic oscillations at the eigenfrequencies.
Now it is important for us that this system has 𝑛 algebraic integrals

̇𝑧2
𝑗 + 𝜔2

𝑗 𝑧2
𝑗 = 𝐶𝑗,

which in old variables can be written as

( ⃗𝜉𝑇
𝑖 𝑀 ̇⃗𝑥)2 + 𝜔2

𝑗 ( ⃗𝜉𝑇
𝑖 𝑀 ⃗𝑥)2 = 𝐶𝑗, 𝑗 = 1, 2, … , 𝑛. (11)

Thus, the initial system has 𝑛 quadratic integrals. These integrals will be
called partial integrals.
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Lemma 3. If the eigenfrequencies are incommensurable, then any algebraic
integral of a system of coupled oscillators is expressed algebraically in terms of
𝑛 partial integrals.

The proof of this lemma is somewhat lengthy and is not given here. In
essence, it relies on constructions from the proof of Bruns theorem proposed
by Painlevé [7].

Remark 2. The condition of incommensurability of frequencies is essential.
If 𝜔1 = 𝜔2, then the expression

̇𝑧1𝑧2 − 𝑧1 ̇𝑧2 = 𝐶

is an additional algebraic integral. In fact, the general solution of the system is

𝑧1 = 𝐶1 cos𝜔1𝑡 + 𝐶2 sin𝜔1𝑡, 𝑧2 = 𝐶3 cos𝜔1𝑡 + 𝐶4 sin𝜔1𝑡, …

therefore ̇𝑧1𝑧2 − 𝑧1 ̇𝑧2 = (𝐶2𝐶3 − 𝐶1𝐶4)𝜔1, i.e., is really a constant. Thus,
without a separate study, it cannot be ruled out that in degenerate cases
the system has additional integrals of motion that are not preserved by the
midpoint scheme.

According to the theorem 1, the midpoint scheme preserves all partial
integrals, and, therefore, all algebraic integrals of the system.
The step Δ𝑡 can always be chosen so that the normal oscillation at a certain

natural frequency is described by a periodic particular solution. However, this
step depends on the harmonic number. Therefore, it is impossible to choose
a time step at which the oscillation, in the framework of the continuous model,
which is a superposition of periodic normal oscillations (mixed oscillation),
would be the sum of periodic particular solutions.
Thus, for the case of linear systems of ordinary differential equations, the

midpoint scheme is a difference scheme that preserves all algebraic integrals.
Moreover, for periodic particular solutions, it is possible to select a step in
a purely algebraic way so that the approximate solution becomes periodic in
the sense of the definition 2.

4. Elliptic oscillator

We now proceed to the nonlinear case. Solid state dynamics provides
many excellent examples of autonomous systems with periodic solutions. The
simplest of them are integrated in Jacobi elliptic functions [8].
By the definition of Jacobi functions [9],

𝑝 = sn 𝑡, 𝑞 = cn 𝑡, 𝑟 = dn 𝑡

is a particular solution of the nonlinear autonomous system of differential
equations

̇𝑝 = 𝑞𝑟, ̇𝑞 = −𝑝𝑟, ̇𝑟 = −𝑘2𝑝𝑞 (12)

with the initial conditions 𝑝 = 0, 𝑞 = 𝑟 = 1 at 𝑡 = 0.
This autonomous system has two quadratic integrals of motion

𝑝2 + 𝑞2 = const and 𝑘2𝑝2 + 𝑟2 = const. (13)
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This system is convenient for us, because its properties are not only well
studied, but the solutions themselves are easily accessible in any computer
algebra system, e.g., in Sage [10].
The system (12) is a convenient test for studying the conservatism of

finite-difference schemes used in the common numerical solvers of ordinary
differential equations. We, in cooperation with Yu.A. Blinkov, conducted
tests on the following systems:

1. lsoda: Real-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation. It provides auto-
matic method switching between implicit Adams method (for non-stiff
problems) and a method based on backward differentiation formulas
(BDF) (for stiff problems). Source: http://www.netlib.org/odepack;

2. vode: Real-valued Variable-coefficient Ordinary Differential Equation
solver, with fixed-leading-coefficient implementation. It provides implicit
Adams method (for non-stiff problems) and a method based on backward
differentiation formulas (BDF) (for stiff problems). Source: http://www.
netlib.org/ode/vode.f;

3. dopri5, dop853: This is an explicit Runge-Kutta method of order (4)5
due to Dormand & Prince (with stepsize control and dense output).

In Figures 4–7 it is well seen that in all cases the value of 𝑝2 +𝑞2 increases or
decreases almost linearly. Only in the first solver (see Figures 2, 3) “random”
fluctuations are observed, but with a trend towards linear growth.

0 200 400 600 800 1000

t

0

2e-5

4e-5

6e-5

8e-5

p
2
+
q2

+1
kp2 +q2−1k∞ =8.1e−05

numeric
exact

Figure 2. The value of 𝑝2 + 𝑞2 − 1, calculated with the solver Lsoda using the method
based on backward differentiation formulas

From an analytical point of view, this system is remarkable because any
particular solution of it is representable as the ratio of two everywhere
convergent series in powers of 𝑡 [8]. From the point of view of the finite
difference method, this system is remarkable because it can be approximated
by a difference scheme, namely, the midpoint scheme (5), which preserves its
integrals exactly.
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Figure 3. The value of 𝑝2 + 𝑞2 − 1, calculated with the solver Lsoda using the method
based on the default settings
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Figure 4. The value of 𝑝2 + 𝑞2 − 1, calculated with the solver Vode using the method based

on backward differentiation formulas (BDF) with the choice of Jacobian

However, for nonlinear differential equations, the organization of the transi-
tion from layer to layer according to the midpoint scheme requires solving
a system of nonlinear algebraic equations. The organization of calculations
according to such a scheme is a subject of discussion.
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Figure 5. The value of 𝑝2 + 𝑞2 − 1, calculated with the solver Vode using the method based

on backward differentiation formulas (BDF) without the choice of Jacobian
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Figure 6. The value of 𝑝2 + 𝑞2 − 1, calculated with the solver Vode using the default settings

The midpoint scheme for the system (12) is written as follows:

⎧{{{
⎨{{{⎩

̂𝑝 − 𝑝
Δ𝑡

− ̂𝑞 + 𝑞
2

̂𝑟 + 𝑟
2

= 0,

̂𝑞 − 𝑞
Δ𝑡

+ ̂𝑝 + 𝑝
2

̂𝑟 + 𝑟
2

= 0,

̂𝑟 − 𝑟
Δ𝑡

+ 𝑘2 ̂𝑝 + 𝑝
2

̂𝑞 + 𝑞
2

= 0.

(14)
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Figure 7. The value of 𝑝2 + 𝑞2 − 1, calculated with the solver Dopri5

To pass from one layer to another it is necessary from the given numerical
values of Δ𝑡 and 𝑝, 𝑞, 𝑟 to find ̂𝑝, ̂𝑞, ̂𝑟, having solved the system of nonlinear
equations. In this case, in addition to the required root, close to the values of
𝑝, 𝑞, 𝑟 at small Δ𝑡, extraneous roots are also obtained.
Let us investigate this system in Sage, replacing the hat notation with

doubling the letter, e.g., using the notation pp instead of ̂𝑝. The system of
equations (14) generates an ideal 𝐽 in the ring ℚ[𝑝, 𝑞, 𝑟, ̂𝑝, ̂𝑞, ̂𝑟, Δ𝑡, 𝑘].
In Sage this ideal can be specified by the following code:

sage: vars=var('p,q,r,pp,qq,rr,dt,k')
sage: K=QQ[vars]
sage: eqs=[4*(pp-p)-(q+qq)*(r+rr)*dt,\
4*(qq-q)+(p+pp)*(r+rr)*dt,\
4*( rr-r)+k^2*(p+pp)*(q+qq)*dt]
sage: J=K.ideal(eqs)

Now we can compose an equation connecting ̂𝑝 with 𝑝, 𝑞, 𝑟 by means of
elimination ideals [11]:

sage: J.elimination_ideal([K(qq),K(rr)]).gens()[0]

as

𝑝5dt4𝑘4 + 3𝑝4p̂dt4𝑘4 + 2𝑝3p̂2dt4𝑘4 − 2𝑝2p̂3dt4𝑘4 − 3𝑝p̂4dt4𝑘4 − p̂5dt4𝑘4

+16𝑝2𝑞𝑟dt3𝑘2 + 32𝑝𝑞𝑟p̂dt3𝑘2 + 16𝑞𝑟p̂2dt3𝑘2 − 32𝑝3dt2𝑘2 − 64𝑝𝑞2dt2𝑘2

−32𝑝2p̂dt2𝑘2 − 64𝑞2p̂dt2𝑘2 + 32𝑝p̂2dt2𝑘2 + 32p̂3dt2𝑘2 − 64𝑝𝑟2dt2 − 64𝑟2p̂dt2

+256𝑞𝑟dt + 256𝑝 − 256p̂ = 0.

Thus, one value of 𝑝, 𝑞, 𝑟 on the previous layer generally corresponds to 5
different values of ̂𝑝 rather than one value. Since the higher degrees of ̂𝑝 enter
this equation with the factor Δ𝑡, for Δ𝑡 → 0 only one of these roots tends
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to a finite value, which is obviously ̂𝑝 = 𝑝, and the four others go to infinity.
Thus, applying the midpoint scheme to a nonlinear system requires solving
a nonlinear equation and then choosing from its roots one root that is ’close’
to the values in the previous step.
Traditionally, such equations are solved numerically by iterative methods,

and the values of 𝑝, 𝑞, 𝑟 are used as the first approximation for ̂𝑝, ̂𝑞, ̂𝑟. If
the step Δ𝑡 is sufficiently small, we can expect the fast convergence of the
described method. At the same time, it is not possible to control the error
of the iterative method due to the extreme cumbersomeness of the known
estimates, and instead the number of iterations is simply fixed. However, as
correctly noted in Numerical Recipies [12], there are no universal numerical
methods for solving systems of algebraic equations.
Symbolic methods, primarily the Gröbner basis technique, allow us to

propose a different approach, circumvent this difficulty, and implement calcu-
lations according to the midpoint scheme in a different way:

— the first stage (symbolic analysis of the finite-difference scheme): find
equations having the form 𝑃 ( ̂𝑝, 𝑝, 𝑞, 𝑟, Δ𝑡) = 0, 𝑄( ̂𝑞, 𝑝, 𝑞, 𝑟, Δ𝑡) = 0,
𝑅( ̂𝑟, 𝑝, 𝑞, 𝑟, Δ𝑡) = 0, that follow from Eq. (14); the first of these equations
was written out above;

— the second stage (computations with floating point): to pass from layer
to layer solve three uncoupled equations to find ̂𝑝, ̂𝑞, ̂𝑟 and select the roots
close to the values of 𝑝, 𝑞, 𝑟 at the previous layer.

Thus, from the numerical solution of the system of nonlinear equations,
we proceed to the solution of one algebraic equation of the 5th degree with
numerical coefficients. The methods of numerical solution are well established
and in practice give errors close to the errors in calculating a radical from
a number.

Remark 3. Unfortunately, the algorithms implemented in Sage do not
give us, together with the roots, an estimate of this error. The question of
the precision solution of algebraic equations with real coefficients is currently
discussed at all conferences on numerical methods and computer algebra
(MMA’2018, CASC’2019). We hope that in the near future this issue will be
completely closed.

We implemented both approaches to the implementation of the midpoint
method and made sure that the first approach gives the same result faster.
Figures 8–9 show the elliptic sine plot calculated in Sage using the built-in
algorithm for calculating elliptic functions and directly using the midpoint
method. It is clearly seen that even at extremely large values of 𝑡, the
oscillation amplitude does not decrease. Thus, when using the midpoint
scheme:

— both algebraic integrals of motion are preserved exactly,
— rounding error does not accumulate in a way that is noticeable in numer-

ical experiments,
— the periodic nature of the motion is preserved.

A theoretical study of the last two issues faces significant difficulties, which,
in our opinion, make us search not for any conservative schemes, but for
schemes in which the transition from layer to layer requires solving linear
equations. One such scheme for the elliptic oscillator (12) was specified by us
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in [13]; in the general case of the system (1) there are fundamental obstacles
to the existence of such schemes [14].
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5. Comparing midpoint scheme with other symmetric
schemes

One could think that the conservation of integrals is the result of the scheme
symmetry. Therefore, for completeness, we compare the midpoint scheme
with another popular symmetric second-order scheme:

Δ𝑥
Δ𝑡

= 𝑓( ̂𝑥) + 𝑓(𝑥)
2

. (15)

The results of our numerical experiments, presented in the Figure 10, show
that this scheme does not preserve the integrals, but gives them values that
oscillate with a constant period around some fixed value. This can be accepted
for preserving the integrals of the motion on average.
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Figure 10. The value of 𝑝2 + 𝑞2 − 1, calculated using the scheme (15)
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This effect can be explained as follows. The scheme (15) for the Jacobi
system yields

Δ𝑝 = ̂𝑞 ̂𝑟 + 𝑞𝑟
2

Δ𝑡, Δ𝑞 = − ̂𝑝 ̂𝑟 + 𝑝𝑟
2

Δ𝑡, Δ𝑟 = −𝑘2 ̂𝑝 ̂𝑞 + 𝑝𝑞
2

Δ𝑡. (16)

Therefore

Δ(𝑝2 + 𝑞2) = ( ̂𝑝 + 𝑝)Δ𝑝 + ( ̂𝑞 + 𝑞)Δ𝑞 =

= [( ̂𝑝 + 𝑝)( ̂𝑞 ̂𝑟 + 𝑞𝑟) − ( ̂𝑞 + 𝑞)( ̂𝑝 ̂𝑟 + 𝑝𝑟)]Δ𝑡
2

=

= [𝑝 ̂𝑞 ̂𝑟 + ̂𝑝𝑞𝑟 − ̂𝑞𝑝𝑟 − 𝑞 ̂𝑝 ̂𝑟]Δ𝑡
2

=

= (𝑝 ̂𝑞 − ̂𝑝𝑞)Δ𝑟Δ𝑡
2

= (𝑝Δ𝑞 − 𝑞Δ𝑝)Δ𝑟Δ𝑡
2

=

= −[𝑝( ̂𝑝 ̂𝑟 + 𝑝𝑟) + 𝑞( ̂𝑞 ̂𝑟 + 𝑞𝑟)]Δ𝑟Δ𝑡2

4
=

= [(𝑝 ̂𝑝 + 𝑞 ̂𝑞) ̂𝑟 + (𝑝2 + 𝑞2)𝑟]( ̂𝑝 ̂𝑞 + 𝑝𝑞)𝑘2Δ𝑡3

8
(17)

or, expanding in series in powers of Δ𝑡

Δ(𝑝2 + 𝑞2) = (𝑝2 + 𝑞2)𝑝𝑞𝑟𝑘2Δ𝑡3

2
+ … .

For small Δ𝑡 in the plot of 𝑝2 + 𝑞2 versus the step number (or, which is
similar, versus 𝑡) we will see periodic oscillations of the first term

(𝑝2 + 𝑞2)𝑝𝑞𝑟𝑘2Δ𝑡3

2
.

Thus, the oscillation of the value of the integral 𝑝2 +𝑞2 near its exact value 1
observed in the numerical experiment is not related to the conservativeness
of the scheme, but is due to the fact that the main term in the expansion of
the increment of this integral in power of 𝑡 depends on the values of 𝑝, 𝑞, 𝑟,
approximating periodic functions. The considered representation scheme is
a perfect example of the scheme symmetric with respect to permutation of 𝑥
and ̂𝑥.

Conclusion

For the study of dynamical systems with quadratic integrals, the mid-
point scheme is perfect. This scheme preserves all the integrals of these
systems precisely, that is, discretization does not introduce any dissipativity
or antidissipativity into the model.
Linear problems have just quadratic integrals, and the calculation according

to the midpoint scheme requires solving linear equations, so the issue of
constructing conservative difference schemes for linear differential equations
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can be considered closed. It worth noting that the Kepler problem after
passing to proper time and introducing the Runge-Lenz-Laplace vector turns
into a linear dynamical system, therefore, it is possible to construct for it
a conservative finite-difference scheme [15].
Conservation of integrals leads to the preservation of a number of qualitative

properties of the model, e.g., the periodicity of solutions and the closedness
of phase trajectories.
The calculation according to the midpoint scheme for nonlinear systems,

even if all their integrals are quadratic, makes it necessary to solve a nonlinear
system of algebraic equations at each step, which significantly complicates
both the calculation and the study of the properties of approximate solutions.
Overcoming this difficulty is the main challenge of the theory of difference
schemes for ordinary differential equations.
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О свойствах численных решений динамических
систем, полученных по схеме средней точки

В. П. Гердт1, М. Д. Малых2, Л. А. Севастьянов1,2, Юй Ин2,3
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В статье рассматривается схема средней точки как разностная схема для
динамической системы вида ̇𝑥 = 𝑓(𝑥). Эта схема замечательна тем, что в си-
лу теоремы Купера сохраняет все квадратичные интегралы движения, более
того, это — простейшая схема из числа симплектических схем Рунге–Кутты,
обладающих названным свойством.
Свойства приближённых решений изучены в рамках численных эксперимен-

тов с линейным и нелинейным осцилляторами, а также с системой нескольких
связанных осцилляторов. Показано, что помимо сохранения всех интегралов дви-
жения, приближённые решения наследуют периодичность движения. При этом
уделено внимание обсуждению введения понятие периодичности приближённого
решения, найденного по разностной схеме.
В случае нелинейного осциллятора выполнение каждого шага требует ре-

шения системы нелинейных алгебраических уравнений. Обсуждены вопросы
организации вычислений по таким схемам. Дано сравнение с другими схемами,
в том числе симметрическими относительно перестановки 𝑥 и ̂𝑥.
Ключевые слова: консервативные конечно-разностные схемы, динамические
системы, Sage, Maple
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In this note we discuss the impact of development of architecture and technology
of parallel computing on the typical life-cycle of the computational experiment.
In particular, it is argued that development and installation of high-performance
computing systems is indeed important itself regardless of specific scientific tasks,
since the presence of cutting-age HPC systems within an academic infrastructure
gives wide possibilities and stimulates new researches.

Key words and phrases: computational experiment, high performance computing
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1. Introduction

The scheme of a computational experiment is the procedure for carrying
out research of physical phenomena and technical devices based on the
triad of mathematical modeling: model −→ algorithm −→ program [1], [2].
More often, the study is conducted for granted; in this sense, the scheme of
a computational experiment is retrospective. However, to some extent, it is
useful to consider such a scheme in detail for both creating an overall picture
of research a posteriori and planning it a priori.

2. Stages of computational experiment

A computational experiment is based on a priori knowledge of the object
under study, namely, theoretical and empirical data, established and generally
accepted phenomenological models. Each cycle of a computational experiment
consists of the following stages:

1. Building a model of the considered phenomenon under study (making
up equations describing the phenomenon).

© Ayriyan A. S., 2019
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2. Formulation of a mathematical problem (formulating initial, boundary
value, initial boundary value problems, optimization problems, etc.).

3. Choosing numerical methods for solving the problem (building differ-
ence schemes, choosing and/or developing algorithms, parallelization of
calculations, etc.).

4. Realization of a program that implements the algorithms.
5. Choosing a suitable computing architecture, compiling and running

programs on a computing system (selecting a compiler, collecting libraries
of necessary algorithms).

6. Carrying out calculations and processing the obtained data (bringing the
output data to the form necessary for their further analysis).

7. Analyzing the results; if possible, comparing them with a full-scale
experiment.

3. Description of the stages

Quite often, at the last stage one starts to understand what changes should
be made to the previous stages. At the same time, the cycle of a computational
experiment begins once again, with the first stage, when some changes should
be made to the model of the considered phenomenon, if the built model does
not reflect well enough the peculiarities of the phenomenon or it becomes
necessary to make changes to the model parameters.

The cycle can be repeated in a shorter form, for example, from the second
stage, if any changes need to be made to the mathematical formulation of
the problem. It may turn out that the used numerical methods have some
drawbacks in terms of accuracy, efficiency or applicability; in this case, one
will have to start the cycle of a computational experiment from the third
stage.

The cycle of a computational experiment will begin with the fourth stage if
the software implementation turns out to be ineffective in terms of calculation
speed, code readability, its extensibility and scalability; in this case, one will
have to make changes to the existing code or choose another programming
environment.

Due to the unsatisfactory time of calculations, one may need to choose
another computing environment that has more RAM, a better data transfer
interface (in case of parallel computing), a more suitable file system, a better
architecture and/or a set of compilers, which, in turn, can significantly reduce
the estimated time and increase the efficiency of the cycle of a computational
experiment. In this case, the cycle starts from the fifth stage, as there is no
need to make changes to stages 1 to 4.

The exit from the cycle of a computational experiment happens when, after
analyzing the results, the study is considered complete.

In the literature the fifth stage is not included in the description of a compu-
tational experiment (“Computational system” in Figure 1) (see, for example, [2],
[3]), however, due to the development of novel computing architectures show-
ing high efficiency in solving certain classes of problems, and to the increase
of their availability, it becomes necessary to explicitly include this stage in
the cycle of a computational experiment. When a researcher has access to
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hybrid computational systems, such as HybriLIT [4], [5] containing different
computing architectures, it gives him wide potential for the study.

2. Formulation of a 
mathematical problem 

4. Program 5. Computational system

7. Analysis of the results

1. Model of the considered
phenomenon

Phenomenon
6. Calculations and data 

processing
3. Numerical method 

(algorithm)

Assum
ptions

Theory

Established
models

Figure 1. The scheme of a computational experiment

In this case, it becomes possible to reformulate the mathematical problem
to another, which will require large computational costs, but will be more
suitable for carrying out research, for example, to replace the initial boundary
value problem with an optimization problem if the model is parameterized
and it is possible to formulate an optimization criterion (see, for example, [6]).
The choice of a computational method becomes wider; one can choose

a method that is easier to implement, but more effective with a larger amount
of computing resources. One of the great illustrations is the direct enumeration
(or search) method; if there are sufficient computing resources, such a method
can be extremely effective in terms of the calculation time. Finally, the
characteristics of a computing system can directly influence the software
implementation of computational methods.

4. Conclusion and discussion

Thus, one may conclude that the efficiency of a computational experiment
directly depends on the available computing ecosystem. From this it follows
that an HPC ecosystem must be developed regardless of the demands and
tasks, since it itself affects the development of scientific studies.
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В данной заметке обсуждается влияние развития архитектуры и технологии
параллельных вычислений на цикл вычислительного эксперимента. В част-
ности, делается вывод, что разработка и установка высокопроизводительных
вычислительных систем действительно важна сама по себе, вне зависимости
от конкретных научных задач, поскольку наличие современных высокопроиз-
водительных вычислительных систем в академической инфраструктуры даёт
широкие возможности и стимулирует новые исследования.

Ключевые слова: вычислительный эксперимент, высокопроизводительные вы-
числительные системы, математическое моделирование




