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We consider the problem of integrating a given differential equation in algebraic
functions, which arose together with the integral calculus, but still is not completely
resolved in finite form. The difficulties that modern systems of computer algebra
face in solving it are examined using Maple as an example. Its solution according
to the method of Lagutinski’s determinants and its implementation in the form of
a Sagemath package are presented.
Necessary conditions for the existence of an integral of contracting derivation

are given. A derivation 𝐷 of the ring 𝐴 will be called contracting, if such basis
𝐵 = {𝑚1, 𝑚2, … } exists in which 𝐷𝑚𝑖 = 𝑐𝑖𝑚𝑖 + 𝑜(𝑚𝑖). We prove that a contracting
derivation of a polynomial ring 𝑅 admits a general integral only if among the indices
𝑐1, 𝑐2, … there are equal ones. This theorem is convenient for applying to the problem
of finding an algebraic integral of Briot–Bouquet equation and differential equations
with symbolic parameters. A number of necessary criteria for the existence of an
integral are obtained, including those for differential equations of the Briot and
Bouquet. New necessary conditions for the existence of a rational integral concerning
a fixed singular point are given and realized in Sage.

Key words and phrases: Darboux polynomials; algebraic integrals of differential
equations; finite solution; Sage; Sagemath; Maple

1. De Beaune problem

In the theory of differential equations, it is common from the very beginning
to choose a class of functions in which solutions of differential equations are
sought so wide that the initial problem has solutions for almost all initial
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data. In the case of symbolic integration, or finding the solution in finite
form, on the contrary, this class is constricted to make it possible in a finite
number of operations, first, to find out whether the given differential equation
has a general solution in this class, and second, to write out this solution
explicitly. The simplest class, which could be expected to possess the above
two properties, is the set of algebraic functions.
The problem of integrating differential equations in algebraic functions

arose as early as the 1630s, when Forimond de Beaune proposed to Descartes
several “inverse tangent problems” [1, Pp. 510–518]. We formulate this purely
algebraic problem as follows.

Problem 1 (de Beaune). Clarify whether a given differential equation

𝑝(𝑥, 𝑦)𝑑𝑥 + 𝑞(𝑥, 𝑦)𝑑𝑦 = 0, 𝑝, 𝑞 ∈ 𝑘[𝑥, 𝑦], (1)

has an integral 𝑟 in the field 𝑘(𝑥, 𝑦); in the case of a positive answer, write out
this integral.

Here 𝑘 is the field of constants, commonly represented by ℚ, ℂ or ℚ[𝑎, 𝑏, … ],
where 𝑎, 𝑏, … are the parameters that enter the differential equation. There
is no reason to consider these cases separately, so we assume that 𝑘 is an
infinite field of characteristic zero.
The interest to the De Beaune problem sometimes faded away, sometimes

arose again. At the turn of the XIX–XX centuries, it was due to successes
in proving the nonexistence of algebraic integrals of dynamical systems;
among the papers of this period worth particular attention are the Poincaré
memoir [2, Pp. 35–95] and a series of articles by M.N. Lagutinski [3, 4]; the
biographical data were published by J.-M. Strelcyn [5, 6].
Recently, the classical problem of finding an algebraic integral has again

become relevant in connection with the development of algorithms for the
symbolic solution of differential equations suitable for implementation in
modern computer algebra systems [7, 8]. First of all, it should be noted that
popular computer algebra systems cannot efficiently recognize differential
equations having algebraic integrals.

Example 1. To confirm this statement the following test was used. Let
𝑢, 𝑣 — be arbitrary polynomials, then 𝑤 = 𝑢/𝑣 is an integral of the differential
equation

(𝑣𝜕𝑢
𝜕𝑥

− 𝑢 𝜕𝑣
𝜕𝑥

) 𝑑𝑥 + (𝑣𝜕𝑢
𝜕𝑦

− 𝑢𝜕𝑣
𝜕𝑦

) 𝑑𝑦 = 0.

Taking randomly 𝑢 and 𝑣, we get the differential equation

𝑝(𝑥, 𝑦)𝑑𝑥 + 𝑞(𝑥, 𝑦)𝑑𝑦 = 0, 𝑝, 𝑞 ∈ ℚ[𝑥, 𝑦].

An attempt to apply standard methods of solving differential equations to
this differential equation in the Maple computer algebra system reduces the
differential equation to a quadrature of the form

∫ 𝑟𝑑𝑥 + 𝑠𝑑𝑦 = 𝐶, 𝑟, 𝑠 ∈ ℚ(𝑥, 𝑦),

occupying many screens, moreover, Maple cannot take the written integrals.
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It is worth noting that for the symbolic solution of differential equations
in Maple the package DETools [9] is used. Within the second algorithm of
DETools the search for integrating factors in the ring ℂ[𝑥, 𝑦] is executed. The
equation generated in the test has several such integrating factors, namely, 𝑢
and 𝑣, so that Maple would have to cope with the test. However, the following
occurs:

— symgen returns two integrating factors, whose ratio yields the rational
desired integral,

— dsolve ignores the second factor and write out a quadrature which it can-
not calculate in elementary functions, although the full implementation
of Ostrogradski algorithm would cope with this difficulty.

Thus, usually Maple cannot recognize an algebraic integral, however, the
user can do it himself, looking at the result of applying the function symgen.
Insurmountable difficulties arise when 𝑝 and 𝑞 have common factors. The

methods implemented by Maple, first of all, relieve the ordinary differential
equation to be solved from common factors. The reduced equation may not
have integrating factors in the ring ℂ[𝑥, 𝑦], and finding factors from ℂ(𝑥, 𝑦)
leads to nonlinear equations for the coefficients and requires completely
different computational costs for which the developers of symgen did not go.
As a result, e.g., when

𝑢 = (𝑥2 + 𝑦)5(𝑥 − 𝑦6 + 1) + 1, 𝑣 = (13𝑥𝑦8 + 𝑦5 + 3𝑥𝑦 + 2)(𝑥2 + 𝑦)4,

symgen finds one factor from ℚ[𝑥, 𝑦] and nothing else.

Despite the antiquity of the de Beaune problem, we do not have an algorithm
to solve it in a finite number of operations. The de Beaune problem is
equivalent to the problem of integrating a partial differential equation

𝑝𝜕𝑟
𝜕𝑦

− 𝑞 𝜕𝑟
𝜕𝑥

= 0

in the field 𝑘(𝑥, 𝑦); we will further briefly write it as 𝐷𝑟 = 0. By the method
of uncertain coefficients, we can substitute into the equation 𝐷𝑟 = 0 the
expression

𝑟 = 𝑎 + ⋯ + 𝑏𝑦𝑛

1 + ⋯ + 𝑐𝑦𝑛

and obtain a system of nonlinear algebraic equations for finding the coefficient
𝑎, 𝑏, 𝑐, … . The solvability of this system can be determined in a finite number
of steps and in a purely algebraic way. Therefore, in a finite number of
operations one can find out whether a given differential equation has rational
integrals whose degree does not exceed a given number 𝑛.
The problem of finding the upper bound for the degree of the sought integral

was noted by Descartes, and in some cases was resolved by Poincaré [2], pp.
35-95. The idea of the Poincaré method is as follows. If a differential equation
admits a rational integral, then its integral curves form a linear sheaf of
algebraic curves of some order 𝑛, this immediately follows from a comparison
of the Cauchy theorem from the analytic theory of differential equations [10]
and Bertini’s theorem from the theory of algebraic curves [11]. Two arbitrary

curves of the sheaf intersect at 𝑛2 fixed points. On the other hand, according
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to the Cauchy theorem, these curves can intersect only at those points at
which the polynomials 𝑝 and 𝑞 vanish simultaneously; in the analytical theory
of differential equations, such singular points are called fixed points. If the
orders of the curves 𝑝(𝑥, 𝑦) = 0 and 𝑞(𝑥, 𝑦) = 0 do not exceed 𝑚, then
𝑛 ⩽ 𝑚. However, it is impossible to bring this idea to a rigorous statement:
among the intersection points of the integral curves there may be multiple
and infinitely distant ones, as well as at fixed singular points of the differential
equation, the solutions may have various kinds of “degeneracies”. That is why
M.N. Lagutinski carefully notes that the “French scientist in the work just
referred deduces a number of equalities and inequalities that in some cases
achieve the goal of indicating the upper bound of the order 𝑛” [3, P. 181].
Taking into account that “the difficulties of this way for solving this problem
have stopped even H. Poincaré” [3], it is not hard to understand why in all
modern implementations of algorithms for finding integrals, the order of the
integral is assumed to be given [12].
The de Beaune problem, in which a bound for the orders of considered

integrals is given, will be referred to as a bounded problem.

Problem 2 (The bounded de Beaune problem). Clarify whether
a given differential equation

𝑝(𝑥, 𝑦)𝑑𝑥 + 𝑞(𝑥, 𝑦)𝑑𝑦 = 0, 𝑝, 𝑞 ∈ 𝑘[𝑥, 𝑦], (2)

admits an integral 𝑟 in the field 𝑘(𝑥, 𝑦) whose order does not exceed a given
number 𝑁, and in case of positive answer, write out this integral.

Practically the described solution of a system of nonlinear algebraic equa-
tions requires considerable computation resources even at 𝑁 = 3. Therefore,
the authors of algorithms for solving this problem try to avoid the solution of
nonlinear systems. Among the implemented algorithms, worth special atten-
tion are the Lagutinski’s method of determinants and the method proposed
by Jacques–Arthur Weil in 1985 based on power series expansion [12].

2. The bounded de Beaune problem and Lagutinski’s
method of determinants

Lagutinski’s method allows searching for particular and general integrals of
ring derivations of sufficiently general form. An up-to-date presentation of
this method for the case of the ℂ[𝑥, 𝑦] ring is given in [13,14], and the general
case is considered in [15]. For convenience of reference we present here a brief
description of the method.
Let 𝑅 be a ring with derivation 𝐷 and field of constants 𝑘. Consider 𝑘 to

be an arbitrary field of characteristic zero and ℚ ∈ 𝑘. Let us call a general
integral of this derivation a pair of elements 𝜓1, 𝜓2 linearly independent over
the field 𝑘, satisfying the equality

𝜓1𝐷𝜓2 = 𝜓2𝐷𝜓1. (3)

If the ring 𝑅 is integral, then the derivation is naturally continued on its
field of quotients, and the fraction 𝜓1/𝜓2 satisfies the equation

𝐷(𝜓1/𝜓2) = 0.
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We will deal with rings where a basis can be introduced in the following
sense.

Definition 1. A countable ordered set 𝐵 of elements 𝑚𝑗 of a ring 𝑅 will

be called a basis of the ring if

1) any element of the ring 𝑅 can be presented as a linear combination of
a finite number of elements of the set 𝐵 with constant coefficients;

2) a product of any two elements of the set 𝐵 belongs to 𝐵, and follows
strictly after both efficients, i.e., 𝑚𝑖𝑚𝑗 = 𝑚𝑛 and 𝑛 is strictly greater than

𝑖 and 𝑗.
Let us introduce the ordering relationship in the basis, i.e., the inequality

𝑚𝑖 < 𝑚𝑗 means that 𝑖 < 𝑗 and assume that the notation 𝑢 = 𝑜(𝑚𝑖) means
that the representation of the element 𝑢 of the ring 𝑅 in the form of a linear
combination of basis elements contains the basis elements whose numbers are
strictly larger than 𝑖. If 𝑢 = 𝑎𝑚𝑖 + 𝑜(𝑚𝑖), 𝑎 ≠ 0, then the addend 𝑎𝑚𝑖 will
be called the lowest term in 𝑢.
In contrast to the common agreement, we call the number of the greatest

basis term entering the decomposition of an element 𝑢 in the basis an order
of this element.

Example 2. In the ring 𝑅 = ℚ[𝑥, 𝑦] a system of various monomials may
be taken to be a basis by accepting the glex-ordering:

1, 𝑦, 𝑥, 𝑦2, 𝑥𝑦, 𝑥2, 𝑦3, 𝑦2𝑥, 𝑦𝑥2, 𝑥3, …

Below this basis will be referred to as glex-basis. In this case, for example,

𝑦2 + 𝑥𝑦 + 3𝑥3 = 𝑦2 + 𝑜(𝑦2),

and the order of this element equals 10.

The calculations of integrals is closely related to Lagutinski’s determinants.

Definition 2. Compose an infinite matrix with the first row

𝑚1, 𝑚2, … ,

the second row being the first derivative of the first one,

𝐷𝑚1, 𝐷𝑚2, … ,

the third row being the second derivative of the first one,

𝐷2𝑚1, 𝐷2𝑚2, … ,

and so on to infinity. A determinant of the corner minor of the 𝑛-th order of
this matrix, i.e.,

det

⎛⎜⎜⎜⎜⎜
⎝

𝑚1 𝑚2 … 𝑚𝑛
𝐷𝑚1 𝐷𝑚2 … 𝐷𝑚𝑛

⋮ ⋮ ⋱ ⋮
𝐷𝑛−1𝑚1 𝐷𝑛−1𝑚2 … , 𝐷𝑛−1𝑚𝑛

⎞⎟⎟⎟⎟⎟
⎠

(4)
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will be denoted by Δ𝑛 and called Lagutinski’s determinant of the 𝑛-th order.

The following theorem provides a complete solution of the bounded de
Beaune problem.

Theorem 1 (by M.N. Lagutinski). Let 𝑅 be a ring of polynomials.

1. A general integral exists then and only then, when all Lagutinski’s determi-
nants of sufficiently high order are equal to zero.

2. A general integral of the order 𝑁 exists then and only then, when Δ𝑁 = 0;
in this case the integral can be calculated as a ratio of the corresponding
minors of this determinant.

The proof of Lagutinski’s theorem and the rule of choosing minors to
construct integrals is given in [15].

Remark 1. From this theorem, in particular, it follows that finding a rational
integral does not require the field extension. If 𝑝 and 𝑞 belong to ℚ[𝑥, 𝑦] and
there is an integral in ℂ(𝑥, 𝑦), then applying this theorem at 𝑘 = ℂ, we see that
for a certain 𝑁 Δ𝑁 = 0. The calculation of Lagutinski’s determinants does not
lead beyond the field ℚ. Therefor, applying this theorem at 𝑘 = ℚ, we arrive at
the existence of an integral in the field ℚ(𝑥, 𝑦). For this reason, below we mean
the integral of an equation with integer coefficients to be an element of ℚ(𝑥, 𝑦).

Lagutinski’s method agrees well with the concept of operating with rings,
accepted in Sage [16]. We have written a package Lagutinski [17] in Sage,
which allows calculation of Lagutinski’s determinants and integrals in this
environment. The package was presented in 2016 at a number of conferences
on computer algebra [18–20]. Here we restrict ourselves to one example
illustrating the application of this package. In more detail the technique of
its application is described in [21].

Example 3. Let the Bernoulli differential equation be given,

𝑦(𝑥 + 1)𝑑𝑦 − (𝑦2 + 𝑥 + 2)𝑑𝑥 = 0,

which for certain possesses an algebraic integral. Let us find it using Lagutin-
ski’s method. For this purpose we specify in a usual manner the corresponding
differential ring and its basis:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: D=lambda phi: y*(x+1)*diff(phi,x)+(y^2+x+2)*diff(phi,y)
sage: B= sorted(((1+x+y)^5).monomials(),reverse=0)

and load our package

sage: load(”lagutinski.sage”)
None

Now we can calculate Lagutinski’s determinants, e.g.,

sage: lagutinski_det(2,B)
y^2 + x + 2
sage: lagutinski_det(3,B)
x^3 + x*y^2 + 5*x^2 + y^2 + 8*x + 4

Let us find that of the determinants, which equals zero:
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sage: lagutinski_det(5,B)==0
False
sage: lagutinski_det(6,B)==0
True

Since Δ5 ≠ 0, and Δ6 = 0, the integral will be:
sage: lagutinski_integral(6,B)
(-54*x^2 + 18*y^2 - 72*x)/(-18*y^2 - 36*x - 54)

Since the calculations are cumbersome, the first argument of this function
should coincide with the smallest number of zero determinant.

The theory and its implementation are illustrated by Yu Ying by the exam-
ples taken from the book of problems by A. F. Filippov, the report is published
in [22]. The numerical experiments carried out show that Lagutinski’s method
practically allows fast and resource-saving detection of the presence of a ra-
tional integral. However, the method requires considerable computational
costs for the calculation of this integral. Note that the problem of determin-
ing the boundary for the integral order, always discussed in theory, appeared
insignificant in practice, since there were no differential equations in the book
of problems, whose integral curves had the order of 10 or higher.

3. Necessary conditions for the existence of an integral
of contracting derivation

In application to a non-bounded de Beaune problem the Lagutinski method
yields a sequence of determinants Δ1, Δ2, … .
According to the theorem 1 this sequence is finite then and only then

when an integral in 𝑘(𝑥, 𝑦) exists. However, its condition cannot be checked
constructively, moreover, the calculation of determinants of the order of 20÷30
already requires considerable computational costs. Therefore, it is important
to transform this statement into a necessary condition of the integral existence,
at least for some classes of derivations.

Definition 3. A derivation 𝐷 of the ring 𝐴 will be called contracting, if
such basis 𝐵 = {𝑚1, 𝑚2, … } exists in which

𝐷𝑚𝑖 = 𝑐𝑖𝑚𝑖 + 𝑜(𝑚𝑖). (5)

Any basis, in which the differentiation operation satisfies the conditions 5,
will be called a contracted derivation of 𝐷, 𝑐𝑖 will be called indices of con-
traction in the basis 𝐵.

Generally, there can be several contracting bases, and the indices of contrac-
tion 𝑛 then can be different. The possibility of applying the integral existence
criteria presented below essentially depend on the possibility to choose a basis
that contracts a given derivation.

Remark 2. The proposed name refers to the theory of contracting operators
in Banach spaces. In the present case, of course, there is no norm, but the
basis specifies a certain “topology”, and the condition contained in the definition
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indicates the fact that the derivation 𝐷 transforms the basis element 𝑚𝑖 into the
element 𝐷𝑚𝑖, which is a linear combination of basis elements whose numbers
are greater than 𝑖.

Example 4. In the ring 𝑅 = ℚ[𝑥, 𝑦] the derivation

𝐷 = (𝑎𝑦 + 𝑐𝑥 + … ) 𝜕
𝜕𝑦

− (𝑏𝑥 + … ) 𝜕
𝜕𝑥

, (6)

is contracting with respect to glex-basis 𝐵 = {1, 𝑦, 𝑥, 𝑦2, 𝑦𝑥, 𝑥2, … }.
Indeed,

𝐷(𝑦𝑛𝑥𝑚) = 𝑛(𝑎𝑦 + 𝑐𝑥 + … )𝑦𝑛−1𝑥𝑚 − 𝑚(𝑏𝑥 + … )𝑦𝑛𝑥𝑚−1 =
= (𝑎𝑛 − 𝑚𝑏)𝑦𝑛𝑥𝑚 + 𝑜(𝑦𝑛𝑥𝑚).

The numbers 𝑎𝑛 − 𝑚𝑏 that appeared here are indices of contraction.

Theorem 2 (necessary criterion for existence of general integrals).
A contracting derivation of a polynomial ring 𝑅 admits a general integral only
if among the indices of contraction there are equal ones.

This simple criterion follows from theorem 1 using the following lemma.

Lemma 1. Let the derivation 𝐷 be contracting, then in a suitable basis

Δ𝑛 = 𝑊(𝑐1, 𝑐2, … , 𝑐𝑛)
𝑛

∏
𝑖=1

𝑚𝑖 + 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖) ,

where 𝑊 is a Vandermonde determinant.

Proof. In a suitable basis

𝐷𝑚𝑖 = 𝑐𝑖𝑚𝑖 + 𝑜(𝑚𝑖),

from where
𝐷𝑜(𝑚𝑖) = 𝑜(𝑚𝑖)

and further
𝐷𝑚𝑚𝑖 = 𝑐𝑚

𝑖 𝑚𝑖 + 𝑜(𝑚𝑖).
The Lagutinski determinant Δ𝑛 is formed by linear combinations of the

products

𝐷𝑖1𝑚1𝐷𝑖2𝑚2 ⋯ = (𝑐𝑖1
1 𝑐𝑖2

2 … )
𝑛

∏
𝑖=1

𝑚𝑖 + 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖) ,

and, therefore, is a sum of the expression

∑
𝑖1,𝑖2,…

(−1)𝜎(𝑖1,𝑖2,… )𝑐𝑖1
1 𝑐𝑖2

2 …
𝑛

∏
𝑖=1

𝑚𝑖 + 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖)
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and higher-order terms. In the expression written out it is easy to recognize
a Vandermonde determinant

𝑊(𝑐1, … , 𝑐𝑛) = det

⎛⎜⎜⎜⎜⎜
⎝

1 1 … 1
𝑐1 𝑐2 … 𝑐𝑛
⋮ ⋮ ⋱ ⋮

𝑐𝑛−1
1 𝑐𝑛−1

2 … 𝑐𝑛−1
𝑛

⎞⎟⎟⎟⎟⎟
⎠

.

Example 5. The derivation

𝐷 = (𝑥 + 𝑥4𝑦) 𝜕
𝜕𝑥

+ (𝑥 + 𝑦) 𝜕
𝜕𝑦

of the ring ℚ[𝑥, 𝑦] is contracting, since in the glex-basis

𝐵 = {1, 𝑦, 𝑥, 𝑦2, 𝑥𝑦, 𝑥2, … }

is true

𝐷(𝑥𝑛𝑦𝑚) = 𝑛𝑥𝑛𝑦𝑚 +(𝑥+𝑦)𝑚𝑥𝑛𝑦𝑚−1 +𝑜(𝑥𝑛𝑦𝑚) = (𝑛+𝑚)𝑥𝑛𝑦𝑚 +𝑜(𝑥𝑛𝑦𝑚).

The indices of contraction form a sequence 0, 1, 1, 2, … , in which equal
elements are present. Therefore

Δ2 = 𝑊(0, 1)𝑦 + 𝑜(𝑦) = 𝑦 + 𝑜(𝑦),

and then we obtain only

Δ𝑛 = 𝑊(0, 1, 1, … )
𝑛

∏
𝑖=1

𝑚𝑖 + 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖) = 𝑜 (
𝑛

∏
𝑖=1

𝑚𝑖) .

For small orders 𝑛 the validity of this formula is easily checked by direct
calculation:

sage: D=lambda phi: (x+x^4*y)*diff(phi,x)+(x+y)*diff(phi,y)
sage: prod(B[:2])
y
sage: sorted(lagutinski_det(2,B).monomials(),reverse=0)
[y, x]
sage: prod(B[:3])
x*y
sage: sorted(lagutinski_det(3,B).monomials(),reverse=0)
[x^2, x^4*y^2, x^5*y, x^6, x^7*y^3, x^8*y^2]
sage: prod(B[:4])
x*y^3
sage: sorted(lagutinski_det(4,B).monomials(),reverse=0)
[x^2*y^2, x^3*y, x^4, x^4*y^4, x^5*y^3, x^6*y^2, x^7*y, x^8,
x^7*y^5, x^8*y^4, x^9*y^3, x^10*y^2, x^11*y, x^10*y^6,
x^11*y^5, x^12*y^4, x^13*y^3]
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4. Necessary conditions for the existence of a rational
integral of the Briot–Bouquet equation

The theorem 2 is convenient for applying to the problem of finding an
algebraic integral of the differential equation

(𝑎𝑦 + 𝑐𝑥 + … )𝑑𝑥 + (𝑏𝑥 + … )𝑑𝑦 = 0, (7)

which we, following E. Ains [23, n. 12.6], will refer to as the Briot–Bouquet
equation.

Remark 3. Equation (7) possesses a number of unexpected analytical prop-
erties and for a long time attracts the attention of researchers. The initial
problem

⎧{
⎨{⎩

(𝑎𝑦 + 𝑐𝑥 + … )𝑑𝑥 + (𝑏𝑥 + … )𝑑𝑦 = 0,
𝑦|𝑥=0 = 0

does not satisfy the conditions of the Cauchy theorem. Nevertheless, in 1856
Briot and Bouquet [23, n. 12.6], has proved that at 𝑎/𝑏 ∉ ℤ this problem admits
a unique solutions holomorphic in the vicinity of zero. The question of whether
the initial problem admits other solutions having a singularity at zero, was the
subject of research by Briot and Bouquet, Picard and Poincaré [24, n. 426].

An integral of the equation (7) is also an integral of the derivation

𝐷 = (𝑎𝑦 + 𝑐𝑥 + … ) 𝜕
𝜕𝑦

− (𝑏𝑥 + … ) 𝜕
𝜕𝑥

, (8)

which as it has been shown in the example 4, contracts the glex-basis

𝐵 = {1, 𝑦, 𝑥, 𝑦2, 𝑥𝑦, 𝑥2, … }.

From here, as a consequence of theorem 2, immediately follows:

Theorem 3 (about the Briot–Bouquet equation). The differential
Briot–Bouquet equation (7) can have a rational integral in 𝑘(𝑥, 𝑦) only if 𝑎 and
𝑏 are linearly dependent over the field ℚ.

Proof. Applying the derivation (8) to a monomial, we get

𝐷𝑥𝑛𝑦𝑚 = (𝑎𝑦 + 𝑐𝑥 + … )𝜕𝑥𝑛𝑦𝑚

𝜕𝑦
− (𝑏𝑥 + … )𝜕𝑥𝑛𝑦𝑚

𝜕𝑥
=

= (𝑚𝑎 − 𝑛𝑏)𝑥𝑛𝑦𝑚 + 𝑜(𝑥𝑛𝑦𝑚).

If there are no integer relations between 𝑎 and 𝑏, then among the indices of
contraction 𝑚𝑎 − 𝑛𝑏 there are no equal ones, so that according to theorem 2
this derivation does not admit general integrals. �

Example 6. The general solution of the linear equation

(𝑎𝑦 + 𝑐𝑥)𝑑𝑥 + 𝑏𝑥𝑑𝑦 = 0
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is easy to write out

𝑥𝑎/𝑏 (𝑦 + 𝑐𝑦
𝑏 + 𝑎

) = 𝐶,

where 𝐶 is the integration constant. Whether the written integral is algebraic
or not, depends on whether the ratio 𝑎/𝑏 is a rational number or not, which
completely agrees with the proved lemma.

Example 7. According to the proved theorem the equation

(𝑎𝑦 + 𝑐𝑥)𝑑𝑥 + (𝑏𝑥 + 𝑥𝑦)𝑑𝑦 = 0.

has no algebraic integral at arbitrary 𝑎 and 𝑏.

5. Necessary conditions for the existence of a rational
integral concerning a fixed singular point

It is easily seen that the point (0, 0) is a fixed singular point of the differential
equation (7). Recall that the Cauchy theorem is applicable to all points of
the 𝑥𝑦-plane except those in which the polynomials 𝑝 and 𝑞 from ℂ[𝑥, 𝑦]
simultaneously turn into zero. These points are called fixed singular points of
the differential equation [10]. If we put the origin of the coordinate system
into a fixed singular point, then

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (𝑎11𝑥 + 𝑎12𝑦 + … )𝑑𝑥 + (𝑎21𝑥 + 𝑎22𝑦 + … )𝑑𝑦,

where … denote the terms of the order higher than the first one. The
coefficient 𝑎22 prevents the application of theorem 3, however, it is easy to
get rid of it by a linear change of variables.

Theorem 4. Let neither 𝑝, nor 𝑞 be reducible to a constant and the field of
constants 𝑘 is algebraically closed. Then to any fixed singular point (𝑥0, 𝑦0) of
the differential equation we can relate a new system of coordinates

⎧{
⎨{⎩

𝑥 = 𝑥0 + 𝜉 + 𝛼𝜂, 𝛼 ∈ 𝑘
𝑦 = 𝑦0 + 𝜂,

(9)

in which this differential equation takes the form of Briot–Bouquet equation, i.e.,

(𝑎𝜂 + 𝑐𝜉 + … )𝑑𝜉 + (𝑏𝜉 + … )𝑑𝜂,

where … denotes the higher-order terms.

Proof. Since the field 𝑘 is algebraically closed, the curves 𝑝(𝑥, 𝑦) = 0 and
𝑞(𝑥, 𝑦) = 0 intersect at some points of the 𝑥𝑦-plane. Let us denote one on
these points as (𝑥0, 𝑦0) and put the origin of coordinates into this point. Then

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (𝑎11𝑥 + 𝑎12𝑦 + … )𝑑𝑥 + (𝑎21𝑥 + 𝑎22𝑦 + … )𝑑𝑦,
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where … denotes higher-order terms. The differential equation 𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 0
corresponds to the derivation

𝐷 = (𝑎11𝑥 + 𝑎12𝑦 + … ) 𝜕
𝜕𝑦

− (𝑎21𝑥 + 𝑎22𝑦 + … ) 𝜕
𝜕𝑥

.

If 𝑎22 ≠ 0, then it can be eliminated by a linear transformation

⎧{
⎨{⎩

𝑥 = 𝜉 + 𝛼𝜂, 𝛼 ∈ 𝑘,
𝑦 = 𝜂.

Under this transformation the form changes as follows:

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (… )𝑑𝜉 + [(𝑎11(𝜉 + 𝛼𝜂) + 𝑎12𝜂)𝛼 + 𝑎21(𝜉 + 𝛼𝜂) + 𝑎22𝜂 + … ]𝑑𝜂.

Equating the coefficient at 𝜂𝑑𝜂 to zero, we arrive at the quadratic equation

𝑎11𝛼2 + (𝑎12 + 𝑎21)𝛼 + 𝑎22 = 0

for finding the parameter 𝛼. Since the field 𝑘 is algebraically closed, this
quadratic equation has roots in 𝑘, and for such a choice of the parameter the
expression will get the desired form

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (𝑎𝜂 + 𝑐𝜉 + … )𝑑𝜉 + (𝑏𝜉 + … )𝑑𝜂.
Collecting the results of theorems 3 and 4 together, we get the following

algorithm that allows clarifying whether the given differential equation (1)
has a rational integral in the field 𝑘(𝑥, 𝑦):
1) find the fixed singular point (𝑥0, 𝑦0);
2) execute a linear transformation, containing the parameter 𝛼, in the form

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = (𝑎11𝜉 + 𝑎12𝜂 + … )𝑑𝜉 + (𝑎21𝜉 + 𝑎22𝜂 + … )𝑑𝜂;

3) determine the value of the parameter 𝛼 from the quadratic equation
𝑎22 = 0;

4) check whether for such value of 𝛼 the coefficients 𝑎12 and 𝑎21 are linearly
dependent over ℚ.
If yes, they are linearly dependent, then the differential equation can admit

a rational integral, otherwise it does not exist. It is worth noting that the
formulated criterion is necessary, but not sufficient.
Our Lagutinski package includes the function lagutinski_ab, which for

specified 𝑝 and 𝑞 returns true, if at the first fixed singular point the above
quantities are linearly dependent.

Example 8. For checking, let us begin with the linear equation

(𝑥 + 𝑦)𝑑𝑥 + 𝑥𝑑𝑦 = 0,

the general solution of which is expressed as

𝑦(𝑥) = −𝑥
2

+ 𝐶
𝑥

.
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We have:

sage: x,y=var('x,y')
sage: lagutinski_ab(x+y,x)
True

Example 9. Maple cannot make any definite conclusion about the equation

(2 − 𝑥2 − 𝑦2)𝑑𝑥 + (𝑥 − 𝑦)𝑑𝑦 = 0.

The application of our criterion yields

sage: x,y=var('x,y')
sage: lagutinski_ab(2-x^2-y^2,x-y)
False

Therefore, this equation does not admit a rational integral in the field
ℂ(𝑥, 𝑦).

It is well known that an arbitrary differential equation (1) cannot be
integrated in elementary functions. The proposed algorithm specifies the “de-
generacies” that should occur with the coefficients 𝑝 and 𝑞 of the differential
equation considered to make it integrable in such functions. If the polyno-
mials 𝑝, 𝑞 belong to ℚ[𝑥, 𝑦], then the application of the described algorithm
introduces algebraic numbers twice: first, in finding the fixed singular points
and, second, in searching for the parameter 𝛼. Therefore, generally the ratio
of the coefficients 𝑎12 and 𝑎21 appears to be an algebraic number, so that the
equation does not admit an algebraic integral even in ℂ(𝑥, 𝑦).

Remark 4. It is natural to draw an analogy here with the integration of
rational functions: in the general case, the denominator of a rational function
has simple zeros, and the integral of such a function consists of logarithmic terms;
the integral will be rational only in the exotic case when all the singularities are
multiple.

6. Differential equations with symbolic parameters

The theorem 3 is seen useless in the case, when the coefficients of Briot–
Bouquet equation belong to the field ℚ. Actually, theorem 2 provides
a convenient criterion of unsolvability when the considered equation con-
tains indefinite parameters 𝑎, 𝑏, … , in other words, when as the field 𝑘 we
consider the field ℚ(𝑎, 𝑏, … ), generated by the variables 𝑎, 𝑏, … algebraically in-
dependent over ℚ. With their appearance the problem of finding an algebraic
integral is separated into two problems:

— to clarify whether the differential equation admits a rational integral in
the field 𝑘(𝑥, 𝑦), i.e., “in the general case”;

— to find particular values of the parameters 𝑎, 𝑏, … in ℂ, for which the
differential equation admits a rational integral in the field ℂ(𝑥, 𝑦).

The first problem for the equation (7) was completely solved by theorem 3:
this equation has no rational integral in the general case.
Now let us proceed to the second problem. Without loss of generality,

we can assume that 𝑝 and 𝑞 are polynomials with respect to 𝑥, 𝑦 and all
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parameters 𝑎, 𝑏, … ; for clarity let us consider the set of complex values
of the parameters 𝑎, 𝑏, … as a point in a finite-dimensional affine space 𝐴
over the field ℂ. Accepting this agreement and using common notations of
algebraic geometry [25], the theorem 1 for the field 𝑅 = 𝑄[𝑥, 𝑦, 𝑎, 𝑏, … ] can
be reformulated in the following way.

Theorem 5. Let the coefficients Δ𝑛 of monomials 𝑥𝑛𝑦𝑚 generate an ideal
𝐽𝑛 of the ring ℚ[𝑎, 𝑏, … ]. The set of points (𝑎, 𝑏, … ) of the affine space 𝐴, for
which the differential equation

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 0, 𝑝, 𝑞 ∈ ℚ[𝑥, 𝑦, 𝑎, 𝑏, … ],

admits a rational integral from ℚ(𝑥, 𝑦), whose order does not exceed, is an
algebraic affine set 𝑍(𝐽𝑛) in 𝐴.

Proof. If the point (𝑎, 𝑏, … ) belongs to 𝑍(𝐽𝑛), then Δ𝑛(𝑥, 𝑦, 𝑎, 𝑏, … ) at
such values of parameters 𝑎, 𝑏, … indentically turns into zero, and due to
the Lagutinski theorem 1 the differential equation admits a rational integral.
Conversely, if for some values of the parameters 𝑎, 𝑏, … the differential equation
admits a rational integral of the order 𝑛, then the Lagutinski determinant of
the same order turns into zero identically and, therefore, (𝑎, 𝑏, … ) belongs to
𝑍(𝐽𝑛). �

Generally, the set 𝑍(𝐽𝑛) can be empty or reducible.

Example 10. Consider again the linear equation

(𝑎𝑦 + 𝑐𝑥)𝑑𝑥 + 𝑏𝑥𝑑𝑦 = 0.

Let us specify the appropriate ring, derivation, and basis:

sage: R.<x,y,a,b,c> = PolynomialRing(QQ, 5)
sage: D=lambda phi: (a*y+c*x)*diff(phi,y) -b*x*diff(phi,x)
sage: B= sorted(((1+x+y)^30).monomials(),reverse=0)

Calculate the Lagutinski determinants:

sage: lagutinski_det(2,B).factor()
y*a + x*c
sage: lagutinski_det(3,B).factor()
b * a * x * (y*a + y*b + x*c)
sage: lagutinski_det(4,B).factor()
(-2) * b * a * x * (y*a + x*c) * (y*a + y*b + x*c) * (-
2*y*a^2 - y*a*b - 2*x*a*c + 2*x*b*c)

In the three-dimensional affine space 𝐴 the set 𝑍(𝐽2) represents a straight
line {𝑎 = 0, 𝑐 = 0}, the sets 𝑍(𝐽3), 𝑍(𝐽4) represent a union of two planes
{𝑎 = 0} ∪ {𝑏 = 0}, and so on.

According to the theorem 5 the values of the parameters 𝑎, 𝑏, … , for which
the differential equation

𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 0, 𝑝, 𝑞 ∈ ℚ[𝑥, 𝑦, 𝑎, 𝑏, … ]

admits a rational integral of any order in ℂ(𝑥, 𝑦) for the set ∪𝑍(𝐽𝑛). It could
be expected that this set is also algebraic, as it usually happens in algebraic
problems. However, this is not true.
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Example 11. The differential equation from the example 6 has a rational
integral then and only then, when the ratio 𝑎/𝑏 is a rational number or when
𝑏 = 0. Therefore ∪𝑍(𝐽𝑛) represents a union of various planes

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ

in the three-dimensional affine space 𝐴.

Now let us reformulate the theorem 3 in these terms.

Theorem 6. The projection onto the plane 𝑎𝑏 of a set of all values of the
parameters 𝑎, 𝑏, … , at which the differential equation (7) admits a rational
integral in ℂ(𝑥, 𝑦), is a union of a certain number of straight lines of the form

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ

and points.

Proof. According to the theorem 5 the set of all points of affine space 𝐴,
at which the differential equation admits an integral from ℂ(𝑥, 𝑦), is a sum
of algebraic affine sets and, therefore, represents a union of irreducible affine
manifolds. And according to the theorem 3 a projection of this set onto the
plane 𝑎𝑏 is formed by points that are linearly dependent over ℚ.
This projection cannot coincide with the entire plane, therefore, it can be

decomposed into irreducible lines and points. Assume, in contradiction to the
theorem, that among these lines there is an irreducible line 𝐶 of the order 𝑟,
different from straight lines

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ.

According to the theorem 3 for any point (𝑎, 𝑏) ∈ 𝐶 of this curve it is
possible to specify one and only one such pair of mutually simple integer
numbers (𝑛, 𝑚) that

𝑛𝑎 + 𝑚𝑏 = 0, 𝑚 ⩾ 0.
From a geometric point of view this means that any point (𝑎, 𝑏) ∈ 𝐶

corresponds to the point (𝑛, 𝑚) of a projective straight line 𝑃 1
ℚ , i.e., we get

a mapping
𝑓 ∶ 𝐶 → 𝑃 1

ℚ .
The prototype of the point (𝑛, 𝑚) is the set of points (𝑎, 𝑏) of the line 𝐶 at

which the equality
𝑛𝑎 + 𝑚𝑏 = 0,

i.e., the points of intersection of the straight line 𝑛𝑎 + 𝑚𝑏 = 0 and the line
𝐶 in the plane 𝐴2

ℂ. By Bézout’s theorem, there are exactly 𝑟 such points,

therefore, there is a (1, 𝑟)-correspondence between the affine line 𝐶 over ℂ
and the projective straight line 𝑃 1 over ℚ. As soon as the set ℚ is countable
and the set of points of the algebraic line over ℂ is uncountable, the above is
impossible. Hence, the projection is a union of straight lines

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ.

and points. �
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As shown by example 11, the projection of a set of parameter sets 𝑎, 𝑏, … ,
at which the differential equation admits an algebraic integral can be a union
of countable sets of affine manifolds, projected into a family of straight lines

𝑛𝑎 + 𝑚𝑏 = 0, 𝑛, 𝑚 ∈ ℤ.

If, as Lagutinski hoped for, it would be possible to replace an infinite
sequence of determinants Δ2(𝑥, 𝑦, 𝑎, 𝑏, … ), Δ3(𝑥, 𝑦, 𝑎, 𝑏, … ), … with a finite
set of conditions, then this set would be an affine set. Thus, the appearance of
the infinite sequence is not a defect of the Lagutinski method, it indicates the
non-algebraic component of the theory of integration of differential equations
in algebraic functions. Thus, the bounded de Beaune problem is completely
solved by the Lagutinski method, and the unbounded de Beaune problem
with parameters inevitably introduces non-algebraic sets and therefore, it
does not admit a purely algebraic method of solution.

Conclusion

To summarize, let us list the main results of our consideration:

— Lagutinski’s method allows solving the bounded de Beaune problem 2
using a finite number of operations, its implementation in Sage faces but
one difficulty: with the growth of the boundary 𝑁 the calculation of de-
terminants requires more and more computer resources. The calculations
can be made faster by choosing a suitable basis; in contracted bases the
calculations are considerably more rapid (see lemma 1).

— For the unbounded problem 1 it appears possible to derive from Lagutinski
theorem the necessary and easily checked conditions of existence of
a rational integral. These criteria are applicable also in the cases, when the
standard approaches implemented in Maple yield no definite information,
see example 9.

— The above criterion appears to be rather useful for that problems with
parameters, when for a given differential equation, containing indefinite
parameters, one has to choose their values in a way providing the par-
ticular differential equation to admit an algebraic integral. This case
clearly demonstrates the reasons why the full solution of an unbounded
de Beaune problem is impossible: the desired set of the parameter values
is not always an algebraic set.
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The design of kinematic supports is considered, which allows to damp the oscillation
energy of seismic waves during earthquakes. The building rests on supports that have
the geometry of straight cylinders. When horizontal ground oscillations occur, the
supports are deflected at a small angle 𝜓. At the same time, their centre of gravity
rises and tends to return to its original position under the action of two forces on
each support: the weight of the building evenly distributed over all the supports,
and the weight of the support itself. The first force is applied to the highest point of
the support, the second one is applied to the centre of gravity of the support, so that
the rotational moments of two forces act on the support.
It should be noted that under very strong vibrations of the ground, the projection

of the centre of gravity could move beyond the base of the support. In this case, the
supports will begin to tip over. We confine ourselves to considering such deviations
that the rotational moments of the forces of gravity still tend to return the supports
to their initial state of equilibrium.

Key words and phrases: ensuring seismic stability of buildings during earthquakes,
the equation of motion of a physical pendulum, vibration damping.

1. Introduction

The amount of energy transferred to the building depends on the relation
between the spectra of seismic effects and natural oscillations of the building.
The closer the peaks of the spectra, the greater the energy transferred to the
building under similar conditions. This energy is mainly absorbed by the
inelastic deformations of the structure. Based on the above facts, two main
tasks can be formulated aimed at ensuring the seismic resistance of a building:

— to separate the spectra and thereby reduce the amount of energy trans-
mitted to the building and
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— to provide the absorption of the remaining energy using special measures.

In the publications on deterministic analysis of the dynamics of construc-
tions, describing the time-dependent motion of the system under the action
of seismic load (strongly oscillating and irregular) [1–8], various types of the
building supports are studied, aimed at efficient damping the energy of the
spatial movement of the building caused by an earthquake. Among them
the most successful solutions have been proposed by A. M. Kurzanov and
Yu. P. Cherepinsky [6]. In this paper, we consider in detail the design and
operation of Kurzanov’s kinematic supports, which have been well-proven in
experimental studies [1, 7, 8]. Our theoretical study of the functioning of kine-
matic supports is aimed at their mathematical modelling and the subsequent
selection of parameters of the model of supports in order to solve both of the
above problems of seismic stability of buildings. Note that in recent years the
interest in the study of kinematic supports that provide the seismic resistance
of buildings has noticeably increased [9–11]. See also [12–19].

2. Mathematical model of the functioning
of kinematic supports

The design of kinematic supports is considered, which allows damping the
oscillation energy of seismic waves during earthquakes. The building having
the weight 𝑀𝑔 rests on 𝑛 supports, each having the weight 𝑚𝑔. The supports
have the geometry of straight cylinders of height ℎ and base diameter 𝑎.
Under the action of an incident seismic wave, the whole construction

“building + 𝑛 supports” comes into a complex movement. Of all the seismic
waves, let us consider horizontal waves. When horizontal ground oscillations
occur, the supports are deflected by an angle 𝜓. At the same time, their
centre of gravity rises and due to this fact the building, moving horizontally,
rises and acquires additional potential energy. After that, the building tends
to return to its original position and acquires additional kinetic energy, with
the result that each of the supports acquires additional kinetic energy under
the action of two forces on each support: the weight of the building evenly
distributed on each support, and the weight of the support itself. The first
force is applied to the highest point of the support (see Figure 1), the second
one is applied to the centre of gravity of the support (see Figure 2), so that
the rotational moments of two forces act on the support. Below we consider
only a part of the system, namely, a support isolated from the seismic impact.
Each support has the shape of a cylinder with the height ℎ and diameter

𝑎 = 2𝑟. It should be noted that under very strong vibrations of the ground,
the projection of the centre of gravity can move horizontally beyond the base
of the support, i.e., 𝜑 > 𝛼, where 𝛼 is the angle between the diagonal of the
support and its height, so that 𝛼 = arctan (𝑎

ℎ). In this case, the supports

will begin to tip over. We confine ourselves to considering such deviations,
when the rotational moments of the forces of gravity still tend to return the
supports to the initial state of equilibrium, that is, we will consider the case
𝜑 < 𝛼. Then 𝛼 = 𝜑 + 𝜓, where 𝜓 is the angle of deviation of the flat base
of the support from the horizontal, while the supports perform non-linear
oscillations. To compose the equation of motion of a support, we take into
account that it is a physical pendulum.
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Figure 1. Rotational force generated

by the pressure of the building on

the supports

Figure 2. Rotational force generated

by the weight of the support

Before the appearance of seismic effects, the “building + 𝑛 supports” system
is in a state of stable equilibrium, i.e., the supports stand on the ground, the
building rests on the supports, with the centre of gravity in the lowest position
and the lowest potential energy. After the deviation of the “building + 𝑛
supports” system from the equilibrium position of the supports (along with
the building), they rise and fall, rotating around one of their edges during
the first half-period of the oscillatory motion. Then the supports touch their
bases to the ground with a blow, followed by the loss of a part 𝜀 of the energy
due to the inelastic impact of the ground. After that, due to the remaining
(1 − 𝜀) kinetic energy of the support (along with the building), they rise
and fall, rotating around its other edge during the second half-period of the
oscillatory motion. Then the next blow occurs and the oscillatory motion
continues with damping.
During each of the half-periods, the movement occurs under the action of

gravity forces and their rotational moments.
The returning force of a uniformly distributed building weight acting on

a support is 𝐹𝑀 = −𝑀𝑔
𝑛 sin𝜑. The distance from the point of application of

the force 𝐹𝑀 to the axis of rotation is equal to 𝐿𝑀 = 2𝑙 =
√

𝑎2 + ℎ2. The

torque of the force is expressed as 𝐹𝑀 • 𝐿𝑀 = −𝑀𝑔
𝑛

√
𝑎2 + ℎ2 sin𝜑.

The returning force generated by the weight of the support itself is calculated
as 𝐹𝑚 = 𝑚𝑔 sin𝜑. The distance from the point of application of the force
𝐹𝑀 to the axis of rotation is 𝑙. The torque of the force is calculated using the
formula 𝐹𝑚 ∗ 𝑙.
The moment of inertia of the support is equal to 𝐽 = 𝑚

2 𝑟2 + 𝑚
6 ℎ2. The

equation of motion of a support, assuming that it is a physical pendulum,
has the form

𝐹𝑚 + 𝐹𝑀 = −𝐽𝜑̈. (1)
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Taking into account the explicit form of the restoring forces, we obtain the
relation

𝑚𝑔𝑙 sin𝜑 + 2𝑀𝑔
𝑛

𝑙 sin𝜑 = −12𝑙2 + ℎ2

24
𝜑̈, (2)

which is reduced to the Lagrange differential equation describing the dynamics
of the motion of the supports after a seismic shock, bringing the entire system
out of equilibrium:

−𝜑̈ = − (𝑛𝑚 + 2𝑀
12𝑙2 + ℎ2 ) 24𝑔𝑙

𝑛
sin𝜑. (3)

In the case of limited oscillations, i.e., when 𝜓 < 𝛼, we get

̈𝜓 − (𝑛𝑚 + 2𝑀
12𝑙2 + ℎ2 ) 24𝑔𝑙

𝑛
sin(𝛼 − 𝜓) = 0. (4)

The obtained Eq. (4) is the equation of free oscillations (not disturbed by
the continuing seismic effect).

Figure 3. Position of the support at the

moment of maximum lifting of the centre

of gravity (𝑡 = 0)

Figure 4. The support of the building.

Maximum deviation after changing the

axis of rotation

For a complete description of the evolutionary process of support oscillations,
we supplement Eq. (4) with the initial conditions, taking the maximum
deflection of the support after the seismic shock shown in Figure 3 for the
initial position at zero time. Then at the moment of time corresponding
to the highest ascent of the centre of gravity of the support (the centre of
rotation of the support is located at its lower right point, see Figure 3) the
movement of an individual support is described by Eq. (4) with the initial
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conditions (we assume the deflection angle positive)

𝜓1(0) = 𝜓𝑐𝑜𝑛𝑠𝑡, ̇𝜓1(0) ∶ 𝜓𝑐𝑜𝑛𝑠𝑡 > 0. (5)

Under the influence of the gravity of the support and the entire building, the
centres of gravity of the supports will tend to return to their original position.
In this case, the angle 𝜓1 > 0, 𝜓1 → 0, in accordance with the solution of the
Cauchy problem (4), will tend to zero. At that moment, when the magnitude
of the angle equals zero, the inertial forces will force the building and the
supports to move further in the same horizontal direction, which will lead
(after the impact of the support on the base surface) to a change of the
rotation axis of the supports, see Figure 4. The motion of the support system
and the building itself is still described by exactly the same equations, but
with the variable 𝜓1 changed for 𝜓2:

̈𝜓2 − ( 𝑛𝑚 + 2𝑀
12𝑙2 + 𝑛𝑚

) 24𝑔𝑙
𝑛

sin(𝛼 − 𝜓2) = 0 (6)

and with other initial conditions (again we consider the deflection angle 𝜓2
to be positive)

𝜓2(0) = 0,
̇𝜓2(0) = ̇𝜓1(0).

(7)

It is important to note that at the time of the collision of the support with
the ground surface, the system consisting of the building and the supports
loses some fraction of the kinetic energy. Setting the restitution coefficient to
be equal to 𝐶𝑟 = (1 − 𝜀) < 1 and considering the kinetic energy losses, we
arrive at the relation

𝐽
2

𝜑̇2
𝑎𝑓𝑡𝑒𝑟 = 𝐶𝑟

𝐽
2

𝜑̇2
𝑏𝑒𝑓𝑜𝑟 ⇒ 𝜑̇𝑎𝑓𝑡𝑒𝑟 = √𝐶𝑟𝜑̇𝑏𝑒𝑓𝑜𝑟, (8)

which, in turn, makes it possible to determine the new velocities of the
supports after their collisions with the surface and recalculate the initial
conditions of the problems (5) and (7) when going through the zero value of
the rotation angle using the formulas

𝜓𝑘+1(𝑡 + 0) = 𝜓𝑘(𝑡 − 0),
̇𝜓𝑘+1(𝑡 + 0) = −√𝐶𝑟

̇𝜓𝑘(𝑡 − 0),
(9)

for the generalized equation of motion of the supports and the building:

̈𝜓 = 𝑠𝑖𝑔𝑛(𝜓) ( 𝑛𝑚 + 2𝑀
12𝑙2 + 𝑛𝑚

) 24𝑔𝑙
𝑛

sin(𝛼 − 𝑠𝑖𝑔𝑛(𝜓)𝜓). (10)

The formulated system can be solved by means of any stable numerical

method, for example, the 4𝑡ℎ-order Runge–Kutta method with automatic
step selection. We get the following plots for the solutions (Figures 5–7).
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Figure 5. The angle of deviation from the vertical. The solid line corresponds to the

recovery coefficient 𝐶𝑟 = 0.9, the dashed line — to 𝐶𝑟 = 0.8

Figure 6. The rate of change of the deviation angle from the vertical. The solid line

corresponds to the recovery coefficient 𝐶𝑟 = 0.9, the dashed line — to 𝐶𝑟 = 0.8

3. Conclusion

The model (4) is a nonlinear conservative dynamical system. The motion
of the supports and the building body during the non-linear oscillations can
be considered as oscillations of the coupled physical pendulums. At the same
time, the coupling of pendulums is not conservative, but contains a factor
proportional to the rolling friction of the supports on the base of the building
body. Moreover, the rolling radius depends on the angle: the larger the angle
𝜓, the smaller the radius, which means greater friction force between the 𝑛
supports and the base of the building.
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Figure 7. Phase portrait of the “oscillatory system” (𝐶𝑟 = 0.8).

In addition, of course, this entire unified system, including the reaction
of the soil, moves under the action of a seismic strongly oscillating and
irregular disturbance generated by an earthquake. Only as a result of the
joint consideration of all these factors and we can count on an adequate
description of the deterministic dynamics of the building under the influence
of seismic perturbations from an earthquake.
However, even the analysis of equation (4) allows detuning of the natural

frequencies of free vibrations of a building system on supports by varying the
weight of the building and the number of supports.
The equation obtained by us is valid for angles 𝜓 < 𝛼, but it can be easily

generalized to the case 𝜓 > 𝛼, when the movement of the supports will cease
to be oscillatory, and the whole structure will lose stability. However, this
case, interesting while considering the driving forces of horizontal seismic
vibrations, will be analysed elsewhere.
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Motion of the relativistic electron in the field of intense laser pulse of the arbitrary
shape is considered. The pulse dimension is supposed to be of the order of the
Gaussian laser beam dimension in the focal plane. It is supposed that the pulse is
propagating along the external constant magnetic field. In the paraxial approximation
the corrections of the first order to the vectors of the field of radiation as well as the
force of the radiation friction are taken into account. Averaged relativistic equations
of motion of electron are obtained with the help of averaging over the fast oscillations
of the laser radiation. It is shown that with taking into account corrections of the
first order to the field vectors an averaged force arises. This force is defined by
pulsed character of radiation and proportional to the intensity but not to gradient of
intensity. It is shown that radiation losses are of little importance in the transverse
plane but may considerably act on the longitudinal motion of electron.

Key words and phrases: relativistic electron, intense laser pulse, paraxial approxi-
mation, Gaussian beam, radiation friction

1. Introduction

When a relativistic charged particle moves in an electromagnetic field,
radiation friction forces can play a significant role [1–3]. Various aspects of
the radiation friction forces problem, including the refinement of the classical
Lorentz–Abraham–Dirac expression, were discussed in [4–7]. The problem
of radiation losses has become particularly relevant in connection with the
creation of powerful laser radiation sources [8–10]. The charged particle
motion pattern substantially depends on the properties of electromagnetic
radiation. In the case of a sufficiently weak radiation intensity, the parameter

𝑔 = 𝑒|𝐸|
𝜔𝑚𝑐

, which is the ratio of the particle momentum oscillations amplitude

in the wave field to a rest momentum, is small: 𝑔 ≪ 1. Here, |𝐸| is the
amplitude of the electric wave field, 𝜔 is the wave frequency, 𝑒 is the charge,
𝑚 — the mass of the particle, 𝑐 is the light speed in vacuum. Availability of
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a small parameter allows one to find a solution to the equations of motion for
a particle in the form of expansions over this parameter and averaging over
fast oscillations. When a particle moves in the high-power laser radiation field
which is pulsed by its nature and of high intensity, the parameter 𝑔 becomes
large. In the case of an electron, this parameter is represented as

𝑔 = 0.85 ⋅ 10−9𝜆
√

𝐼, (1)

where 𝐼[𝑊/cm2] is the laser pulse intensity, and 𝜆 [𝜇m] is the wavelength. This
shows that the parameter 𝑔 ⩾ 1 at an intensity of 𝐼 ⩾ 1018𝑊/cm2. Intensities
of such an order and even higher by their value are well achieved in modern
laser devices. In this case, a solution of the equations of motion for a particle
in the form of expansions in the parameter (1) is impossible. Therefore, they
usually use numerical methods for solving the problem. Analytical solution
turns out to be possible if propagation of laser radiation is adequately described
within the paraxial approximation in the form of Gaussian beams [11–17]. In
this approximation, there is a small parameter

𝜇 = 2
𝑘𝑎

= 𝑎
𝑧𝑟

≪ 1, (2)

where 𝑎 is the laser beam radius at focus (waist of the laser beam), 𝑧𝑟 = 𝑘𝑎2/2
is the Rayleigh length which determines the diffraction divergence of the laser
beam, 𝑘 = 2𝜋/𝜆 is the wave number, and 𝜆 is the radiation wavelength. The
presence of such a small parameter (2) allows finding the solution of the
equations of motion for a particle in the form of expansions in this parameter
and averaging over fast oscillations of the radiation field. In the case of
sufficiently long pulses, the radiation field vectors in the zero approximation
of the expansion of Maxwell’s equations in parameter (2) are represented in
the form of Gaussian beams of different modes as a solution to the parabolic
equation [11, 14]. Upon that, the longitudinal components of the field vectors
in the form of first-order corrections, and the corrections to the transverse
components of the field vectors in the form of second-order quantities arise.
In the case of sufficiently short pulses, the length of which is of the order
of the beam waist, the corrections to the transverse components of the field
vectors are first order quantities [13,17]. These amendments were not taken
into account in papers [8–10]. Note that in the case of highly-focused laser
radiation, paraxial approximation is inapplicable [18].

This work is devoted to the study of a relativistic electron motion in the
field of high-power pulsed laser radiation in the form of a Gaussian beam with
the circularly polarized basic mode, taking into account first-order corrections
to field vectors and radiation friction force.

2. Initial equations and problem statement

In case of laser radiation with the circularly polarized basic mode, as
a zero approximation of expansions in a small parameter, the field vectors
are described by the formulas [17]:
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𝐸0
𝑥 = 𝑓𝐸𝑥(0)√

1 + 𝑍2
𝑒

−𝜌2
1+𝑍2 cos(𝜑 + 𝜃) = 𝐴 cos(𝜑 + 𝜃),

𝐸0
𝑦 = − 𝑓𝐸𝑥(0)√

1 + 𝑍2
𝑒

−𝜌2
1+𝑍2 sin(𝜑 + 𝜃) = −𝐴 sin(𝜑 + 𝜃).

(3)

In the formulas written out: 𝜃 = 𝜔 (𝑧
𝑐

− 𝑡) is the “fast” wave phase,

𝜑(𝜌, 𝑍) = 𝜌2𝑍
1 + 𝑍2 − arctan(𝑍) is the slow phase, 𝑓(𝜎) is the function which

takes into account the pulsed nature of the radiation, and where the parameter

𝜎 =
(𝑡 − 𝑧

𝑐)
Δ𝑡

, and Δ𝑡 is pulse duration. Dimensionless quantities are used for

the longitudinal coordinate 𝑍 = 𝑧
𝑧𝑟
, the distance from the Gaussian beam

axis in the transverse plane is 𝜌 = 𝑟
𝑎
, where 𝑟 = √𝑥2 + 𝑦2. In the first

approximation for expansions of the field vectors with respect to the small
parameter 𝜇, not only the longitudinal field components, but also corrections
to the transverse components arise in the case of sufficiently short pulses [17]:

𝐸1
𝑥 = − 𝜆𝑍

2𝜋𝑐Δ𝑡
𝐸𝑥(0)𝑓 ′

(1 + 𝑍2)3/2
√(1 − 𝜌2)2 + 𝑍2𝑒

−𝜌2
1+𝑍2 ×

× cos(arctan 𝑍
1 − 𝜌2 + 𝜌2𝑍

1 + 𝑍2 − 3 arctan(𝑍) + 𝜃) ≡ −𝐴1 cos(𝜑1 + 𝜃),

𝐸1
𝑦 = 𝜆𝑍

2𝜋𝑐Δ𝑡
𝐸𝑥(0)𝑓 ′

(1 + 𝑍2)3/2
√(1 − 𝜌2)2 + 𝑍2𝑒

−𝜌2
1+𝑍2 ×

× sin(arctan 𝑍
1 − 𝜌2 + 𝜌2𝑍

1 + 𝑍2 − 3 arctan(𝑍) + 𝜃) ≡ 𝐴1 sin(𝜑1 + 𝜃),

𝐸1
𝑧 = 2𝑓𝜌𝐸𝑥(0)

𝑘𝑎(1 + 𝑍2)
𝑒

−𝜌2
1+𝑍2 sin( 𝑍𝜌2

1 + 𝑍2 − arctan
𝑦
𝑥

− 3 arctan(𝑍) + 𝜃) .

(4)

Here 𝑓 ′(𝜎) ≡ 𝜕𝑓
𝜕𝜎

.

The relationship between the transverse components of the electric and
magnetic vectors is determined by the relations:

𝐻𝑥 = −𝐸𝑦, 𝐻𝑦 = 𝐸𝑥. (5)

There is also a longitudinal component of the magnetic field of laser radia-
tion:

𝐻1
𝑧 = 2𝑓𝜌𝐸𝑥(0)

𝑘𝑎(1 + 𝑍2)
𝑒

−𝜌2
1+𝑍2 sin( 𝑍𝜌2

1 + 𝑍2 − arctan
𝑦
𝑥

− 3 arctan(𝑍) + 𝜃) . (6)
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The relativistic electron motion in an electromagnetic field is described by
the equations:

d ⃗𝑝
d𝑡

= −𝑒 ( ⃗𝐸 + 1
𝑚𝑐𝛾

[ ⃗𝑝𝐻⃗]) + ⃗𝑓𝑟, (7)

where 𝑝 is a particle momentum vector, 𝑚 is its mass; 𝛾 = √1 + 𝑝2

𝑚2𝑐2 is

a relativistic factor (dimensionless particle energy), ⃗𝑓𝑟 is a radiation friction
force.
The laser radiation field is given by formulas (3–6). The constant magnetic

field is directed along the 𝑧 axis: ⃗𝐻0 = (0, 0, 𝐻0).
The system of equations (7) must be supplemented by an equation for the

wave phase 𝜃 which is considered as a “fast” variable:

d𝜃
d𝑡

= −𝜔 (1 − 𝑣𝑧
𝑐

) ≡ −𝜔
𝛾

𝐺. (8)

Here 𝑣𝑧 is the longitudinal velocity of the particle; and the quantity 𝐺 has
the following meaning

𝐺 ≡ 𝛾 − 𝑝𝑧
𝑚𝑐

. (9)

It follows from equation (8) that the phase 𝜃 becomes a “slow” variable

with 1 − 𝑣𝑧
𝑐

≈ 0. If 1 − 𝑣𝑧
𝑐

≫ 𝜇, then the phase 𝜃 can be considered as a “fast”
variable over which it is possible to carry out averaging. This is assumed to
perform in the future. According to the equations of motion (7), the value 𝐺
is described by the equation:

d𝐺
d𝑡

= − 𝑒
𝑚𝑐

(1 − 𝑣𝑧
𝑐

) 𝐸𝑍. (10)

This shows that in the first approximation, the quantity 𝐺 is on average
preserved and is determined by the initial conditions. It is usually assumed
that 𝐺 = 1 [1]. From the equation (10) it follows that the quantity 𝐺 can be
represented as an expansion:

𝐺 = 𝐺0 + 𝜇𝐺1 + … . (11)

Here 𝐺0 ≊ 1 is the value averaged over the fast phase, and 𝐺𝑖 are quickly
oscillating components of the quantity 𝐺.
It follows directly from the equations of motion for a particle that the

relativistic factor satisfies the equation:

d𝛾
d𝑡

= 1
𝛾(𝑚𝑐)2 ⃗𝑝(−𝑒 ⃗𝐸 + ⃗𝑓𝑟). (12)

The main task of this work is to obtain averaged equations for electron
motion using the Bogolyubov’s method [19], by averaging over the fast
oscillations of laser radiation, taking into account the averaged radiation
friction force. In their sense, the radiation friction forces are small compared
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with the effects of laser radiation. Therefore, we first consider the motion of
a particle without taking radiation losses into account.

3. Averaged equations of motion for a charged particle

The initial equations of motion for a particle (7) contain members oscil-
lating with the laser frequency, the amplitude of which is determined by
parameter (1). In the conditions under consideration, this parameter is
large. Therefore, it is impossible to carry out averaging according to the Bo-
golyubov’s method [19] using expansions in the parameter 𝑔. However, the
equations of motion also contain parameter (2) which is small. In principle,
this allows to seek a solution in the form of expansions in the parameter 𝜇.
However, it is necessary that the quickly oscillating members have small am-
plitude in order to apply the averaging method. This can be achieved if we
firstly exclude in the equations of motion the quickly oscillating members with
large amplitudes [20, 21]. In this regard, we will make the replacement of the
transverse components of the particle momentum vector, which is convenient
to use in the complex form:

𝑝 = 𝜋 + 𝐶𝑒𝑖(𝜑+𝜃). (13)

Here, 𝑝 = 𝑝𝑥 + 𝑖𝑝𝑦 is the complex transverse momentum of a particle, and

𝜋 is the complex generalized momentum. Substituting (13) into system (7),
we obtain the equation:

d𝜋
d𝑡

+ d𝐶
d𝑡

𝑒𝑖(𝜑+𝜃) + 𝑖𝐶d𝜃
d𝑡

𝑒𝑖(𝜑+𝜃) + 𝑖𝐶d𝜑
d𝑡

𝑒𝑖(𝜑+𝜃) =

− 𝑒 (1 − 𝑣𝑧
𝑐

) 𝐴𝑒𝑖(𝜑+𝜃) + 𝑖𝜔𝑐𝑜
𝛾

(𝜋 + 𝐶𝑒𝑖(𝜑+𝜃)) (1 + 𝐻𝑧
𝐻0

) . (14)

In the equation (14) the first member on the right is quickly oscillating
with large amplitude. It can be eliminated by appropriate selection of the
amplitude 𝐶 in the transformation (13). In its meaning, the amplitude 𝐶 must
be determined by the amplitude of the radiation field in zero approximation.
Then, equating the members of zero approximation in the equation (14)
considering equation (8) and expansion (11), we get:

𝐶 = −𝑖𝑒𝐴
𝜔 + 𝜔𝑐𝑜

𝐺0

. (15)

Here 𝜔𝑐𝑜 = 𝑒𝐻0
𝑚𝑐

is a classic cyclotron frequency. Thus, for the found value

of 𝐶, equation (14) for the variable 𝜋 contains only members of the first
order in the parameter 𝜇. We can obtain the following expression from the
definition of the relativistic factor, taking into account (9)

𝛾 =
1 + 𝐺2 + 𝑝2

⊥
𝑚2𝑐2

2𝐺
, (16)
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where 𝑝2
⊥ = 𝑝2

𝑥 + 𝑝2
𝑦. Given the replacement (13), we get

𝑝2
⊥ = 𝜋2

⊥ + ̄𝐶2 − 2 ̄𝐶𝜋⊥ sin(𝜑 + 𝜃 − 𝛽). (17)

Here: 𝜋2
⊥ = 𝜋2

𝑥 + 𝜋2
𝑦, 𝜋𝑥 = 𝜋⊥ cos𝛽, 𝜋𝑦 = 𝜋⊥ sin𝛽.

The value of ̄𝐶 = −𝑒𝐴
𝜔 + 𝜔𝑐𝑜/𝐺0

represents the amplitude of electron mo-

mentum oscillations in a field of laser radiation propagating along a constant
magnetic field. Amplitude 𝐴 is determined by formulas (3). After a series of
transformations, formula (16) takes the form:

𝛾 = 1
2𝐺0

+ 𝐺0
2

+
̄𝐶2

2𝐺0𝑚2𝑐2 + 𝐺1
2

−
̄𝐶𝜋⊥ sin(𝜑 + 𝜃 − 𝛽)

𝐺0𝑚2𝑐2 −
̄𝐶2𝐺1

2𝐺2
0𝑚2𝑐2 . (18)

Here the expansion
1

𝐺0 + 𝐺1
≈ 1

𝐺0
(1 − 𝐺1

𝐺0
) is taken into account. It is

also assumed that 𝜋⊥ ≪ ̄𝐶. This is a natural limitation in particle acceleration
problems. From the formula (18) it follows that the relativistic factor contains
“constant” and fast oscillating parts:

𝛾 = Γ + 𝛾1, (19)

where

Γ =
1 + 𝐺2

0 + ̄𝐶2

𝑚2𝑐2

2𝐺0
, 𝛾1 = 𝐺1

2
−

̄𝐶2𝐺1
2𝐺2

0𝑚2𝑐2 −
̄𝐶𝜋⊥ sin(𝜑 + 𝜃 − 𝛽)

𝐺0𝑚2𝑐2 . (20)

Let us further consider the equation of longitudinal motion from system (7):

d𝑝𝑧
d𝑡

= 𝑒𝐸1
𝑧 + 𝑒

𝑚𝑐𝛾
{𝑝𝑥 [ 𝑓𝐸𝑥(0)√

1 + 𝑍2
𝑒

−𝜌2
1+𝑍2 cos(𝜑 + 𝜃) + 𝐻1

𝑦 ] −

− [ 𝑓𝐸𝑥(0)√
1 + 𝑍2

𝑒
−𝜌2

1+𝑍2 sin(𝜑 + 𝜃) + 𝐻1
𝑥] 𝑝𝑦} .

After a series of transformations we get:

d𝑝𝑥
d𝑡

= 𝑒 2𝑓𝜌𝐸𝑥(0)
𝑘𝑎(1 + 𝑍2)

𝑒
−𝜌2

1+𝑍2 sin(𝜑 − arctan(𝑍) − arctan
𝑦
𝑥

+ 𝜃) +

+ 2𝑒
𝑚2𝑐2 + 𝐺2

0𝑚2𝑐2 + ̄𝐶2
[𝐺0 − 𝐺2

0𝐺1𝑚2𝑐2 − ̄𝐶2𝐺1 − 2𝐺0
̄𝐶𝜋⊥ sin(𝜑 + 𝜃 − 𝛽)

𝑚2𝑐2 + 𝐺2
0𝑚2𝑐2 + ̄𝐶2

] ×

× [𝐴𝜋⊥ cos(𝜑 + 𝜃 + 𝛽) − 𝐴1𝜋⊥ cos(𝜑1 + 𝜃 + 𝛽)−

− 𝐴 ̄𝐶 sin 2(𝜑 + 𝜃) + 𝐴1
̄𝐶 sin(arctan 𝑍

1 − 𝜌2 − 2 arctan(𝑍)) +
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+ 𝐴1
̄𝐶 sin( 2𝜌2𝑍

1 + 𝑍2 − 4 arctan(𝑍) + arctan
𝑍

1 − 𝜌2 + 2𝜃)]. (21)

We omit the members containing 𝜋⊥, and select the members that are
independent on the fast phase 𝜃. As a result, we obtain the averaged equation
of the longitudinal motion:

d ̄𝑝𝑧
d𝑡

= 𝑒2𝜆0𝑍
2𝑚𝜋𝑐2Δ𝑡Γ

𝐸2
𝑥(0)𝑓𝑓 ′

(1 + 𝑍2)2
1

𝜔 + 𝜔𝑐𝑜/𝐺0
√(1 − 𝜌2)2 + 𝑍2𝑒

−2𝜌2
1+𝑍2 ×

× sin(arctan 𝑍
1 − 𝜌2 − 2 arctan(𝑍)) . (22)

Here ̄𝑝𝑧 is the average value for the longitudinal momentum of the particle.
The right side of this equation, which has the first order of smallness in the
parameter 𝜇, describes the averaged force with which high-power pulsed laser
radiation acts on an electron in the direction of the magnetic field. A similar
expression was obtained in [15] without taking into account the external
magnetic field. However, due to the large difference between the cyclotron
frequency and the laser radiation frequency, the influence of an external
magnetic field is insignificant. As can be seen from (22), the averaged force is

due to the pulsed nature of the radiation: 𝑓 ′ ≡ 𝜕𝑓
𝜕𝜎

≠ 0.

4. Radiation friction force

The radiation friction force problem is one of the frequently discussed in
the literature [3–10]. In [6, 7], some shortcomings were noted and refinements
of the classical expression for the radiation friction force were made [1, 2]. In
the present work, the classical Lorenz–Abraham–Dirac formula is used for
the radiation friction force [1–3]:

⃗𝑓𝑓𝑟 = 2𝑒4

3𝑚2𝑐4 {[ ⃗𝐸𝐻⃗] + 1
𝑐

[𝐻⃗[𝐻⃗ ⃗𝑣]]} − 2𝑒4𝛾
3𝑚𝑐3 ⃗𝑣{( ⃗𝐸 + 1

𝑐
[ ⃗𝑣𝐻⃗])

2

− 1
𝑐2 ( ⃗𝐸 ⃗𝑣)2}.

(23)
For the longitudinal motion, the radiation friction force when electron is

moving in the laser field (3), taking into account the transformation (13), is
represented as;

𝑓𝑧 = 2𝑒4

3𝑚2𝑐4 {𝐴2 cos2(𝜑 + 𝜃) + 𝐴2 sin2(𝜑 + 𝜃) + 𝐻0
𝑐𝑚𝛾

[−𝐴 ̄𝐶 sin2(𝜑 + 𝜃)+

+ 𝐴 ̄𝐶 cos2(𝜑 + 𝜃)] − 𝑝𝑧
𝑚𝑐𝛾

[𝐴2 cos2(𝜑 + 𝜃) + 𝐴2 sin2(𝜑 + 𝜃)]}−

− 2𝑒4𝛾
3𝑚2𝑐3 𝑝𝑧{𝐴2 cos2(𝜑 + 𝜃) + 𝐴2 sin2(𝜑 + 𝜃) − 2

𝑚𝑐𝛾
[𝐴 ̄𝐶𝐻0 sin

2(𝜑 + 𝜃)−

− 𝐴 ̄𝐶𝐻0 cos
2(𝜑 + 𝜃) + 𝑝𝑧(𝐴2 cos2(𝜑 + 𝜃) + 𝐴2 sin2(𝜑 + 𝜃))]−
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− 1
𝑐2𝑚2𝛾2 [𝐴2 ̄𝐶2 sin4(𝜑 + 𝜃) + 𝐴2 ̄𝐶2 cos4(𝜑 + 𝜃) − 2𝐴 ̄𝐶𝐻0𝑝𝑧 sin

2(𝜑 + 𝜃)+

+ 2𝐴 ̄𝐶𝐻0𝑝𝑧 cos
2(𝜑 + 𝜃) + 2𝐴2 ̄𝐶2 sin2(𝜑 + 𝜃) cos2(𝜑 + 𝜃)]}.

Averaging over the fast oscillations of the radiation field and holding only
the main members, we obtain the expression for the radiation friction force
in the direction of the laser pulse propagation:

𝑓𝑎𝑣𝑧 = 2𝑒4 𝑓2𝐸2
𝑥(0)

3𝑚2𝑐4(1 + 𝑍2)
𝑒

−2𝜌2
1+𝑍2 {1 − ̄𝑝𝑍

𝑚𝑐Γ
} − 2 𝑓2𝐸2

𝑥(0)𝑒4Γ
3𝑚2𝑐3(1 + 𝑍2)

𝑒
−2𝜌2
1+𝑍2 ̄𝑝𝑍×

× {1 − 2 ̄𝑝𝑍
𝑚𝑐Γ

− 𝑒2𝑓2𝐸2
𝑥(0)

𝑚2𝑐2Γ2(1 + 𝑍2)(𝜔 − 𝜔𝑐𝑜
𝐺0

)2 𝑒
−2𝜌2
1+𝑍2 }. (24)

Expression (24) is still quite complicated. For a rough estimate, we will
assume that the particle velocity is close enough to the velocity of light. Then

the main member of this expression is −2𝐴2𝑒4Γ
3𝑚2𝑐3 ̄𝑝𝑍. From here, it can be

concluded that the radiation reaction force can be sufficiently large in the field
of high-intensity laser radiation. The calculations showed that the averaged
transverse components of the radiation friction force are absent:

𝑓𝑎𝑣𝑥 = 0, 𝑓𝑎𝑣𝑦 = 0.

This means that when a particle is moving in the transverse plane, the
radiation losses on average play no role. When a particle is moving in the
direction of radiation propagation, they can be significant in the field of
super-intense laser radiation.

5. Conclusion

An expression for the averaged force acting on a relativistic electron in the
field of an intense short laser pulse propagating along an external constant
magnetic field is obtained. This force is due to the pulsed nature of the
radiation, the description of which requires the inclusion of first-order members
in expansions with respect to a small parameter of the paraxial approximation.
It was taken into account that in the case of high-power laser radiation, the
ratio of the amplitude of the particle oscillatory velocity in a wave field to the
velocity of light can be large. To use the averaging over the fast oscillations
of laser radiation, the transverse components of the particle momentum
vector have been transformed. Thus, in the equations of motion, quickly
oscillating members with large amplitude determined by the radiation field
were eliminated. An expression was obtained for the averaged radiation
friction force determined by the classical Lorentz–Abraham–Dirac formula. It
was shown that this force in the transverse plane is zero and can be significant
in the direction of laser pulse propagation.
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A scheme of a new type optical filter, built using a relief reflective periodic
diffraction structure, which has a specific rectangular profile, is proposed. The input
radiation beam is directed to the relief structure at a certain angle of incidence.
The zero diffraction order beam is our output beam, which is separated from the
other diffraction order beams with the help of a diaphragm. The incidence-reflection
plane is parallel to the relief lines of the diffraction structure. The dependence of the
output beam power on the angle of incidence and on the wavelength of the radiation
is investigated. It is shown that the power transfer coefficient from the input to the
output of the scheme substantially depends on the wavelength of the optical beam.
The scheme can be used as an optical signal filter. The spectral characteristic of this
type of filter has an oscillating character. The zero (minimum) values of the power
transfer coefficient of radiation from the input to the output of the filter alternate
with maximum values close to unity. The spectral characteristic of the filter is easy
to change by changing the angle of incidence of the input beam to the relief reflecting
structure. Filters of this type can be built for the ultraviolet, visible, and infrared
range. Calculations of the dependence of the filter parameters on the relief depth
and on the angle of incidence of the input optical beam to the relief structure are
presented.

Key words and phrases: filtering of the optical spectrum, diffraction structure,
rearrangement of the spectral characteristics of the filter

Introduction

The need of filtering optical radiation appears in the conduction of physical
experiments and in solving technical problems, in which it is necessary to sep-
arate a useful signal with specific wavelength from the background radiation
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or eliminate a certain part of the spectrum that interferes with measure-
ments [1]. Filters based on colored glasses [2], filters built using dye solutions,
as well as filters built using multilayer dielectric coatings [3] are widely used
in practice. However, the above types of filters do not have the capability to
rearrange their spectral characteristics. To rearrange the spectral characteris-
tics is possible in acousto-optic filters [4], but it is difficult to manufacture
filters of this type, and they are expensive devices.
In this paper, we consider the spectral characteristics of optical filters

of a new type [5], which are constructed using relief reflective structures
(RRS) with a rectangular profile, with “square wave” form, whose protrusion
length is equal to depression length. The RRS profile is shown in Figure 1.
The depth of the relief structure 𝐻𝑔, usually lies in the range from half the

wavelength to several wavelengths of optical radiation in a given range. Relief
structures of this type can be fabricated on a glass substrate using the method
of photolithography and etching, and then covering the structure with metal
thin film having high reflection coefficients [6]. Also, polished metal plates
with high reflectance in a given spectral region can be used as substrates.
For example, silver or aluminum [7]. The range of wavelengths in which the
implementation of filters of this type is possible is quite wide: it includes part
of the ultraviolet range, the visible range and part of the infrared range.
A characteristic feature of filters of this type is the possibility to change

its spectral characteristics by changing the angle of incidence of the input
optical beam to RRS. The dependence of the power transfer coefficient on
the radiation wavelength, in filters of this type, has smooth shape with
a certain number of minima and maxima. At the minima, the transfer
coefficient is equal or close to zero, and at the maxima, the transfer coefficient
is equal to the reflection coefficient from the surface of the metal thin film
or a metal plate on which the RRS is located. It should be mentioned that
relief structures with a rectangular shape have been used as optical filters
before [8]. But a scheme was considered, in which the optical beam passed
through a transparent substrate, with a transparent relief structure on its
surface. For such structures, the dependence of the transmission coefficient
on the wavelength is similar to the dependences that we describe in this
paper. However, it is quite difficult to change the spectral characteristics of
the filter changing the angle of incidence, because when we change the angle
of incidence, it is necessary to rearrange the scheme. Thus, this paper focuses
on the possibility of changing the spectral characteristics of filters when the
angle of incidence of the input optical beam is changed.

1. Filter Scheme, Basic Relations for Calculating
Characteristics

The filter scheme is shown in Figure 1.
The radiation source can be a laser (1), or a light source with a collimator

forming a parallel optical beam. The radiation beam from the source is
directed to the reflecting relief structure (2) at an angle 𝜃, so that the
incidence-reflection plane is parallel to the grooves forming the RRS. After
reflection from the RRS, the radiation beam breaks down into diffraction
orders and is directed to the diaphragm (3). Only zero diffraction order passes
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the diaphragm, all higher diffraction orders are cut off. Zero order beam is
the output beam in this filter. The power transfer coefficient of the filter is
defined as

𝑘𝑝 = 𝑃0
𝑃in

, (1)

where 𝑃in is the radiation power at the input of the optical scheme, and 𝑃0 is
the zero diffraction order radiation power at the output of the optical scheme.

Figure 1. Filter scheme. 1 — radiation source, 2 — relief reflective structure (RRS),

3 — diaphragm

The spatial spectrum of an optical wave after reflection from the RRS
consists of a set of diffraction orders. In this scheme we separate only the
zero diffraction order. A detailed analysis of the spatial spectrum during the
diffraction of an optical wave by phase gratings, which create a rectangular
shape modulation of the wave-front phase, is given in [9]. We choose, in
this work, periodic reflecting gratings with rectangular profile of the “square
wave” form, in which the width of the protrusion is equal to the width of
the depression. After wave diffraction on such a structure, there are no even
orders in the spatial spectrum. The formulas for calculating the powers of
the diffraction orders are given in the appendix. From the analysis of these
formulas it follows that when the RRS depth varies in the range from zero to
several wavelengths, the power of the zero diffraction order changes from zero
to the maximum value.
For different wavelengths, and for different angles of incidence, the power

transfer coefficient from input to output of the scheme is different. Dependence
of the transfer coefficient on the radiation wavelength 𝜆, angle of incidence 𝜃,
and RRS depth 𝐻𝑔 for zero diffraction order, can be expressed by the formula:

𝑘𝑝 = 𝑃0
𝑃in

= 𝑅 (0.5 + 0.5 cos(4𝜋
𝜆

𝐻𝑔 cos 𝜃)) . (2)

Here 𝑅 is the reflection coefficient of the RRS surface.
As follows from formula (2) at a given relief depth 𝐻𝑔, and at a given angle

of incidence 𝜃, the dependence of the transfer coefficient on the wavelength 𝜆,
is determined by a function of the form: cos (𝜆−1). The transfer coefficient
can take the minimum values equal to zero and the maximum values equal to
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reflection coefficient 𝑅. If the relief structure is made on a glass substrate,
in order to obtain high values of the transfer coefficient at the maxima, we
cover the structure with a metal thin film with a high reflection coefficient 𝑅.
From formula (2) it can be derived that the zero (minimum) values of the

transfer coefficient correspond to the following wavelengths:

𝜆min =
4𝐻𝑔

(2𝑛 + 1)
cos 𝜃, (𝑛 = 0, 1, 2, … ). (3)

The maximum values of the transfer coefficient correspond to the following
wavelengths:

𝜆max =
2𝐻𝑔

𝑘
cos 𝜃, (𝑘 = 1, 2, 3, … ). (4)

As can be seen from formulas (3) and (4), the spectral characteristics of the
filter can be changed by changing the angle of incidence of the optical beam
to the RRS. But, since changing the angle of incidence of the input beam
changes the angle of the reflected optical beam, then in order to separate the
zero diffraction order in the scheme shown in Figure 1, it will be necessary to
change the position of the diaphragm (3).

As shown in Figure 2, another filter scheme is possible, in which the direction
of the output beam does not change when the angle of incidence of the input
beam changes. The input beam is directed from radiation source (1) to the
RRS (2), which is located on one of the faces of the corner reflector. A mirror
is located on the other face of the corner reflector. The angle between the
RRS plane and the mirror plane is 90∘. The beam reflected from the mirror
is directed to the diaphragm (4), which permits the passing of only the zero
diffraction order and does not permit the passing of higher orders. When the
corner reflector is rotated, the angle of incidence of the input beam changes
related to RRS. This changes the spectral characteristic of the filter. But the
direction of the output optical beam relative to the base coordinate system
and relative to the input optical beam does not change.

Figure 2. Scheme of the filter using a corner reflector. 1 — radiation source, 2 — RRS,

3 — mirror, 4 — diaphragm
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However, in practice, the use of a corner reflector limits the range of angles
of incidence of the input beam to RRS. If the angle of incidence of the input
beam is 45∘, then the point of incidence of the input beam at RRS and the
point of reflection of the beam from the mirror (3) are at the same distance
from the plane of symmetry of the corner reflector. Let us assume that the
axis of rotation of the corner reflector passes through the point of incidence of
the input beam on the RRS. Then, when the corner reflector is rotated, the
position of the point of incidence on the RRS remains unchanged, and the
reflection point at the mirror moves, and at certain angles of rotation it may
go out from the mirror limits, and as a consequence the scheme would stop
working.Thus, the scheme shown in Figure 2 has smaller range of possibilities
for changing the spectral characteristics of the filter compared with the first
scheme (Figure 1).

2. Estimated characteristics of filters based on RRS

Figure 3 shows the dependence of the transmission coefficient on the
wavelength, estimated for RRS with a relief depth of 𝐻𝑔 = 0.4 𝜇𝑚 at three

values of the angle of incidence (20∘, 40∘, 60∘).

Figure 3. Dependence of the normalized transmission coefficients of the filters on the

incident beam wavelength. The upper graph (a) corresponds to the depth 𝐻𝑔 = 0.4 𝜇𝑚 at

different angles of incidence 𝜃 = 20∘, 40∘ and 60∘. The bottom graph (b) corresponds to the

depth 𝐻𝑔 = 1 𝜇𝑚, at angles of incidence 𝜃 = 20∘ and 40∘
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The curves are normalized, i.e. the vertical axis represents the value

𝑘(N)
𝑝 = 𝑘𝑝/𝑅. In other words, the curves correspond to the transfer coefficient,
provided that the reflection coefficient of the RRS surface would be equal
to unity. As can be seen from the graphs, even with small changes in the
angle of incidence, it is possible to obtain significant changes in the spectral
characteristics of the transfer coefficient. For example, you can set the task:
to completely suppress a certain wavelength. Substituting the value of the
wavelength in the formula (3), we calculate the angle at which the transfer
coefficient will be zero. Thus we find the solution to this problem. Practically
fine tuning of the angle of incidence can be carried out according to the
measurement result of the output signal.
Analyzing the dependencies presented in the graphs, you can notice the

following features:

— the number of maxima and minima in a certain range of wavelengths
increases with increasing of the RRS depth;

— the distance between adjacent maxima and minima decreases with de-
creasing of wavelength;

— as the angle of incidence increases, the minima and maxima of the curves
move toward shorter waves.

At RRS depths more than 1 micron, the curves have several minima and
maxima in the visible region of the spectrum.
In order to get a more general idea of the positions of the maxima and

minima in a wide wavelength region and for different angles of incidence of the
input beam, we constructed the diagrams of the positions of the maxima and
minima on the plane of the coordinates 𝜆−𝜃, which are shown in Figure 4(a,b).
Using the diagrams given in Figure 4(a,b), it is easy to estimate how the

spectral characteristic of the filter changes as the angle of incidence of the
input optical beam changes. If we draw a horizontal line at a given angle
of incidence, then the projections onto the horizontal axis of the points of
its intersection with the lines of maxima and minima give the corresponding
coordinates of minima and maxima in the dependence of the transfer coefficient

on the wavelength (𝑘(N)
𝑝 (𝜆)).

The longest wavelength corresponding to a minimum of the dependence

(𝑘(N)
𝑝 (𝜆)), at a certain angle of incidence 𝜃, can be determined by setting 𝑛 = 0

in expression (3). This wavelength is: 𝜆min (𝑛 = 0) = 4𝐻𝑔 cos 𝜃. In the region
of wavelengths exceeding this 𝜆min, the curve (𝑘(N)

𝑝 (𝜆)) have a monotonic

increasing character and asymptotically tend to the level (𝑘(N)
𝑝 (𝜆)) = 1. At

a wavelength equal to 𝜆max (𝑘 = 1) = 2𝐻𝑔 cos 𝜃 is located the maximum of

the transfer coefficient closest to the longest wavelength corresponding to
minimum (𝜆min (𝑛 = 0)). In the region of wavelengths exceeding 𝜆max(𝑘 =
1) = 2𝐻𝑔 cos 𝜃, we observe a smooth curve with one minimum.

In the region where the wavelength satisfies the condition 𝜆 ≪ 2𝐻𝑔 cos 𝜃,
there are frequent oscillations of the transfer coefficient as the radiation
wavelength changes. Using this region you can build a filter that suppresses
one radiation wavelength and passes another radiation wavelength, and these
wavelengths are close to each other. As an example, we give the characteristic
of the filter, using the RRS with a depth of 3 microns. Figure 5 shows the
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dependence of the transmission coefficient on the wavelength of such a filter
at two different angles of incidence.

Figure 4. (a, b). Diagram of the positions of the maxima and minima of the output beam

power in the zero diffraction order, on a scale of wavelengths, depending on the angle of

incidence of the optical beam, for a relief depth equal to: 0.4 𝜇𝑚 (a) and 1 𝜇𝑚 (b). The

solid lines indicate the positions of the minima, and the dotted lines indicate the positions of

the maxima

Figure 5. (a, b). Dependence of the transmission coefficient of the filter constructed using

RRS on the radiation wavelength. Graph (a): 𝐻𝑔 = 3 𝜇𝑚, 𝜃 = 31.35∘. Graph (b):

𝐻𝑔 = 3 𝜇𝑚, 𝜃 = 35.53∘
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Let us assume that an argon laser beam is directed to our filter. It is known
that the argon laser has two strong emission spectral lines: at 0.488 𝜇𝑚 and
at 0.514 𝜇𝑚 [10]. When the angle of incidence is 𝜃 = 31.35∘, radiation with
0.488 𝜇𝑚 wavelength will not pass to the output of the filter, and for radiation
with 0.514 𝜇𝑚 wavelength the normalize transfer coefficient will be close to 1.

If you change the angle of incidence and set it equal 𝜃 = 35.53∘, then
the situation will change to the opposite. The transmission coefficient at
a wavelength of 0.514 𝜇𝑚 will be equal to zero, and the transmission coefficient
at a wavelength of 0.488 𝜇𝑚 will be close to the maximum.

It should be noted that the part of the radiation power that did not pass
to the filter output in the zero diffraction order is distributed between the
first and higher diffraction orders and is absorbed by the diaphragm.
Consider another example of constructing a filter for wavelength ranges of

part of the visible and ultra violet light. As a light source we will consider
a mercury lamp. The spectrum of a mercury lamp contains a series of lines with
wavelengths in the range from 280 nm to 630 nm [11]. These wavelengths are
indicated by thin vertical lines in Figure 6, which also shows the theoretical
dependences of the transmission coefficient of two kinds of filters on the
wavelength. The filter of the first type, whose spectral characteristic is drawn
with a dotted line, is made as a RRS on the surface of a polished aluminum
plate, which reflectance is about 90%. This filter can pass two groups of
lines: one in the region 280–320 nm and the other in the region 540–620 nm.
At the same time, the intensity of the lines in the region of 360–440 nm is
significantly reduced. The filter of the second type, the spectral characteristic
of which is drawn by a solid line, is made on the surface of a polished silver
plate. The reflection coefficient of silver in the region of wavelengths less than
350 nm has a sharp decline. With this in mind, the transmission coefficient
of this type of filter has a much smaller value in the region of 280–320 nm
compared with the transmission coefficient of the filter of the first type. In
both types of filters, the relief depth was assumed to be 405 nm and the angle
of incidence was 41.4∘.

Figure 6. Dependence of the transmission coefficients of the two types of filters built using

RRS on the wavelength. The RRS depth is 405 nm. The angle of incidence of the radiation

is 41.4∘. The solid line corresponds to the RRS on a silver plate, and the dotted line

corresponds to the RRS on an aluminum plate
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Parameters such as the RRS period and the diameter of the optical beam
are not directly included in the above calculation formulas, therefore, we will
discuss here suggestions for choosing these parameters.
The period of the diffraction structure must be significantly longer than the

maximum wavelength of the wavelength range in which the filter is supposed
to be used. The transverse size of the optical beam must be several times
greater than the radiation wavelength, in order for the diffraction beams
directions of zero and first orders to be successfully separated in space.
For separation of diffraction beams at the plane of the diaphragm, it is

necessary that the distance from the RRS to the diaphragm satisfy the
condition:

𝐿 = 𝑝 𝐷Λ
𝜆

, (5)

𝐿 is the distance from the RRS to the diaphragm, 𝐷 is the diameter of the
optical beam, Λ is the period of the diffraction structure, the number 𝑝 is the
safety factor (no less than 2), which is necessary to prevent penetration of
the radiation beams of the first orders of diffraction into the aperture of the
diaphragm.

Conclusion

Filters based on RRS have a number of positive properties. Their spectral
characteristics can be easily changed by changing the angle of incidence of the
optical beam to the RRS. The design of the filter is quite simple. The relief
structure is fabricated using well-developed photolithography and etching
technologies. For the manufacture of filters designed to work in the infrared
wavelength range, there is no need to use special materials. Regular polished
metal plates are quite suitable: aluminum, copper, silver. The transfer
coefficient at the maximum is equal to the reflection coefficient of the RRS
surface.
Also, we should mention a number of disadvantages of filters of this type.

The spectral characteristics of filters of this type are smooth. Their shape is
far from rectangular. In this respect they cannot be compared with widely
known filters based on multilayer dielectric structures. As can be seen from
the principle of operation, filters based on the RRS will work well when
they are irradiated by directed laser beams with a small divergence. The
question of the interaction of diverging beams with a filter of this type was
not considered in this paper.

Appendix

As a result of the reflection of a coherent optical beam from a relief
structure, which has a rectangular profile with “square wave” form, a spatial
phase modulation of the wave front takes place. The phase modulation
function form is rectangular, and the amplitude of this function is equal to:

Φ𝑀 = 2𝜋
𝜆

𝐻𝑔 cos 𝜃.
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The function of the wave front phase modulation can be expressed as:

𝑓(𝑥) = 𝑒𝑖Φ(𝑥), where Φ(𝑥) =
⎧{
⎨{⎩

Φ𝑀, if Λ
2 + 𝑘Λ > 𝑥 > 0 + 𝑘Λ,

−Φ𝑀, if 0 + 𝑘Λ > 𝑥 > −Λ
2 + 𝑘Λ,

𝑘 = 0, 1, 2, 3, …

We find the spatial spectrum of the coherent optical wave after reflection
from the relief structure applying the Fourier transform to this expression.
The spatial spectrum consists of a zero order and a set of diffraction orders
at spatial frequencies that are multiple of the spatial frequency 𝜉 = Λ−1.
The expressions for the Fourier coefficients are:

𝐶0 = cosΦ𝑀, 𝐶1 = 2
𝜋
sinΦ𝑀, 𝐶𝑚 = 1

𝑚𝜋
(sinΦ𝑀 − sin(Φ𝑀 + 𝜋𝑚)).

The ratio of the radiation power in one diffraction order to the input
radiation power 𝑃in is equal to the square of the corresponding Fourier
coefficient (assuming that there are no losses).
In particular, the ratio of the power in zero diffraction order to the power at

the input of the diffraction structure (provided that the reflection coefficient
is 100%) is:

𝑃0
𝑃in

= cos2 Φ𝑀 = 0.5 + 0.5 cos 2Φ𝑀 = (0.5 + 0.5 cos(4𝜋
𝜆

𝐻𝑔 cos 𝜃)) .
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Forest fires lead to the serious damage of ecological state and national economy
of the country. This problem is especially relevant for Siberians. According to
Greenpeace, Siberian forest fires in 2019 reached record levels in the entire history of
observation in terms of burning area and the amount of carbon dioxide emitted into
the atmosphere. It leads not only to a deterioration in the health of Siberians, but
also to environmental problems of the region. Note that the large-scale fire-prevention
measures entails enormous financial costs. Therefore, economical, ecological and
mathematical modeling of the situations, arose in forest fires countering, becomes
actual.
The paper is devoted to optimal control problem of forest fires fighting. Its

prototype is the well-known Parks model. To investigate the model, we apply the
modern programming language Julia, which is designed to mathematical calculations
and numerical studies. We made an extensive computational experiment in this
model and a numerical analysis of corresponding optimal control problems. The
obtained results were examined both on the adequacy of the model, and on the
possibility of using the Julia language and the included solvers of mathematical
problems.

Key words and phrases: forest fires fighting, mathematical modeling, optimal
control, numerical analysis, Julia programming language

1. Introduction

The Irkutsk Region is one of the largest constituent entities of the Russian
Federation. Its area is about 774.846 square km., it is slightly less than
the area of the Republic of Turkey (780.580 sq. km.), and also exceeds the
territory of France, Germany and many other European countries. Most
of the territory of the Irkutsk region, namely 71.5 million hectares, or 92%
of its territory, is occupied by the forest. About 12% of timber reserves of
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ripe forests of the country are concentrated here, and the share of especially
valuable coniferous species is significant even on the scale of the planet.
According to the press service of the Ministry of Emergency Situations of

Russia, on July 28, the 143 forest fires with a total area of 597,298 hectares are
active in the Irkutsk Region. Totally, in Siberia and the Far East, forest fires
are burning in the area comparable to Belgium. Of course, such an essential
loss of natural resources leads to negative environmental, economic and social
consequences [1–3]. For instance, in the work [2] it was established that
during intensive burning of the taiga, the concentration of carbon monoxide
increases by almost 30 times in comparison with the background content
in the air, methane by 2 times, carbon dioxide in 8%. Such exceedences
lead to the health deterioration of the inhabitants of the Irkutsk region [3].
In addition, due to the annual, large-scale forest fires blazing near Lake
Baikal, chemical components, such as ammonium, expedite the reproduction
of various microorganisms that destroy the aquatic ecosystem of the Baikal
region.
The most important problem in forest fires fighting, besides the protecting

of people’s lives, is a quick and effective fire suppression, planned to minimize
the total damage. Controlling of the process of suppression, transportation
of forces to the place of fire is made by employees of forest protection or-
ganizations. In the most cases they make decisions based on their personal
experience. But even with experience, defining an optimal fire fighting plan
is, often, a quite difficult task. For many years, scientists have been study-
ing models that allow them to find optimal solutions of fire fighting forces
control under an active forest fire. These attempts are being made to take
into account the characteristics of the spread of fire, the capabilities of the
available fire-fighting forces and equipment, topographic features and other
factors. Here we mention works [4–16]. Note that the papers [4, 5] continues
the research originated in [7, 8].
The analysis of some foreign works on the subject [9–11] shows that more

investigations use modern programming languages, such as Python, R, Java,
and so on. These software products are applied to analyze and visualize the
data. Actually, it improves the quality of the research. However, despite
a sufficient number of software tools, in explorations of Russian scientists
such products are not so widely used as abroad. In this paper, we apply
rather new universal programming language Julia [17]. Its development was
begun by scientists in 2009, and its first version was published in 2012. The
research uses the latest version of Julia, presented in 2018. Julia is a modern
high-level programming language with dynamic typing for mathematical
calculations, which is used to develop research software, approbation and test
of new problem-solving methods. The essential advantages of this language
are simple syntax and speed of program execution. It is often chosen by
astronomers, robotics and financiers. In the computational experiment, the
IPOPT (Interior Point OPTimizer) package is used. This package is meant
to numerical solving of optimization problems of a large dimension.

2. Problem statement

The paper focuses on the optimization model for the dispatching and
withdrawal of fire-fighting forces to the place of a forest fire [6, 8]. After
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certain transformations, it can be written as the following optimal control
problem (𝑃 ):

𝐽 = ∫
𝑡𝑐

𝑡𝑎

(2𝐶𝑆𝑢2(𝑡) − 𝛼(𝑡)𝑥(𝑡) + 𝛽(𝑡))𝑑𝑡 + 2𝐶𝑆𝑥(𝑡𝑐) → min,

̇𝑥 = 𝑢1 − 𝑢2,
𝑥(𝑡𝑎) = 𝑥𝑎,

−𝑚 ⩽ 𝑢1(𝑡) − 𝑢2(𝑡) ⩽ 𝑀, 𝑢1(𝑡) ⩾ 0, 𝑢2(𝑡) ⩾ 0,
0 ⩽ 𝑥(𝑡) ⩽ 𝑋,

𝑔(𝑡𝑐, 𝑥(𝑡𝑐)) = 𝑥(𝑡𝑐) − 𝑟(𝑡𝑐)
𝐸(𝑡𝑐 − 𝑡𝑎)

= 0,

where 𝛼(𝑡) = 𝐶𝐵𝐸(𝑡 − 𝑡𝑎) − 𝐶𝑋 and 𝛽(𝑡) = 𝐶𝑇 + 𝐶𝐵𝑟(𝑡).
The state variable 𝑥(𝑡) denotes the size of the fire fighting force at the

moment 𝑡. The pair of control variables 𝑢1(𝑡) and 𝑢2(𝑡) represent dispatching
and withdrawal rates of the reinforcements at the time 𝑡, respectively. The
trajectory 𝑥(⋅) is supposed to be a piecewise smooth function, while the
control functions 𝑢1(⋅), 𝑢2(⋅) are piecewise continuous.
Let us give an economical interpretation of model’s parameters:

— 𝑡𝑎 and 𝑡𝑐 are the time moment of initial attack and the final time moment,
when the fire is brought under control, respectively; 𝑡𝑐, in general, is
supposed to be non-fixed;

— 𝑟(𝑡) is a function of the fire spread rate in the absence of fire fighting
forces;

— 𝐶𝑆 is the cost to transportation (i.e., dispatching or withdrawal) of fire
fighting forces (currency unit per force unit);

— 𝐶𝑇 is the parameter characterizing the loss of the forest during uncon-
trolled burning per time unit (currency unit per time);

— 𝐶𝐵 is the cost per unit area of forest damaged by fire (currency unit per
area unit);

— 𝐶𝑋 is the cost of the fire-fighting (currency unit per unit of forces – time);
— 𝑚 is the maximal rate of fire-fighters withdrawal (force unit per time);
— 𝑀 is the maximal rate of fire-fighters dispatching (force unit per time);
— 𝐸 is the ratio of the effectiveness of fire fighting in this area (unit of

forces per time);
— 𝑥𝑎 is the initial attack force (force unit);
— 𝑋 is the maximal limit of fire fighting forces (force unit).

We point out some features of problem (𝑃 ). This linear optimal control
problem contains

a) the terminal state constraint in the form of equality, and
b) the pointwise state constraint.

These features significantly complicate the analytical investigation of prob-
lem (𝑃 ), even under the linearity of the dynamical system [8]. In the mentioned
work, the problem was analyzed using the Pontryagin Maximum Principle [18].
As a result, the author of [8] gave an explicit formula for the optimal control,
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which depends on values of two unspecified parameters: the final time 𝑡𝑐 and
the scalar Lagrange multiplier 𝜆 which corresponds to the terminal state con-
straint. For a further specification of the optimal control, it was proposed
to use a grid search of proper values of the unknown parameters. Then, the
optimality conditions should be checked for each choice of 𝑡𝑐 and 𝜆.
Our paper is devoted to the numerical investigation of problem (𝑃 ). We

use the so-called “direct approach”, i.e., an approach to the study of optimal
control problems, when the total discretization of the dynamic optimization
problem is applied. Further, the obtained problem is solved by methods and
tools of mathematical programming. This approach is often criticized by
experts in the field of optimal control, but it often turns out to be effective in
solving practical optimization problems.
At the discretization stage of problem (𝑃 ), we apply the explicit Euler

scheme, firstly reducing problem (𝑃 ) to the Mayer form. We introduce an
unessential state variable 𝑦, which derivative coincides with the integrand of
the cost functional 𝐽 (the initial condition for 𝑦 is trivial). The problem may
be rewritten as follows (problem (𝑃1)):

𝐽 = 𝑦(𝑡𝑐) + 2𝐶𝑆𝑥(𝑡𝑐) → min,

̇𝑥 = 𝑢1 − 𝑢2,
̇𝑦 = 2𝐶𝑆𝑢2 − 𝛼(𝑡)𝑥 + 𝛽(𝑡),
𝑥(𝑡𝑎) = 𝑥𝑎, 𝑦(𝑡𝑎) = 0,

−𝑚 ⩽ 𝑢1(𝑡) − 𝑢2(𝑡) ⩽ 𝑀, 𝑢1(𝑡) ⩾ 0, 𝑢2(𝑡) ⩾ 0,
0 ⩽ 𝑥(𝑡) ⩽ 𝑋,

𝑔(𝑡𝑐, 𝑥(𝑡𝑐)) = 𝑥(𝑡𝑐) − 𝑟(𝑡𝑐)
𝐸(𝑡𝑐 − 𝑡𝑎)

= 0,

𝛼(𝑡) = 𝐶𝐵𝐸(𝑡 − 𝑡𝑎) − 𝐶𝑋, 𝛽(𝑡) = 𝐶𝑇 + 𝐶𝐵𝑟(𝑡).
Note that problems (𝑃 ) and (𝑃1) are equivalent to each other. Meanwhile,

problem (𝑃1) contains the terminal and pointwise state conditions as well.

3. Numerical analysis

Let us consider a discrete analogue of problem (𝑃1) using the direct Euler
scheme. Here we suppose that the final time moment 𝑡𝑐 is given. Introduce the
𝑁-point grid of the time interval [𝑡𝑎, 𝑡𝑐]: 𝑡𝑎 = 𝑡0 < 𝑡1 < … < 𝑡𝑁−1 < 𝑡𝑁 = 𝑡𝑐.

As usual, the time lag is calculated as ℎ = 𝑡𝑁 − 𝑡0
𝑁

. Discrete problem (𝑃𝑑)
takes the following form:

𝐽 = 𝑦(𝑡𝑁) + 2𝐶𝑆𝑥(𝑡𝑁) → min;

𝑥(𝑡𝑘+1) = 𝑥(𝑡𝑘) + ℎ[𝑢1(𝑡𝑘) − 𝑢2(𝑡𝑘)],

𝑦(𝑡𝑘+1) = 𝑦(𝑡𝑘) + ℎ[2𝐶𝑆𝑢2(𝑡𝑘) − 𝛼(𝑡𝑘)𝑥(𝑡𝑘) + 𝛽(𝑡𝑘)],
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𝑥(𝑡0) = 𝑥𝑎, 𝑦(𝑡0) = 0,
−𝑚 ⩽ 𝑢1(𝑡𝑘) − 𝑢2(𝑡𝑘) ⩽ 𝑀, 𝑢1(𝑡𝑘) ⩾ 0, 𝑢2(𝑡𝑘) ⩾ 0,

𝑘 = 0, 1, … , 𝑁 − 1;
0 ⩽ 𝑥(𝑡𝑘) ⩽ 𝑋, 𝑘 = 0, 1, … , 𝑁;

𝑔(𝑡𝑁, 𝑥(𝑡𝑁)) = 𝑥(𝑡𝑁) − 𝑟(𝑡𝑁)
𝐸(𝑡𝑁 − 𝑡0)

= 0,

where
𝛼(𝑡) = 𝐶𝐵𝐸(𝑡 − 𝑡0) − 𝐶𝑋, 𝛽(𝑡) = 𝐶𝑇 + 𝐶𝐵𝑟(𝑡).

Here, we use the previous notations for state and control variables and
parameters of the problem. Furthermore, note that we have the sequences
{𝑢1, 𝑢2}, {𝑥, 𝑦} thought as control and state, respectively:

𝑢1 = {𝑢1(𝑡)}, 𝑢2 = {𝑢2(𝑡)}, 𝑡 = 𝑡0, 𝑡1, … , 𝑡𝑁−1,

𝑥 = {𝑥(𝑡)}, 𝑦 = {𝑦(𝑡)}, 𝑡 = 𝑡0, 𝑡1, … , 𝑡𝑁.
Notice that (𝑃𝑑) is a linear programming problem. It contains 4𝑁 variables

and 8𝑁 + 1 conditions.
We have tested more than 30 variants of the parameters of problem (𝑃𝑑).

Some of them were unsuccessful. Such outcomes we associate with the absence
of admissible plans of the problem. We think that the choice of values of the
final time moment 𝑡𝑐 was improper in certain trials.
Let us show the results of certain numerical experiments. Here, we present

some interesting examples. Each of them is accompanied by a table indicating
the values of the parameters. Illustrations are arranged as follows: on the
upper graph, the trajectory component 𝑥(𝑡) is depicted, and on the lower
graphs we show controls 𝑢1(𝑡) and 𝑢2(𝑡), from left to right, respectively.

3.1. The first group of examples: the rate of fire spread is constant

Example 1. The parameters of problem (𝑃𝑑) are presented in Table 1.

Table 1

Parameters for Example 1

Parameter 𝑡0 𝑡𝑁 𝑁 𝐶𝑠 𝛼 𝛽 𝑚 𝑀 𝐸 𝑟 𝑥0 𝑋
Value 0 22 1000 10 1 5 30 30 1 50 2 1000

Let us give an interpretation of the found solution (see Figure 1). The
corresponding value of the cost functional 𝐽 ≈ 75.
The initial attack force at the moment 𝑡𝑎 is characterized by 𝑥0 = 2.

The high rate of fire spread (𝑟 ≡ 50) compels us to use the maximum
speed dispatching of new fire fighting forces. Then, the value of forces
takes a turnpike state 𝑥 ≈ 32, and we keep it up to the time of withdrawal.
The initial and final time intervals are characterized by maximum values of
dispatching (𝑢1) and withdrawal (𝑢2) speeds.



A.P. Sukhodolov, P.G. Sorokina, A. P. Fedotov, Numerical analysis… 159

Figure 1. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 1

Note that the state constraints on 𝑥(𝑡) are inactive in this example (the
contrary case is shown by the Example 3).

Example 2. We decrease some parameters: the rate of fire spread 𝑟, the
maximal rate of fire-fighters withdrawal 𝑚, the final time 𝑡𝑐. The updated
data is shown in Table 2.

Table 2

Parameters for Example 2

Parameter 𝑡0 𝑡𝑁 𝑁 𝐶𝑠 𝛼 𝛽 𝑚 𝑀 𝐸 𝑟 𝑥0 𝑋
Value 0 10 1000 5 1 5 1 30 1 5 2 100

The solution is presented on Figure 2. It refers to the high speed of
withdrawal fire forces at the final period. The most effective attack needs
only forces in the place (at the initial time). In this case the optimal value of
the cost functional is 𝐽 ≈ 51.

Figure 2. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 2

Note that control 𝑢1 is rather close to zero, and we look at its graph as
computational error.
Although the value of fire-fighting forces in the place is decreased to

𝑋 = 100, the pointwise state constraints remain inactive.
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Table 3

Parameters for Example 3

Parameter 𝑡0 𝑡𝑁 𝑁 𝐶𝑠 𝛼 𝛽 𝑚 𝑀 𝐸 𝑟 𝑥0 𝑋
Value 0 100 1000 10 10 1 30 30 1 5 2 1000

Example 3. We essentially increase the time interval and change values
of 𝛼 and 𝛽, and some other parameters (see Table 3).
Figure 3 shows that the pointwise state constraint becomes active. The

trajectory graph means increasing of the initial value of forces 𝑥0 = 2 to the
maximal level 𝑋 = 1000. Herewith, both controls 𝑢1 and 𝑢2 take maximum
values on the initial and final time intervals, respectively.

Figure 3. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 3

3.2. The second group of examples: the variable rate of fire spread

Here, we suppose that the rate of fire spread increases by the following law:

𝑟(𝑡) = {
1, 𝑡 ∈ [1, 6],
15, 𝑡 ∈ (6, 12].

Also, we fix a number of time-grid points 𝑁 = 300.
Note that problem (𝑃 ) was investigated in [5], where some features (ad-

vantages and shortcomings) of the model were indicated. Particularly, the
author said that the optimal solution is characterized by three stages of con-
trol. The first of them corresponds to the maximum speed of fire fighting
forces dispatching. On the second stage all involved forces fight with the fire.
And then, fire fighters are withdrew with the maximal rate. The previous
examples correspond to this consequence.
However, even linear problems of dynamic optimization admit “singular”

intervals of control, where the last one can take intermediate values. In
particular, the considered model is able to contain such intervals. This feature
is illustrated by the following examples.

Example 4. The data of the problem is presented in Table 4.
Consider Figure 4.
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Table 4

Parameters for Example 4

Parameter 𝑡0 𝑡𝑁 𝐶𝑠 𝐶𝑡 𝐶𝑏 𝐶𝑥 𝑚 𝑀 𝐸 𝑥0 𝑋
Value 0 12 1 0 0 0 3 3 1 0 10

Figure 4. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 4

One can see that control 𝑢1 takes intermediate values of admissible set
[0; 3]. Note that the “jump” of control 𝑢2 is inessential, and its values are
close to zero, in fact.
The found solution admits the following conclusions.
On the first stage, when a fire spreading rate 𝑟 = 1, the most effective

fire extinguishing strategy was achieved at the time point 𝑡 = 6. The fire
was localized. However, a significant increase in the rate of fire spread (up
to the level 𝑟 = 15) required the use of additional forces (such a situation,
for example, is due to the weather deterioration). The short time of the
pause in dispatching of fire-fighters is associated with an excess of the cost of
transporting fire forces in comparison with the damage of the action of fire.
In this example, the pointwise state constraint was again inactive.

Example 5. Minor changes of parameters 𝐸 and 𝑥0 entail certain changes
in the controls (see Table 5 and Figure 5). Note, there are also time intervals
with intermediate values of the controls.

Table 5

Parameters for Example 5

Parameter 𝑡0 𝑡𝑁 𝐶𝑠 𝐶𝑡 𝐶𝑏 𝐶𝑥 𝑚 𝑀 𝐸 𝑥0 𝑋
Value 0 12 1 0 0 0 3 3 1,1 1 10

In order to localize the fire, the fire prevention forces increased gradually.
It is noteworthy that the found solution contains two “turnpike” intervals [19].
These intervals are characterized by the constancy of the trajectory on the
plot of the function 𝑥. Each of them corresponds to the fire spread rate levels
𝑟 = 1 and 𝑟 = 15, respectively. The graph of control of 𝑢2 is close to zero (we
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assume, as before, the depicted “blow-ups” are computational errors). At the
same time, the descending control peaks of 𝑢1 are currently not explicable by
the authors and require additional analysis.

Figure 5. Graphs of optimal trajectory (a) and optimal controls (b, c) in Example 5

4. Conclusion

Modern mathematical methods and tools are currently very accessible for
applied research. Of course, their use requires certain skills and understanding
of the field of research. The article shows how using the Julia programming
language one can numerically investigate some applied mathematical models
and solve the corresponding optimization problems.
The results of the experiments are very interesting. Examples 1–3 illustrate

rather obvious strategies of forest fire fighting, which applied on practice.
Note that the results of calculations for example 2 correspond to the behavior
of decision makers in the north of the Irkutsk region. Such tactics, of the
non-attraction of additional countervailing forces, is substantiated by the
economic inefficiency of them.
Examples 4, 5 also interesting from an applied point of view, are entertaining

by mathematics view as well. Apparently, their solutions contain the trunk
modes of dynamic systems (in the last example one can see two turnpike
intervals) [19]. The noted finding requires further study with the involvement
of the corresponding mathematical apparatus.
Further research will be associated with a more detailed analytical study of

the obtained results, consideration of nonlinear modifications of the presented
model and more complicated statements of optimization problems.
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