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Heavy outgoing call asymptotics for retrial queue
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In this paper, we consider a single server queueing model M |M |1|N with two
types of calls: incoming calls and outgoing calls, where incoming calls arrive at the
server according to a Poisson process. Upon arrival, an incoming call immediately
occupies the server if it is idle or joins an orbit if the server is busy. From the
orbit, an incoming call retries to occupy the server and behaves the same as a fresh
incoming call. The server makes an outgoing calls after an exponentially distributed
idle time. It can be interpreted as that outgoing calls arrive at the server according
to a Poisson process. There are N types of outgoing calls whose durations follow
N distinct exponential distributions. Our contribution is to derive the asymptotics
of the number of incoming calls in retrial queue under the conditions of high rates
of making outgoing calls and low rates of service time of each type of outgoing
calls. Based on the obtained asymptotics, we have built the approximations of the
probability distribution of the number of incoming calls in the system.

Key words and phrases: retrial queueing system, incoming calls, outgoing calls,
asymptotic analysis method, Gaussian approximation

1. Introduction

Retrial queueing systems are characterized by the following distinctive fea-
ture: a customer who cannot receive service remains in the system and tries to
occupy the server after some random delay. The pool of unsatisfied customers
is called the orbit. Retrial queues have applications in telecommunication,
computer networks and in daily life [1, 2].
In retrial queues idle time of the server is the downtime and it should be

reduced to increase the efficiency of the system. We consider systems where
operator not only receives calls from outside but also makes outgoing calls

© NazarovA., Paul S., LizyuraO., 2019
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in the idle time. In queueing theory a model with this feature have been
considered previously [3]. However, the retrial behaviour of customers is not
taken into account. In call centers operators could receive arriving calls but as
soon as they have free time and are standby mode they could make outgoing
calls [4–7]. Systems with this server behaviour are called retrial queues with
two way communication. Retrial Queues with two way communication have
been studied recently [8–11]. In these papers Markovian models with two
way communication were considered. Model of retrial queue with two way
communication and multiple types of outgoing calls was considered by Sakurai
and Phung-Duc [12]. For this model numerical algorithm of calculating joint
stationary distribution of system state was obtained. Multiserver retrial
queue with two way communication was studied in [13]. Recently the two
way communication retrial queues with finite source [14], with server-orbit
interaction [15, 16], with finite orbit [17], with breakdowns [18] and with
a constant retrial rate [19] were considered.
Asymptotic analysis methods have applications in queueing theory. Nazarov,

Paul and Gudkova propose an asymptotic analysis method to research
M |M |1|1 retrial queue with two way communication under low rate of retri-
als condition [20]. Nazarov, Paul and Phung-Duc extended this model to
MMPP|M |1|1 retrial queues and derived asymptotics in heavy outgoing call
conditions [21].
In this paper, we consider retrial queue with two way communication and

multiple types of outgoing calls. We assume that each type of outgoing calls
has different rate and service times follow distinct exponential distributions.
The main aim of this paper is to derive asymptotics for the model in two limit
conditions: i) high rate of outgoing calls and ii) low service rate of outgoing
calls. In both cases, the number of incoming calls in the system increases.
The rest of the current paper is organized as follows. In Section 2 and 3, we

describe the model in detail and preliminaries for later asymptotic analysis.
In Section 4 and 5, we present our main contribution to the model. In Section
6 we show the ranges of parameters under which our approximations are
usable. Section 7 is devoted to concluding remarks.

2. Model and preliminaries

2.1. Model description

Figure 1 shows the structure of the model.

We consider a single server retrial queue with two way communication
and multiple types of outgoing calls. Incoming calls arrive at the system
according to a Poisson process with rate λ and try to occupy the server
for an exponentially distributed time with rate µ1. Incoming calls that find
the server busy join the orbit and repeat their request for service after an
exponentially distributed time with rate σ. When the server is idle it makes
an outgoing call of type n in an exponentially distributed time with rate
αn. There are N types of outgoing calls whose durations follow N distinct
exponential distributions. We assume that the durations of outgoing calls of
type n follow the exponential distribution with rate µn.
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Figure 1. Markovian retrial queue with two way communication and multiple types

of outgoing calls

2.2. Problem definition

Let k(t) denote the state of the server at the time t > 0,

k(t) =


0, if the server is idle,

1, if an incoming call is in service,

n, if an outgoing call of type n is in service, n = 2, N + 1.

Let i(t) denote the number of incoming calls in the system at the time t. It
is easy to see that process {k(t), i(t)} forms a continuous time Markov chain.
We assume that the Markov chain is ergodic and the stationary distribution
of {k(t), i(t)} exists.
Let P{k(t) = k, i(t) = i} = Pk(i) denote the stationary probability distri-

bution of the system state which is the unique solution of Kolmogorov system
of equations:

−

[
λ+ iσ +

N+1∑
n=2

αn

]
P0(i) + µ1P1(i+ 1) +

N+1∑
n=2

µnPn(i) = 0,

− (λ+ µ1)P1(i) + λP1(i− 1) + λP0(i− 1) + iσP0(i) = 0,

− (λ+ µn)Pn(i) + λPn(i− 1) + αnP0(i) = 0, n = 2, N + 1.

(1)

Let Hk(u) denote the partial characteristic functions Hk(u) =
∞∑
i=0

ejuiPk(i),

k = 0, N + 1, where j =
√
−1. Multiplying equations of system (1) by ejui

and taking the sum over i yields
−

[
λ+

N+1∑
n=2

αn

]
H0(u) + jσH ′

0(u) + µ1e
−juH1(u) +

N+1∑
n=2

µnHn(u) = 0,

− (λ+ µ1)H1(u) + λejuH1(u) + λejuH0(u)− jσH ′
0(u) = 0,

− (λ+ µn)Hn(u) + λejuHn(u) + αnH0(u) = 0, n = 2, N + 1.

(2)
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The characteristic function H(u) of the number of incoming calls in the
retrial queue is expressed through partial characteristic functions Hk(u) by

H(u) =
N+1∑
k=0

Hk(u). The main content of this paper is the solution of system

(2) by using an asymptotic analysis methods in two limit conditions: of the
high rate of making outgoing calls and the low rate of service time of outgoing
calls.

3. Prelimit analysis

In this section, we obtain expressions for the stationary distribution using
the characteristic functions. First, we derive explicit expression for the
characteristic function H(u) of the number of incoming calls in the system.

Theorem 1. Explicit expression for the characteristic function H(u) of the
number of incoming calls in M |M |1|N retrial queue is given as follows:

H(u) =
1

1 + ν1

(
1 +

N+1∑
n=2

αn

µn + λ(1− eju)

)
×

×
[

1− ρ

1− ρeju

]λ
σ
(1+ν2)+1 N+1∏

n=2

[
1− pn

1− pneju

]αn(θn−λ)
σθn

,

where

ρ =
λ

µ1

, ν1 =
N+1∑
k=2

αk

µk

, ν2 =
N+1∑
k=2

αk

θk
,

pn =
λ

µn + λ
, θn = λ+ µn − µ1, n = 2, N + 1.

Proof. From equations 2 and 3 of the system (2) we obtain expressions for
partial characteristic functions:

H1(u) =
λeju

µ1 + λ(1− eju)
H0(u)−

jσ

µ1 + λ(1− eju)
H ′

0(u), (3)

Hn(u) =
αn

µn + λ(1− eju)
H0(u), n = 2, N + 1. (4)

Substituting this equations into the first equation of the system (2), we
find that

H ′
0(u) = j

λ

σ

[
λeju

µ1 − λeju
+

µ1 + λ(1− eju)

µ1 − λeju

N+1∑
n=2

αne
ju

µn + λ(1− eju)

]
H0(u). (5)
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The solution of this differential equation is given by

H0(u) = r0

[
1− ρ

1− ρeju

]λ
σ
(1+ν2) N+1∏

n=2

[
1− pn

1− pneju

]αn(θn−λ)
σ(θn)

, (6)

where ρ =
λ

µ1

, r0 = H0(0) = P{k(t) = 0}, ν2 =
N+1∑
k=2

αk

θk
, pn =

λ

µn + λ
,

θn = λ+ µn − µ1, n = 2, N + 1.

Substituting u = 0 into the system (2) yields:
−

(
λ+

N+1∑
n=2

αn

)
r0 + jσ H ′

0(u)|u=0 +
N+1∑
k=1

µkrk = 0,

− µ1r1 + λr0 − jσ H ′
0(u)|u=0 = 0,

− µnrn + αnr0 = 0, n = 2, N + 1,

(7)

where expression for H ′
0(u)|u=0 can be obtained substituting u = 0 into (5).

It follows from equations 2 and 3 of the system (7) that

r1 =

[
λ

µ1

+
λ

µ1 − λ

(
λ

µ1

+
N+1∑
n=2

αn

µn

)]
r0,

rn =
αn

µn

r0, n = 2, N + 1.

Furthermore, from the normalization condition:
N+1∑
k=0

rk = 1, we obtain

r0 =
µ1 − λ

µ1 (1 + ν1)
, r1 =

λ

µ1

, rn =
αn(µ1 − λ)

µ1µn (1 + ν1)
, n = 2, N + 1,

where ν1 =
N+1∑
k=2

αk

µk

. Substituting (6) into (3) and (4) and summing up results,

we obtain

H(u) =
1

1 + ν1

(
1 +

N+1∑
n=2

αn

µn + λ(1− eju)

)
×

×
[

1− ρ

1− ρeju

]λ
σ
(1+ν2)+1 N+1∏

n=2

[
1− pn

1− pneju

]αn(θn−λ)
σθn

.
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4. Asymptotic analysis of the model under
the high rate of making outgoing calls

In this section, we will investigate system (2) by asymptotic analysis method
under the high rate of making outgoing calls condition. In particular, we
prove that asymptotic characteristic function of the number of incoming calls
in the system corresponds to Gaussian distribution.
Denoting αn = αγn, we obtain


−

[
λ+ α

N+1∑
n=2

γn

]
H0(u)+jσH ′

0(u) + µ1e
−juH1(u)+

N+1∑
n=2

µnHn(u) = 0,

− (λ+ µ1)H1(u) + λejuH1(u) + λejuH0(u)− jσH ′
0(u) = 0,

− (λ+ µn)Hn(u) + λejuHn(u) + αγnHn(u) = 0, n = 2, N + 1.

(8)

4.1. First order asymptotic

Theorem 2. Suppose i(t) is the number of incoming calls in the system of
the stationary M |M |1|N retrial queue with outgoing calls, then the (9) holds

lim
α→∞

Eejw
i(t)
α = ejwκ1 , (9)

where

κ1 =
λν1µ1

σ(µ1 − λ)
, ν1 =

N+1∑
n=2

γn
µn

. (10)

Proof. We denote α = 1/ε in the system (8), and introduce the following
notations

u = εw, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε), k = 1, N + 1,

in order to get the following system

− (λε+
N+1∑
n=2

γn)F0(w, ε) + jσ
∂F0(w, ε)

∂w
+ µ1e

−jwεF1(w, ε)+

+
N+1∑
n=2

µnFn(w, ε) = 0,

− (λ+ µ1)F1(w, ε) + λejwεF1(w, ε) + λejwεεF0(w, ε)−

− jσ
∂F0(w, ε)

∂w
= 0,

− (λ+ µn)Fn(w, ε) + λejwεFn(w, ε)+

+ γnF0(w, ε) = 0, n = 2, N + 1.

(11)
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Summing up equations of system (11), we obtain

λεF0(w, ε) + (λ− µ1e
−jwε)F1(w, ε) + λ

N+1∑
n=2

Fn(w, ε) = 0. (12)

Considering the limit as ε → 0 in the system (11) and equation (12), then
we will get 

−
N+1∑
n=2

γnF0(w) + jσF ′
0(w) +

N+1∑
k=1

µkFk(w) = 0,

− µ1F1(w)− jσF ′
0(w) = 0,

− µnFn(w) + γnF0(w) = 0, n = 2, N + 1,

− (µ1 − λ)F1(w) + λ
N+1∑
n=2

Fn(w) = 0.

(13)

We propose to get the solution of the system (13) in the form of

Fk(w) = Φ(w)rk, k = 0, N + 1. (14)

Here rk, k = 1, N + 1 is the probability of the server state k; r0 has no
sense of probability, since the probability that the server will be in the zero
state as α → ∞ is zero:

−
N+1∑
n=2

γnr0 + jσ
Φ′(w)

Φ(w)
r0 +

N+1∑
k=1

µkrk = 0,

− µ1r1 − jσ
Φ′(w)

Φ(w)
r0 = 0,

− µnrn + γnr0 = 0, n = 2, N + 1,

− (µ1 − λ)r1 + λ

N+1∑
n=2

rn = 0.

(15)

As the relation j
Φ′(w)

Φ(w)
does not depend on w, the function is obtained in

the following form Φ(w) = exp{jwκ1}, which coincides with (9). The value
of the parameter κ1 will be defined below. We rewrite the system (15) in the
form
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−
N+1∑
n=2

γnr0 − κ1r0σ +
N+1∑
k=1

µkrk = 0,

− µ1r1 + κ1r0σ = 0,

− µnrn + γnr0 = 0, n = 2, N + 1,

− (µ1 − λ)r1 + λ
N+1∑
n=2

rn = 0.

(16)

The normalization condition for stationary server state probability distri-

bution is
N+1∑
k=1

rk = 1. We have



− µnrn + γnr0 = 0, n = 2, N + 1,

− (µ1 − λ)r1 + λ
N+1∑
n=2

rn = 0,

N+1∑
k=1

rk = 1.

(17)

The solution of the system (17) is given by

r0 =
µ1 − λ

µ1ν
, r1 =

λ

µ1

, rn =
γn(µ1 − λ)

µnµ1ν1
, n = 2, N + 1, (18)

where ν1 =
N+1∑
n=2

γn
µn

. Substituting (18) into system (16), we obtain an equation

for κ1, which coincides with (10).
The first order asymptotic i.e. Theorem 2, only defines the mean asymptotic

value κ1α of a number of incoming calls in the system in prelimit situation of
α → ∞. For more detailed research of number i(t) of incoming calls in the
system let’s consider the second order asymptotic. �

4.2. Second order asymptotic

Theorem 3. In the context of Theorem 2 the following equation is true

lim
α→∞

E exp

{
jw

i(t)
α

− κ1√
α

}
= e

(jw)2

2
κ2 , (19)

where

κ2 =
λ

σ
· µ1(µ1 − λ)(λν2 + ν1) + λ2ν1

(µ1 − λ)2
, ν1 =

N+1∑
n=2

γn
µn

, ν2 =
N+1∑
n=2

γn
µ2
n

. (20)
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Proof. We introduce the following notations in the system (8)

Hk(u) = exp{juακ1}H(2)
k (u), k = 0, N + 1, (21)

and we get

−

(
λ+ α

N+1∑
n=2

γn + ασκ1

)
H

(2)
0 (u) + jσ

dH
(2)
0 (u)

du
+

+ µ1e
−juH

(2)
1 (u) +

N+1∑
n=2

µnH
(2)
n (u) = 0,

− (λ+ µ1)H
(2)
1 (u) + λejuH

(2)
1 (u) + (λeju + ασκ1)H

(2)
0 (u)−

− jσ
dH

(2)
0 (u)

du
= 0,

− (λ+ µn)H
(2)
n (u) + λejuH(2)

n (u)+

+ αγnH
(2)
0 (u) = 0, n = 2, N + 1.

(22)

Denoting α = 1/ε2, and introducing the following notations

u = wε, H
(2)
0 (u) = ε2F

(2)
0 (w, ε),

H
(2)
k (u) = F

(2)
k (w, ε), k = 1, N + 1,

(23)

we obtain 

jσε
∂F

(2)
0 (w, ε)

∂w
−

(
σκ1 + λε2 +

N+1∑
n=2

γn

)
F

(2)
0 (w, ε)+

+ µ1e
−jwεF

(2)
1 (w, ε) +

N+1∑
n=2

µnF
(2)
n (w, ε) = 0,

− (λ+ µ1)F
(2)
1 (w, ε) + λejwεF

(2)
1 (w, ε)+

+ (λejwεε2 + σκ1)F
(2)
0 (w, ε)− jσε

∂F
(2)
0 (w, ε)

∂w
= 0,

− (λ+ µn)F
(2)
n (w, ε) + λejwεF (2)

n (w, ε)+

+ γnF
(2)
0 (w, ε) = 0, n = 2, N + 1.

(24)

Summing up equations of the system (24), we obtain

λε2F
(2)
0 (w, ε) + (λ− µ1e

−jwε)F
(2)
1 (w, ε) + λ

N+1∑
n=2

F (2)
n (w, ε) = 0. (25)
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Our idea is to seek for a solution of the system (24) and equation (25) in
the form

F
(2)
k (w, ε) = Φ2(w){rk + jwεfk}+ o(ε2), k = 0, N + 1. (26)

Substituting (26) to (24) and (25), laying out the exhibitors in tailor series
and taking (16) into account, dividing these equations by ε and taking the
limit as ε → 0, we have

−

(
σκ1 +

N+1∑
n=2

γn

)
f0 +

N+1∑
k=1

µkfk − µ1r1 + σ
Φ′

2(w)

wΦ(w)
r0 = 0,

σκ1f0 − µ1f1 + λr1 − σ
Φ′

2(w)

wΦ(w)
r0 = 0,

−µnfn + λrn + γnf0 = 0, n = 2, N + 1,

−(µ1 − λ)f1 + λ
N+1∑
n=2

fn + µ1r1 = 0.

This equations imply that
Φ′

2(w)

wΦ2(w)
doesn’t depend on w and thus the

function Φ2(w) is given in the following form

Φ2(w) = exp

{
(jw)2

2
κ2

}
,

which coincides with (19). We have

Φ′
2(w)

wΦ2(w)
= −κ2

and then we obtain the system

−

(
σκ1 +

N+1∑
n=2

γn

)
f0 +

N+1∑
k=1

µkfk = µ1r1 + σκ2r0,

σκ1f0 − µ1f1 = −λr1 − σκ2r0,

− µnfn + γnf0 = −λrn, n = 2, N + 1,

− (µ1 − λ)f1 + λ

N+1∑
n=2

fn = −µ1r1.

(27)

Substituting values (18) into the system (27), we have

fn =
γn
µn

f0 +
λ(µ1 − λ)γn

µ1µ2
nν1

, n = 2, N + 1,
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f1 =
λν1

µ1 − λ
f0 +

λ2ν2
µ1ν1

+
λ

µ1 − λ
,

where

ν1 =
N+1∑
k=2

γk
µk

, ν2 =
N+1∑
k=2

γk
µ2
k

.

Substituting this expressions into equation 2 of the system (27), we obtain
an equation for κ1, which coincides with (20).

Second order asymptotic i.e. Theorem 3, shows that the asymptotic prob-
ability distribution of the number i(t) of incoming calls in the system is
Gaussian with mean asymptotic κ1α and variance κ2α. �

5. Asymptotic analysis of the model under the low rate
of service time of outgoing calls

In this section, we will investigate system (2) by asymptotic analysis method
under the low rate of service time of outgoing calls condition.

Denoting µn = µγn, we obtain
−

[
λ+

N+1∑
n=2

αn

]
H0(u)+jσH ′

0(u)+µ1e
−juH1(u)+µ

N+1∑
n=2

γnHn(u) = 0,

− (λ+ µ1)H1(u) + λejuH1(u) + λejuH0(u)− jσH ′
0(u) = 0,

− (λ+ µγn)Hn(u) + λejuHn(u) + αnHn(u) = 0, n = 2, N + 1.

(28)

Theorem 4. Suppose i(t) is a number of incoming calls in a system of
stationary M |M |1|N retrial queue with two way communication, then the
following equation is true

H(u) = lim
µ→0

Eejwµi(t) =
1

ν1

N+1∑
n=2

αn

γn − jwλ

N+1∏
n=2

(
1− jw

λ

γn

)− µ1αn
σ(µ1−λ)

, (29)

where ν1 =
N+1∑
n=2

αn

γn
.

Proof. We denote µ = ε, let’s substitute the following in the system (28)

u = wε, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε), k = 1, N + 1.
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We will get the system

−

(
λ+

N+1∑
n=2

αn

)
εF0(w, ε) + jσ

∂F0(w, ε)

∂w
+

+ µ1e
−jwεF1(w, ε) + ε

N+1∑
n=2

γnFn(w, ε) = 0,

− (λ+ µ1)F1(w, ε)− jσ
∂F0(w, ε)

∂w
+ λejwεF1(w, ε)+

+ λεejwεF0(w, ε) = 0,

− (λ+ εγn)Fn(w, ε) + λejwεFn(w, ε)+

+ αnεF0(w, ε) = 0, n = 2, N + 1.

(30)

Considering the limit as ε → 0 in the system (30) then we will get

−jσF ′
0(w)− µ1F1(w) = 0, jσF ′

0(w) + µ1F1(w) = 0. (31)

Summing up equations of the system (30) we have

λεF0(w, ε) + (λ− µ1e
−jwε)F1(w, ε) + λ

N+1∑
n=2

γnFn(w, ε) = 0. (32)

Laying out the exhibitors in tailor series, dividing equations by ε and taking
the limit as ε → 0, taking (31) into account, we obtain

−

(
λ+

N+1∑
n=2

αn

)
F0(w)− jwµ1F1(w) +

N+1∑
n=2

γnFn(w) = 0,

−jσF ′
0(w)− µ1F1(w) = 0,

(λjw − γn)Fn(w) + αnF0(w) = 0, n = 2, N + 1

−(µ1 − λ)F1(w) + λ
N+1∑
n=2

Fn(w) = 0.

From the last system of equations we have

Fn(w) =
αn

γn − jwλ
F0(w), (33)

F1(w) =
λ

µ1 − λ

N+1∑
n=2

Fn(w). (34)
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Then

F1(w) =
λ

µ1 − λ
F0(w)

N+1∑
n=2

αn

γn − jwλ
. (35)

Substituting (35) into (31), we obtain

F ′
0(w) = j

λµ1

σ(µ1 − λ)
F0(w)

N+1∑
n=2

αn

γn − jwλ
.

The solution of differential equation is given by

F0(w) = C
N+1∏
n=2

(
1− jw

λ

γn

)− µ1αn
σ(µ1−λ)

, (36)

where C is an integration constant and its value will be obtained later. We

denote asymptotic characteristic function
N+1∑
k=1

Fk(w) = Φ(w). Substituting

(36) into (33) and (34), we obtain

F1(w) =
λ

µ1 − λ

N+1∑
k=2

αk

γk − jwλ
C

N+1∏
k=2

(
1− jw

λ

γk

)− µ1αk
σ(µ1−λ)

,

Fn(w) =
αn

γn − jwλ
C

N+1∏
k=2

(
1− jw

λ

γk

)− µ1αk
σ(µ1−λ)

, n = 2, N + 1.

Summing up equations, we have

Φ(w) =
µ1

µ1 − λ
C

N+1∏
n=2

(
1− jw

λ

γn

)− µ1αn
σ(µ1−λ)

N+1∑
n=2

αn

γn − jwλ
.

Using condition Φ(0) = 1, we obtain

C =
µ1 − λ

µ1ν1
, where ν1 =

N+1∑
n=2

αn

γn
.

We obtain the characteristic function (29). �

6. Approximation accuracy

The accuracy of the approximation P (2)(i) is defined by using Kolmogorov

range ∆2 = max
06i6N

∣∣∣∣ i∑
ν=0

(P (ν)− P (2)(ν))

∣∣∣∣ , which represents the difference be-

tween distributions P (i) and P (2)(i), where P (i) is obtained by using inverse
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Fourier transform for the characteristic function of the M |M |1|N retrial queue

and the approximation P (2)(i) is given by obtained asymptotics. We consider
N = 3, λ = 0.2, µ1 = 1 and σ = 1 for Tables 1 and 2.

Table 1

Kolmogorov range, µ2 = 2, µ3 = 3, µ4 = 4, γ2 = 1, γ3 = 2, γ4 = 3

α = 3 α = 5 α = 10 α = 50 α = 100

∆2 0.066 0.043 0.023 0.01 0.007

Table 2

Kolmogorov range, γ2 = 2, γ3 = 3, γ4 = 4, α2 = 1, α3 = 2, α4 = 3

µ = 0.05 µ = 0.035 µ = 0.02 µ = 0.01

∆2 0.059 0.044 0.026 0.014

7. Conclusions

In this paper, we have considered retrial queue with two way communication
with multiple types of outgoing calls. We have found characteristic function
of the number of incoming calls in the system. We have found the first and
the second order asymptotics of the number of calls in the system under the
condition of the high rate of making outgoing calls. Based on the obtained
asymptotics we have built the Gaussian approximation of the probability
distribution of the number of incoming calls in the system. We have found
asymptotic characteristic function of the number of incoming calls in retrial
queue under the condition of the low service rate of outgoing calls. In future
we plan to consider this retrial queueing system under other asymptotic
conditions.
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In this article we present a parallel algorithm for simulation of the heat conduction
process inside the so-called pulse cryogenic cell. This simulation is important for
designing the device for portion injection of working gases into ionization chamber of
ion source. The simulation is based on the numerical solving of the quasilinear heat
equation with periodic source in a multilayered cylindrical domain. For numerical
solution the Alternating Direction Implicit (ADI) method is used. Due to the non-
linearity of the heat equation the simple-iteration method has been applied. In
order to ensure convergence of the iteration process, the adaptive time-step has been
implemented. The parallelization of the calculation has been realized with shared
memory application programming interface OpenMP and the performance of the
parallel algorithm is in agreement with the case studies in literature.

Key words and phrases: quasilinear heat equation, multilayer cylindrical geomet-
rical structure, pulse periodic source, parallel algorithm, thermal gates

1. Introduction

The purpose of this work is to develop algorithms for simulation of the
heat conduction process inside the so-called pulse cryogenic cell [1, 2]. Such
simulations are important for designing the cell that implements “the thermal
gates” of a portion injection of working gases into the ionization chamber
of a multiply charged ion source [3]. While reliable operation of mechanical
valves for pulsed injection of gaseous mixtures in the millisecond range at
cryogenic temperatures is practically impossible, the use of gas temperature
properties at cryogenic temperatures can be a real alternative. Indeed, the
vapor pressures of various gases have strong dependency on the temperature [4]
in the interval between temperatures of liquid helium 4.2K and liquid nitrogen
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78K [5], typical temperature terminals in the cryogenic technique used as
thermostats with large capacity.
The cryogenic cell is a multilayer cylinder (see Fig. 1) placed inside a vacuum

chamber. The thermal process in the cylinder starts by passing an electrical
current through its conductive layer. It allows heating the outer layer of
the cylinder to upper desired temperature (maximal critical temperature).
After switching the current off, the cylinder is let to cool down to lower
desired temperature (minimal critical temperature). This process periodically
repeats for a given period of time based on the requirements of the experiment.
A copper core of the cylinder serves as a cooler for outer layers during and
after the heating process. It is connected to a liquid helium temperature
terminal. The core is separated by the electrical insulator from the conductive
layer. It is made to avoid the flow of the electrical current into the core. The
last layer is a thin coating which prevents molecules of working gases from
binding to the conductive layer made of graphite.

rmax

r∗2
r∗1
r∗0

z0
zmax

0
1

2
3

4

Figure 1. A schematic view of the quarter of the cell slice through the axis. The bottom line

is the cylinder axis (the symmetry axis, r = 0). The cooler (the copper core rod) cools the
cell by contact with the temperature terminal – 4 (liquid helium). The heater – 2 (the

conductive layer) heats the cell up by the way of passing of the electrical current. The inner

insulator – 1 – is needed to prevent the electrical current outflow from the heater to the

cooler. The outer insulator – 3 – prevents molecules of working gases from binding to the

conductive layer

2. Initial-boundary value problem

Let us consider the heat equation describing thermal evolution in the closed

cylindrical domain Ω = {(r, z) | r ∈ [0, rmax(z)], z ∈ [0, zmax(r)]}:

ρ(r)cV (T, r)
∂T

∂t
=

1

r

∂

∂r

(
rλ(T, r)

∂T

∂r

)
+

∂

∂z

(
λ(T, r)

∂T

∂z

)
+

+X(T, t, r; tper, tsrc), (1)

where the thermal coefficients are the non-linear function of the temperature
and they have discontinuities of the first kind along the radial direction at
r∗m (m = 0, 1, 2, 3, see Fig. 1). The source function producing the periodic
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process of heating can be expressed in the form

X(T, t, r; tper, tsrc) = χ(T )
I2(r)

SC

p(t; tper, tsrc), (2)

where p(t; tper, tsrc) is the periodic normalized function with parameters tper
(time of period) and tsrc (time of heating less than or equal to tper); n ∈ N0 is
the index of a period; χ(T, r) is temperature depended specific resistivity with
discontinuities at the given values of r; I(r) is the electrical current amplitude
which has a finite value I0 only in the source layer (see Fig. 1), everywhere else
it is zero; SC is the cross-section of the source layer. The periodic normalized
function p(t; tper, tsrc) is given as a rectangular pulse one [6]:

u(t; tper, tsrc) =
∞∑
n=0

[θ (t− n tper)− θ (t− n tper − tsrc)] , (3)

where θ(t) is Heaviside step function [7, 8], however, in order to make the
processes of “turn on” and “turn off” more realistic, the model of the transient
process (4) (see Fig. 2) has been implemented:

v(t; tper, tsrc, ttrs, ξ, ζ) =

=
1

2

∞∑
n=0

[
erf

(
ξ

(
ζ
t− ntper

ttrs
− 1

))
− erf

(
ξ

(
ζ
t− n tper − tsrc

ttrs
− 1

))]
. (4)

Here erf(t) is the error function [7, 8].

t

0.0

0.2

0.4

0.6

0.8

1.0

u(
t),

 ν
(t)

n.tper n.tper+tsrc

ttrs

Figure 2. Dashed line: the periodic step function u(t) as a combination of the Heaviside

ones. Solid line: the “realistic” source function for ξ = 4 and ζ = 2 representing the
transient model. The dot-dashed lines show the ends of the transient process at “turn on”

and “turn off”

Such smoothing of the processes of “turn on” and “turn off” of the source
also helps to stabilize numerical simulations.
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The initial condition can be set by the assumption that at t = 0 the
cryogenic cell has been already cooled down by the temperature terminal:

T (r, z, t = 0) = T0, (5)

where T0 ≡ 4.2K is the temperature of liquid helium.
The boundary conditions can be expressed after the assumption that

the temperature flow across the boundary of the domain is zero except
for the right side where a connection to the temperature terminal exists
(see Fig. 1): 

∂T

∂n
= 0 ∀ (r, z) ∈ δΩ \ {(r, z) : z = zmax},

T = T0 ∀ (r, z) ∈ {(r, z) : z = zmax},
(6)

where δΩ is the boundary of the domain Ω, n is the normal vector of the
boundary δΩ. This assumption is motivated by the following statements:

— the cryonics cell is installed in the vacuum chamber, therefore, there is
no convective heat transfer;

— the working temperature is too low for the appearance of thermal radia-
tion;

— we neglect the energy for evaporation of gas molecules;
— there is no temperature flow through the axis r = 0 due to the axial

symmetry.

3. Discretization and numerical method

Numerical solution of Eq. (1) can be obtained by using a shifted non-uniform
grid (see Fig. 3):

ω = {(t, r, z) | 0 6 t < ∞, tk+1 = tk + τk+1, k ∈ N0;

0.5h1 6 r 6 rmax − 0.5hNj−1, ri+1 = ri + hi+1, i = 0, . . . , Nj − 1;

0.5η1 6 z 6 zmax − 0.5ηMi−1, zj+1 = zj + ηj+1, j = 0, . . . ,Mi − 1}. (7)

z

r

Figure 3. The discretization of the 2D domain. The non-uniform grid is shifted in order to

have points at the centers of boxes. Different layers (materials) have different step size (they

are differently colored)
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It seems usual to make uniform steps in the subdomain corresponding one
layer. The shifted grid has no points at the boundary of discontinuity. One
can also use a special grid – the grid with points at the boundary of materials,
in this case one has to take care of approximation of the thermal coefficients
and the source function at the boundary.
The initial boundary value problem Eqs. (1)–(6) has been approximated

on the grid (7) by the alternating direction implicit (ADI) schemes [9–12]:

ρi,j cV i,j

T i,j − Ti,j

0.5τ
= Λr [ T i,j ] +Λz [ Ti,j ] +X i,j, (8)

ρi,j cV i,j

T̂i,j − T i,j

0.5τ
= Λr [ T i,j ] +Λz [ T̂i,j ] +X i,j, (9)

where T̂i,j is the temperature distribution on the next time layer, T i,j is the
temperature distribution on the half layer (in between the next and current
time layers), Ti,j is the value on the current time layer and τ is the time step,

ρi,j = ρ(T i,j), cV i,j = cV (T i,j), X i,j = X(T i,j).

The spatial finite difference operators in Eqs. (8) and (9) are:

Λr [Ti,j] =
1

ri

1

h̄i

[
ri+ 1

2
λi+ 1

2
,j

Ti+1,j − Ti,j

hi+1

− ri− 1
2
λi− 1

2
,j

Ti,j − Ti−1,j

hi

]
, (10)

Λz [ Ti,j ] =
1

ηj

[
λi,j+ 1

2

Ti,j+1 − Ti,j

ηj+1

− λi,j− 1
2

Ti,j − Ti,j−1

ηj

]
, (11)

where i = 1, . . . , Nj − 1, j = 1, . . . ,Mi − 1, hi = ri − ri−1, ηj = zj − zj−1,
h̄i = (hi+1 + hi) /2, ηj = (ηj+1 + ηj) /2, λi,j = λm(Ti,j), cV i,j = cV m(Ti,j),
Xi,j = Xm(Ti,j), ri±1/2 = (ri+ ri±1)/2, λi±1/2,j = λm(Ti,j +Ti±1,j)/2, λi,j±1/2 =
λm(Ti,j + Ti,j±1)/2.
Due to the non-linearity of Eqs. (8)–(9) (when the thermal coefficients and

the source function depend on temperature) the simple-iteration method has
been applied for calculation of the sought-for function on the half and next
time layers. The recursive forms for (8)–(9) are expressed as follows [11–13]:

ρsi,j cV
s
i,j

T s+1
i,j − Ti,j

0.5τ
=

=
1

ri

1

h̄i

[
ri+ 1

2
λs
i+ 1

2
,j

T s+1
i+1,j − T s+1

i,j

hi+1

− ri− 1
2
λs
i− 1

2
,j

T s+1
i,j − T s+1

i−1,j

hi

]
+

+Λz [ Ti,j ] +Xs
i,j, (12)

here it is assumed that when s → ∞, then T s → T , ρs → ρ, cV
s → cV , λ

s → λ,
and Xs → X.
The iteration process starts with the initial condition that T s=0

i,j = Ti,j, and

stops after fulfilling the following criteria
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||T s+1 − T s||C = max
ω

‖T s+1 − T s‖ < ε. (13)

The values of the sought-for function on next time-layer are obtained as this

ρi,j cV i,j

T s+1
i,j − T i,j

0.5τ
=

= Λr [ T i,j ] +
1

ηj

[
λs
i,j+ 1

2

T s+1
i,j+1 − T s+1

i,j

ηj+1

− λs
i,j− 1

2

T s+1
i,j − T s+1

i,j−1

ηj

]
+X i,j, (14)

with the initial condition T s=0
i,j = T i,j. Same as before T s→∞ → T̂ and

λs→∞ → λ̂. This iteration process stops after fulfilling the same criteria (13).
The systems of linear algebraic equations (12) and (14) are solved by the
Thomas method [13–15].
In order to ensure convergence of the iteration process (12)–(14), the

adaptive time-step has been implemented. If the counter of iterations s
exceeds some maximal value, meaning that the process does not converge fast
enough, the time-step τ is divided by 2 and the iteration process is restarted
(back to the Eq. (12)).

4. Parallel algorithm

Main computational complexity comes from repetitive calculation of
Eqs. (12) and (14) across each time layer. A solution of the first of them is
needed as a start for solving the second one and it is again used as a start for
calculation of the sought-for function on the next time layer. Due to rather
low complexity of solving of one system of linear equations ((12) or (14)) it is
better to use parallelization based on shared memory since for distributed
memory parallelization the cost of data transfer would be too high. Therefore,
we opted for OpenMP [16,17].
In Fig. 4 one can see the flowchart of the algorithm. After initializing the

solution – setting tprd, tsrc, I, and t0 = 0, the program repeats iterations until
the requested time is reached. In one step of evolution it first initializes the
estimate of the time step τ as being equal ttrs/1000 if we are in the transition
process or tsrc/100 elsewhere. After this it starts the iteration process in order

to obtain the solution T i,j at the time tk + τ/2 using (12). If the obtained
solution is precise enough, it alternates direction and continues by the way of

(14) to the solution T̂i,j at the time tk + τ . If this solution is again precise
enough, the algorithm sets the total time to tk = tk−1 + τ and the actual

solution Ti,j = T̂i,j. If in any of the previous tests the number of iterations
exceeds the number of maximum iterations (iter – see Fig. 4), then the time-
step τ is divided by 2 and the calculation returns to the beginning of the
evolution step.
The whole algorithm terminates when the total time t reaches the desired

value or when we realize that we have entered into the periodic process
(temperature changes periodically depending on switching the current in
conductive layer on and off).
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5. Numerical results

The calculations have been performed on the HybriLIT computational
platform [18, 19] using the Skylake processor Intel Xeon Gold 6154 [20]
containing 18 CPU cores providing two threads per core (36 threads in total)
under OS Scientific Linux 7.5 (Nitrogen) [21].

As an example we have studied the case when tper = 10−1, tsrc = 10−2,
ttrs = 10−4, and I0 = 0.5742. These values of parameters were chosen to
realize the “thermal gates” for maximal and minimal critical temperatures
42K and 37K, respectively [22]. The cell size was selected as follows: z0 = 4,
zmax = 5, r∗0 = 0.24, r∗1 = 0.245, r∗2 = 0.25, rmax = 0.2501. The whole domain
was split into 100 parts along the z axis at the first layer (core) and to 80 in the
other layers. Along the r axis, individual layers were divided (starting from
the core) into 800, 200, 200, and 10 parts respectively. This discretization
of the domain was chosen in order not to split the domain into too many
parts and at the same time have enough information about the solution. It
is noteworthy that we have much more steps in the radial direction. It is so
because we expect the flow in-between the layers to be more active than the
relaxation towards the terminal. Nevertheless, in our experiments we have
also densified the grid to see the impact of the grid on both the precision of
the solution and the calculation time. The results are given in Fig. 5, it shows
the temperature fields at different moments of evolution inside the required
steady periodic temperature regime.
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Figure 5. Temperature fields when the periodic temperature regime is achieved. Left panel:

the temperature field at the moment before turning on the source. Right panel: the

temperature field at the moment when the source was just turned off

The field is shown in the whole cylindrical domain right before turning on the
source (at the left panel). The field is in a state of maximum relaxation in that
moment. At the right side the temperature filed is shown in the moment when
source is turning off. The results demonstrate that temperature significantly
changes only in outer layers, the core rode is practically not heated, it works as
thermostat. The evolution of the temperature at the surface of the cryogenic
cell at the z = 0 is given in Fig. 6, it is evident that is takes time to achieve
the required steady periodic temperature regime.
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6. Summary and conclusions

We have developed the algorithm for numerical simulations of heat evolution
inside the multilayered cylindrical domain with the periodic source. One can
see from Fig. 6 that the required periodical temperature regime cannot be
obtained immediately, it has a setup mode which is much longer than one
period, thus it has to be taken into account when designing the pulse cryogenic
cell. The simulations show the possibility of the realization of “thermal gates”
for a particular set of parameters. The algorithm has been integrated to the
hybrid algorithm MPI+OpenMP for solving the optimization problem of the
heat source characteristics (tper, tsrc, and I0) of the pulse cryogenic cell [22].
The performance of the parallel algorithm (see Fig. 7) is in agreement with

the case studies in literature, e.g., [23, 24]. As it is shown in the picture that
the saturation calculation time been achieved at 18 threads, after acting the
hyper-threading the speedup stops. Thus there is no reason to involve in
calculations more than this number of threads for the considered problem
with the given grid size (1210× 100).
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Runge–Kutta schemes play a very important role in solving ordinary differential
equations numerically. At first we want to present the Sage routine for calculation
of Butcher matrix, we call it an rk package. We tested our Sage routine in several
numerical experiments with standard and symplectic schemes and verified our result
by corporation with results of the calculations made by hand.
Second, in Sage there are the excellent tools for investigation of algebraic sets, based

on Gröbner basis technique. As we all known, the choice of parameters in Runge–
Kutta scheme is free. By the help of these tools we study the algebraic properties
of the manifolds in affine space, coordinates of whose are Butcher coefficients in
Runge–Kutta scheme. Results are given both for explicit Runge–Kutta scheme and
implicit Runge–Kutta scheme by using our rk package. Examples are carried out to
justify our results. All calculation are executed in the computer algebra system Sage.

Key words and phrases: Sympletic Runge–Kutta Scheme; Gröbner basis, Sage,
Sagemath

1. Introduction

The Runge–Kutta method is the most popular numerical method for solving
of ordinary differential equations (ODE), however the development of this
method indicates some symbolic problems.
Let’s review some results on Runge–Kutta scheme [1]. For an autonomous

system

~̇x = ~F (~x) (1)

Runge–Kutta scheme with s stages can be written as

~ki = ~F

(
~x+ dt

s∑
j=1

aij~kj

)
, i = 1, 2, . . . , s (2)
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and

~̂x = ~x+ dt
s∑

i=1

bi~ki. (3)

We will write the coefficients aij and bi in Butcher matrix, for example, for
s = 2

c1 a11 a12

c2 a21 a22

b1 b2

Hereinafter ci =
s∑

j=1

aij.

These coefficients are selected in such a way that the difference scheme
approximates the ODE (1) with some order p. For s = p = 4 appropriate
numerical values for the coefficients was found by Kutta in the XIX century.
The usage of Runge–Kutta scheme for the solving of given ODEs means the
numerical calculations in the floating-point arithmetic.

However the problem about finding the coefficients of Butcher matrix is
pure algebraic, so now we can try to solve it with the help of computer algebra
systems like Sage or Maple [2–4]. This is the first symbolic problem associated
with Runge–Kutta method. In our paper we want to present our algorithms
for symbolical calculation of the Butcher matrix and its realization in Sage.

It should be noted that conditions of approximation and other conditions
don’t define the coefficients of Butcher matrix unambiguously. From geomet-
rical point of view the list of coefficients of Butcher matrix is a point in affine
space (Butcher space) and appropriate points form a variety in this space. As
in Sage there are some tools for a research of a set of solutions of systems
of the algebraic equations, we can try to describe the varieties in Butcher
spaces.

The Runge–Kutta scheme is explicit iff aij = 0, j > i, in this case
the numerical calculation doesn’t demand the solving of nonlinear algebraic
equations. This is the most investigated case, for small s the Butcher varieties
ware described by Butcher himself, now we know approximate values of aij
for schemes with s = 9 [5–7].
The implicit Runge–Kutta scheme is interesting because they can save

some symbolic properties of exact solution. By Cooper theorem symplectic
Runge–Kutta scheme saves exactly all quadratic integrals of motion [8, 9].
The symplecticity gives algebraic conditions for Butcher matrix, and we can
try to investigate the varieties in Butcher space by the help of Sage.

In our numerical experiments these varieties were rational with singularity
at point with aij = 0 at all values of i and j. Thus there are infinite set of
Butcher matrices with rational coefficients.

Organization of calculations by the implicit Runge–Kutta scheme demands
solving of algebraic equations at each step. Investigation of the algebraic
system is the second symbolic problem associated with Runge–Kutta scheme
which we can try to solve by Sage.
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2. The problem of finding coefficients
of Butcher matrix, approximative conditions

In this part, we try to set up a program for finding Runge–Kutta scheme
when s is number of the stages and p is order of approximation. This scheme
we can call rk(s,p). Butcher matrix is square matrix of degree s. Condition
of approximation is algebraic equation with respect of elements of Butcher
matrix. Firstly, we note that these equations don’t depend on the number
of the approximative differential equations, so we can only consider the first
order equation ẋ = f(x).

The Taylor series for the solution satisfying the zero initial condition
x(t0) = 0 are

x(t) = D(f)|x=0 (t− t0) + D2(f)
∣∣
x=0

(t− t0)
2

2!
+ . . . ,

where

D = f
d

dx
.

At t = t1 we have

x(t1) = D(f)|x=0 dt+ D2(f)
∣∣
x=0

dt2

2!
+ . . . , (4)

where dt = t1 − t0.
The first step of Runge–Kutta scheme with s stages can be written as

ki = f

(
dt

s∑
j=1

aijkj

)
, i = 1, 2, . . . , s (5)

and

x̂ = dt
s∑

i=1

biki. (6)

Let the power series for the solution of systems (5) be

ki = ki,0 + ki,1dt+ ki,2dt
2 + . . . .

Manually or in computer algebra system we can find their coefficients by
recursion. So at dt = 0 the equations (5) give us

ki,0 = f(0).

To find the coefficients at dt, we differentiate the equations (5) with respect
to dt and substitute dt = 0, then we have

ki,1 = f ′(0) ·

(
s∑

j=1

aijkj,0

)
, i = 1, 2, . . . , s.
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To find the coefficients of dt2, we differentiate the equations (5) twice and
substitute dt = 0 again, etc. Substituting the power series for ki in (6) we
have the power series for x̂. By definition, the difference scheme has the p-th
order approximation, if first p terms of the power series (4) for exact solution
at t = t1 and the power series for x̂ coincide. So, these are the required
conditions of approximation written as a system of algebraic equations with
respect to Butcher coefficients.
In the area of symbolic calculation, we consider the Butcher coefficients a, b

as symbolical variables. We also consider the function f as arbitrary function
of x, thus we may manipulate with its derivatives

f0 = f(0), f1 = f ′(0), f2 = f ′′(0), . . .

as independent symbolic variables. Comparing the coefficients at dt, . . . dtp in
the way stated above, we get p algebraic equations, left sides of which belong
to the polynomial ring

Q[a, b][f0, . . . , fp].

By the arbitrariness of f , coefficients of all the monomials fm0
0 . . . must

be zero. This gives us a number of equations for the coefficients of Butcher
matrix, which are the required equations. Thus the approximation conditions
are algebraic equations, left sides of which belong to the ring Q[a, b] and form
an ideal in Q[a, b]. For brevity we will say that the approximation conditions
generate the ideal.
In our package rk.sage function rk_var(s) gives all the necessary sym-

bolical variables for the coefficients a, b and ring

Kab = Q[a11, . . . , b1, . . . ]

for the scheme with s stages. As we know the condition of approximation
with order p is the system of equations, the function rk_series(s,p) returns
the left side of these equations. Let’s review an example.

sage: var('x,t,dt')
(x, t, dt)
sage: load("rk.sage")
None
sage: rk_var(3)
None
sage: a
[a00 a01 a02]
[a10 a11 a12]
[a20 a21 a22]
sage: b
(b0, b1, b2)
sage: c
[a00 + a01 + a02, a10 + a11 + a12, a20 + a21 + a22]

So we have all Butcher coefficients. The construction

sage: rk_series(3,3)

return the result which coincides with the statement in the book of E. Hairer
et al. [1, §II 2, theorem 2.1].
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Any partial solution a, b of this algebraic equation system gives scheme
type rk(3,3). Also in our package it is possible to work only with explicit
schemes.

sage: rk_var(3,implicit=false)
None
sage: a
[ 0 0 0]
[a10 0 0]
[a20 a21 0]
sage: b
(b0, b1, b2)
sage: c
[0, a10, a20 + a21]
sage: rk_series(3,3,implicit=false)
[-b0 - b1 - b2 + 1,
-2*a10*b1 - 2*a20*b2 - 2*a21*b2 + 1,
-6*a10*a21*b2 + 1,
-3*a10^2*b1 - 3*a20^2*b2 - 6*a20*a21*b2 - 3*a21^2*b2 + 1]

This means that the affine variety of 3-stage Runge–Kutta scheme, ap-
proximating the differential equation with order 3, has 6 Butcher coefficients
satisfying the 4 equations. These equations give some algebraic sets in the
affine 6d-space. To study this set under Sage, we consider the corresponding
ideal:

sage: J=Kab*rk_series(3,3,implicit=false)
sage: J.dimension()
2
sage: J.is_prime()
True

Thus, the set of coefficients formulate an irreducible surface. Its projection
in the 3-dimension space a10, a20, a21 is a cubic surface:

sage: J.elimination_ideal([Kab(b0),Kab(b1),Kab(b2)])
Ideal
(3*a10^2*a21 - a10*a20 - 3*a10*a21 + a20^2 + 2*a20*a21 + a21^2)
of Multivariate Polynomial Ring in a10, a20, a21, b0, b1, b2

over Rational Field↪→

Since the linear family of right lines passing through the point O intersects
this surface at one moving point, so this surface is rational.

We try investigate rk(4,4) in Sage. Our program give system of equations
very quickly but Sage can’t calculate Gröbner basis of the ideal, generated by
this system. We try use CAS Maple (which have several commercial routines
for calculation Gröbner basis) but without success. It should be noted that
this system was investigated by hand in the XIX century!

By using Sage we calculate the dimensions of the algebraic sets for explicit
and implicit RK-schemes. Results are presented in the Tables 1 and 2. The
analysis of RK-schemes with bigger p cannot be made in such a way that the
Gröbner basis can be calculated.
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Table 1

Dimensions for implicit Runge–Kutta scheme in the case of 1 < s < 4; 1 < p < 4

s, p p = 2 p = 3

s = 2 4 2

s = 3 10 8

Table 2

Dimensions for explicit Runge–Kutta scheme on the case of 1 < s < 4; 1 < p < 4. The value
−1 means that the set of Runge–Kutta scheme with given s and p is empty

s, p p = 2 p = 3

s = 2 4 −1

s = 3 4 2

3. Symplectic Runge–Kutta schemes

We describe the manifold in the affine space ab, coordinates of whose points
can be used as coefficients in the Runge–Kutta scheme, satisfying both the
symplecticity and p-order approximation [8–10]. We denote this manifold as
S(s, p). We can find their equations in Sage like:

sage: rk_var(2)
None
sage: rk_sympletic(3,2)
[2*a00*b0 - b0^2,
a01*b0 + a10*b1 - b0*b1,
a01*b0 + a10*b1 - b0*b1, 2*a11*b1 - b1^2,
-b0 - b1 + 1,
-2*a00*b0 - 2*a01*b0 - 2*a10*b1 - 2*a11*b1 + 1,
-6*a00^2*b0 - 6*a00*a01*b0 - 6*a00*a10*b1 - 6*a01*a10*b0

- 6*a01*a10*b1 - 6*a01*a11*b0 - 6*a10*a11*b1 - 6*a11^2*b1

+ 1,↪→

-3*a00^2*b0 - 6*a00*a01*b0 - 3*a01^2*b0 - 3*a10^2*b1
- 6*a10*a11*b1 - 3*a11^2*b1 + 1]

The tool of Sage allows you to describe this manifold. For example, for
S(2, 3) we have

sage: eqs = rk_sympletic(3,2)
sage: J=Kab*eqs
sage: J.dimension()
1
sage: J.is_prime()
True

So S(2, 3) is irreducible curve. We can find its projection on any of the
coordinate planes. In the a00a10-plane its equation is
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sage: J.elimination_ideal([Kab(b1),Kab(b0),Kab(a01),Kab(a11)])
Ideal
(12*a00^3 - 24*a00^2*a10 - 6*a00^2 + 12*a00*a10^2 + 12*a00*a10

+ a00 - 6*a10^2)↪→

of Multivariate Polynomial Ring in a00, a01, a10, a11, b0, b1

over Rational Field↪→

We can calculate the genus of the curve of the 3rd order:

sage: elvars=[Kab(b1),Kab(b0),Kab(a00),Kab(a01)]
sage: F=J.elimination_ideal(elvars).gens()[0]
sage: KK=QQ[a10,a11]
sage: Curve(KK(F)).genus()
0

If genus of the curve is equal to zero the curve is rational and in Sage we
can find the rational parametrization for given curve with the help of the
construction

sage: Curve(KK(F)).rational_parameterization()

By using the elimination ideal technique we makes it easy to find that b0,
b1, a00, a01 are linearly of a10 and a11, thus coefficients of Butcher matrix for
S(2, 3) can be expressed as rational functions of one parameter t:

c1
3t2 − 12t+ 12

8t2 − 24t+ 24

3t3 − 8t2 + 24t− 24

8t3 − 24t2 + 24t
+

t3 − 8t2 − 24t− 24

6t(t− 2)2

c1
−t3 + 8t2 − 24t+ 24

8t3 − 24t2 + 24t

t2

8t2 − 24t+ 24

1− 1

4
t2

t2−3t+3

t2

4t2 − 12t+ 12

For example at the value t = 3 ±
√
3 we have the scheme used by Nuan

et al. [11, f. (24)]. At rational curve there are the infinite set of rational
points thus there are infinite set of Runge–Kutta schemes of type S(2, 3) with
rational coefficients. For example at t = 1 we have

1/3 3/8 −1/24

1 7/8 1/8

3/4 1/4

Increase in number of stages is interfered by difficulties, associated with
the algorithm of calculation of Gröbner basis. We try investigating the case
s = 4 in Maple, where there are several non-free algorithms of calculation of
Gröbner basis, but without success.

In our numerical experiments the variate S(s, p) with maximal value of p
at fixed value of s has the dimension 1 and the genus 0 and thus is a rational
curve in Butcher space. In practice it is important that there is an infinite
number of sets of rational values for Butcher coefficients.
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4. Conclusion

In this article we investigated one of the symbolic problems associated with
Runge–Kutta method, namely the problem of calculation of Butcher matrix.
We tested our Sage routine in several numerical experiments and verified our
results by comparing them with the results of calculations made by hand.
We saw that computer algebra systems was ready to solve this problem and

gave us some tools for investigation of the set of Butcher matrices. These tools
indicate in our numerical experiments that Butcher coefficients were rational
functions of one or two parameters and thus there is an infinite number of
sets of rational values for Butcher coefficients. Perhaps, this property can be
proved for Runge–Kutta schemes with any number of stages. This question
requires further study. Also we can’t calculate Gröbner basis of the ideals
generated at s > 3. Perhaps, a successful substitution can solve this issue.
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Partial differential equations of the first order, arising in applied problems of optics
and optoelectronics, often contain coefficients that are not defined by a single analyt-
ical expression in the entire considered domain. For example, the eikonal equation
contains the refractive index, which is described by various expressions depending on
the optical properties of the media that fill the domain under consideration. This
type of equations cannot be analysed by standard tools built into modern computer
algebra systems, including Maple.
The paper deals with the adaptation of the classical Cauchy method of integrating

partial differential equations of the first order to the case when the coefficients of the
equation are given by various analytical expressions in the subdomains G1, . . . , Gk,
into which the considered domain is divided. In this case, it is assumed that these
subdomains are specified by inequalities. This integration method is implemented
as a Python program using the SymPy library. The characteristics are calculated
numerically using the Runge–Kutta method, but taking into account the change in
the expressions for the coefficients of the equation when passing from one subdomain
to another. The main functions of the program are described, including those that
can be used to illustrate the Cauchy method. The verification was carried out by
comparison with the results obtained in the Maple computer algebra system.

Key words and phrases: eikonal, partial differential equation, SymPy

Introduction

Partial differential equations (PDE) of the first order arise in many applied
problems. The specificity of the problems in optics and optoelectronics is
that the coefficients of these equations are not defined by a single analytical
expression in the entire considered domain. Thus, for example, the eikonal
equation is a nonlinear first-order PDE, one of whose coefficients is the
refractive index, which is described by various expressions depending on the
optical properties of the media filling the considered domain [1]. The same
applies to the differential equations used to calculate the wave fronts and
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amplitudes in wave optics [2] or in the framework of the adiabatic waveguide
method (AWM) proposed by A.A. Egorov and L.A. Sevastyanov [3–5].
The standard method for integrating nonlinear PDE is the characteristic

method [6, 7], proposed in the 19th century by Cauchy. This method is
implemented in many computer algebra systems (CAS), including Maple [8].
Although the formulation of the Cauchy method as such does not imply this,
in all these implementations, the coefficients of the PDE are assumed to
be given by unique analytical expressions throughout the entire considered
domain. Therefore, to solve optical problems, it is necessary to develop
new software capable of integrating first-order PDEs in the case when the
coefficients of the equation are given by different analytical expressions in the
subdomains G1, . . . , Gk, into which the considered domain is divided.
This paper provides a mathematical description of this class of differential

equations, offers the adaptation of the Cauchy integration method to this
class of equations and its implementation as a Python program using the
library SymPy [9].

1. Piecewise elementary partial differential equations

We restrict our consideration to some domain G in the space Rn. We say
that this domain is divided into subdomains G1, . . . , Gk if two conditions are
met:

1) the intersection of any pair of subdomains is empty, that is, Gi ∩Gj = ∅
(i 6= j),

2) the closure of the union of these domains gives the closure of G, i.e.,

G = ∪Gi.

We call such a partition elementary, if for any i = 1, . . . , k we can specify
an elementary expression gi such that

Gi = {x ∈ G : gi(x) < 0} .

The function f with the domain of definition G will be called given piecewise
elementary if an elementary partition of the domain G into several subdomains
is specified, and in each of these domains an elementary expression is given
for f , i.e., an elementary partition G1, . . . , Gk of the domain G and such
elementary functions f1, . . . , fk exist such that

f |Gi
= f ∀i = 1, . . . , k.

Now let x, y, z, p, q be five independent variables whose set of real values
will be interpreted as a point in R5. Let f be a piecewise elementary function
defined in some domain G of this five-dimensional space. Then the expression

F (x, y, z, p, q) = 0, (1)

where

p =
∂z

∂x
, q =

∂z

∂y
,
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is a partial differential equation of the 1st order. We will refer to this kind of
PDE as piecewise elementary.
The algorithm for integrating a first-order PDE is not related in any way

with the form for specifying the differential equation and consists in finding
the characteristics [6, 7]. Recall that characteristics are curves in the five-
dimensional space xyzpq, which are integral curves for the characteristic
system of ordinary differential equations (ODE) for characteristics, which
is composed based on the given function F using arithmetic operations and
differentiation:

dx

Fp

=
dy

Fq

=
dz

p · Fp + q · Fq

=
−dp

Fx + p · Fz

=
−dq

Fy + q · Fz

, (2)

where

Fx =
∂F

∂x
, Fy =

∂F

∂y
, Fz =

∂F

∂z
, Fp =

∂F

∂p
, Fq =

∂F

∂q
.

According to the well-known Cauchy theorem, a characteristic that inter-
sects the plot of the solution of the equation (1) cannot leave this surface.

The 19th century authors integrated the ODE system (2) and using well-
known integrals reconstructed the solution of PDE (1). Of course, the class
of ODEs that are integrable in a symbolic form is very small [10], therefore,
in modern CAS this system is solved numerically, thus combining numerical
and analytical methods for integrating the PDE (1).
This technique can be described as follows. Let us know the curve C

through which the desired solution of (1) should pass, and the value of p and
q on the curve, or, equivalently, the curve in the space xyzpq, through which
the manifold

z = f(x, y), p =
∂f

∂x
(x, y), q =

∂f

∂y
(x, y)

generated by the solution z = f(x, y) of the considered PDE should pass.
Then the desired solution of PDE is woven from the characteristics released
from this curve. Replace the curve C with a broken line and from each
of its vertices let out an integral curve, solving the initial problem for the
characteristic system of ODE numerically, for example, according to the
Runge–Kutta method. In this case, we will use the coordinates x, y, z of
the vertex and the corresponding values of p and q as the initial data. In
the general case, as a result, we get a network in the five-dimensional space
xyzpq, the projection of which into the space xyz gives the skeleton of the
surface, which approximates the graph of the exact solution. Therefore, the
construction of this projection can complete an approximate solution of the
PDE with the data on the curve C. Degeneration happens only when the
curve C itself is a characteristic.
In the case when the PDE is piecewise elementary, it is necessary to make

only a clarification in this scheme: when solving an ODE using the finite
difference method, it is necessary at each step to find out to which domain
the found point (x, y, z, p, q) of the integral curve belongs and to calculate the
next point (x̂, ŷ, ẑ, p̂, q̂) using the corresponding expression Fi instead of F .
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Unfortunately, the standard functions built in computer algebra systems,
e.g., in CAS Maple, do not allow this refinement of their algorithm, and
are essentially useless in solving optical problems. Therefore, we wrote our
implementation of this algorithm in the Python programming language using
the SymPy [9] library. The code is laid out github.com [11] and is available
under a free license. We called this package MF_Solver_PDE.

2. MF_Solver_PDE

Our software is focused on finding a solution to a piecewise elementary
PDE (1) passing through the curve C in the space xyzpq.
The right side of the equation (1) is considered as a piecewise elementary

function of five variables (x, y, z, p, q). This means that the space xyzpq is
divided into several domains G1, . . . , Gk, which are specified by inequalities
g1 < 0, . . . , gk < 0. For each of these domains, the symbolic expressions
F1, . . . Fk are given such that

F |Gi
= Fi (i = 1, . . . , k).

Thus, to set the left-hand side of the equation (1) means to set the inequal-
ities describing the domains G1, . . . , Gk and the expressions F1, . . . , Fk. In the
SymPy package, like in any computer algebra system, we can work with such
data types.
The input data for our algorithm for the solution of PDE are:

— the number k;
— the inequalities describing domains G1, . . . , Gk;
— the expressions F1, . . . , Fk;
— the parametric representation for the curve C in R5, through which the

desired solution of PDE must pass.

The auxiliary parameters are:

— N , the number of points that will be taken on the curve C with an equal
parameter step;

— h, the ODE discretisation step.

To find the PDE solution:

1) we find the coordinates of N points on the curve C;
2) for each of them we form the initial problem of finding the characteristic

that goes out of this point, and solve it using the Runge–Kutta method.
We used the explicit fourth-order method with 4 stages [12,13].

As a result of performing the described steps, a set of points in R5 is
obtained, their projection into xyz space giving a set of points lying on the
plot of the desired solution z = z(x, y). By connecting with straight line
segments the adjacent points lying on the same characteristic and the points
found at the same step on two characteristics released from neighbouring
points on the curve C, we get a two-dimensional skeleton of the surface. It
can be turned into a surface plot using standard graphical tools available in
SymPy.
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3. Examples and verification

As the first example, consider the PDE

az = pq. (3)

We will search for its solution passing through a straight line given para-
metrically in xyzpq space C : x = 1, y = τ, z = bτ, p = aτ, q = b.

This solution can be written explicitly as z = (ax+ b− a)y.

The same solution obtained using our software is shown in Figure 1. The
discrepancy between the numerical and analytical solutions is presented in
Figure 2. It is clearly seen that the difference between numerical and analytical
solutions is less than 10−7 and grows as the error is accumulated with each
step.
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Figure 1. The solution of Eq. (3) using

our software
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Figure 2. Discrepancy between numerical

and analytical solutions of Eq. (3)
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the partial solution of the eikonal

equation

Figure 4. The surface describing

the partial solution of the eikonal

equation in the Maple program
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As the second example, let us consider a problem from geometrical optics.
The eikonal equation has the form p2 + q2 = n2(x, y).
Here n is the refractive index. Let for definiteness

n2 =

2− x2 − y2, x2 + y2 < 1,

1, x2 + y2 > 1.

In the present example, it is assumed that we have two domains: a circular
Lüneburg lens and the medium in which it is placed (e.g., air) [14,15]. The
solution obtained using our software is demonstrated in Figure 3.
To check the correctness of the program work we compare the graphical

solution, obtained using our program, with the Maple result. Certainly, in
Maple the equations were solved only within the circle, and the boundary
conditions have been chosen artificially. The Maple solution is shown in
Figure 4. As seen from the figures, the solutions visually coincide.

Conclusion

The paper presents the original software for the numerical solution of first-
order partial differential equations (PDE), the characteristic feature of which
is that the coefficients of equations in different domains G1, . . . , Gk are given
by different analytical expressions F1, . . . Fk such that F |Gi

= Fi ∀i = 1, . . . , k.
The software was tested on benchmark problems taken from geometrical

optics. A comparison with the results obtained by Maple was carried out.
The considered examples are illustrative. The software is potentially suitable

for solving any first-order PDEs, the left-hand parts of which are piecewise
described by very long symbolic expressions. Very complex equations of
this type arise, for example, in the framework of the adiabatic waveguide
method (AWM) proposed by A.A. Egorov and L.A. Sevastianov [3–5]. In
this theory, the equation that plays the same role as the eikonal equation in
geometrical optics is obtained by equating the determinant of a 8×8 matrix
to zero. Even composing the symbolic expression for the right-hand side
turns out to be a challenge for computer algebra systems. However, as soon
as this expression is found, the proposed algorithm allows constructing the
propagation of electromagnetic waves of the AWM in media with piecewise-
specified refractive index. It is this application that we see as the natural
scope of the software presented in this article.
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This paper describes the created mathematical model that allows you to explore
the dynamics of cavitation bubbles under the influence of a single negative pressure
pulse. The time dependence and coordinates of the parameters of the carrier phase,
the temperature and pressure of the vapor phase, the concentration and size of the
bubbles are determined numerically. It is concluded that the model created gives
a good agreement between the calculated and experimental data.

Key words and phrases: numerical simulation, cavitation, mathematical model
of cavitation

1. Introduction

Cavitation in a fluid is a process in which a dynamic decrease in pressure
inside a fluid occurs at a constant temperature, as a result of which vapor
and vapor-gas bubbles increase in the fluid caused by the evaporation of fluid
into these bubbles. Bubbles (caverns) are formed in those places where the
pressure in the liquid becomes below a certain critical value [1]. In a real
fluid, it is approximately equal to the saturated vapor pressure at a given
temperature [2].

Some features of cavitation

— Cavitation is peculiar only to liquids and does not occur under normal
conditions, either in solids or in gases.
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— Cavitation results from a decrease in pressure in a liquid, which means
that it can be controlled by adjusting the pressure. If the pressure is
maintained below a certain level for a long time, cavitation occurs.

— Cavitation is associated with the disappearance of cavities and their
appearance in the liquid.

— Cavitation refers to non-stationary phenomena, since is a process of
growth and collapse of cavities.

— Cavitation can occur both in the case of a moving fluid and in the case
of a resting one.

— Cavitation can occur both in the volume of a liquid and on the solid
boundary.

2. Cavitation equation

The equation describing the dynamics of cavitation bubbles in an incom-
pressible fluid without taking into account the vapor pressure, surface tension
and viscosity of the fluid can be represented as:

RR̈ +
3

2
Ṙ2 =

1

ρ

[(
pb +

2σ

Ro

)(
Ro

R

)3k

− 2σ

R
− p0 − p(t)

]
. (1)

Here: R0 is the radius of the nucleus at t = 0; R — radius of the nucleus at
the next time instant t; ρ — density of a liquid; σ is the surface tension of the
fluid; k = 1 is the adiabatic index for steam in the bud; po is the hydrostatic
pressure in a liquid (po = pb); R̈ is the acceleration of the cavity wall; Ṙ is the
speed of movement of the cavity wall; 2σ/R0 is the Laplace pressure; R0/R is
the amplitude of oscillations of the cavity.

3. Dynamics of a cavity under the action
of single pulses of negative pressure

A single impulse is presented in the form:

p(t) = −α (t+ t1) exp

(
−t+ t1

τ

)
, (2)

where t1 is the time of appearance of the first germ of homogeneous cavitation
under the action of this pulse.
In this case

dp

dt
=

(
−1

τ

)
α (t+ t1) exp

(
−t+ t1

τ

)
+ α exp

(
−t+ t1

τ

)
. (3)

At t = 0, the rate of increase in pressure at the initial moment of time is

α = −dp

dt
. From the condition

dp

dt
= 0, applied to (3) we find tm = τ , pm =

ατ

e
,

where τ is the rise time of the pressure pulse up to the maximum value pm.
Let us set the maximum pressure amplitude pm so that it approaches 95% to
the thermodynamic stability [3] of the fluid (spinodal, [4]), i.e.
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pm = 0.95(pb − ps). (4)

Then from (4) it follows that

α =
1

τ
0.95e(pb − ps). (5)

Thus, the rate of pressure increase α can be calculated for a given fluid
temperature using the value of (pb − ps) for a given τ.

The time of appearance of the first nucleus t1 is found from the condition
(2), when at t = t1 the pressure is p = p1.

p1 = −αt1 · exp
(
−t1
τ

)
= −β(pb − ps). (6)

Here p1 is the pressure at which one germ appears in 1 cm3 at the moment
of time t1,

β = − p1
pb − ps

< 1. (7)

Substituting α into (6), we get

β = e · t1
τ
· exp

(
−t1
τ

)
= e · x · exp (−x) (8)

where x = t1/τ.

Thus, in the equation (3), for a given value of τ , the value of α; is calculated
by the formula (5) and the value of t1 is calculated by the formula (2) for
a given value of β (formula (8)).

To determine the time t1, it is necessary to take into account the number
of bubbles appearing per unit of time per unit volume of liquid:

dN

V · dt
= B · exp

[
− 16πσ3

3(1− ρv/ρl)2(pb − p)2

]
,

V = 1 sm3,

A =
16πσ3

3(1− ρv/ρl)2
, (9)

pb − p = αt,

dN = B · exp

(
− A

α2t2

)
dt,

N = 1 = B

t1∫
0

exp

(
− A

α2t2

)
dt. (10)
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By calculating α and A through the formulae (9) and (10) by integrating

respectively and assuming that B ≈ 1033 cm−3s−1 at N = 1 the time t1 is
calculated.

Denoting by

C = − A

α2
,

we get that

B ·
t1∫
0

exp

(
C

t2

)
dt = 1. (11)

Taking into account the geometric meaning of a definite integral (11), one
can determine the point t1, by numerical method knowing that the area of
the figure bounded by the function f(x) on the interval [0, t1] should be equal
to 1.

In the basic cavitation equation (1), we substitute the expression for pressure
in the form (2). Then the basic cavitation equation (Rayleigh equation) takes
the form:

RR̈ +
3

2
Ṙ2 =

=
1

ρ

[(
pb +

2σ

Ro

)(
Ro

R

)3k

− 2σ

R
− pb − α (t+ t1) exp

(
−t+ t1

τ

)]
. (12)

The differential equation for the growth of an embryo vapor has the form:

ρl

(
RR̈ +

3

2
Ṙ2

)
= −p(t)− 2σ

R

(
1− ρl

ρv

)−1

, (13)

where p(t) is defined by the formula (2).

Substituting p(t) from (2) into (13), we get:

ρl

(
RR̈ +

3

2
Ṙ2

)
= α(t+ t1) · exp

(
−t+ t1

τ

)
− 2σ

R

(
1− ρl

ρv

)−1

. (14)

For the reasons described above, we will assume t1 ≈ 0, and then the
equation (14) takes the form:

ρl

(
RR̈ +

3

2
Ṙ2

)
= α · t · exp

(
− t

τ

)
− 2σ

R

(
1− ρl

ρv

)−1

. (15)

It is solved by us numerically. For this, it is necessary to present the last
equation in the form of a system of two equations in which the following
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change of variables is introduced:

R = u(2),

Ṙ = du(2) = u(1),

R̈ = du(1).

The equation (15) by changing variables is converted to the form:

R̈ =
1

ρlR

[
αt exp

(
− t

τ

)
− 2σ

R

(
1− ρl

ρv

)−1
]
− 3

2

Ṙ2

Rρl
(16)

or

du(1) =
1

ρlu(2)

[
αt exp

(
− t

τ

)
− 2σ

u(2)

(
1− ρl

ρv

)−1
]
− 3

2

[u(1)]2

u(2)ρl
. (17)

The last equation is solved numerically by the Runge–Kutta method. The
calculations were carried out for τ = 10−9 s.
It was believed that at the initial time, a homogeneous liquid that does not

contain vapor bubbles was at a given temperature and pressure

t = 0, pl = pl0, Tl = Tl0, Nb = 0, u = 0.

The rate of pressure drop αp at the point with coordinate x = 0 was set by
the boundary conditions

x = 0, pl = pl0 − αp · t,
∂u

∂x
= 0.

After a bubble appeared, the following initial conditions were accepted
for ordinary differential equations describing its development (12): R = Rc,
pv = pb, tv = Tl.

4. Method of numerical solution of the equation

We introduce the following notation, convenient for working with the
program for the numerical solution of the basic cavitation equation in the
form (1):

ωR0 = omr0,
2σ

R0

= sr0, Pb = pb,

(ωR0)
2 = omr02,

(
Pb +

2σ

R0

)
= pbsr0, Pa = pa,

ρ(ωR0)
2 = rhomr, ϕo = fio, R∗ = u(2), z∗ = u(1).

Then the original equation (1) takes the form of a system of two first order
differential equations:
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du(1) = −3

2

1

omr0

u(1)

u(2)
+

+
1

rhomr

1

u(2)

[
pbsr0

(u(2))3k
− sr0

1

u(2)
− pb+ pa · sin(τ + fio)

]
,

du(2) = u(1).

The resulting system of differential equations is solved numerically by the
Runge–Kutta method. It should be noted that numerical solutions were cited
earlier for other cases [5–9].

5. The program for the numerical solution

We have created a program for the numerical solution of the cavitation
equation in the Compaq Visual Fortran Professional programming language.
Its work is based on the Runge–Kutta method.
Initially, the main program asks for the values of external parameters, such

as fluid temperature, oscillation frequency, and others (see Fig. 1). Then
the main program refers to an array of tabular data for the values of surface
tension, fluid viscosity, fluid pressure, vapor pressure at a given temperature.
These tabular data are discrete values and do not always correspond to a given
temperature. Therefore, the main program refers to auxiliary subroutine 1,
which approximates or extrapolates the table data to a given point.

Figure 1. Block diagram

To calculate parameters such as the initial radius of the cavity, the pressure
at which the first cavitation nucleus appears, the initial phase of external
oscillations, the main program refers to subroutine 2, which calculates these
values based on the data already calculated by subroutine 1.
Subroutine 3 then receives from subprogram 2 a task to calculate the time

t1 during which the first cavitation nucleus appears in the fluid. The required
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tabular data is requested from subroutine 1. The result of the calculation is
reported to the main program.

Having collected all the necessary data, the main program calculates the
basic cavitation equation for the maximum amplitude of oscillations of the
cavity in case of acoustic cavitation [10,11]. It should be noted that this case is
also interesting in the possibility of initiating a nuclear fusion reaction [12–14],
which is confirmed by the theory [15,16].

Below is a part of the main program for the numerical solution of this
system of equations, written in the programming language Fortran:

external rad,res
dimension pt(5), u(2), du(2), aux(8,2)
common omr0, rmr0, rhomr, pbsr0, pk, sr0, pa, pb, pi, nk,

fa, r0, p, p1, fi0, ky↪→

open(1, file='p.dat')
open(2, file='r.dat')
open(3, file='bubble.txt')
print *, 'The program for calculating the dynamics of the

bubble with acoustic effects and the frequency of Fa
according to Runge Kutta method.'

↪→

↪→

print *, '-------------------------------------------'
print *, 'time pressure dependence P = P (t / T) is

written to the file "p.dat", the time dependence of
the radius R / R0 = f (t / T) is written to the file
"r.dat".'

↪→

↪→

↪→

print *, 'THE PROGRAM WILL NOT WORK without an auxiliary
file "bubble.txt" and also without the additional
program "rkgs.for"!'

↪→

↪→

read (3, *) q1, q2, fa, pa, pb, p1, r0, sig, amu, ro, kt,

ky↪→

pi = 3.141592654
pk = 5
print *, 'The following parameters are entered here:'
print *, '1) Time step integration (wt): pt (3) =', q1
print *, '2) Integration error: pt (4) =', q2
print *, '3) Acoustic frequency: Fa =', fa, 'Hz'
print *, '4) Pressure amplitude at a given point: Pa =',

pa, 'Pa'↪→

print *, '5) Pressure on binodals at a given point: Pb =',

pb, 'Pa'↪→

print *, '6) Pressure at the point of emergence of the

unit: P1 =', p1, 'Pa'↪→

print *, '7) Starting radius of the nucleus: R0 =', r0,

'm'↪→

print *, '8) Surface tension: sigma =', sig, 'N / m'
print *, '9) Molar mass: mu =', amu, 'kg / mol'
print *, '10) The density of the fluid at this point: po

=', ro, 'kg / m * 3'↪→

print *, '11) Number of periods studied: n =', kt
print *, '12) Number of points for one period: N =', ky
print *, ''
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print *, 'Changing these parameters is possible only in

the file' bubble.txt ''↪→

print *, 'To interrupt the program, press "Ctrl + C", for

continuation - "Enter"'↪→

pause
om=2.0*pi*fa
omr0=om*r0
omr02=omr0*omr0
rhomr=ro*omr02
rmr0=4.*amu/(r0*ro)
sr0=2.*sig/r0
fi0=asin((pb-p1)/pa)
pbsr0=pb+sr0
pt(1)=0.0
pt(2)=2.0*pi*kt
nk=1

6 continue
pt(3)=q1
pt(4)=q2
u(1)=0.0
u(2)=1.
du(1)=0.5
du(2)=0.5
call rkgs (pt,u,du,2,ih,rad,res,aux)
if(ih-10)3,3,4

3 continue
print *,' Error code ',ih
goto 5

4 continue
print *,' ATTENTION !!!'
print *, 'ERROR CODE SHOULD NOT EXCEED 10.'
print *, 'Correct, please, the parameters pt(3),pt(4)'
read(*,*)q1,q2
goto 6

5 continue
stop
end

Below are some results of a numerical simulation of the bubble behavior in
a rarefaction wave.

6. Conclusions

The mathematical model created by us allows us to investigate the dynamics
of cavitation bubbles with a change in fluid pressure. Numerical simulation
made it possible to determine the time dependence and coordinates of the
parameters of the carrier phase, the temperature and pressure of the vapor
phase [17], the concentration and size of the bubbles. The proposed model is
applicable not only to liquids, but also to metals in the liquid phase [18].
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We concluded that the model created gives a good agreement between the
calculated and experimental data [19], which demonstrates the applicability
of the approach under consideration to the problem of rapid pressure drop.
In the studied problem, the following picture takes place: the pressure

of the fluid drops in the rarefaction wave to a value below the saturation
pressure, the fluid enters a metastable state [20], intense nucleation begins
in the region of minimal pressure, after which the bubbles rapidly increase
due to the interfacial mass transfer, which ultimately account stabilizes the
pressure at a value close to the saturation pressure.
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This article addresses the issues of volume integral equation method application to
magnetic system calculations. The main advantage of this approach is that in this
case finding the solution of equations is reduced to the area filled with ferromagnetic.
The difficulty of applying the method is connected with kernel singularity of integral
equations. For this reason in collocation method only piecewise constant approx-
imation of unknown variables is used within the limits of fragmentation elements
inside the famous package GFUN3D. As an alternative approach the points of obser-
vation can be replaced by integration over fragmentation element, which allows to
use approximation of unknown variables of a higher order.
In the presented work the main aspects of applying this approach to magnetic

systems modelling are discussed on the example of linear approximation of unknown
variables: discretisation of initial equations, decomposition of the calculation area to
elements, calculation of discretised system matrix elements, solving the resulting non-
linear equation system. In the framework of finite element method the calculation area
is divided into a set of tetrahedrons. At the beginning the initial area is approximated
by a combination of macro-blocks with a previously constructed two-dimensional
mesh at their borders. After that for each macro-block separately the procedure
of tetrahedron mesh construction is performed. While calculating matrix elements
sixfold integrals over two tetrahedra are reduced to a combination of fourfold integrals
over triangles, which are calculated using cubature formulas. Reduction of singular
integrals to the combination of the regular integrals is proposed with the methods
based on the concept of homogeneous functions. Simple iteration methods are used to
solve non-linear discretized systems, allowing to avoid reversing large-scale matrixes.
The results of the modelling are compared with the calculations obtained using other
methods.

Key words and phrases: finite element method, magnetostatics, volume integral
equations, systems of nonlinear equations, cubature formulae, iterative process

Introduction

The paper [1] gives an overview of existing methods and programs for the
numerical simulation of magnetic systems. The issues concerning the volume
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integral equation method [2–5] for magnetic system calculations are discussed
in this article. We consider the approach, which allows to construct high order
accuracy approximation method for initial problem discretization. The main
steps of the modelling process are being discussed: discretization of the initial
equations for linear approximation of the magnetic field, algorithm of area
division into elements, matrix element calculation procedures, a method of
solving a corresponding system of nonlinear equations. The numerical results
obtained for the modelling of quadrupole and dipole magnet agree with those
obtained by the famous code TOSCA [6].

1. Volume integral equation method

Let B̄(ā), H̄(ā), M̄(ā) be the induction, the intensity and the magnetization
of the magnetic field at the point ā. The values B̄, H̄, M̄ are connected by
the following nonlinear ratios [7]:

H̄(ā) =
B̄(ā)

µ
(
|B̄(ā)|

)
µ0

, M̄(ā) =
B̄(ā)

µ0

−H(ā), (1)

where µ0 is the absolute magnetic permeability of vacuum; µ(x) is the magnetic
permeability. The following integral equation is true:

H̄(ā) = H̄S(ā) +
1

4π
∇ā

∫
G

(
M̄(x̄),∇a

1

|x̄− ā|

)
dvx̄,

where H̄S(ā) is the magnetic field from the current winding. G is the area

filled with iron. The field H̄S(ā) can be found according to the Biot–Savart
law [8]:

H̄S(ā) =
1

4π
Rotā

∫
R3

J̄(x̄)

|x̄− ā|
dvx̄,

where J̄(x̄) is current density. The difficulty of applying the integral approach
is related to the singularity of the kernel of the integral equations.
This is the reason why only a piecewise approximation of unknown param-

eters within division element area is used in GFUN3D code [2]. Alternatively
to collocation method, integration over dividing elements can be used.
It allows to use higher order approximation for unknown variables. The

most convenient mathematical approach for constructing such type of approx-
imations is the finite element method (FEM) [9–12].

Let us divide area G into tetrahedrons {Gi}. We suppose that the frag-

mentation G =
N⋃
i=1

Gi satisfies the requirements of FEM. Let us assume

{P̄k, k = 1, . . . , L} is the set of all vertexes in all tetrahedrons {Gi}. Let us
introduce the notation B̄k = B̄(P̄k), H̄k = H̄(P̄k), M̄k = M̄(P̄k). We denote

fk(x̄) — as a node function, associated with vertex P̄k. The functions fk(x̄) on
each tetrahedron are linear functions, equaled to 1 at the vertex P̄k and to 0
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at any other vertexes. Using these notations we define linear approximations
for vectors B̄(ā), H̄(ā), M̄(ā):

B̂(ā) =
L∑

k=1

fk(ā)B̄k, Ĥ(ā) =
L∑

k=1

fk(ā)H̄k, M̂(ā) =
L∑

k=1

fk(ā)M̄k.

We characterize a discretized formulation of magnetostatic problem, using
the finite element linear approximation within division elements [13]:

L∑
j=1

∫
G

fi(ā)fj(ā)H̄jdvā =

∫
G

fi(ā)H̄
S(ā)dvā+

+
L∑

j=1

∫
G

fi(ā)
∇a

4π

∫
G

fj(x̄)

(
M̄j,∇a

1

|x̄− ā|

)
dvx̄

 dvā, i = 1, L. (2)

Let matrix [C] be a matrix of [3L× 3L]:

[C] =

[C11] · · · [C1L]
...

. . .
...

[CL1] · · · [CLL]

 ,

where [Cij] — is a diagonal matrix of [3× 3] dimension such as

[Cij] =

∫
G

fi(ā)fj(ā)dvā

1 0 0

0 1 0

0 0 1

 .

Let [A] be a matrix of [3L× 3L] dimension:

[A] =

[A11] · · · [A1L]
...

. . .
...

[AL1] · · · [ALL]

 ,

where [Aij] — is a matrix of [3× 3] dimention, such as for any constant vector
M̄ the following ratio is true:

[Aij]M̄ =

∫
G

fi(ā)dvā
∇a

4π

∫
G

fj(x̄)

(
M̄,∇ā

1

|x̄− ā|

)
dvx̄

 . (3)

Let the following be true:

B̂ =
(
B̄1, B̄2, . . . , B̄L

)T
,



P.G.Akishin, A.A. Sapozhnikov, The volume integral equation method… 63

M̂(B̂) =
(
µ0M̄(B̄1), µ0M̄(B̄2), . . . , µ0M̄(B̄L)

)T
,

ĤS =

µ0

∫
G

f1(ā)H̄
S(ā)dvā, µ0

∫
G

f2(ā)H̄
S(ā)dvā, . . . , µ0

∫
G

fL(ā)H̄
S(ā)dvā

T

.

Taking into account (1), the system (2) could be written in the following
way:

[C]B̂ = ĤS + ([A] + [C]) M̂(B̂). (4)

Using node functions of higher order similarly to (2) it is possible to
formulate a discretization with quadratic, cubical or higher approximation of
variables within the element.

2. Finite element mesh generating

In order to build a discretization for the integral equations (2) the region
of calculations should be divided into the tetrahedrons, satisfying the require-
ments of FEM. There are many articles dedicated to this problem [14–17].
Depending on the task, there are different requirements for mesh elements. In
subregions, where the solution should change faster, more detailed discretiza-
tion is needed, and as a result, the element size must be smaller. And, vice
versa, within the regions of slow solution changing, detailed division leads
to a big number of elements, thus complicating the solving of the final dis-
cretized system of equations. That is why in such regions the element size
must be larger. Moreover, the final mesh elements should not be degenerated.
The degenerated elements affect the solution approximation and the conver-
gence of iterative methods, used for solving the discretized problem. In the
case of constructing mesh with heterogeneous materials there are additional
restraints for a division related to medium edge borders. These borders usu-
ally look like curves on a plain or surfaces in space and should not be crossed
by the edge of the mesh. In fact, these limitations show that every element of
the mesh should consist of only one particular substance. The region edges
can be approximated with lines or surfaces as well as with curves and sec-
ond or further order surfaces. Such edges are approximated with resultant
elements according to the size of the considered mesh sub-region.

In report [18] the problems of multidimensional finite element mesh genera-
tion based on electromagnetic fields modelling in large-scale electromagnetic
machines have been discussed. A description of the three-dimensional adap-
tive mesh generator 3DFEMMesh, a review of mesh generation methods and
a number of the existing criteria for a quality assessment of the constructed
mesh are given in this work. The procedure of mesh construction is based
on a representation of the problem domain as a combination of standard 3D
macroblocks. After generating of a two-dimensional mesh on all macroblocks
boundaries, three-dimensional mesh in each block may be constructed individ-
ually. The program has a graphical interface for the data entry and a visual
assessment of the partition quality. The generator 3DFEMMesh is included
into JINR programme library JINRLIB [19].
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3. Matrix element calculation

The problem of defining matrix coefficients of the discretized equations can
be reduced to calculating sixfold, singular in general case, integrals from (3)
by two tetrahedrons. The simplest way to evaluate these integrals is to use
a cubature. Given a big number of integrals to be calculated, requirements to
cubature formula optimality are extremely important. Because of singularity
of the function being integrated the necessity of using cubature formula of
high accuracy arises [20]. In monograph [21] the issues of the general theory
of cubature formula building are studied and many cubature formulas for
different types of simplexes are listed. While calculating integrals, which
are necessary for the discretized equations, there might be situations when
the integrated function is singular. Moreover, there are situations when the
function being integrated is singular in every point of the volume under
integration. In those cases cubature formula application is not possible and
we need to develop further methods for such kind of integration.

First of all, we consider the method which allows to decrease the coefficient
calculation time of the discretizated systems. The matrix coefficients in [Aij]
from (3) can be presented as sum of integrals such as:

Jn,j,l
m,i,k =

∫
Gm

∫
Gn

[
fi(x̄)fj(ā)

∂2

∂xk∂al

1

|x̄− ā|

]
dvx̄dvā.

Taking into account that {fk(x̄)} are linear functions and, as a consequence,
the function gradient vectors are constant inside each tetrahedron, such
volume integrals can be reduced to surface integrals thus:

Jn,j,l
m,i,k =

∮
∂Gm

∮
∂Gn

fi(x̄)fj(ā)(dS̄x, ēk)(dS̄a, ēl)

|x̄− ā|
−

− 0.5
∂fm

i (x̄)

∂xk

∂fn
j (ā)

∂al

∮
∂Gm

∮
∂Gn

(dS̄x, dS̄a)

|x̄− ā|
−

− 0.5
∂fm

i (x̄)

∂xk

∮
∂Gm

∮
∂Gn

fj(ā)(dSa, ēl)
((x̄− ā), dS̄x)

|x̄− ā|
−

− 0.5
∂fn

j (ā)

∂al

∮
∂Gm

∮
∂Gn

fi(x̄)(dSx, ēk)
((ā− x̄), dS̄a)

|ā− x̄|
, (5)

where ēk, ēl are unit coordinate system vectors.

The notation ∂fm
i (x̄)/∂xk means that the derivative is calculated on the

tetrahedron Gm. It is important to note that region G consists of a union
of tetrahedrons. Then the borders {∂G} are triangles. Thus, calculating
the expressions (5) reduces a 6D integral to a sum of 4D integrals over two
triangles. There are four types of the positional relationships of triangles in
space: triangles do not cross, triangles have one mutual vertex, triangles have
one mutual side and triangles are congruent. For the first type the cubature
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formula application is possible. For the others it is not possible due to the
singularity of the expressions being integrated. Let us note that the expression
under integration in (5) can be represented as a sum of homogeneous functions.
Let the function f(x̄) be a homogeneous function if for any λ > 0

f(λx̄) = λkf(x̄).

Let us illustrate the method of integration of homogeneous functions from
[22] taking as an example the integral:

J0 =

∫
S1

∫
S2

dSxdSy

|x̄− ȳ|
,

where S1, S2 are shown in Figure 1.

Figure 1. Illustration of homogeneous function integration by two triangles

Let Ŝ1 be a triangle AB′C ′, obtained by stretching the triangle S1 in λ
times with respect to point A. Similarly Ŝ2 is a triangle AD′F ′, obtained by
stretching triangle S2 in λ times with respect to point A. Let J(λ) be

J(λ) =

∫
Ŝ1

∫
Ŝ2

dSxdSy

|x̄− ȳ|
.

Substituting variables x̄ = λx̄1, ȳ = λȳ1 integral J(λ) can be reduced to:

J(λ) = λ3

∫
S1

∫
S2

dSx1dSy1

|x̄1 − ȳ1|
. (6)

Let T̂1 be trapezium B′BCC ′, T̂2 — trapezium DD′F ′F . Let us calculate the
limit of difference ratio:

∂J(λ)

∂λ

∣∣∣∣
λ=1

= lim
λ→1

(J(λ)− J(1))

(λ− 1)
.
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Using the additivity of integrals as a set function over which they are taken
we have:

∂J(λ)

∂λ

∣∣∣∣
λ=1

= lim
λ→1

1

λ− 1


∫

T̂1

∫
S2

+

∫
Ŝ1

∫
T2

+

∫
T̂1

∫
T̂2

 dSx1dSy1

|x̄1 − ȳ1|

 . (7)

From (7) we have:

∂J(λ)

∂λ

∣∣∣∣
λ=1

= h1

∫
BC

∫
S2

dlx1dSy1

|x̄1 − ȳ1|
+ h2

∫
S1

∫
DF

dSx1dly1
|x̄1 − ȳ1|

, (8)

where h1 — height LA, h2 — height AM . Differentiating (6) by λ and taking
into account (8), we get:

J0 = J(1) =
1

3

h1

∫
BC

∫
S2

dlx1dSy1

|x̄1 − ȳ1|
+ h2

∫
S1

∫
DF

dSx1dly1
|x̄1 − ȳ1|

 . (9)

It must be mentioned that the expressions on the right hand of (9) are
regular integrals. It is possible to use the cubature formula for calculations of
these integrals.

After application of this method all singular integrals from (5) can be
reduced to the superposition of regular integrals of lower order, for calculation
of which a cubature formula can be used. In the case when the triangles have
one common side or coincide, this approach should be applied successively
twice and three times respectively. The method of integration illustrated
above allows to reduce all singular integrals from (5) to superpositions of
regular integrals of lower order, the calculation of which can be done by
cubature.

4. Iterative methods for nonlinear systems solving

In practice to achieve the demanded approximation accuracy it is necessary
to split region G into smaller elements, that leads to huge dimension rise of
the nonlinear discretized systems of the equations. It is extremely difficult to
apply methods which require inversion of high order matrixes. So, for solving
discretizated systems of equations (4) simple iterative process is used:

[C]B̂k+1 = (ĤS + ([A] + [C]) M̂(B̂k)),

B̂0 = 0̄, k = 1, 2, . . . .

This process will be finished when equation residuals become less than the
previously set value ε. For solving linear systems of equations [C]x̄ = ȳ the
incomplete Kholetsky expansion method in combination with the conjugate
gradient method are used [23].
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5. Magnet system modelling

The method of volume integral equations with the linear approximation of
magnetization has been used for modelling the dipole and quadrupole magnets.
The model of a variant of the projected dipole magnet for CBM experiment
(GSI, Darmstadt) is shown In Figure 2a. A splitting of the magnet into the
tetrahedrons has been done with the help of the generator 3DFEMMesh. In
the process of modelling the dipole symmetry of magnetic field has been taken
into account, that allowed to reduce the number of unknown parameters by
8 times. One eighth of the magnet has been divided into 5264 tetrahedrons.
There are 1363 vertexes in all tetrahedrons. In Figure 2b the distribution
of the magnet field module inside the magnet is shown.The results given
in Figure 2c show agreement of the present method with the famous code
TOSCA [6] which is based on solving partial differential equations.

Figure 2. 3D modelling of dipole magnet CBM

The proposed approach has been also applied to the modelling of the
BOOSTER quadrupole magnet of the projected accelerating complex NICA
(JINR, Dubna).

In the process of modelling the quadrupole symmetry of magnetic field has
been taken into account. This allowed to reduce the number of unknown
parameters by 16 times. One sixteenth of the magnet was divided into 7040
tetrahedrons. The total number of vertexes was 1729. In Figure 3a there is
a computer model of the magnet. In Figure 3b the allocation of magnet field
module inside the magnet is shown. The resulting comparison obtained by
the proposed method and TOSCA code is given in Figure 3c.

Figure 3. 3D modelling of quadrupole magnet BOOSTER
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6. Conclusion

The issues of applying the volume integral equation method to the calcula-
tions of magnetic systems have been considered in this article. Within the
framework of finite element method for discretization of continual equations
an alternative approach has been used. This method is based on the sub-
stitution of observation points with integration by division elements. Thus,
the main problem of applying the volume integral equation method which
is related to kernel singularity is removed. The suggested approach allows
to increase the order of approximation of the initial equations. Procedures
for calculations of matrix coefficients for discretized equations and methods
for solving a corresponding non-linear system of equations have been sug-
gested. The results of magnet system simulations based on this approach are
in agreement with the calculations by other programs.
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